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In this chapter we want to have a first look into the representation theory of various groups
with extra structure, like algebraic or compact groups. We will use the necessary techniques from
elementary algebraic geometry or functional analysis, referring to standard textbooks. One of the
main points is a very tight relationship between a special class of algebraic groups, the reductive
ones, and compact Lie groups. We plan to illustrate this in the classical examples, leaving the
general theory to Chapter 10.

1 Characters.

1.1 Characters We want to deduce some of the basic theory of characters of finite
groups and more generally, compact and reductive groups. We start from some general
facts, valid for any group.

Definition. Given a linear representation p : G — GL(V') of a group G, where V is a
finite dimensional vector space over a field F' we define its character to be the following
function on G :2

Xp(9) == tr(p(g))-

Here tr is the usual trace.

We say that a character is irreducible if it comes from an irreducible representation.

Some properties are immediate (cf. Chap. 6, 1.1).

2There is a deep theory also for infinite dimensional representations. In this setting the trace of an
operator is not always defined. With some analytic conditions a character may be also a distribution.
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Proposition 1. 1) x,(9) = x,(aga™"), Va,g € G.
The character is constant on conjugacy classes, such a function is a class function.
2) Given two representations pi, ps we have:

(1‘1'1) Xp1®p2 = Xp1 + Xp2s Xp1®p2 — Xp1Xp2-
3) If p is unitarizable the character of the dual representation p* is the conjugate of x,:
(1.1.2) Xp* = X7-

Proof. Let us show 3) since the others are clear. If p is unitarizable there is a basis in which
the matrices A(g) of p(g) are unitary. In the dual representation and in the dual basis the
matrix A*(g) of p*(g) is the inverse transposed of A(g). Under our assumption A(g) is

Enitary hence (A(g)~")* = A(g) and x,-(g9) = tr(A*(g)) = tr(A(g)) = tr(A(g)) = x,(9)-

We have just seen that characters can be added and multiplied. Sometimes it is con-
venient to extend the operations to include the difference y; — x2 of two characters. Of
course such a function is no more a character but it is called a virtual character.

Proposition 2. The virtual characters of a group G form a commutative ring called the
character ring of G.

Proof. This follows immediately from 1.1.1. [

Of course if the group G has extra structure we may want to restrict the representations,
hence the characters, to be compatible with the structure. For a topological group we will
restrict to continuous representations while for algebraic groups to rational ones. We will
speak thus of continuous or rational characters.

In each case the class of representations is closed under direct sum and tensor prod-
uct thus we also have a character ring, made by the virtual continuous resp. algebraic
characters.

Example In Chap. 7, 3.3 we have seen that, for a torus T of dimension n the (rational)
irreducible characters are the elements of a free abelian group of rank n. Thus the character
ring is the ring of Laurent polynomials Z[z7!, ..., 1], Inside this ring the characters are
the polynomials with non negative coeflicients.

1.2 Haar measure In order to discuss representations and characters for compact
groups we need some basic facts of the theory of integration on groups.

The type of measure theory which we need is a special case of the classical approach to
the Daniell integral (cf [DS]).

Let X be a locally compact topological space. We use the following notations, Cy(X, R)
denotes the algebra of real valued continuous functions with compact support, while
Co(X) resp. C(X), the complex valued continuous functions with compact support, resp.
all continuous functions. If X is compact every function has compact support, hence we
drop the subscript 0.
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Definition. An integral on X is a non zero linear map I : Cy(X,R) — R, such that if
f € Co(X,R) and f(z) >0, Vx € X (a positive function) we have I(f) > 0.3

If X = G is a topological group we say that an integral I is left invariant if, for every
function f(x) € Co(X,R) and every g € G we have I(f(z)) = I(f(g~'x)).

Measure theory allows to extend a Daniell integral to larger classes of functions, in
particular to the characteristic functions of measurable sets and hence deduce a measure
theory on X in which all closed and open sets are measurable. This measure theory is
essentially equivalent to the given integral. Therefore one uses often the notation dz for
the measure and I(f) = [ f(z)dz for the integral.

In the case of groups the measure associated to a left invariant integral is called a left
invariant Haar measure.

In our treatment we will mostly use L? functions on X. They form a Hilbert space
L?(X), containing as a dense subspace the space Co(X). The hermitian product being
I(f(z)g(z)). A basic theorem (cf. [Ho|) states that:

Theorem. On a locally compact topological group G, there is a left invariant measure.
The left invariant Haar measure 1is unique up to a scale factor.

This means that, if I, J are two left invariant integrals there is a positive constant c
with I(f) = ¢J(f) for all functions.

Exercise If 1 is a left invariant integral on a group G and f a non zero positive function
we have I(f) > 0.

When G is compact, the Haar measure is usually normalized so that the volume of G is
1, i.e. I(1) = 1. Of course G has also a right invariant Haar measure. In general the two
measures are not equal.

Exercise Compute left and right invariant Haar measure for the 2-dimensional Lie
group of affine transformations of R, z — ax + b.

If h € G and we are given a left invariant integral [ f(z) it is clear that f — [ f(zh) is
still a left invariant integral, so it equals some multiple ¢(h) [ f(z). The function c(h) is
immediately seen to be a continuous multiplicative character with values positive numbers.

Proposition 1. For a compact group left and right invariant Haar measures are equal.

Proof. Since G is compact, ¢(G) is a bounded set of positive numbers. If for some h € G

we had c¢(h) # 1 we have lim ¢(h™) = lim ¢(h)™ is 0 or co a contradiction. [
n—00 n—00

We need only Haar measure on Lie groups. Since Lie groups are differentiable manifolds
one can use the approach to integration on manifolds using differential forms (cf. [ Spi]) .
In fact, as for vector fields, one can find n = dim G left invariant differential linear forms
1;, which are a basis of the cotangent space at 1 and so at each point.

3the axioms of Daniell integral in this special case are simple consequences of these hypotheses.
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Proposition 2. The exterior product w := Yy Ao A-- - Ay, s a top dimensional differen-
tial form which is left invariant and defines the volume form for an invariant integration.

Proof. Take a left translation Lg, by hypothesis L} (1;) = 1; for all 4. Since L} preserves
the exterior product we have that w is a left invariant form. Moreover since the 1); are a
basis in each point w is nowhere 0. Hence w defines an orientation and a measure on G,
which is clearly left invariant. [

1.3 Compact groups Haar measure on a compact group allows us to average func-
tions thus getting projections to invariants. Recall that for a representation V' of G, the
space of invariants is denoted by V&.

Proposition 1. Let p: G — GL(V) be a continuous complex finite dimensional represen-
tation of a compact group G (in particular a finite group), then (using Haar measure):

(1.3.1) dim@VG:/pr(g)dg.

Proof. Let us consider the operator m := [ p(g)dg. We claim that it is the projection
operator on V. In fact if v € VC:

() = /G plo)w)dg = [ vig=v.

G
Otherwise:

p(hym(v) = /G p(h)p(g)udy = /G p(hg)vdg = m(v)

by left invariance of the Haar integral.

We have then dimcVC = tr(m) = tr( [, p(9)dg) = [, tr(p(9))dg = [4 Xp(g)dg by linear-
ity of the trace and of the integral. [

The previous proposition has an important consequence.

Theorem 1 (Orthogonality of characters). Let x1,x2 be the characters of two irre-
ducible representations p1, p2 of a compact group G, then:

0 if p1 # p2
1L ifpr=p2

(13.2) @t = {

Proof. Let Vi, V5 the the spaces of the two representations. Consider hom(Va, Vi) =
V1 ® V5. As representation it has character x1(g)X»(g) from 1.1.1 and 1.1.2.

We have seen that homg(Vz, V1) = (V4 ® V)€ hence, from the previous proposition
dimchomg(Va, V1) = fG X1(9)X2(g9)dg. Finally by Schur’s lemma and the fact that V;, V5
are irreducible, homg(Va, V1) has dimension 0 if p; # py and 1 if they are equal. The
theorem follows. [
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In fact a more precise theorem holds. Let us consider the Hilbert space of L? functions
on G. Inside we consider the subspace L2(G) of class functions, it is clearly a closed
subspace. Then:

Theorem 2. The irreducible characters are an orthonormal basis of L2(G).

Let us give the proof for finite groups, the general case requires some basic functional
analysis and will be discussed in section 2.4. For a finite group G decompose the group
algebra in matrix blocks according to Chap. 6, 2.6.3 as C[G] = & M}, (C).

The m blocks correspond to the m irreducible representations. Their irreducible characters
are the composition of the projection to a factor Mp, (C) followed by ordinary trace.

A function f = >° 5 f(9)g € C[G] is a class function if and only if f(ga) = f(ag)
or f(a) = f(gag™!), for all a,g € G. This means that f lies in the center of the group
algebra.

The space of class functions is identified to the center of C[G].

The center of a matrix algebra M}, (C) is formed by the scalar matrices. Thus the center
of & Mj, (C) equals C®™.

It follows that the number of irreducible characters equals the dimension of the space of
class functions. Since the irreducible characters are orthonormal they are a basis.

As corollary we have:

Corollary. a) The number of irreducible representations of a finite group G equals the
number of conjugacy classes in G.

b) If hy,..., h, are the dimensions of the distinct irreducible representations of G we
have |G| =", hZ.

Proof. a) Since a class function is a function constant on conjugacy classes, a basis for
class functions is given by the characteristic functions of conjugacy classes.
b) This is just a consequence of 2.6.3 of Chap. 6. [

There is a deeper result on the dimensions of irreducible representations (see. [CR] ):

Theorem 3. The dimension h of an irreducible representation of a finite group G divides
the order of G.

The previous information allows us to compute a priori the dimensions h; in some simple
cases but in general it is only a small piece of information.
We need one more general result on unitary representations which is a simple conse-

quence of the definitions.

Proposition 2. Let V be a Hilbert space and a unitary representation of a compact group
G. If V1, Vs are two irreducible G submodules in G non isomorphic, they are orthogonal.

Proof. The Hermitian pairing (u,v) induces a G— equivariant, antilinear map j : Vo —
V¥, j(u)(v) = (v,u). Since G acts by unitary operators, Vi* = V;. Thus j can be



z.1 Matrix coeincients 139

interpreted as a linear G—equivariant map between V5, V7. Since these irreducible modules
are non isomorphic we have 7 =0. [

1.4 Induced characters We make now a computation on induced characters which
will be useful when we discuss the symmetric group.

Let G be a finite group, H a subgroup and V a representation of H with character yy .
We want to compute the character x of Ind%(V) = ®,cq/uzV (Chap 1, 3.2.2, 3.2.3).
An element g € G induces a transformation on ®,cq/grV which can be thought of as a
matrix in block form. Its trace comes only from the contributions of the blocks zV for
which gV = 2V, and this happens if and only if g € £H which means that the coset
xzH is a fixed point under g acting on G/H. As usual we denote by (G/H)Y these fixed
points. The condition that zH € (G/H)Y, can also be expressed as x~'gx € H.

If grV = zV the map g on zV has the same trace as the map z~'gz on V thus:
(1.4.1) x@@)= > xv(z 'gz)
(G/H)s
It is useful to transform the previous formula, let X, := {z € G|z~ gz € H}.

The next assertions are easily verified:

i) The set X4 is a union of right cosets G(g)x where G(g) is the centralizer of g in G.

ii) The map 7 : z — x~'gz is a bijection between the set of such cosets and the inter-
section of the conjugacy class Cy of g with H.

Proof. 1) is clear. As for ii) remark that z—'gx = (ax) lgaz if and only if a € C(g).
Thus the G(g) cosets of X, are the non empty fibers of . The image of 7 is clearly the
intersection of the conjugacy class C, of g with H. [

Decompose C; N H = U;0; into H conjugacy classes. Of course if a € C; we have
|G(a)| = |G(g)| since these two sugbroups are conjugate. Fix an element g; € O; in each
class and let H(gz) be the centralizer of g; in H. Then |O;| = |H|/|H(g;)| and finally

G
(1.4.2)  x(g) |H| > xv(z g |H\ > > 1G(@)xv(e) = ; ‘LI((;];)”XV(%)-

zeX i a€O;

In particular one can apply this to the case V = 1. This is the example of the permutation
representation of G on G/H.

Proposition. The number of fized points of g on G/H equals the character of the permu-
tation representation C|G/H| and is:

IC, N H||G(g)] G(9)|
(1.4.3) x(9) = H]| Z |H(g:)|

2 DMatrix coefficients
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2.1 Representative functions Let G be a topological group. We have seen in Chap.
6, 2.6 the notion of matrix coeflicient for G. Given a continuous representation p : G —
GL(U) we have a linear map iy : End(U) — C(G) given by iy(X)(g) := tr(Xp(g)). We
want to return to this concept in a more systematic way.

We will use the simple fact that we leave as exercise. X is a set F' a field.

