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Abstract. In this paper, we construct measures which minimize a discrete ver-
sion of the stochastic Mather problem associated to a Tonelli Lagrangian L :
Td × Rd → R, where Td = Rd/Zd is the flat d–dimensional torus. We show that
the discrete variational problems approximate the stochastic Mather problem as
the step of the discretisation goes to zero, in the sense that the minima of the
discrete problems converge to the minimum of the stochastic Mather problem
and the discrete minimizing measures converge to the unique stochastic Mather
measure.

1. Introduction

For a given Tonelli Lagrangian L : Td×Rd → R, where Td is the flat d–dimensional
torus, the classical problem of Calculus of Variations amounts to minimize the action∫ b
a L(γ, γ̇) in a set of trajectories γ : [a, b] → Td. These minimizers satisfy the Euler–
Lagrange equations which are equivalent to Hamilton equations. Mather theory
aims to study the dynamics of special solutions, those with global minimization
properties. Weak KAM theory establishes a connection with viscosity solutions of
Hamilton Jacobi equation. Solutions of the Hamilton Jacobi equation are given by
the action of global minimizers.

When the trajectories considered in the minimization problem are no longer de-
terministic, the actions are defined by a Stochastic Optimal Control

u(x, t) = inf
V

Ex

∫ T

t
L(X(s), V (s)) ds+ u(X(T ), T )

with V varying in the set of bounded controls progressively measurable and

dX(s) = V (s)ds+
√
2dBs, X(t) = x

where Bs is a Brownian motion in Td. There is a feedback, u satisfies the viscous
Hamilton–Jacobi equation

−ut +H(x,Du) = ∆u,

the optimal control is given by Hp(x,Du) and so the corresponding process X(s)
possesses as probability distribution the solution m of the equation

mt − div(Hp(x,Du)m) = ∆m.

It could be thought that the minimizing controls define the random perturbation

dP (s) = −Hx(X(s), P (s))ds, dX(s) = Hp(X(s), P (s))ds+
√
2dBs

of Hamilton equations.
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The stationary viscous Hamilton–Jacobi corresponds to the ergodic problem

c0 = inf
V

lim sup
T→∞

Ex
1

T

∫ T

0
L(X(s), V (s)) ds

with V (s) as before. The probability distribution m of the stationary process is a
solution of

∆m− div(Hp(x,Du)m) = 0. (1)

The stochastic Mather problem is the following variational problem

−min
µ̃∈X

∫
Td×Rd

Ldµ̃, (2)

where the minimization is performed over the set X := C(Td × Rd) of stochastic
holonomic measures, namely a family of probability measures on Td ×Rd satisfying
the relaxed version of (1)∫

Td×Rd

(∆φ(x) + ⟨Dφ(x), q⟩) dµ̃(x, q) = 0 for all φ ∈ C2(Td). (3)

As proved in [11], there is a unique stochastic holonomic measure that solves the
minimization problem (2), called stochastic Mather measure. Moreover, the value of
the minimum in (2) thus obtained, hereafter denoted by α0, turns out to be equal to
the unique real constant c0 for which the following viscous Hamilton–Jacobi equation

∆u+H(x,Du) = c0 in Td (4)

admits solutions in the viscosity sense, where H : Td × Rd → R is the Hamiltonian
associated with L via the Fenchel transform. We refer the reader to [3] for definitions
and basic results in viscosity solution theory.

In this paper we are interested in performing a discretization of the problems.
The discretization depends on a parameter τ > 0, which denotes the step of the
interpolation.

The discrete counterpart of the continuous Stochastic Control problem is

inf
V

Ex

N−1∑
i=0

τL(Xi, Vi) + u(XN )

where the discrete process V = (Vi) defines the dynamics

Xi+1 = Xi + τVi + ξi

with ξi gaussian random variables independient and identically distributed.
The stochastic Mather variational problem consists in solving the variational prob-

lem (2) by taking asX the set of stochastic τ -holonomic measures Cτ (Td×Rd), which
is a family of probability measures on Td×Rd satisfying a sort of discretized version
of (3), see Definition 2.4 for details. We prove that this variational problem admits
minimizing measures, in general not unique. Furthermore, we show that the value
of the minimum in (2) obtained in this way, that we will denote by ατ , satisfies a
property analogous to the one mentioned above for a discretized version of equa-
tion (4), see Theorem 3.1: it is equal to the unique real constant cτ for which the
following identity