Lemma. n functions f;(x) on a set X, with values in F, are linearly independent if and
only if there exist n points p1,...,pn, € X with the determinant of the matriz f;(p;) non 0.

Lemma-Definition. For a continuous function f € C(G) the following are equivalent:

(1) The space spanned by the left translates f(gz), g € G is finite dimensional.
(2) The space spanned by the right translates f(zg), g € G is finite dimensional.
(3) The space spanned by the bitranslates f(gzh), g,h € G is finite dimensional.
(4) There is a finite expansion f(zy) := Zle w; (x)v;(y).
A function satisfying the previous conditions is called a representative function.

(5) Moreover in the expansion 4) the functions wu;, v; can be taken as representative
functions.

Proof. Assume 1) and let u;(z), i = 1,...,m be a basis of the space spanned by the
functions f(gx), g € G.

Write f(gx) = Y, vi(g9)ui(x), this is continuous in g. By the previous Lemma we can
find m points p; such that the determinant of the matrix with entries the elements wu;(p;)
is non zero.

Thus we can solve the system of linear equations f(gp;) = >, vi(9)u;(p;) by Cramer’s
rule one getting that the coefficients v;(g) are continuous functions, 4) follows. 4) is a
symmetric property and clearly implies 1), 2).

In the expansion f(zy) := Zle u;()v; (y) we can take the functions v; to be a basis of
the space spanned by the left translates of f. They are representative functions. We have

k k k k
flazy) =Y ui(z2)vi(y) = ) wi(@)vi(zy) = Y uil) Y cin(2)vn(y)
=1 =1 =1 h=1

implies u;(xz) = 22:1 up(z)cpi(2) implying 5) and also 3). O

Proposition 1. The set Tg of representative functions is an algebra spanned by the
matriz coefficients of the finite dimensional continuous representations of G.

Proof. The fact that it is an algebra is really obvious, let us check the second statement.
First of all a continuous finite dimensional representation is given by a homomorphism
p: G — GL(n,C). Write the entries p(g); ; which, by definition, span the space of the
corresponding matrix coefficients. We have that p(xy) = p(z)p(y), which in matrix entries
shows that the functions p(g); ; satisfy 4).

Conversely let f(z) be a representative function, clearly also f(z~!) is representative
and let u; () be a basis of the space U of left translates, f(g~!) = Zle a;u;(g)-
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U is a linear representation by the left action and u;(¢ 'z) = > ¢ij(9)uj(z) where

the functions ¢; j(g) are the matrix coefficients of U in the given basis. We have thus
_ k
ui(g~) = 30, cij(9)ui(1) and f(g) = D21, ai > cij(g)ui(l). O
If G, K are 2 topological groups we have that

Proposition 2. Under multiplication f(x)g(y) we have an isomorphism

To ® Tk = Taxk

Proof. The multiplication map of functions on two distinct spaces to the product space is
always an isomorphism of the tensor product of the space of functions to the image, so we
only have to prove that the space of representative functions of G x K is spanned by the

functions ¥(xz,y) := f(z)g(y), f(z) € Ta, gy) € Tk-
Using the property 4) of the definition of representative function we have that if
f(@ima) = 37 ui(z1)vi(22), 9(y1,y2) = Dp, wi(y1)2k(y2) then

(21, 91)(22,92)) = ZUi(xl)wk(yl)vi(xz)zk(y2)-
ik
Conversely if 9 (z,y) is representative writing (z,y) = (z,1)(1,y) one immediately sees
that ¢ is in the span of the product of representative functions. [

Finally let p: H — K be a continuous homomorphism of topological groups.

Proposition 3. If f(k) is representative on K then f(p(k)) is representative in H.

éroof. We have f(zy) = >, ui(z)v;(y) hence f(p(ab)) = f(p(a)p(b)) = >, ui(p(a))vi(p(b)).

In terms of matrix coefficients what we are doing is to take a representation of K and
deduce, by composition with p a representation of H.

Particularly important for us will be the case of a compact group K, when all the finite
dimensional representations are semisimple. We then have an analogue of

Theorem. The spca Tk is the direct sum of the matrix coefficients V;* @ V; as V; € K
runs on the set of different irreducible representations of K.

(2.1.1) Tk = OppV ®V.

Proof. The proof is essentially identical of that of Chap. 7, 3.1. O

2.2 Preliminaries on functions Before we continue our analysis we wish to collect
two standard results on function theory which will be useful in the sequel. The first is the
Stone—Weierstrass theorem. This theorem is a generalization of the classical theorem of
Weierstrass on approximation of continuous functions by polynomials.

In its general form it says:
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Stone—Weierstrass theorem. Let A be an algebra of real valued continuous functions
on a compact space X which separates points.* Then either A is dense in C(X,R) or it is
dense in the subspace of C(X,R) of functions vanishing at a given point a.’

Proof. Let A be such an algebra, if 1 € A then we cannot be in the second case, where
f(a) = 0,Vf € A. Otherwise we can add 1 to A and assume that 1 € A. Let then S
be the uniform closure of A. The theorem can thus be reformulated as follows: if S is
an algebra of continuous functions, which separates points, 1 € S and S is closed under
uniform convergence, then S = Cy(X, R).

We will use only one statement of the classical theorem of Weierstrass, the fact that
given any interval [—n, n], the function |z| can be uniformly approximated by polynomials
in this interval. This implies for our algebra S that, if f(z) € S also |f(z)| € S. From this
we immediately see that, if f,g € S the two functions min(f,g) = (f+g— |f —g|)/2 and
max(f,g) = (f + g+ |f —g[)/2 are in S.

Let z,y be two distinct points in X, by assumption there is a function a € S with a(z) #
a(y). Since the function 1 € S, in z, y takes the values 1, we can find a linear combination
g of a,1 which takes at x,y any prescribed values. Let f € Cy(X,R) be a function. By
the previous remark we can find a function g, , € S with g, ,(z) = f(2), 9z4(y) = f(v).
Given any € > 0 we can thus find an open set U, such that g, ,(2) > f(z) —€ for all z € U,,.
By compactness of X we can find a finite number of such open sets U,, covering X. Take
the corresponding functions g, ,,, we have that the function g, := max(g;,,,) € S has the
property g, (z) = f(z), 9z(2) > f(z2) — ¢, Vz € X. Again there is a neighborhood V,, of
such that g,(z) < f(2)+¢, Vz € V,. Cover X with a finite number of these neighborhoods
Ve, Take the corresponding functions g,,, we have that the function g := min(g%.) eSs
has the property |g(z) — f(2)| <€, Vz € X. Letting € tend to 0, since S is closed under
uniform convergence, we find that f € S as desired. [

We will often apply this theorem to an algebra A of complex functions. In this case we
easily see that the statement is:

Corollary. If A C C(X) is an algebra of complex functions which separates points in X,
1€ A, A is closed under uniform convergence and A is closed under complex conjugation,
then A = C(X).

For the next theorem we need to recall two simple notions. These results can be
generalized but we prove them in a simple case.

Definition. A set A of continuous functions on a space X is said to be uniformly bounded
if there is a positive constant M such that |f(z)| < M for every f € A,z € X.

A set A of continuous functions on a metric space X is said to be equicontinuous if, for
every € > 0 there is a 6 > 0 with the property that, |f(x) — f(y)| < €,Y(x,y) with Ty < 6
and Vf € A.

4this means that, given a,b € X,a # b there is an f € A with f(a) # f(b).
51f X = {p1,...,pn} is a finite set, the theorem is really a theorem of algebra, a form of the Chinese
remainder theorem.
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We are denoting by 7y the distance between the two points x, y.
Recall that a topological space is first countable if it has a dense countable subset.

Theorem of Ascoli—Arzela. A uniformly bounded and equicontinuous set A of contin-
uous functions on a first countable compact metric space X is relatively compact in C(X),
i.e. from any sequence f; € A we may extract one uniformly convergent.

Proof. Let p1,p2,...,pk,... be a dense sequence of points in X. Since the functions f;
are uniformly bounded we can extract a subsequence s1 := f1, fs,..., f},..., from the
given sequence, for which the sequence of numbers f!(p;) is convergent. Inductively we
construct sequences sp where s; is extracted from si_; and the sequence of numbers
fE(py) is convergent. It follows that, for the diagonal sequence F; := f! we have that the
sequence of numbers F;(p;) is convergent for each j. We want to show that F; is uniformly
convergent on X. We need to show that F; is a Cauchy sequence. Given ¢ > 0 we can find
by equicontinuity a 6 > 0 with the property that, |f(x)— f(y)| < €, V(z,y) with Ty < d and
Vf € A. By compactness we can find a finite number of points ¢;, 7 = 1, ..., m from our list
p; such that, for all z € X there is one of the g; at distance less than ¢ from z. Let k be such
that [Fs(q;)—Fi(g;)| <e€,Vj=1,...,m, Vs,t > k. For each z find a ¢; at distance less than
d then |Fy(z) — Fi(z)| = |Fs(z) — Fs(q;) — Fy(z) + Fi(qj) + Fs(q;) — Fi(g;)| < 3¢, Vs, t > k.
O

2.3 Matrix coefficients of linear groups In general one possible approach to
finding the representations of a compact group could be to identify the representative
functions. In general this may be difficult but in a special case it is quite easy.

Theorem. Let G C U(n,C) be a compact linear group. Then the ring of representative
functions of G is generated by the matriz entries and the inverse of the determinant.

Proof. Let A be the algebra of functions generated by the matrix entries and the inverse
of the determinant. Clearly A C T by Proposition 2.2, moreover by matrix multiplication
it is clear that the space of matrix entries is stable under left and right G action, similarly
for the inverse of the determinant and thus A is G x G stable.

Let us prove now that A is dense in the algebra of continuous functions. We want to
apply the Stone—Weierstrass theorem to the algebra A which is made of complex functions
and contains 1. In this case, besides verifying that A separates points, we also need to show
that A is closed under complex conjugation. Then we can apply the previous theorem to
the real and imaginary parts of the functions of A and conclude that they are both dense.

In our case A separates points since two distinct matrices must have two different coor-
dinates. A is closed under complex conjugation. In fact the conjugate of the determinant
is the inverse, while the conjugate of the entries of a unitary matrix X are entries of
X~!. The entries of this matrix, by the usual Cramer’s rule, are indeed polynomials in
the entries of X divided by the determinants, hence are in A.
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At this point we can conclude. If A # T4 since they are both G x G representations
and 7¢ = ®;V;* ® V; is a direct sum of irreducible G x G representations, for some ¢ we
have V;* ® V; N A = 0. By Proposition 2 of 1.3 this implies that V;* ® V; is orthogonal to
A and this contradicts the fact that A is dense in C(G). O

Given a compact Lie group G it is not restrictive to assume that G C U(n,C). This will
be proved in section 4.3 as a consequence of the Peter— Weyl theorem.

3 The Peter—Weyl Theorem.

3.1 Operators on a Hilbert space The representation theory of compact groups
requires some basic functional analysis. Let us recall some simple definitions.

Definition 1. A norm on a complex vector space V is a map v — ||v|| € RT, satisfying
the properties:

[l =0 <= v=0, [avl|=lalllv]l, [lv+w| <]+ [w].
A vector space with a norm is called a normed space.
From a norm one deduces the structure of metric space setting as distance 7y := ||z —y||
Definition 2. A Banach space is a normed space complete under the induced metric.

Most important for us are Hilbert spaces, these are the Banach spaces where the norm
is deduced from a positive Hermitian form ||v||? = (v,v). When we talk about convergence
in a Hilbert space we usually mean in this norm and also speak of convergence in mean.®
All our Hilbert spaces are assumed to be first countable, in particular have a countable
orthonormal basis.

The special properties of Hilbert spaces are the Schwarz inequality |(u,v)| < ||ul| ||v]],
and the existence of orthonormal bases u; with (u;,u;) = 63 . Then v =Y .2, (v, u;)u; for
every vector v € H. From which ||v]|? = Y52, |(v,u;)|?, called Parseval formula.”

The other Banach space which we will occasionally use is the space C(X) of continuous
functions on a compact space X with norm the uniform norm ||f||e = maxzex |f(x)|.

Convergence in this norm is uniform convergence.

Definition 3. A linear operator T : A — B between normed spaces is bounded if there
is a positive constant C such that, ||T'(v)|| < C||v||, Vv € A.

The minimum such constant is the operator norm ||T|| of T.

By linearity it is clear that ||T|| = supj, =1 [|7(v)]]-

Exercise 1. The sum and product of bounded operators are bounded.

laT'|| = lalITl, [aT1 + T2 < |al[|T1|l + BIIT2], [| Ty o Ta|| < ||T1][[[T2].

6there are several notions of convergence but they do not play a role in our work.

for every n we also have [|v]|2 > S°"_, |(v,u;)|? which is called Bessel’s inequality
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2. If B is complete, bounded operators are complete under the norm ||7||.

When A = B bounded operators on A will be denoted by B(A). They form an algebra.
The previous properties can be taken as the axioms of a Banach algebra.

Given a bounded® operator T on a Hilbert space, its adjoint T* is defined by (T, w) =
(v, T*w). We are particularly interested in bounded Hermitian operators (or self adjoint),
i.e. bounded operators T for which (Tu,v) = (u,Tv), Yu,v € H.

The typical example is the Hilbert space of L? functions on a measure space X, with
Hermltlan product = I f da: As bounded operator an integral operator

= [y K(z,y f (y)dy with the zntegral kernel K (z,y) itself a function on X x X

Wlth some suitable restrictions. If K (z,y) = K (y, ) we have a self adjoint operator.

Theorem 1. 1) If A is a self adjoint bounded operator, ||A|| = sup,(=1 |(Av, v)|.
2) For any bounded operator | T||?> = || T*T)||.°

Proof. 1) By definition if ||v|| = 1 we have ||Av|| < ||A|l hence |(Av,v)| < ||A|| by
the Schwarz inequality.l® In the self adjoint case (A2%v,v) = (Av,Av). Set N :=
Sup|y||=1 |(Av, v)[. If A > 0 we have:

| Av||? = i[(A(Av + ;Av),)\v + ;Av> _ (A()\v _ ;Av), Ao — %Av)] <

1 [ 1ol NlvlPr,., 1 [4v]?
Z[NH)\U—}—XAUH + Npw— 5 Av] } - = [A + 5 o ]

For Av # 0 the minimum of the right hand side is obtained when:

A 1
A= —””UT'”, since (A% + ﬁc =(A- _)2 +2¢ 2 2¢).

Hence
[ Av||> < N||Avl][v]] = [|Av]| < N|Jv].

Of course this holds also when Av = 0, hence ||A]| < N.
2) ITI1?> = supyy=1(Tv, Tv) = sup|, =1 |(T*Tv,v)| = |T*T| from 1. O

Recall that, for a linear operator T' an eigenvector v of eigenvalue A € C is a vector with
Tv = . If T is self adjoint necessarily A € R. Eigenvalues are bounded by the operator
norm. If X is an eigenvalue, from Tv = Av we get || Tv|| = |\|||v|| hence ||T]| > |\l

In general, actual eigenvectors need not exist, the typical example being the operator
f(z) = g(z) f(x) of multiplication by a continuous function on L? functions on [0, 1].

8we are simplifying the theory drastically

9This property is taken as axiom for C* algebras.
10this does not need self adjointness
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Lemma 1. If A is a self adjoint operator v, w two eigenvectors of eigenvalues o # B we
have (v, w) = 0.

Proof.
a(v,w) = (Av,w) = (v, Aw) = Bv,w) = (a—B)(v,w) =0 = (v,w) =0.
Ol

There is a very important class of operators for which the theory resembles more the finite
dimensional theory, these are the completely continuous operators or compact operators.

Definition 4. A bounded operator A of a Hilbert space is completely continuous, or
compact if, given any sequence v; of vectors of norm 1, from the sequence A(v;) one can
extract a convergent sequence.

In other words this means that A transforms the sphere ||v]| =1 in a relatively compact
set of vectors. Where compactness is by convergence of sequences.

We will denote by Z the set of completely continuous operators on H.
Proposition. 7 is a two sided ideal in B(H), closed in the operator norm.

Proof. Suppose that A = lim;_,, A; is a limit of completely continuous operators A;.
Given a sequence v; of vectors of norm 1 we can construct by hypothesis, for each 7, and

by induction a s; := (vj, (i), Viy(i)s - - - » Vin (i) - - - ) 50 that, s; is a subsequence of s;_; and
the sequence A;(vs, (5)), As(Viy i), - - - » Ai(Viy (i), - - - IS convergent.
We take then the diagonal sequence wy := v; (x) and see that A(wg) is a Cauchy

sequence. In fact given € > 0 there is an N such that ||A — A;|| < ¢/3 for all i > N, there
is also an M such that |[An(v;,(vy) — AN(vi,(v))|| < €/3 for all h,k > M. Thus when
h < k> max(N, M) we have that v;, (x) = v;, () for some ¢ > k and so:

| A(wr) — A(wi)|| = ||A(vi, (n) — Ar(Vi, (n)) + Ar (Vi (1)) — AV ) || <
[ A(vs,, (ny) = An (Ui, )|+ [|AR (v, (1)) = Ar (Vi 1) || + [| AR (vin 1)) — A(vi, )] < €

The property of being a two sided ideal is almost trivial to verify and we leave it as
exercise. [J

From an abstract point of view completely continuous operators are related to the notion
of the complete tensor product H®H, discussed in Chap. 5, 3.8. Here H is the conjugate
space. We want to associate to an element v € H®H an element p(u) € T.

The construction is an extension of the algebraic formula 3.4.4 of Chapter 5.1 We first
define the map on the algebraic tensor product as in that formula p(u ® v)w := u(w, v).
Clearly the image of p(u ® v) is the space generated by u hence p(H ® H) is made of
operators with finite dimensional image.

we see now why we want to use the conjugate space, it is to have bilinearity of the map p.



o.1 1 he FFeter—vveyl 1 heorem 191

Lemma 2. The map p : H®H — B(H) decreases the norms and extends to a continuous
map p: HOH — T C B(H).
Proof. Let us fix an orthonormal basis u; of H we can write an element v € H ® H as a

finite sum v = 37" _; ¢; ju; @ uj. Its norm in H @ H is />, ;i [ci

p()O anun) =D O cinan)ui =Y (O ancin)us.
h h % h

7

Given w := ), apup we deduce, for ||p(v)(w)||, from the Schwarz inequality that

10(0) (3" anun)| = \/Z (> anein)? < \/Z(Z an(3 Jei
h 7 h 7 h h

Since the map decreases norms it extends by continuity. Clearly bounded operators with
finite range are completely continuous. From the previous proposition also limits of these
operators are completely continuous. [

2) = llwllflvll-

In fact we will see presently that the image of p is dense in Z, i.e. that every completely
continuous operator is a limit of operators with finite dimensional image.

Warning The image of p is not Z. For instance the operator T, which in an orthonormal
basis is defined by T'(e;) := %ei, is not in I'm(p).

The main example of the previous construction is given by taking H = L?(X) with X
a space with a measure. We recall a basic fact of measure theory (cf. [Ru]). If X,Y are
measure spaces, with measures du, dv one can define a product measure dy X dv on X x Y.
If f(x),g(y) are L! functions on X,Y respectively we have that f(z)g(y)is L! on X x YV

and [y o f(2)g(y)dpdv = [y f(x)dp [, g(y)dv.

Lemma 3. The map i: f(z) ® g(y) — f(z)g9(y) extends to a Hilbert space isomorphism
LA(X)QL2(Y) = L2(X x Y).

Proof. We have clearly that the map i is well defined and preserves the Hermitian product,
hence it extends to a Hilbert space isomorphism of L?(X)&L?(Y) with some closed sub-
space of L?(X x Y). To prove that it is surjective we use the fact that, given measurable
sets A C X, B C Y of finite measure the characteristic function y4xp of A x B is the
tensor product of the characteristic functions of A and B. By standard measure theory,
since the sets A x B generate the o algebra of measurable sets in X x Y, the functions
XAxB span a dense subspace of L?(X xY). [

Proposition 1. An integral operator T f(x) := [y K (z,y)f(y)dy, with the integral kernel
in L2(X x X), is completely continuous.

Proof. By the previous lemma, we can write K(z,y) = }_, . c;ju;(2)u;(y) with u;(z)
an orthonormal basis of L2(X) we see that Tf(z) = > i Cinii () Jx @) fy)dy =
> i Cigui(f, uj). Now we apply lemma 2. [
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We will also need a variation of this theme, assume now that X is a locally compact
metric space, with a Daniell integral. Assume further that the integral kernel K (z,y) is
continuous and with compact support.

Proposition 2. The operator Tf(z) = fX K(z,y)f(y)dy is a bounded operator from
L%(X) to Cy(X), it maps bounded sets of functions into uniformly bounded and equicon-
tinuous sets of continuous functions.'?

Proof. Assume that the support of the kernel is contained in A x B with A, B compact, let
m be the measure of B. First of all T f(z) is supported in A, and it is a continuous function.
In fact if z € A, by compactness and continuity of K(z,y), there is a neighborhood U of
x such that |K(z,y) — K(zo,y)| <€, Yy € B,Vx € U so that (Schwarz inequality):

(3.1.1) VzeU, |Tf(@)—Tf(zo)|< /B|K(a:,y)—K(:co,y)I f(y)|dy < em/?||f]].

Moreover if M = max |K(z,y)| we have

T (f)]loe = sup(] /XK(w,y)f(y)dyl) < sup \//X K () 2y f|] < m"/2M||f]].

Let us show that the functions T f(x), ||f|| = 1 are equicontinuous and uniformly bounded.
In fact |T'f(z)| < m'/2M where M = max |K (z,y)|. The equicontinuity follows from the
previous argument. Given € > 0 we can, by the compactness of A x B, find n > 0
so that |K(z1,y) — K(zo,y)| < € if T179 < n,Vy € B. Hence if ||f|| < M we have
ITf(x1) — Tf(xo)| < Mm'?e when Z1Zg < n. O

Proposition 3. If A is a self adjoint, completely continuous operator there is an eigen-
vector v with eigenvalue £||A||.

Proof. By Theorem 1, there is a sequence of vectors v; of norm 1 for which lim (Av;,v;) =
71— 00

p = *||A||. By hypothesis we can extract a subsequence, which we still call v;, such that
lim A(v;) = w. Since p := lim (A(v;),v;), the inequality
71—>00 71—>00
0 < [[Av; — poi|” = [JAvi||* = 2p(Avi, i) + p® < 2% — 2p(Avi, vy),
implies, that lim (A(v;) — pv;) = 0. Thus lim pv; = lim A(v;) = w. In particular v; must
71— 00 71— 00 71— 00
converge to some vector v such that w = pv, and w = lim Av; = Av. Since p = (Aw,w)
71—>00
if A # 0 we have p # 0 hence v # 0 is the required eigenvector. [

Given a Hilbert space H an orthogonal decomposition for H is a family of closed
subspaces H;, 1 =1,...,00, mutually orthogonal, and such that every element v € H can
be expressed (in a unique way) as a series v = Zf; vi, v; € H;. Orthogonal decomposition
is a generalization of orthonormal basis.

12if X is not compact Co(X) is not complete, but in fact T maps into the complete subspace of functions
with support in a fixed compact subset A C X.
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Definition 5. A self adjoint operator is positive if (Av,v) > 0, V.

Remark If T is any operator T*T is positive self adjoint.
The eigenvalues of a positive operator are all positive or 0.

Theorem 2. Let A be a self adjoint, completely continuous positive operator.

If the image of A is not finite dimensional, there is a decreasing sequence of positive
numbers ||A|| = A1 > A2 > ... A\, > ... such that.

1. The \; are the eigenvalues of A.

2. lim \; = 0.

71— 00
3. The eigenspace H; of the eigenvalue \; is finite dimensional.

4. H s the orthogonal sum H = Hy ©;2, H; where Hy is the kernel of A.
If the image of A is finite dimensional, the sequence \1 > Ao > ...\, is finite and
H=H,®, H,

Proof. Let Ay = ||A|| > 0 and H; the (closed) subspace made of eigenvectors for this
eigenvalue. If H; were infinite dimensional we could find an orthonormal basis e;, 7 =
1,...,00. This is impossible since from the sequence Ae; = Aie; we cannot extract
any convergent subsequence. Decompose H = H; @ Hi-, the operator A induces on Hi a
completely continuous positive operator A; with ||A4|| < ||A||. We cannot have ||A;]| = || A4]]
otherwise, by proposition 2, applied to A; we would have in Hi- an eigenvector of eigenvalue
A — 1 which is absurd. Thus let Ay := ||A1]| < A1, repeating the reasoning for A; we can
construct Hy the eigenspace of eigenvalue Ay and further split H = H; © Hy © (H, & Hy)*.
Proceeding by induction, we find a sequence A; > Ao > ...\, > ... of numbers and
of orthogonal spaces H;. H; is the eigenspace of eigenvalue \; for A. This construction
may stop if after a finite number of steps the map induced by A on the orthogonal to

®;H; is 0, otherwise we continue getting an infinite sequence. We must have lim A\; = 0
71— 00

otherwise there is a positive constant 0 < bA;,Vi. If we choose for each i a vector of
norm 1, v; € H; from the sequence Av; = A;v; no subsequence can be chosen to be,
convergent since these vectors are orthogonal and all of absolute value > b. Decompose
now H = &;H; ® (&:H;)-. On (9;H;)" the restriction of A has a norm < \; for all i
hence it must be 0 and (§; H;)- = Hy is the kernel of A. O

Exercise 2 Extend the previous theorem to any self adjoint completely continuous
operator A by reducing it to A2.