u(x) = Lτu(x)− τcτ for all x ∈ Td (5)

holds true for some u ∈ C(Td), where Lτ : C(Td) → C(Td) is the discrete Lax–
Oleinik operator, see Section 2.2.
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Once the discrete problems are solved, a natural question arises: can we recover
the solution of the continuous model when the parameter τ goes to zero? We give
a positive answer to this question, at least under proper assumptions on the La-
grangian. Indeed, in Theorem 4.1 we show that the values of the minima ατ of the
discrete variational problems converge to the minimum α0 of the stochastic Mather
problem, and that the corresponding discrete minimizing measures converge to the
unique stochastic Mather measure. As in the original Aubry–Mather theory, we can
enhance the concepts and results by defining the rotation vector of a measure and
by considering the varational problem restricted to stochastic τ -holonomic measures
with a fixed rotation vector. We prove that this is equivalent to modify the La-
grangian in the variational problem, see Section 5. The problem of the convergence
of the solutions of (5) to solutions of the viscous Hamilton–Jacobi equation (4) has
been instead addressed in [9].

Discrete versions of Aubry and Mather theory have been already proposed and
studied in literature, also in connection with different asymptotic problems, see for
instance [4, 5, 8, 12, 15–17]. In particular, our approximation result is analogous
to previous convergence results established in [4, 12, 15]. The main difference with
respect to all the quoted references is that the models therein consideblue come
from discretizations of “classical” Aubry–Mather theory, developed for first order
Hamilton–Jacobi equation, see [7,10]. The novelty of our work consists in proposing
a discretization of the stochastic Aubry–Mather theory, as developed by Gomes
in [11] in connection with viscous Hamilton–Jacobi equations.

2. Preliminaries

2.1. Stochastic Mather measures. In this section we will recall the notion of
stochastic Mather measure together with its main properties, as introduced and
studied by Gomes in [11]. Let L : Rd × Rd → R be a C2 Lagrangian, convex and
superlinear in the velocity variable q, and Zd–periodic in the space variable x, that
is to say, L can be thought as a Tonelli Lagrangian defined on Td×Rd. We associate
to L the Hamiltonian H defined via the Fenchel transform as follows:

H(x, p) := sup
q∈RN

{⟨p, q⟩ − L(x, q)} , for (x, p) ∈ Td × Rd.

The Hamiltonian H is of class C2 and satisfies properties analogous to the ones
fulfilled by L.

In the sequel, we will denote by C(Td) the space of continuous functions on Td,
or, equivalently, the family of Zd–periodic functions on Rd. A similar remark applies
to Ck(Td) with k ∈ N.

For any topological space X, we denote by P(X) the set of Borel probability
measures on X. Let C0

ℓ be the set of continuous functions f : Td × Rd → R having
linear growth, i.e.

∥f∥ℓ := sup
(x,q)∈Td×Rd

|f(x, q)|
1 + ∥q∥

< +∞.

We also denote by Pℓ, the set of measures in P(Td × Rd) such that∫
Td×Rd

∥q∥ dµ < +∞.

The set of measures Pℓ is naturally embedded in (C0
ℓ )

′, the dual of C0
ℓ , and its

topology coincides with that induced by the weak* topology on (C0
ℓ )

′. Therefore,
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we will say that µn is converging to µ in Pℓ, and we will write µn
∗
⇀ µ, if

lim
n→∞

∫
Td×Rd

f dµn =

∫
Td×Rd

f dµ for all f ∈ C0
ℓ .

The weak* topology is metrizable on Pℓ. Indeed, let {fn}n∈N be a sequence of
functions with compact support on C0

ℓ which is dense on C0
ℓ in the topology of

uniform convergence on compact sets of Td × Rd. The metric d on Pℓ, defined as
follows

d(µ1, µ2) =
∣∣∣ ∫

Td×Rd

|q| dµ1 −
∫
Td×Rd

|q| dµ2

∣∣∣
+

∑
n≥1

1

2n∥fn∥∞

∣∣∣ ∫
Td×Rd

fn dµ1 −
∫
Td×Rd

fn dµ2

∣∣∣,
provides the topology of Pℓ (see for instance Mañé [14]).

Remark 2.1. Let κ ∈ R. It was proved in [14] that the set

A(κ) :=
{
µ̃ ∈ Pℓ :

∫
Td×Rd

Ldµ̃ ≤ κ
}

is compact in Pℓ.