Prove that 7 is the closure in the operator norm of the operators of finite dimensional
image. Hint: Use the spectral theory of T*T and exercise 1.

Let us now specialize to an integral operator T f(z) := [ K(z,y)f(y)dy with the integral
kernel continuous and with compact support in A x B as before, and self adjoint, i.e.
K(z,y) = K(y, »).

By Proposition 2, the eigenvectors of T', relative to non zero eigenvalues, are continuous
functions. Let us then take an element Tf = >"°°, ¢;u; expanded in an orthonormal basis
of eigenfunctions.



194 CUhap. o, Group representations

Proposition 4. The sequence gi := T(Zle(f, Ui)U;) = Zle(f, ;) Aiu; of continuous
functions, converges uniformly to T f.

Proof. First let us show that g is a Cauchy sequence (in the uniform norm). In fact this
follows from the continuity of the operator from L?(X) to Co(X) for the two norms. Next
we need to prove that the function to which it converges uniformly if 7'f. But the inclusion
Co(X) C L%(X), when restricted to the functions with support in A is continuous for the
two norms oo, L? (since [ ||f[|?dp < p(A)]| f||2,, where 114 is the measure of A). So it is
enough to see that gy converges to T'f in L% Now f =2 (f,u;)u; + h with T(h) =0
so T(f) =Yooy (foui)T(u;) =Y ooy (fyu;)Aju; in the L? convergence. O

We want to apply the theory to G' a locally compact group with a left invariant Haar
measure. This measure allows us to define the convolution product, which is the general-
ization of the product of elements of the group algebra.

The convolution product is defined first of all on the space of L! functions by the formula

(3.1.2) (f *+9)(z) = /G F@)e(y o)y = /G Fan)g(y)dy

When G is compact we normalize Haar measure so that the measure of G is 1. We have
the continuous inclusion maps

(3.1.3) Co(G) C L*(G) c L}(G).

The 3 spaces have respectively the uniform L* , L2?, L' norms; the inclusions decrease
norms. In fact the L' norm of f equals the Hilbert scalar product of |f| with 1, so by
Schwarz inequality, |f|1 < |f|2 while |f|2 < |f|e by obvious reasons.

Proposition 5. If G is compact then the space of L? functions is also an algebra under
convolution.'

Both algebras L'(G), L?(G) are useful. In the next section we shall use L?(G), and
we will compute its algebra structure in 3.3.. On the other hand L'(G) is also useful for
representation theory.

One can pursue the algebraic relationship between group representations and modules
over the group algebra, also in the continuous case replacing the group algebra with the
convolution algebra (cf. [Ki],[Di]).

3.2 Peter—Weyl theorem From Proposition 2 of 1.3, we know that they are orthog-

onal in the L? norm.

130ne has to be careful about the normalization. When G is a finite group the usual multiplication in
the group algebra is convolution but for the normalized measure in which G has measure |G| and not 1,
as we usually assume for compact groups.
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Theorem Peter—Weyl. i) The direct sum ®;V;*QV; equals the space Ta of representative
functions.

i) The direct sum ®;V;* ® V; is dense in L*(G).
In other words every L? function f on G can be developed uniquely as a series f =, u;
with u; € V;* @ V;.

Proof. i) We have seen (Chap. 6, Theorem 2.6) that, for every continuous finite dimen-
sional irreducible representation V of GG, the space of matrix coefficients V* ® V' appears
in the space C(G) of continuous functions on G. Every finite dimensional continuous
representation of GG is semisimple, and the matrix coefficients of a direct sum are the sum
of the respective matrix coefficients.

ii) For distinct irreducible representations Vi, Vs the corresponding spaces of matrix
coefficients are irreducible non isomorphic representations of G x G. We can thus apply
Proposition 2 of 1.3 to deduce that they are orthogonal.

iii) Next we must show that the representative functions are dense in C(G). For this
we take a continuous function ¢(z) with ¢(z) = ¢(z~1) and consider the convolution map
Ry : f— fx¢:= [5f(y)p(y~'z)dy. By proposition 2 of 3.1, Ry maps L?*(G) in C(G)
and it is compact. From proposition 4 of 3.1 its image is in the uniform closure of the
space spanned by its eigenfunctions relative to non zero eigenvalues.

By construction, the convolution Ry is G equivariant for the left action, hence it follows
that the eigenspaces of this operator are G stable. Since R, is a compact operator, its
eigenspaces relative to non 0 eigenvalues are finite dimensional and hence in 7¢g, by the
definition of representative functions. Thus the image of R4 is contained in the uniform
closure of 7g.

The next step is to show that, given a continuous function f, as ¢ varies one can
approximate f with elements in the image of R, as close as possible.

Given € > 0 take an open set U, neighborhood of 1 such that |f(z) — f(y)| < € if
zy~! € U. Take a continuous function ¢(x) with support in U, positive, with integral 1
and @(z) = ¢p(z~1). We claim that |f — f * ¢| < e

(@) = (f *§)(@)| = |f () /G By~ z)dy — /G F @)y z)dy| =

|/yla:eU(f($) - f(y))qs(y_lx)dy‘ < /y . \f(z) — f(y)|¢(y_ll')dy <e

—1ze
0

Remark If G is separable as topological group, for instance if G is a Lie group, the
Hilbert space L?(G) is separable. It follows again that we can have only countably many
spaces V;* ® V; with V; irreducible.

We can now apply the theory developed to L? class functions. Recall that a class
function is a function which is invariant under the action of G embedded diagonally in
G x G, ie. f(x)= f(g 'zg) for all g € G.
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Develop f =), f; with f; € V;* ® V. By the invariance property and the uniqueness of
the development it follows that each f; is invariant, i.e. a class function.

We know that in V;* ® V; the only invariant functions under the diagonal action are the
multiples of the corresponding character hence we see that

Corollary. The irreducible characters are an orthonormal basis of the Hilbert space of L?
class functions.

Example When G is commutative, for instance if G = S¥ is a torus, all irreducible
representations are 1-dimensional hence we have that the irreducible characters are an
orthonormal basis of the space of L? functions.

In coordinates G = {(«1,---,an)}||a;| = 1, the irreducible characters are the monomi-
als [T, aﬁ“ and we have the usual theory of Fourier series (in this case one often uses the
angular coordinates oy, = e27%0).

3.3 Fourier analysis In order to compute integrals of L? functions we need to know
what is the Hilbert space structure, induced by the L? norm, on each space V;* ® V; in
which L2(G) decomposes.

We can do this via the following simple remark. The space V* ® V; = End(V;) is
irreducible under G' x G and it has two Hilbert space structures for which G x G is unitary.
One is the restriction of the L? structure. The other is the Hermitian product on End(V;)
deduced by the Hilbert space structure on V; and given by the form ¢r(XY™). Arguing as
in Proposition 2 of 3.1, each invariant Hermitian product on an irreducible representation
U induces an isomorphism with the conjugate dual. By Schur’s lemma it follows that any
two invariant Hilbert space structure are then proportional. Therefore the Hilbert space
structure on End(V;) induced by the L? norm equals ctr(XY™), c a scalar.

Denote by p; : G — GL(V;) the representation. By definition (Chap. 6, 2.6) an element,
X € End(V;) gives the matrix coefficient ¢r(X p;(g)). In order to compute ¢ we do it for
X =Y = 1. We have tr(ly,) = dimV;. The matrix coefficient corresponding to 1y, is
the irreducible character xv;(g) = tr(p;(g)) and its L? norm is 1. Thus we deduce that
c = dim Vi_l. In other words:

Theorem 1. If X,Y € End(V;) and cx(g) = tr(pi(9)X),cy = tr(pi(9)Y) are the corre-
sponding matriz coefficients we have:

(3.3.1) /G ex(9)ey (9)dg = dim V. Hr (X Y™).

Let us finally understand convolution. We want to extend the basic isomorphism theorem
for the group algebra of a finite group proved in Chap. 6, 2.6. Given a finite dimensional
representation p : G — GL(U) of G and a function f € L?(G) we can define an operator
Ty on U by the formula T¢(u) := [, f(g)p(g)(u)dg.

Lemma. The map f — Ty is a homomorphism, from L*(G) with convolution to the
algebra of endomorphisms of U.
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Tosv(u / (axb)(g9)p(g)(u)dg = / / )p(g)(u) dhdg

/ / b(9)p(hg) (u) dh dg = /G a(h)o(h)( /G b(g) p(g)(u) dg) dh = T(Th(u))

Proof.

We have already remarked that convolution fx*g is G equivariant for the left action on f,
similarly it is G equivariant for the right action on g, in particular it maps the representative
functions into themselves. Moreover since the spaces V;* ® V; = End(V;) are distinct
irreducible under G x G action and isotypic components under left or right action it follows
that, under convolution End(V;) * End(V;) = 0 if ¢ # j and End(V;)* End(V;) C End(V;).

Theorem 2. For each irreducible representation p : G — GL(V) embed End(V) in L*(G),
by the map jy : X — dimVtr(Xp(g~Y)). Then on End(V) convolution coincides with
multiplication of endomorphisms.

Proof. Same proof as in Chap. 6. By the previous lemma we have a homomorphism of
7y : L2(G) — End(V). By the previous remarks End(V) C L?(G) is a subalgebra under
convolution. Finally we have to show that 7y jy is the identity of End(V).

In fact given X € End(V), we have jy(X) = tr(p(¢g~})X)dimV. In order to prove
that myjx (X) = (dimV) [, tr(p(g~")X)p(g9)dg = X it is enough to prove that, for any
Y € End(V) we have (dim V)tr([,tr(p(g™)X)p(g)dgY) = tr(XY'). We have by 3.3.1.

dith?“(/G tr(p(g=")X)p(9)dgY) = dimVLtr(p(g‘l)X)tr(p(g)Y)dg =

dim V /G tr(p(g)V)ir(p(g) X)dg = tr(V X**) = tr(XY)

O

Warning For finite groups we have a different normalization for the Haar measure and
hence for convolution and we need the more general formula jy : X — dll‘glv tr(Xp(g™1)).

3.4 Compact Lie groups We draw some consequences of the Peter—Weyl Theorem.
Let G be a compact group. Consider any continuous representation of GG in a Hilbert space
H.

A vector v such that the elements gv, g € G span a finite dimensional vector space is
called a finite vector.

Proposition 1. The set of finite vectors is dense.

Proof. By module theory, if u € H the set Tgu spanned by applying the representative
functions is made of finite vectors, but by continuity u = 1u is a limit of these vectors. [
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Proposition 2. The intersection K = N; K;, of all the kernels K; of all the finite dimen-
sional irreducible representations V; of a compact group G is {1}.

Proof. From the Peter Weyl theorem we know that 7¢ = &;V* ® V; is dense in the
continuous functions, since these functions do not separate the points of the intersection
of kernels we must have K = {1}. O

Theorem. A compact Lie group G has a faithful finite dimensional representation.

Proof. Each one of the kernels K; is a Lie subgroup with some Lie algebra L; and we
must have, from the previous proposition, that the intersection N;L; = 0, of all these Lie
algebras is 0. This implies that there are finetly many representations V;,7 = 1,..., m with
the property that the elements in the kernels K; of these V; is a group with 0 Lie algebra
equal to 0. Thus N, K; is discrete and hence finite, since we are in a compact group. By
the previous proposition we can next find finitely many representations so that also the
non identity elements of this finite group are not in the kernel of all these representations.
Taking the direct sum we find the required faithful representation. [

Let us make a final consideration about the Haar integral. Since the Haar integral is
both left and right invariant it is a G x G equivariant map from L?(G) to the trivial
representation. In particular if we restrict it to the representative functions ®;V;* ® V; it
must vanish on each irreducible component V;* ®V; different from the trivial representation,
which is afforded by the constant functions, thus:

Proposition 3. The Haar integral restricted to ®;V;* @V, is the projection to the constant
functions, which are the isotypic component of the trivial representation, with kernel all
the other non trivial isotypic components.

4 Representations of linearly reductive groups.

4.1 Characters for linearly reductive groups We have already stressed several
times that we will show a very tight relationship between compact Lie groups and linearly
reductive groups. We start thus to discuss characters for linearly reductive groups.

Consider the action by conjugation of G on itself. It is the restriction to G, embedded
diagonally in G x G of the left and right actions.

Let Z[G] denote the space of regular functions f which are invariant under conjugation.

From the decomposition Chap. 7, 3.1.1, F[G]| = &®,;U* ® U;, follows that the space
Z|G] decomposes as a direct sum of the spaces Z[U;] of conjugation invariant functions in
U ® U;. We claim that:

Lemma. Z[U;| is I-dimensional, generated by the character of the representation Uj.

Proof. Since Uj; is irreducible and U ® U; = End(U;)* we have by Schur’s lemma that
Z|U;] is 1-dimensional, generated by the element corresponding to the trace on End(U;).
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Now we follow the identifications. An element u of End(U;)* gives the matrix coefficient
u(pi(g)) where p; : G — GL(U;) C End(U;) denotes the representation map.

We obtain the function x;(g) = tr(p;(g)) as the desired invariant element. [

Corollary. For a linearly reductive group the G irreducible characters are a basis of the
conjugation invariant functions.

We will see in Chap. 10 that, two maximal tori are conjugate and the union of all
maximal tori in a reductive group G is dense in G. One of the implications of this theorem
is the fact that the character of a representation M of GG is determined by its restriction
to a given maximal torus 7. On M the group T acts as a direct sum of irreducible
1-dimensional characters in 7' and thus the character of M can be expressed as a sum of
these characters with non negative coefficients, expressing their multiplicities.

After restriction to a maximal torus T, the fact that a character is a class function implies
a further symmetry. Let Nr denote the normalizer of T, it acts on T by conjugation and
a class function restricted to 7' is invariant under this action. There are many important
theorems about this action, first.

Theorem 1. T equals its centralizer and Nt /T is a finite group, called the Weyl group
and denoted by W .

Under restriction to a maximal torus T the ring of characters of G is isomorphic to the
subring of T inavriant characters of T.

Let us illustrate the first part of this theorem for classical groups leaving the general
proof to Chap. 10.
We always exploit the same idea.

Let T be a torus contained in the linear group of a vector space V.

Decompose V := &, V, in weight spaces under T and let ¢ € GL(V) be a linear
transformation normalizing T'.

Clearly g induces by conjugation an automorphism of 7', which we still denote by g,
which permutes the characters of T by the formula x9(t) := x(g ™ 'tg).

We thus have, for v € V), t € T, tgv = gg~'tgv = x?(t)gv.

We deduce that gV, = V). In particular g permutes the weight spaces.

We have thus a homomorphism from the normalizer of the torus to the group of permu-
tations of the weight spaces. Let us now analyze this, for 7' a maximal torus in the general
linear, orthogonal and symplectic group. We refer to Chap. 7, 4.1 for the description of
the maxiamal tori in these 3 cases. First analyze the kernel of this homomorphism, which
we denote by N2, in the 4 cases.

1. Let D be the group of all diagonal matrices (in the standard basis e — 7). It is
exactly the full subgroup of linear transformations fixing the 1-dimensional weight spaces
generated by the given basis vectors.

An element in N, by definition fixes all these subspaces and thus in this case N = D.
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2. Even orthogonal group. Again the space decomposes into 1-dimensional eigenspaces
spanned by the vectors e;, f; giving a hyperbolic basis. One immediately verifies that a
diagonal matrix g given by ge; = «je;, gf; = B;f; is orthogonal if and only if «;8; = 1,
the matrices form a maximal torus 7. Again N> = T.

3. 0Odd orthogonal group. Similar to the previous case except that now we have an
extra non isotropic basis vector u and g is orthogonal if furthermore gu = 4+u. It is special
orthogonal only if gu = u. Again N} = T.

4. Symplectic group. Identical to 2.

Now for the full normalizer.
1. In the case of the general linear group, in Np is contained the symmetric group S,
acting as permutations on the given basis.

If a € Np we must have that a(e;) € Cey(;) for some o € S, thus o1

matrix and it follows that Np = D x S,,, the semidirect product.

In the case of the special linear group we leave to the reader to verify that we still have
an exact sequence 0 - D — Np — S,, — 0, but this does not split, since only the even
permutations are in the special linear group.

a is a diagonal

2. In the even orthogonal case dimV = 2n the characters come in opposite pairs and
their weight spaces are spanned by the vectors eq, es,...,en; fi, fo,..., fn of a hyperbolic
basis (Chap. 7, 4.1). Clearly the normalizer permutes this set of n pairs of subspaces
{(Cei, sz }

In the same way as before we see now that the symmetric group S,, permuting simulta-
neously with the same permutation the elements eq, es, ..., en; f1, fo,..., fn is formed of
special orthogonal matrices.

The kernel of the map Ny — S,, is formed by matrices diagonal of 2 x 2 blocks.
Each two by two block, is the orthogonal group of the 2-dimensional space spanned by

ei, fi and it is the semidirect product of the torus part (g a(ll) with the permutation

mtri01
axlo.

. . . 1
In the special orthogonal group only an even number of permutation matrices (1) O)

can appear. It follows that the Weyl group is the semidirect product of the symmetric
group S, with the subgroup of index 2 of Z/(2)" formed by the n—tuples aq,...,a, with
> ,a; =0, ( mod 2).

3. The odd special orthogonal group is slightly different. We use the notations of
Chapter 5. Now one has also the possibility to act on the basis ey, f1,ea, fo,...,€n, fn,u
by —1 on u and this corrects the fact that the determinant of an element defined on
€1, fl, €a, fz, «ve5€pn, fn may be -1.

We deduce then that the Weyl group is the semidirect product of the symmetric group
Sp with Z/(2)™.
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4. The symplectic group. The discussion starts as in the even orthogonal group except
now the 2-dimensional symplectic group is SL(2). Its torus of 2 x 2 diagonal matrices
has index 2 in its normalizer and as a representative of the Weyl group we can choose the

identity and the matrix <_01 (1))

This matrix has determinant 1 and again we deduce that the Weyl group is the semidirect
product of the symmetric group S,, with Z/(2)™.

Now we have to discuss the action of the Weyl group on the characters of a maximal
torus. In the case of the general linear group a diagonal matrix X with entries x1,..., 2,
is conjugated by a permutation matrix o which maps oe; = e,(;) by X o le; = To(i)€is
thus the action of S,, on the characters x; is the usual permutation of variables.

For the orthogonal groups and the symplectic group one has the torus of diagonal
matrices of the form xl,a:l_l,a:Q,a:Q_l, iy T, X

n -
Besides the permutations of the variables we have now also the inversions z; — z; ',
except that, for the even orthogonal group one has to restrict to products of only an even

number of inversions.

The analysis we have made suggests an interpretation of the characters of the classical
groups as particular symmetric functions. In the case of the linear group the coordinate
ring of the maximal torus can be viewed as the polynomial ring Clzy, ... ,z,][d"!] with
d .= [1i; z; inverted.

d is the n!" elementary symmetric function and thus the invariant elements are the
polynomial in the elementary symmetric functions o;(z), i = 1,...,n — 1 and o, (z)*!.

In the case of the inversions we make a remark. Consider the ring A[t,¢~'] of Laurent
polynomials over a commutative ring A. An element ), a;t' is invariant under ¢t — ¢t~ if
and only if a; = a_;. We claim then that it is a polynomial in u :=¢ + ¢~ .

In fact t* +¢~% = (t + ¢t~ 1)* + r(t) where 7(¢) has lower degree and one can work by
induction. We deduce that

Theorem 2. The ring of invariants of Clzy,z7",... ,Tn, x| under S, x Z/(2)" is the

polynomial ring in the elementary symmetric functions o;(u) in the variables u; := xi—}—xi_l.

Proof. We can compute the invariants in two steps. First we compute the invariants under
Z/(2)™ which, by the previous argument, are the polynomials in the u;. Then we compute
the invariants under the action of S,, which permutes the u;. The claim follows. [

For the even orthogonal group we need a different computation since now we only want
the invariants under a subgroup. Let H C Z/(2)™ be the subgroup defined by >, a; = 0.

Start from the monomial M := z1z5...x,, the orbit of this monomial, under the group

of inversions Z /(2)™ consists of all the monomials z7*z5* .. . x» where the elements ¢; = +1.
We define next
— €1 €2 € I .— €1 ).€2 €
E = E ri'zy ...z, Bo= E 1Ty .. T,

n - n O
[[ioq ei=1 i=1 €i=—1
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E is clearly invariant under H and E + E, EFE are invariant under Z/(2)™.

We claim that any H invariant is of the form a 4+ bE where a, b are Z/(2)™ invariants.

Consider the set of all Laurent monomials which is permuted by Z/(2)". A basis of
invariants under Z/(2)™ is clearly given by the sums of the vectors in each orbit, similarly
for the H invariants. Now let K be the stabilizer of an element of the orbit, which thus
has % elements. The stabilizer in H is K N H hence a Z/(2)™ orbit is either an H orbit
or it splits into 2 orbits, according to whether K ¢ H or K C H.

We get H invariants which are not Z/(2)™ invariants from the last type of orbits.

A monomial M =[] a:i“ is stabilized by all the inversions in the variables z; which have
exponent 0 thus the only case in which the stabilizer is contained in H is when all the
variables z; appear, in this case, in the Z/(2)™ orbit of M there is a unique element, which
by abuse of notations we still call M, for which h; > 0 for all 2. Let S}, . ¢=1,2be
the sum on the two orbits of M under H snd say that M is a term in Silu,...,hn'

Since S, . + Si . . is invariant under Z/(2)" it is only necessary to show that
Sh.....n, has the required form.

The multiplication S _; , _,Si, ;givesriseto S}, plusterms which are lower
in the lexicographic ordering of the h;’s and 511,1’___’1 = E. Thus by induction we assume
that the lower terms are of the required form.

Also by induction Sp _, h,—1 = a+bE and so the required form:

geeey

Shyn, =(a+bE)E = (a+b(E+E))E — b(EE).

We can now discuss the invariants under the Weyl group. Again the ring of invariants
under H is stabilized by S,, which acts by permuting the elements u; and fixes the element
E. We deduce that the ring of W invariant is formed by elements of the form a+ bFE where
a,b are polynomials in the elementary symmetric functions in the elements u;.

It remains to understand the quadratic equation satisfied by E over the ring of symmetric
functions in the u;.

E satisfies the relation E2— (E+E)E+ EE = 0 and so we must compute the symmetric
functions £ + E, EE.

We easily see that E + E = [[i_,(z; + z; ') which is the nt* elementary symmetric
function in the u;’s. As for EE it can be easily described as a sum of monomials in which

the exponents are either 2 or —2, with multiplicities expressed by binomial coefficients.
We leave the details to the reader.

5 Induction and restriction.

5.1 Clifford’s Theorem We collect now some general facts about representations of
groups. First of all let H be a group, ¢ : H — H an automorphism and p: H — GL(V) a
linear representation.



0.1 Induction and restriction PAVS ]

Composing with ¢ we get a new representation V% given by H A N GL(V), it is
immediately verified that, if ¢ is an inner automorphism, V¢ is equivalent to .

Let now H C G be a normal subgroup, every element g € G induces by inner conjugation
in G an automorphism ¢, of H.

Given a representation M of G and an H submodule N C M we clearly have that
gN C M is again an H submodule and canonically isomorphic to N%s, it depends only on
the coset gH.

In particular assume that M is irreducible as G module and N is irreducible as H
module. Then all the submodules g N are irreducible H modules and 9EG/H gNisa G

submodule hence > ¢/ gN = M.

We want in particular to apply this when H has index 2 in G = H U uH, we shall then
use the canonical sign representation € of Z/(2) = G/H, e(u) = —1,¢(H) = 1.

Clifford’s Theorem. 1) Given an irreducible representation N of H it extends to a
representation of G if and only if N is isomorphic to N®». In this case it extends in two
ways up to the sign representation.

2) An irreducible representation M of G restricted to H remains irreducible if M is
not isomorphic to M ® e. It splits into 2 irreducible representations N & N%« if M is
isomorphic to M ® e.

Proof. Let hg = u?2 € H. If N is also a G representation the map u : N — N is an
isomorphism with N, conversely let ¢ : N — N = N% be an isomorphism so that
tht~ = ¢, (h) as operators on N. Then t2ht=2 = hohhy ', hence hy 't? commutes with H.

Since N is irreducible we must have hy 142 = ) is a scalar.

—1
We can substitute ¢ with £/ ~ and can thus assume that ¢> = hy (on N).

It follows that mapping v — ¢ one has the required extension of the representation.
It also is clear that the choice —t is the other possible choice changing the sign of the
representation.

2) From our previous discussion if N C M is an irreducible H submodule then M =
N + N?%«_ and we clearly have two cases: M = N or M = N @ N%=.

In the first case tensoring by the sign representation changes the representation. In fact
if we had an isomorphism ¢ between N and N ® € this would be also an isomorphism of
N to N as H modules. Since N is irreducible over H, t must be a scalar but then the
identity is an isomorphism between N and N ® e which is clearly absurd.

In the second case we can represent M as the set N @ N of pairs (n1,na) over which H
acts diagonally while u(ni,ns) := (hona, n1).

Similarly M ®e is N® N of pairs (n1,ns) over which H acts diagonally while u(n1,ns) :=
— (h()’nz, ’I’Ll) .

Then it is immediately seen that the map (nq,n2) — (n1, —n2) is an isomorphism of the
two structures. U
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One should compare this property of the possible splitting of irreducible representations
with the similar feature for conjugacy classes.