Following [11], we define stochastic holonomic measures as follows.

Definition 2.2. A measure µ̃ ∈ Pℓ satisfying∫
Td×Rd

(∆φ(x) + ⟨Dφ(x), q⟩) dµ̃(x, q) = 0 for all φ ∈ C2(Td) (6)

is called stochastic holonomic measure. The subset of stochastic holonomic measures
in Pℓ will be denoted by C(Td × Rd).

There is a very simple stochastic holonomic measure ν̃ defined by∫
Td×Rd

fdν̃ :=

∫
Td

f(x, 0) dx for all f ∈ C0
ℓ . (7)

More generally, let V : Td → Rd be a C1–vector field and let µ be the unique
element of P(Td) solving the following Fokker–Planck equation in the distributional
sense:

∆µ− div(V (x)µ) = 0 in Td. (8)

Then µ̃ := GV #µ is a stochastic holonomic measure, where GV #µ denotes the

push–forward of the measure µ via the map GV : Td ∋ x 7→ (x, V (x)) ∈ Td × Rd.
The stochastic Mather problem is the following variational problem:

−α0 := min
µ̃∈C(Td×Rd)

∫
Td×Rd

Ldµ̃. (9)

The stochastic holonomic measures solving (9) are called stochastic Mather mea-
sures.

We have the following result:

Theorem 2.3. Let H : Td × Rd → R be the C2 Tonelli Hamiltonian associated by
duality with L. Suppose there exist constants a1, a2 > 0 such that |∂xH| ≤ a1H + a2
in Td × Rd.
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(i) There is a unique c0 ∈ R such that

∆u+H(x,Du) = c0 in Td (10)

has viscosity solutions. Furthermore, c0 = α0.
(ii) If u is a continuous viscosity solution of (10), then u is of class C2,α, in

particular u is a classical solution to (10).
(iii) If u, v are classical solutions of (10), then u− v is constant.
(iv) The measure µ̃ is a solution to (9) if and only if µ̃ := GV #µ where µ ∈ P(Td) is

the solution of (8) with V (x) := ∂pH(x,Du(x)) and u is any classical solution
of (10)

We refer to [3] for the notion of viscosity (sub-, super-) solution.

Proof. Items (i), (iii) and (iv) are proved in [11]. Since we could not find an explicit
reference for item (ii), we sketch a proof in the appendix, see Lemma A.1. In this
regard, we remark that u is a viscosity solution to (10) if and only if −u is a viscosity
solution of −∆v +H(x,−Dv) = c0 in Td. □

Thus there is a unique µ̃0 ∈ C(Td × Rd) that solves (9). In other words, there is
only one stochastic Mather measure.

2.2. Discretization. For τ > 0, the source of randomness comes from the following
stochastic kernel ητ on Td, which is defined below

ητ : Td → P(Rd)

y 7→ ητy ,

where ητy is given as follows:

ητy (A) :=
1

(4πτ)
d
2

∫
A
e−

|z−y|2
4τ dz for all A ∈ B(Rd).

Given u ∈ C(Td), we observe∫
Td

u(z) dητy (z) =
1

(4πτ)
d
2

∫
Rd

u(z) e−
|z−y|2

4τ dz = (ητ ∗ u)(y),

where ητ (y) := (4πτ)−
d
2 e−

|y|2
4τ .

Next, we introduce the notion of stochastic τ -holonomic measure. It was inspiblue
by the definition of τ -holonomic measure given in [15] and can be regarded as a
discretization of the stochastic holonomic measure.

Definition 2.4. A measure µ ∈ Pℓ satisfying∫
Td×Rd

(
φ(x)− (ητ ∗ φ)(x+ τq)

)
dµ̃(x, q) = 0 for every φ ∈ C(Td)

is called stochastic τ -holonomic measure. The subset of stochastic τ -holonomic
measures in Pℓ will be denoted by Cτ (Td × Rd).

We note that the measure defined in (7) is also stochastic τ -holonomic.
The discrete analogous of the minimization problem (9) is the following

−ατ := min
µ̃∈Cτ (Td×Rd)

∫
Td×Rd

Ldµ̃. (11)
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We will show in the sequel that (11) admits minimizing measures, that we shall call
τ–minimizing in the sequel, see Theorem 3.1. Furthermore, under the assumption
that the Lagrangian L(x, q) has at least quadratic growth in q, we will show that
such τ–minimizing measures converge, as τ → 0+, to the unique solution of the
stochastic Mather problem (9), see Theorem 4.1.