Ezercise, same notations as before. Given a conjugacy class C' of G contained in H it is
either a unique conjugacy class in H or it splits into 2 conjugacy classes permuted by
exterior conjugation by u. The second case occurs if and only if the stabilizer in G, of an
element in the conjugacy class, is contained in H. Study A,, C S, (the alternating group).

5.2 Induced characters Let now G be a group, H a subgroup and N a representation
of H (over some field k).

In Chapter 1, 3.2 we have given the notion of induced representation. Let us rephrase it
in the language of modules. Consider k[G] as a left k[H] module by the right action. The
space homy ) (k[G], N) is a representation under G by the action of G deduced from the
left action on k[G].

homy g (k[G], N) := {f : G = N| f(gh) = hf(g)}, (9f)(k) := f(g~ k).

We recover the notion given Ind$ (N) = homy 1 (k[G], N).

To be precise this construction is the induced representation only when H ha finite index
in G, otherwise one has a different construction which we leave to the reader to compare
with the one presented:

Consider k[G] ®a) N as a representation under G' by the left action of G' on k[G].

FEzercise. 1) If G D H D K are groups and N is a K module we have
Ind$ (IndN)) = IndSN
2) The representation [ ndeN is in a natural way described by @4cq/ggN where by
g € G/H we mean that g runs over a choice of representatives of cosets. The action of G
on such a sum is easily described.

3) If G is a finite group one has a G x G isomorphism between k[G] and its dual and we
obtain an isomorphism

The definition we have given of induced representation extends in a simple way to
algebraic groups and rational representations. In this case k[G]| denotes the space of
regular functions on G. If H is a closed subgroup of G' one can define homy g (k[G], N)
as the set of regular maps G — N which are H— equivariant (for the right action on G).

The regular maps from an affine algebraic variety V' to a vector space U can be identified
to A(V)®U where A(V) is the ring of regular functions on V hence if V" has an action under
an algebraic group H and U is a rational representation of H the space of H equivariant
maps V — U is identified to the space of invariants (A(V) ® U)%.

Assume now that G is linearly reductive and let us invoke the decomposition 3.1.1 of
Chap. 7, k[G] = @;U} ® U; hence (since by right action H acts only on the factor U;:

homy s (k[G], N) = (k[G] ® N)¥ = &,U} ® (U; ® N)".
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Finally in order to compute (U; ® N)# remark that (U; ® N)# = homg (U}, N).
Assume then that N is irreducible and that H is also linearly reductive, it follows from

Schur’s Lemma that the dimension of the space homg (U}, N) equals the multiplicity of
N in the representation U;. We deduce thus

Theorem Frobenius reciprocity. The multiplicity with which an irreducible represen-
tation V' of G appears in homy ) (k[G], N) equals the multiplicity with which N appears
iV as representation of H.

5.3 Homogeneous spaces

There are several interesting results of Fourier analysis on homogeneous spaces which
are explained easily by the previous discussion. Suppose we have a finite dimensional
complex unitary or real orthogonal representation V of a compact group K let v € V
a vector and consider its orbit Kw, it is isomorphic to the homogeneous space K/K,
where K, is the stabilizer of v. Under the simple condition that ¥ € Kv (no condition in
the real orthogonal case) the polynomial functions on V restrict to Kv to an algebra of
functions satisfying the properties of the Stone—Weierstrass theorem. The Euclidean space
structure on V induces on the manifold Kv a K invariant metric hence also a measure
and a unitary representation of K on the space of L? functions on Kv. Thus the same
analysis as in 3.2 shows that we can decompose the restriction of the polynomial functions
to Kwv into an orthogonal direct sum of irreducible representations and then the whole
space L2(K/K,) decomposes in Fourier series obtained from these irreducible blocks. One
method to understand which representations appear and with which multiplicity is to
apply Frobenius reciprocity. Another is to apply methods of algebraic geometry to the
associated action of the associated linearly reductive group, see §9. A classical example
comes from the theory of spherical harmonics obtained restricting to the unit sphere the
polynomial functions.

6 The unitary trick.

6.1 Polar decomposition There are several ways in which linearly reductive groups
are connected to compact Lie groups. The use of this (rather strict) connection goes under
the name of unitary trick. This is done in many different ways and here we want to discuss
it with particular reference to the examples of classical groups which we are studying.

We start from the remark that the unitary group U(n,C) := {A|AA* =1} is a bounded
and closed set in M,,(C) hence it is compact.
Proposition 1. U(n,C) is a mazimal compact subgroup of GL(n,C). Any other maximal
compact subgroup of GL(n,C) is conjugate to U(n, C).

Proof. Let K be a compact linear group. Since it is unitarizable there exists a matrix g
such that K C gU(n,C)g~!. If K is maximal this inclusion is an equality. [
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The way in which U(n,C) sits in GL(n,C) is very special and common to maximal
compact subgroups of linearly reductive groups. The analysis passes through the polar
decomposition for matrices and the Cartan decomposition for groups.

Theorem. 1) The map B — eB establishes a diffeomorphism between the space of Her-
mitian matrices and the space of positive Hermitian matrices.
2) Fvery invertible matriz X is uniquely expressible in the form

(6.1.1) X =¢84 polar decomposition
where A is unitary and B is Hermitian.

Proof. 1) We leave as an exercise using the eigenvalues and eigenspaces.
2) Consider X X* := X X" which is clearly a positive Hermitian matrix.

If X =eP A is decomposed as in 6.1.1, then X X* = eBAA*eP = e?2B. So B is uniquely
determined. Conversely by decomposing the space in eigenspaces it is clear that a positive
Hermitian matrix is uniquely of the form e?? with B Hermitian. Hence there is a unique
B with X X* = e2B. Setting A := ¢"BX we see that A is unitary. [

The previous Theorem has two corollaries, both of which are sometimes used as unitary
tricks, the first of algebro geometric nature and the second topological.

Corollary. 1. U(n,C) is Zariski dense in GL(n,C).
2. GL(n,C) is diffeomorphic to U(n,C) xR™ wvia ¢(A, B) = eBA. In particular U(n, C)
is a deformation retract of GL(n,C).

Proof. The first part follows from the fact that one has the exponential map X — eX from
complex n x n matrices to GL(n,C). In this holomorphic map the two subspaces iH, H of
antihermitian and hermitian matrices map to the two factors of the polar decomposition
i.e. unitary and positive hermitian matrices.

Since M,,(C) = H +1iH, any two holomorphic functions on M, (C) coinciding on i# nec-
essarily coincide. So by the exponential and the connectedness of GL(n, C), the same holds
in GL(n,C): two holomorphic functions on GL(n,C) coinciding on U(n,C) coincide. [

There is a partial converse to this analysis.

Proposition 2. Let G C GL(n,C) be an algebraic group. Suppose that K := GNU(n,C)
18 Zariski dense in G then G is self adjoint.

Proof. Let us consider the antilinear map g — g*. Although it is not algebraic, it maps al-
gebraic varieties to algebraic varieties (conjugating the equations). Thus G* is an algebraic
variety in which K* is Zariski dense. Since K* = K we have G* = G. [

6.2 Cartan decomposition The polar decomposition induces, on a self adjoint group
G C GL(n,C) of matrices, a Cartan decomposition, under a mild topological condition.

Let u(n, C) be the antihermitian matrices, Lie algebra of U(n, C), then iu(n,C) are the
hermitian matrices. Let g C gl(n,C) be the Lie algebra of G.
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Theorem Cartan decomposition. Let G C GL(n,C) be a self adjoint Lie group with
finitely many connected components, g its Lie algebra.
i) For every element A € G in polar form A = eBU, we have that U € G, B € g.

Let K := GNU(n,C) and ¢ be the Lie algebra of K.

it) We have g = ¢ p, p = gNiu(n,C), the map ¢ : K xp — G given by ¢ : (u,p) — ePu
is a diffeomorphism.
ii1) If g is a complex Lie algebra we have p = it.

Proof. If G is a self adjoint group, clearly (taking 1-parameter subgroups) also its Lie
algebra is self adjoint. Since X — X* is a linear map of order 2, by self adjointness
g = €D p, with ¢ the space of antihermitian and p of hermitian elements of g. We have
that € := gNu(n,C) is the Lie algebra of K := GNU(n,C). K x p is a submanifold of
U(n,C) X iu(n,C). The map ¢ : K x p — G, being the restriction to a submanifold of a
diffeomorphism, is a diffeomorphism with its image. Thus the key of the proof is to show
that its image is G. In other words that, if A = ePU € G is in polar form, we have that
UcK,Bey.

Now e2B = AA* € G by hypothesis, so it suffices to see that, if B is an Hermitian
matrix with e? € G we have B € g. Since e"? € G, Vn € Z the hypothesis that G has
finitely many connected components implies for some n, e™? € Gy; where G denotes the
connected component of the identity. We are reduced to the case G connected. In the
diffeomorphism U (n, C) x iu(n,C) — GL(n,C), (U, B) — ePU, we have that K x p maps
diffeomorphically to a closed submanifold of GL(n,C) contained in G. Since clearly this
submanifold has the same dimension as G and G is connected we must have G = K x eP,
the Cartan decomposition for G.

Finally if g is a complex Lie algebra, multiplication by 7 maps the Hermitian to the
antihermitian matrices in g and conversely. [

Exercise See that the condition on finitely many components cannot be dropped.
Corollary. The homogeneous space G/K is diffeomorphic to p.

It is useful to explicit the action of an element of G, written in its polar decomposition,
on the homogeneous space G/K. Denote by P :=e?. We have a map p: G — P given by
p(g) :== gg*. pis a G equivariant map if we act with G, on G by left multiplication and
on P by gpg*. p is an orbit map, P is the orbit of 1 and the stabilizer of 1 is K. Thus p
identifies G/K with P and the action of G on P is gpg*.14

Theorem 2. Let G be as before and M a compact subgroup of G, then M 1is conjugate to
a subgroup of K.
K is maximal compact and all maximal compact subgroups are conjugate in G.

The second statement follows clearly from the first. By the fixed point principle (Chap.
1, 2.2), this is equivalent to proving that M has a fixed point on G/K. This may be

l4remark that, restricted to P the orbit map is p — p2
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achieved in several ways, the classical proof is via Riemannian geometry, showing that
G/K is a Riemannian symmetric space of constant negative curvature.l® We follow the
more direct approach of [OV]. For this we need some preparation.

We need to study an auxiliary function on the space P and its closure P, the set of all
positive semidefinte Hermitian matrices. Let G = GL(n,C). Consider the two variables
function tr(zy=!), = € P,y € P. Since (gzg*)(gyg*)~! = grxy~'g~!, this function is
invariant under the G action on P x P. Let Q C P be a compact set, we want to analyze
the function:

(6.2.1) pa(x) = max tr(zat).

Remark If g € G we have po(gxg*) := max tr(grg*a=t) = max tr(zg*a='g) = py-10(x).
a a

Lemma 1. The function po(x) is continuous, and there is a positive constant b such that,
if x # 0, pa(z) > bl|z||, where ||z|| is the operator norm.

Proof. Since 2 is compact po(z) is obviously well defined and continuous. Let us estimate
tr(za~'). Given an orthonormal basis e; in which z is diagonal, of eigenvalues z; > 0. If
a~! has matrix a;; we have tr(za™') = >, z;a;;. Since a is positive hermitian a;; > 0 for
all 4 and for all orthonormal bases. Since the set of orthonormal bases is compact, there is
a positive constant b > 0, independent of a and of the basis, such that a;; > b,Vi,Va € Q.
Hence, if x # 0, tr(za™!) > max; z;b = ||z||b. O

Lemma 2. Given C > 0, the set Pc of matrices X € P, with det(X) =1 and ||z]| < C is
compact.

Proof. P¢ is stable under conjugation by unitary matrices, since this group is compact it
is enough to see that the set of diagonal matrices in Py is compact. This is the set of
n—tuples of numbers z; with [, z; =1, C > x; > 0. This is the intersection of the closed
set [ [, z; = 1 with the compact set C > z; > 0,Vi. O

From the previous two lemmas follows that:

Lemma 3. The function po(x) admits an absolute minimum on the set of matrices X € P
with det(X) = 1.

Proof. Let X, € P,det(Xp) = 1 and let ¢ := p,(Xp). From Lemma 1, if X € P is such
that || X|| > ¢b~! then p,(X) > ¢. Thus the minimum is taken on the set of elements
X such that || X|| < ¢b~! which is compact by Lemma 2. Hence an absolute minimum
exists. [

Recall that an element X € P is of the form X = e4 for a unique Hermitian matrix A,
therefore the function of the real variable u, X* := e%4 is well defined. The key geometric

property of our functions is:

15The geometry of these Riemannian manifolds is a rather fascinating part of Mathematics being the
proper setting to understand in general non Euclidean Geometry, we refer to [He].
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Proposition 3. Given X,Y € P, X # 1, the two functions of the real variable u,
dxy(u) :=tr(X*Y 1), pa(z®) are strictly convex.

Proof. One way to check convexity is to prove that the second derivative is strictly positive.
If X =e” # 1 we have that A # 0 is a Hermitian matrix. The same proof as in Lemma, 1
shows that ¢x y (u) = tr(A2eA*Y 1) > 0, since 0 # A%e4% € P.

Now for po(z") = max,ecq tr(z“a™!) = max,eq ¢z qo(u) it is enough to remark that, if
we have a family of strictly convex functions depending on a parameter in a compact set,
the maximum is clearly a strictly convex function. [J

Now revert to a selfadjoint group G C GL(n,C) C GL(2n,R), its associated P and
Q) C P a compact set. Assume furthermore that G C SL(2n, R).

Lemma 4. po(z) has a unique minimum on P.

Proof. First of all, the hypothesis that the matrices have determinant 1 implies, from
Lemma 3, that an absolute minimum exists. Assume by contradiction that we have two
minima in A, B. By the first remark, changing €2, since G acts transitively on P we may
assume A = 1. Then lim, o B* =1 ( and it is a curve in P). By convexity and the fact
that B is a minimum we have that pg(B*) is a strictly decreasing function for u € (0, 1]
hence po(1) = lim, 0 po(B*) > pa(B) a contradiction. O

Proof of Theorem 2. We will apply the fixed point principle of Chapter 1, 2.2, to M
acting on P = G/K. First of all remark that GL(n,R) C GL™(2n,R), the matrices of
positive determinant. Embed G C GL*(4n,R), the determinant is then a homomorphism
to RT. Any compact subgroup of GL*(m,R) is contained in the subgroup of matrices
with determinant 1, and we can reduce to the case G C SL(2n,R).

Let © := M1 be the orbit of 1 in G/K = P. The function ppsi(x) on P, by Lemma 4
has a a unique minimum point pg. We claim that ppsq(x) is M invariant, in fact, by the
first Remark, we have for k € M that pari(kxk*) = pr-1a1(2) = pa1(z). It follows that
Po is necessarily a fixed point of M. [

Exercise Let G be a group with finitely many components and Gy the connected
component of 1. If G is self adjoint with respect to some positive Hermitian form then G
is also self adjoint (under a possibly different hermitian form).

The application of this theory to algebraic groups will be proved in Chap. 10, 6.3:

Theorem 3. If G C GL(n,C) is a self adjoint Lie group with finitely many connected
components and complex Lie algebra, then G is a linearly reductive algebraic group.
Conversely, given a linearly reductive group G and a finite dimensional linear represen-
tation of G on a space V', there is a Hilbert space structure on V such that G 1is self
adjoint.

If V' is faithful, the unitary elements of G form a maximal compact subgroup K and we
have a canonical polar decomposition G = Ke*t where € is the Lie algebra of K .

All mazimal compact subgroups of G are conjugate in G.
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Every compact Lie group appears in this way in a canonical form.

In fact, as Hilbert structure, one takes any one for which a given maximal compact
subgroup is formed of unitary elements.

6.3 Classical groups For the other linearly reductive groups that we know, we want
to make explicit the Cartan decomposition. We are dealing with self adjoint complex
groups hence with Lie algebra g a complex Lie algebra. In the notations of 6.2 we have
p = €. We leave some simple details as exercise.

1. First the diagonal group T = (C*)™ decomposes as U(1,C)" x (RT)™ and the
multiplicative group (R*)™ is isomorphic under logarithm to the additive group of R™.

It is easily seen that this group does not contain any non trivial compact subgroup hence
if K C T is compact by projecting to (R™)™ we see that K C U(1,C)".

The compact torus U(1,C)™ = (S)™ is the unique maximal compact subgroup of 7.

2. The orthogonal group O(n,C). We have O(n,C) NU(n,C) = O(n,R), thus O(n, R)
is a maximal compact subgroup of O(n, C).

Exercise Describe the orbit map X X*, X € O(n,C).

3. The symplectic group and quaternions:

We can consider the quaternions H := C + jC with the commutation rules j2 = —1,
ja:=aj, Va € C, and set a + jf:=a — Bj =a — j0.

Consider the right vector space H" = @], e;H over the quaternions, with basis e;.

As a right vector space over C this has as basis e1,e1j,es,€37,...,€,,€,5. For a
vector u = (q1,92,-.-,qn) € H" define [lul| := Y i, ¢iq;- If ¢ = o + jB; we have
S 10 = >y | + |Bi|. Let Sp(n,H) be the group of quaternionic linear transfor-
mations preserving this norm. It is easily seen that this group can be described as the
group of n X n matrices X := (g;;) with X* := X' = X~ where X* is the matrix with
gj; n the 75 entry.

This is again clearly a closed bounded group hence compact.

Sp(n,H) := {A € M, (H) | AA* = 1}.

On H™ = C?", right multiplication by j induces an antilinear transformation, with matrix
a diagonal matrix J of 2 x 2 blocks of the form

(1 %)

Since a complex 2n x 2n matrix is quaternionic, if and only if, it commutes with j, we see
that the group Sp(n,H) is the subgroup of the unitary group U(2n,C) commuting with
the operator j.
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If on a complex vector space we have a linear operator X with matrix A and an antilinear
operator Y with matrix B it is clear that both XY and Y X are antilinear with matrices
AB and BA respectively. In particular the two operators commute if and only if AB = BA.
We apply this now to Sp(n,H), we see that it is formed by those matrices X in U(2n,C)
such that XJ = JX = J(X 1)’ Tts Lie algebra £ is formed by the antihermitian matrices
Y with YJ = JY.

Taking Sp(2n,C) to be the symplectic group associated to this matrix J, we have
X € Sp(2n,C) if and only if XtJ = JX~ ! or XJ = J(X~1)t. Thus we have that

(6.3.1) Sp(n,H) = U(2n,C) N Sp(2n, C).

We deduce again that Sp(n,H) is maximal compact in Sp(2n, C).
Exercise Describe the orbit X X*, X € Sp(2n,C).

Although this is not the theme of this book there are other real forms of the groups we
studied. For instance the orthogonal groups or the unitary groups for indefinite forms,
these are non compact non algebraic but self adjoint. We have as further examples:

Proposition. O(n,R) is mazimal compact both in GL(n,R) and in O(n,C).

7 Hopf algebras and Tannaka Krein duality.

7.1 Reductive and compact groups We use the fact, that will be proved in Chap.
10, 7.2 that a reductive group G has a Cartan decomposition G = Ke*t. Given two rational
representations M, N of G we consider them as continuous representations of K.

Lemma. 1) homg(M,N) = homg (M, N).
2) An irreducible representation V' of G remains irreducible under K .

Proof. 1) It is enough to show that homg (M, N) C homg (M, N).

If A € homg (M, N) the set of elements g € G commuting with A is clearly an algebraic
subgroup of G containing K. Since K is Zariski dense in G, the claim follows.

2) is clearly a consequence of 1). [
The next step is to understand that:

Proposition. The space of reqular functions on a linearly reductive group G, restricts to
a mazximal compact subgroup K isomorphically to the space of representative functions.

Proof. First of all, since the compact group K is Zariski dense in G, the restriction to K
of the algebraic functions is injective. It is also clearly equivariant with respect to the left
and right action of K.

Since GL(n, k) can be embedded in SL(n + 1, k) we can choose a specific faithful repre-
sentation of GG, as a self adjoint group of matrices of determinant 1. In this representation
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K is the set of unitary matrices in G. The matrix coefficients of this representation, as
functions on G generate the algebra of regular functions. By Theorem 2.3 the same matrix
coefficients generate, as functions on K, the algebra of representative functions. [

Corollary. The category of finite dimensional rational representations of G' is equivalent
to the category of continuous representations of K.

Proof. Every irreducible representation of K appears in the space of representative func-
tions, while every algebraic irreducible representation of G appears in the space of regular
functions. Since these two spaces coincide algebraically the previous lemma, part 2 shows
that all irreducible representations of K are obtained by restriction from irreducible repre-
sentattions of G. The first part of the lemma shows that the restriction is an equivalence
of categories. [

In fact we can immediately see that the two canonical decompositions: Tk = @,z V*®
V, (formula 2.1.1) and k[G] = &;U} ®U; of Chap. 7, 3.1.1, coincide under the identification
between regular functions on G and representative functions on K.

7.2 Hopf algebras We want now to discuss an important structure, the Hopf algebra
structure, on the space of representative functions 7x. We will deduce some important
consequences for compact Lie groups. Recall that in 2.2 we have seen:

If f1(x), fo(x) are representative functions of K also fi(z)f2(x) is representative.

If f(x) is representative f(xy) is representative as function on K x K, and it is obvious
that f(z~!) is representative. Finally
Texk =Tk ® Tk
In the case of a compact group
Tk = @, (Vi'®Vi),  Trxk = Tk@Tk = @i;(Vi@Vi)e(VieV;) = e(VieV;) e (VieV)),
K denotes the set of isomorphism classes of irreducible representations of K.

For simplicity set Tx = A. We want to extract, form the formal properties of the
previous constructions, the notion of a (commutative) Hopf algebra.l®

This structure consists of several operations on A. In the general setting A need not be
commutative as an algebra.

(1) Ais a (commutative and) associative algebra under multiplication with 1. We set
m:A® A — A to be the multiplication.

(2) The map A : f — f(zy) from A to A® A is called a coalgebra structure. It
is a homomorphism of algebras and coassociative f((zy)z) = f(z(yz)) or the

16Hopf algebras appear in various contexts in mathematics, in particular Hopf used them to compute
the cohomology of compact Lie groups.
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diagram:

A —2 5 A4

| ea|

AQA 2% Ao A® A

is commutative. In general A is not cocommutative, i.e. f(zy) # f(yx).

(3) (f9)(zy) = f(zy)g(zy) i.e. A is a morphism of algebras. Since m(f(z) ® g(y)) =
f(x)g(x) we see that also m is a morphism of coalgebras, i.e. the diagram

AR A " A

sea | al

(A®A)® (AR A) 1EmaCTl4, 4o 4

is commutative. Here 7(a ® b) = b ® a.
(4) The map S : f(z) = f(z~1) is called an antipode.

Clearly S is a homomorphism of the algebra structure. Also f(x
f((yz)™1), hence S is an antihomomorphism of the coalgebra structure.
When A is not commutative the correct axiom to take is that S is also an
antihomomorphism of the algebra structure.
(5) It is convenient to think also of the unit element as a map 7 : C — A satisfying

“1y=1) =

mo(1A®n):1A:mo(n®1A), en = 1¢

(6) We have the counit map ¢ : f — f(1), an algebra homomorphism ¢ : A — C.
With respect to the coalgebra structure, we have f(z) = f(z1) = f(1z) or

ly®ecoA=e®140A =14.
Also f(zz~1) = f(z71z) = f(1) or
noe=molg®SoA=moSRLg0A

All the previous properties except the axioms on commutativity or cocommutativity can
be taken for the axiomatic definition of a Hopf algebra.'”

Example When A = k[z; j,d"'] is the coordinate ring of the linear group we have:

(7.2.1) Az ;) szh@)xhj, A(d) =d®d, Z.’Bthl'hJ =0;

One clearly has the notion of homomorphism of Hopf algebras, ideals etc.. We leave to
the reader to make explicit what we will use. The way we have set the definitions implies:

17part of the axioms are dropped by some authors. For an extensive treatment one can see [Ab],[Sw].
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Theorem 1. Given a topological group G, the algebra Tq is a Hopf algebra.
The construction that associates to G the algebra Tg is a contravariant functor, from
the category of topological groups, to the category of commutative Hopf algebras.

Proof. Apart from some trivial details, this is the content of the Propositions of 2.1. [

A commutative Hopf algebra A can be thought of abstractly, as a group in the opposite
category of commutative algebras, due to the following remark.
Given a commutative algebra B let G4(B) := {¢ : A — B}, be the set of homomorphisms.
Exercise The operations:

¢ x(a) := Zcb(uz')w(vi), Afa) = Zuz ®vi, ¢ '(a):=¢(S(a)), 1(a):=mn(a)

are the multiplication , inverse and unit of a group law on G 4(B).

In fact, in a twisted way, these are the formulas we have used for representative functions
on a group! The twist consists in the fact that, when we consider the homomorphisms
of A to B as points we should also consider the elements of A as functions. Thus we
should write a(¢) instead of ¢(a). If we do this all the formulas become the same as for
representative functions.

This allows us to go back from Hopf algebras to topological groups. This is best done, in
the abstract framework, by considering Hopf algebras over the real numbers. In the case
of groups we must change the point of view and take only real representative functions.

When we work over the reals, the abstract group G 4(R) can be naturally given the
finite topology induced from the product topology [],c 4 R of functions from A to R.