Remark 2.5. Note that

min
Td×Rd

L ≤ −ατ ≤ max
x∈Td

L(x, 0),

where the second inequality is obtained by using the measure given in (7),

The discrete analogue of (10) is given as follows: define the discrete Lax-Oleinik
operator Lτ : C(Td) → C(Td) by

Lτu(x) := max
q∈Rd

(−τL(x, q) + (ητ ∗ u)(x+ τq)) for every x ∈ Td.

The following holds.

Theorem 2.6 ( [9]). There exists a unique cτ ∈ R such that

u(z) = Lτu(z)− τcτ z ∈ Td, (12)

has a solution u ∈ C(Td). Furthermore, the solution is unique up to additive con-
stants.

3. Existence of τ–minimizing measures

In this section we will show the existence of minimizing measures for the varia-
tional problem (11) and we will prove that the minimum is equal to −cτ , in analogy
with the continuous case. The precise statement is the following:

Theorem 3.1. There exists a stochastic τ -holonomic measure µ̃τ such that

−cτ =

∫
Td×Rd

Ldµ̃τ = min
µ̃∈Cτ (Td×Rd)

∫
Td×Rd

Ldµ̃. (13)

In particular, ατ = cτ .

We will denote by Mτ (L) the subset of stochastic τ -holonomic measures in Pℓ

that realize the minimum in (13).
We start with some preliminary material. For a Borel measurable and bounded

vector field V : Td → Rd and a measure ν ∈ P(Td) consider the Markov process
{ξi : i ≥ 0} with initial distribution ν and transition kernels

PV
ν (ξi+1 ∈ B|ξ0, . . . , ξi) = ητξi+τV (ξi)

(B). (14)

Here, the ξi : Ω → Rd are random variables defined on a measurable space (Ω,F),
where F is a σ–algebra.

Lemma 3.2. Let V : Td → Rd be a bounded, Borel measurable vector field, and
ν ∈ P(Td). For every f ∈ Bb(Rd) we have

EV
ν [f(ξi+1)] = EV

ν [(ητ ∗ f)(ξi + τV (ξi))] for every i ∈ N.
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Proof. Indeed, we have

EV
ν [f(ξi+1)] = EV

ν

[
EV
ν [f(ξi+1) | ξi]

]
= EV

ν

[∫
Td

f(x) dητξi+τV (ξi)
(x)

]
= EV

ν [(ητ ∗ f) (ξi + τV (ξi))] .

□

We will also need the following lemma.

Lemma 3.3. For each ϕ ∈ C(Td), let

Vϕ(x) := {q ∈ Rd : Lτϕ(x) = (ητ ∗ ϕ)(x+ τq)− τL(x, q)} for all x ∈ Td.

Then there exists a bounded and measurable vector field Vϕ : Td → Rd such that

Vϕ(x) ∈ Vϕ(x) for every x ∈ Td.

Proof. From the continuity of ϕ and the growth conditions of L, it follows from [9]
that the sets Vϕ(x), x ∈ Td, are nonempty, uniformly bounded and compact in Rd.
Moreover, the multi–function x 7→ Vϕ(x) is upper–semicontinuous with respect to
set inclusion, so we can apply Theorem III.8 in [6] to infer the existence of a bounded
measurable map Vϕ : Td → Rd such that Vϕ(x) ∈ Vϕ(x) for every x ∈ Td. □

The following will be a key tool to prove existence of τ–minimizing measures.

Theorem 3.4. Let ϕτ ∈ C(Td) be a solution of (12) and set V = Vϕτ . For ν ∈
P(Td) let {ξi : i ≥ 0} be the Markov process with initial distribution ν and transition
kernels given by (14). Then, for any solution u ∈ C(Td) of (12) and n ∈ N, we
have

EV
ν [Ln

τ u (ξ0)] = EV
ν

[
u (ξn)− τ

n−1∑
i=0

L (ξi, V (ξi))

]
, (15)

where EV
ν denotes the expectation with respect to the probability measure PV

ν .

Proof. Let u ∈ C(Td) be a solution of (12), then using that u− ϕτ is constant and
that the Lax operator Lτ commutes with additive constants, we get

u(x) + τcτ = Lτu(x) = (ητ ∗ u)(x+ τV (x))− τL(x, V (x)) for all x ∈ Rd. (16)

We will prove (15) by induction on n ∈ N. Let us first show (15) for n = 1. By
taking into account (16), we get, for every solution u of (12) and ω ∈ Ω,

Lτu (ξ0(ω)) = (ητ ∗ u) (ξ0(ω) + τV (ξ0(ω)))− τL (ξ0(ω), V (ξ0(ω))) .

By integrating with respect to PV
ν and by recalling Lemma 3.2, we get

EV
ν [Lτu (ξ0)] = EV

ν [u(ξ1)− τL (ξ0, V (ξ0))] ,

which implies the first step of the induction. Let us now assume that (15) holds
for n and for every solution u of (12). We first apply the induction hypothesis to
u := Lτϕτ and infer

EV
ν

[(
Ln+1
τ ϕτ

)
(ξ0)

]
= EV

ν

[
Lτϕτ (ξn)− τ

n−1∑
i=0

L (ξi, V (ξi))

]
. (17)

In view of (16), for every ω ∈ Ω, we get

(Lτϕτ )(ξn(ω)) = (ητ ∗ ϕτ )(ξn(ω) + τV (ξn(ω)))− τL(ξn(ω), V (ξn(ω))).
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By integrating with respect to PV
ν and by recalling Lemma 3.2, we get

EV
ν [Lτϕτ (ξn)] = EV

ν [(ητ ∗ ϕτ )(ξn + τV (ξn))− τL(ξn, V (ξn))]

= EV
ν

[
ϕτ (ξ

V
n+1)− τL(ξn, V (ξn))

]
.

By using this relation in (17), we get (15) with n+1 instead of n and u := ϕτ , and
hence for every u solution of (12) since the Lax operator commutes with additive
constants. □

We now construct stochastic τ -holonomic measures. Let {ξi : i ≥ 0} be the
Markov process associated to a Borel measurable bounded vector field V : Td → Rd

and a measure ν ∈ P(Td) via (14). For each n ∈ N, let us define the measure µ̃n ∈ Pℓ

by setting∫
Td×Rd

f(x, q) dµ̃n(x, q) :=
1

n

n−1∑
i=0

EV
ν

[
f(ξVi , V (ξVi ))

]
for all f ∈ C0

ℓ . (18)

Since V is bounded, it is easily seen that the measures {µ̃n : n ∈ N} have equi–
compact support, in particular they are relatively compact in Pℓ.

We are interested in accumulation points of these measures.

Proposition 3.5. Let {µ̃n : n ∈ N} be the sequence of measures given by (18) and
let µ̃ ∈ Pℓ be an accumulation point. The following holds:

(i) the measure µ̃ is stochastic τ -holonomic;

(ii) if V is continuous, then µ̃ = GV #µ, where GV : Td ∋ x 7→ (x, V (x)) ∈
Td×Rd and µ := π1#µ̃ is the push–forward of the measure µ̃ via the standard

projection map π1 : Td × Rd → Td;

(iii) if V = Vϕτ with ϕτ ∈ C(Td) solution of (12), then∫
Td×Rd

Ldµ̃ = −cτ .

Proof. Let us denote by
(
µ̃nk

)
k
a subsequence such that µ̃nk

∗
⇀ µ̃ in Pℓ.

(i) Pick f ∈ C(Td) and define Tf ∈ C0
ℓ by

Tf(x, q) = (ητ ∗ f)(x+ τq)− f(x).

By an iterative application of Lemma 3.2 the sequence

Mn(f) = f(ξn)−
n−1∑
i=0

Tf(ξi, V (ξi)), M0(f) = f(ξ0),

satisfies

EV
ν [Mn(f)] = EV

ν [M0(f)] ,

i.e.

EV
ν [f(ξn)]− n

∫
Td×Rd

Tf dµ̃n =

∫
Td

f dν. (19)

By dividing equality (19) by nk an letting k → ∞, we get∫
Td×Rd

Tf(x, q) dµ̃(x, q) = 0,

i.e. µ̃ is stochastic τ -holonomic .
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(ii) We aim to show that∫
Td×Rd

g dµ̃ =

∫
Td

g(x, V (x)) dµ, for all g ∈ C0
ℓ .