The abstract theorem of Tannaka duality shows that under a further restriction, which
consists in axiomatyzing, for Hopf algebras the notion of Haar integral, we have a duality.
Formally a Haar integral on a real Hopf algebra A is defined mimicking the group

properties [ f(zy)dy = [ f(zy)dz = [ f(x)dx:
/:A—HR, Ya € A, A(a):ZuZ-@Ui == /a:Zai/vi:Zui/vi

One also imposes the further positivity condition, if a # 0, [ a? > 0.
Under these conditions one has:

Theorem 2. If A is a real Hopf algebra, with an integral satisfying the previous properties,
then G 4(R) is a compact group and A is its Hopf algebra of representative functions.

The proof is not particularly difficult and can be found for instance in ([Ho]). For our
treatment we do not need it but rather, in some sense, a refinement. This establishes the
correspondence between compact Lie groups and linearly reductive algebraic groups.

The case of interest to us is when A, as algebra, is the coordinate ring of an affine
algebraic variety V, i.e. A is finitely generated, commutative and without nilpotent
elements.
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Recall that, to give a morphism between two affine algebraic varieties is equivalent to
giving a morphism in the opposite direction between their coordinate rings. Since A ® A
is the coordinate ring of V' x V' it easily follows that, the given axioms, translate, on the
coordinate ring, the axioms of an algebraic group structure on V.

Also the converse is true. If A is a finitely generated commutative Hopf algebra over
an algebraically closed field £ without nilpotent elements, then by the correspondence
between affine algebraic varieties and finitely generated reduced algebras we see that A is
the coordinate ring of an algebraic group. In characteristic 0 the condition to be reduced
is automatically satisfied (Theorem 7.3).

Now let K be a linear compact group (K is a Lie group by Chap. 3, §3.2). We claim:

Proposition. The ring Tk of representative functions is finitely generated.
Tk is the coordinate ring of an algebraic group G, the complexification of K.

Proof. In fact, by Theorem 2.2, Tk is generated by the coordinates of the matrix represen-
tation and the inverse of the determinant. Since it is obviously without nilpotent elements,
the previous discussion implies the claim. [

We know (Proposition 3.4 and Chap. 4, Theorem 3.2), that linear compact groups are
the same as compact Lie groups, hence:

Theorem 3. To any compact Lie group K there is canonically associated a reductive
linear algebraic group G, having as reqular functions the representative functions of K.

G is linearly reductive with the same representations of K. K is maximal compact and
Zariski dense in G.

If V is a faithful representation of K it is a faithful representation of G. For any K
invariant Hilbert structure on V', G is self adjoint.

Proof. Let G be the algebraic group with coordinate ring 7x. By definition its points
correspond to the homomorphisms 7x — C. In particular evaluating the functions of Tx
in K we see that K C G is Zariski dense. Therefore, by the argument in 7.1 every K
submodule of a rational representation of G is automatically a G submodule.

Hence the decomposition T = &;V;* ® V; is in G x G modules, G is linearly reductive
with the same irreducible representations as K.

Let K C H C G be a larger compact subgroup. By definition of G, the functions Tx
separate the points of G hence of H. Tk is closed under complex conjugation so it is dense
on the space of continuous functions of H. The decomposition Tx = ®;V;* ® V; is into
irreducible representations of K and G, it is also into irreducible representations of H.
Thus the Haar integral performed on H is 0 on all the non trivial irreducible summands.
Thus if we take a function f € T and form its Haar integral either on K or on H we
obtain the same result. By density this then occurs for all continuous functions. If H # K
we can find a non zero, non negative function f on H, which vanishes on K a contradiction.

The matrix coefficients of a faithful representation of K generate the algebra 7x. So
this representation is also faithful for G. To prove that G = G™* notice that, although
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the map g — g* is not algebraic, it is an antilinear map so it transforms affine varieties
in affine varieties (conjugating the coefficients in the equations), thus G* is algebraic and
clearly K* is Zariski dense in G*. Since K* = K we must have G = G*. U

At this point, since G is algebraic, it has a finite number of connected components, using
the Cartan decomposition of 6.1 we have:

Corollary. i) The Lie algebra g of G is the complezification of the Lie algebra t of K.
i) One has the Cartan decomposition G = K x e®*.

7.3 Hopf ideals

The definition of Hopf algebra is sufficiently general that it does not need to have a base
coefficient field. For instance for the general linear group we can work over Z, or even
any base commutative ring. The corresponding Hopf algebra is A[n] := Z[z; j, d~'], where
d = det(X) and X is the generic matriz with entries x; ;. The defining formulas for A, S, 7n
are the same as in 7.2.1. One notices that by Cramer’s rule, the elements d S(z; ;) are the
cofactors, i.e. the entries of A®~1X. These are all polynomials with integer coefficients.

To define a Hopf algebra corresponding to a subgroup of the linear group one can do it
by constructing a Hopf ideal.

Definition. A Hopf ideal of a Hopf algebra A is an ideal I such that:
(7.3.1) Al)CI®RA+ARI, S(I) c I, n(l) = 0.

Clearly, if I is a Hopf ideal, A/I inherits a structure of a Hopf algebra such that the
quotient map, A — A/I is a homomorphism of Hopf algebras.

As an example let us see the orthogonal and symplectic group over Z. It is convenient
to write all the equations in an intrinsic form using the generic matrix X. We do the case
of the orthogonal group, the symplectic being the same. The ideal I of the orthogonal
group by definition is generated by the entries of the equation XX¢ — 1 = 0. We have:

(73.2) AXX'-1)=XX'®@XX'-1®1=(XX"-1)@XX'+1®(XX"'-1)
(7.3.3) S(XX'—1) = S(X)S(XH)~1=d A" 1 X)A" 1 (X)) —1=d 2 A" H(X XY -1

(7.3.4) XX -1 =pX)(XH)-1=1-1=0.
Thus the first and last condition for Hopf ideals are verified by 7.3.2 and 7.3.4. To

see that S(I) C I remark that, modulo I we have indeed X X* = 1 hence d> = 1 and
APTH(X X?) = A"71(1) = 1 from which follows that modulo I we have S(X X —1) = 0.

Although this discussion is quite satisfactory from the point of view of Hopf algebras
it leaves open the geometric question whether the ideal we found is really the full ideal
vanishing on the geometric points of the orthogonal group. By the general theory of
correspondence between varieties and ideal this is equivalent to proving that A[n]/I has
no nilpotent elements.

If instead of working over Z we work over Q we can use a very general fact [Sw]:
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Theorem 1. A commutative Hopf algebra A over a field of characteristic 0 has no nilpo-
tent elements (i.e. it is reduced).

Proof. Let us see the proof when A is finitely generated over C. It is possible to reduce
the general case to this. By standard facts of commutative algebra it is enough to see that
the localization A, has no nilpotent elements for every maximal ideal m. Let G be the
set of points of A, i.e. the homomorphisms to C. Since G is a group we can easily see
(thinking that A is like a ring of functions), that G acts as group of automorphisms of A,
transitively on the points. In fact the analogue of the formula f(zg) when g: A — Cis a
point, is the composition R, : A Ny} RA 199, 4 ®C = A.

It follows from axiom 5) that ¢ = € o Ry as desired. Thus it suffices to see that A,
localized at the maximal ideal m, kernel of the counit € (i.e. at the point 1) has no
nilpotent elements. Since the intersection of the powers of the maximal ideal is 0 this
is equivalent to showing that @¢2;m’/m'*! has no nilpotent ideals.'® If m € m and

Am)=>,2;Qy; we have m =) . e(x;)y; = >, xi€(y;), 0=, e(x;)e(y;). Hence:

A(m) = sz Qyi — Zﬁ(ﬂfi) ®yi+ Ze(yz‘) ®T; — Ze(ﬂfi)e(yi) =

%

(7.3.5) D (mi— (@) @ yi + Z e(ys) ® (z; — e(z;)) EM®@1+1@m.

7 A

Similarly S(m) C m. It follows easily that B := ®;m!/m'T! inherits the structure
of a commutative graded Hopf algebra, with By = C. Graded Hopf algebras are well
understood, in fact in a more general settings they were originally studied by Hopf as the
cohomology algebras of Lie groups. In our case the theorem we need says that B is a
polynomial ring, hence an integral domain proving the claim. [

The theorem we need to conclude is an extremely special case of a general theorem of
Milnor and Moore [MM], that generalizes the original theorem of Hopf, which was only for
finite dimensional graded Hopf algebras. The theorem is formulated generally for graded
connected commutative algebras. Graded commutative means that the algebra satisfies
ab = (—1)!%lPlpg where |a|, |b| are the degrees of the two elements. The condition to be
connected is simply By = C. In case the algebra is a cohomology algebra of a space X it
reflects the condition that X is connected. The usual commutative case is obtained when we
assume that all elements have even degree. In our previous case we should consider m/m?
as in degree 2. In this language one unifies the notions of symmetric and exterior powers,
one thinks of a usual symmetric algebra as being generated by elements of even degree
and an exterior algebra is still called by abuse a symmetric algebra, but it is generated by

elements of odd degree. In more general language one can talk of the symmetric algebra,
S(V) of a graded vector space V.= Y V;, which is S, Va;] ® A[D_; Vait1]-

180one thinks of this ring as the coordinate ring of the tangent cone at 1.
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Milnor Moore, theorem. Let B be a finitely generated® positively graded commutative
and connected, then B is the symmetric algebra over the space:
P:={ue B|A(u) =u®1+1Qu}, of primitive elements.

Since we do not need this theorem let us show only the very small part needed to finish
the proof of Theorem 1.

Finishing the proof. In that theorem B := @3, m’/m‘*! is a graded commutative Hopf al-
gebra generated by the elements of lowest degree m/m? (we should give to them degree 2! to
be compatible with the definitions). Let z € m/m?. We have Az = a®1+1®b, a,b € m/m?
by the minimality of the degree. Applying axiom 5) we see that a« = b = z and

xr is primitive. What we need to prove is thus that, if z{,...,x, constitute a ba-
sis of m/m? then the z; are algebraically independent. Assume by contradiction that
f(xzy,...,2,) = 0 is a homogeneous polynomial relation of minimum degree h. We

also have 0 = Af(zy,...,2n) = f(z1 ®14+1Qx1,..., 2, ®1+1® x,) = 0. Expand
Af € Z?:o By_; ® B; and consider the term Tj_; 1 of bidegree h — 1,1. This is re-

ally a polarization and in fact it is Z?zl 8—f(a:1, vy Ty) ® ;. Since the z; are linearly
]
independent the condition T}_;; = 0 implies a—f(xl,...,xn) = 0,Vj. Since we are
x‘

j
in characteristic 0, at least one of these equations is non trivial and of degree h — 1 a

contradiction. [

As a consequence, a Hopf ideal of the coordinate ring of an algebraic group, in charac-
teristic 0 is always the defining ideal of an algebraic subgroup.

Exercise Let G be a linear algebraic group, p : G — GL(V) a linear representation
and v € V' a vector. Prove that the ideal of the stabilizer of v generated by the equations
p(g)v — v is a Hopf ideal.

It is still true that the algebra modulo the ideal I generated by the entries of the equations
X X' =1 has no nilpotent ideals when we take as coefficients a field of characteristic # 2.

The proof requires a little commutative algebra (cf. [E]). Let k be a field of characteristic
not 2. The matrix X X* — 1 is a symmetric n X n matrix so the equations X X* —1 =0

are ("11), while the dimension of the orthogonal group is (}) (this follows from Cayley’s
parametrization in any characteristic # 2) and (";Ll) + (72‘) = n? the number of variables.

We are thus in the case of a complete intersection, i.e. the number of equations equals the
codimension of the variety. Since a group is a smooth variety we must then expect that the
Jacobian of these equations has everywhere maximal rank. In more geometric language let
Sn(k) be the space of symmetric n x n matrices. Consider the mapping 7 : M,,(k) — Sy, (k)
given by X — X X, in order to show that for some A € S, (k) the equations X X* = A
generate the ideal of definition of the corresponding variety it is enough to show that the
differential dm of the map is always surjective on the points X such that X X* = A. The

19¢his condition can be weakened
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differential can be computed just substituting to X a matrix X + Y and saving only the
linear terms in Y, getting the formula YX*+ XY =Y X! 4+ (Y X?).
Thus we have to show that, given any symmetric matrix Z, we can solve the equation
Z=YX'+(YX)if XXt*=1. WesetY := ZX/2and have Z = 1/2(ZX Xt +(ZX X?)!).
In characteristic 2 the statement is simply not true since i, —1= (2 ;i Tij — 1)2.
So >, @i — 1 vanishes on the variety but it is not in the ideal.

Exercise Let L be a Lie algebra and Uy, its universal enveloping algebra, Show that Uy,
is a Hopf algebra under the operations defined on L as:

(7.3.6) Ala)=a®1+1Q®a, S(a)=-—a, n(a)=0, a€ L.

Show that L={u € Uy |A(u) =u®1+1Qu}, primitive elements.
Study the Hopf ideals of Uy,.