Indeed, letting µn := π1#µ̃n, for every f ∈ C(Td) we have∫
Td

f dµn =
1

n

n−1∑
i=0

EV
ν [f(ξi)] ,

and then, for all g ∈ C0
ℓ ,∫

Td×Rd

g dµ̃ = lim
k→+∞

1

nk

nk−1∑
i=0

EV
ν [g(ξi, V (ξi))]

= lim
k→+∞

∫
Td

g(x, V (x)) dµnk
=

∫
Td

g(x, V (x)) dµ(x).

(iii) Being ϕτ ∈ C(Td) a solution to (12), we have, for every n ∈ N,

Ln
τϕτ = ϕτ + nτcτ in Td.

According to (15) and to the definition of µ̃n, we infer

cτ =
EV
ν [ϕτ (ξn)− ϕτ (ξ0)]

nτ
−
∫
Td×Rd

L(x, q) dµ̃n.

By picking n = nk and by passing to the limit as k → +∞ we get (iii). □

We are now in position to prove Theorem 3.1.

Proof of Theorem 3.1. Let ϕτ ∈ C(Td) be a solution to (12). Then

ϕτ (x) = Lτϕτ (x)− τcτ ≥ (ητ ∗ ϕτ )(x+ τq)− τL(x, q)− τcτ

for all (x, q) ∈ Td × Rd. By integrating this inequality with respect to any µ̃ ∈
Cτ (Td × Rd) and by using∫

Td×Rd

ϕτ dµ̃ =

∫
Td×Rd

(ητ ∗ ϕτ )(x+ τq) dµ̃,

we obtain ∫
Td×Rd

Ldµ̃ ≥ −cτ

The assertion follows in view of Proposition 3.5-(iii). □

4. From the discrete to the continuous model

In this section we discuss the asymptotics of stochastic τ -holonomic measures.
The main result of this section is the following.

Theorem 4.1. Assume that there are a1, a2 > 0 such that

|∂xH(x, p)| ≤ a1H(x, p) + a2, H(x, p) ≤ a1|p|2 + a2 for any (x, p) ∈ Td × Rd.

The following holds:

(i) lim
τ→0+

ατ = α0;

(ii) let µ̃τ ∈ Mτ (L) for every τ > 0. Then µ̃τ converges in Pℓ to the unique
stochastic Mather measure µ̃0.
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We show that the limit probability measure obtained from a sequence of stochas-
tic τn-holonomic measures µ̃τn with τn → 0 is stochastic holonomic if either the
measures µ̃τn have equi-compact supports or they are τn-minimizing and the Lan-
gragian has at least quadratic growth in q. More precisely, we have the following
result.

Proposition 4.2. Let µ̃ ∈ Pℓ be a measure obtained as a limit of a sequence of
measures µ̃τn ∈ Cτn(Td ×Rd) for some sequence {τn : n ∈ N} converging to 0, such
that either one of the following assumptions holds:

(i) there is ρ > 0 such that

spt(µ̃τn) ⊆ Td ×Bρ(0) for every n ∈ N, (20)

(ii) there exist c1, c2 > 0 such that |q|2 ≤ c1L(x, q) + c2 and µ̃τn ∈ Mτn(L).

Then µ̃ is stochastic holonomic.

Proof. We observe that for φ ∈ C(Td)

(ητ ∗ φ)(y) =
1

(4πτ)
d
2

∫
Td

∑
k∈Zd

e−
|z−y+k|2

4τ φ(z) dz =

∫
Td

∑
k∈Zd

e−τ |2πk|2+2πik·zφ(z) dz.

By approximation in C2–norm, it will be enough to prove the condition (6) for
φ ∈ C4+s(Td) with 2s > d. For such a φ consider its Fourier expansion

φ(x) =
∑
k∈Zd

φke
2πik·x, x ∈ Td,

so that

(ητ ∗ φ)(y) =
∑
k∈Zd

φke
−τ |2πk|2+2πik·y,

and then

(ητ ∗ φ)(x+ τq)− φ(x)

τ
− ⟨Dφ(x), q⟩ −∆φ(x)

=
1

τ

∑
k∈Zd

φk(e
−τ |2πk|2+2πiτk·q − 1 + τ |2πk|2 − 2πiτk · q)e2πik·x.

(21)

On the other hand, by straightforward computations, it is easy to show that

|ez − 1− z| ≤ |z|2

2
for ℜz ≤ 0.

Thus

|e−τ |2πk|2+2πiτk·q−1+τ |2πk|2−2πiτk·q| ≤ τ2

2
||2πk|2+2πik·q|2 ≤ τ2

2
(|2πk|4+|k|2|2πq|2),

and so∣∣∣∑
k∈Zd

φk(e
−τ |2πk|2+2πiτk·q−1+τ |2πk|2−2πiτk·q)e2πik·x

∣∣∣ ≤ τ2

2

∑
k∈Zd

|φk|(|2πk|4+|k|2|2πq|2)

≤ τ2

2

(∑
k∈Zd

(1 + |k|2)−s
) 1

2
(|2π|4|φ|H4+s + |φ|H2+s |2πq|2).
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where | |Hr is the Sobolev norm

|φ|2Hr =
∑
k∈Zd

(1 + |k|2)r|φk|2.

Integrating (21) with respect to µ̃τ ∈ Cτ (Td × Rd) we deduce∣∣∣∣∫
Td×Rd

⟨Dφ(x), q⟩+∆φ(x) dµ̃τ (x, q)

∣∣∣∣ ≤ Cτ

(
1 +

∫
Td×Rd

|q|2 dµ̃τ (x, q)

)
. (22)

Under any of our assumptions the sequence∫
Td×Rd

|q|2 dµ̃τn(x, q) < ∞, n ∈ N,

is uniformly bounded. Indeed, under assumption (i), this follows at once from con-
dition (20), while under assumption (ii) this holds because for µ̃τ ∈ Mτ (L),∫

Td×Rd

L(x, q) dµ̃τ (x, q) = −ατ ∈
[
min

Td×Rd
L,max

y∈Td
L(y, 0)

]
.

Hence by taking τ → 0 in (22), we obtain∫
Td×Rd

⟨Dφ(x), q⟩+∆φ(x) dµ̃(x, q) = 0,

as requiblue. The proof is now complete. □

Now, we are ready to prove the main result of this section.

Proof of Theorem 4.1. In view of Remark 2.5, we know that any sequence (ατn)n
with τn → 0+ admits a converging subsequence. Let us denote by

A :=

{
α ∈ R : α = lim

n→+∞
ατn for some τn → 0+

}
,

the set of accumulation points of the ατ as τ → 0+. We want to show that A = {α0}.
To this aim, we pick α ∈ A and let {τn : n ∈ N} be an infinitesimal sequence such
that ατn → α as n → +∞.

We first show that α ≥ α0. Let µ̃0 ∈ P(Td × Rd) be the unique stochastic
holonomic measure solving ∫

Td×Rd

Ldµ̃0 = −α0.

According to Theorem 2.3, µ̃0 = GV #µ0 where µ0 ∈ P(Td) is the solution of the
Fokker–Planck equation (8) with V (x) := ∂pH(x,Du(x)) and u any solution of

(10). For every n ∈ N, let us denote by µ̃V
τn a measure in Cτn(Td × Rd) defined

according to the construction provided by Proposition 3.5 with the vector field
V (x) = ∂pH(x,Du(x)). We know that µ̃V

τn = GV #µ
V
τn . Up to subsequences, we may

assume that µV
τn

∗
⇀ µV in P(Td), therefore µ̃V

τn converges to µ̃V := GV #µ
V in Pℓ.

By Proposition 4.2–(i), we know that µ̃V is stochastic holonomic. Otherwise stated,
µV is the solution of the Fokker–Planck equation (8) with V (x) = ∂pH(x,Du(x)).
By uniqueness, we deduce that µV = µ0 and hence µ̃V = µ̃0. Since the measures
{µV

τn : n ∈ N} have equi–compact support, we finally get

−α0 =

∫
Td×Rd

Ldµ̃0 = lim
n→+∞

∫
Td×Rd

Ldµ̃V
τn ≥ lim

n→+∞
−ατn = −α,

11



as it was to be shown.
Next, we show that α ≤ α0. Let µ̃τn ∈ Mτn(L), then∫

Td×Rd

Ldµ̃τn = −ατn ≤ max
x∈Td

L(x, 0) =: κ.

By Remark 2.1, up to subsequences we can assume that µ̃τn converges to µ̃ in Pℓ.
In view of Proposition 4.2–(ii), we deduce that µ̃ is stochastic holonomic. We get

−α = lim
n→+∞

−ατn = lim
n→+∞

∫
Td×Rd

Ldµ̃τn ≥
∫
Td×Rd

Ldµ̃ ≥ −α0 (23)

according to Theorem 2.3. This finally shows that α = α0 and that the stochastic
holonomic measure µ̃ in (23) minimizes (9). Hence µ̃ = µ̃0, by uniqueness of the
stochastic Mather measure. The last assertion in the statement of the Theorem
follows from this fact. □

5. Rotation vectors

Given a measure µ̃ in P(Td × Rd), we define its rotation vector, ρ(µ̃) as

ρ(µ̃) =

∫
Td×Rd

q dµ̃(x, q).

Given h ∈ Rd we can plug the constant vector field V (x) = h in the construction
of Proposition 3.5 to obtain a stochastic τ -holonomic measure with rotation vector
h.

Indeed, if {ξi : i ≥ 0} is the Markov process given in (14) and {µ̃n : n ∈ N} are
the measures defined in the proof Proposition 3.5–(ii), we have∫

Td×Rd

q dµ̃n =
1

n

n∑
i=0

EV
ν (V (ξi)) = h.

Hence, it follows that the rotation vector of the limit µ̃ is also h.
We define βτ : Rd → R by

βτ (h) := inf

{∫
Td×Rd

Ldµ̃ : µ̃ ∈ Cτ (Td × Rd), ρ(µ̃) = h

}
. (24)

The above infimum is actually a minimum. In fact, we have

Theorem 5.1. There exists µ̃ ∈ Cτ (Td × Rd) with ρ(µ̃) = h such that∫
Td×Rd

Ldµ̃ = βτ (h). (25)

Proof. Let {µ̃n : n ∈ N} be a sequence in Cτ (Td × Rd) with ρ(µ̃n) = h for every
n ∈ N such that

βτ (h) = lim
n→∞

∫
Td×Rd

Ldµ̃n.

Hence, there exists κ ∈ R such that∫
Td×Rd

Ldµ̃n ≤ κ for all n ∈ N.

12



By Remark 2.1, there exists a subsequence {µ̃nk
: k ≥ 1} converging to µ̃ in Pℓ.

Since L is continuous and it is bounded from below, we have

βτ (h) = lim
k→∞

∫
Td×Rd

Ldµ̃nk
≥

∫
Td×Rd

Ldµ̃. (26)

The opposite inequality comes by the very definition of βτ (h) since µ̃ is stochastic
τ -holonomic and satisfies ρ(µ̃) = h, as it is easily seen. □

The function βτ is convex, indeed, if h1, h2 ∈ Rd consider a convex combination
h = λh1 + (1 − λ)h2 . Let µ̃1, µ̃2 be minimizing measures with rotation vectors h1
and h2, and let µ̃ be the convex combination λµ̃1+(1−λ)µ̃2. Then µ̃ is a stochastic
τ -holonomic probability measure with rotation vector h and by definition

βτ (h) ≤
∫
Td×Rd

Ldµ̃ = λ

∫
Td×Rd

Ldµ̃1 + (1− λ)

∫
Td×Rd

Ldµ̃2

= λβτ (h1) + (1− λ)βτ (h2).

The convex dual ατ : Rd → R of the function βτ is our original problem for a
modified Lagrangian. For a vector w consider the one form ω defined by ω(q) = w ·q.
By definition of the convex dual

ατ (w) = sup
h
(w · h− βτ (h))

= − inf
h

min
ρ(µ̃)=h

∫
Td×Rd

Ldµ̃− w · h

= − min
µ̃∈Cτ (Td×Rd)

∫
Td×Rd

Ldµ̃− w ·
∫
Td×Rd

q dµ̃(x, q)

= − min
µ̃∈Cτ (Td×Rd)

∫
Td×Rd

(L− ω) dµ̃.

In [13] we defined the stochastic Mather function α0 : Rd → R by

α0(w) = − min
µ̃∈C(Td×Rd)

∫
Td×Rd

(L− ω) dµ̃.

When the Lagrangian L has at least quadratic growth in q, we infer from Theorem
4.1 that

lim
τ→0

ατ (w) = α0(w) for any w ∈ Rd.

Appendix A

Lemma A.1. Let H : Td × Rd → R be a C1 Tonelli Hamiltonian and assume that
|∂xH| ≤ a1H + a2 in Td × Rd for some constants a1, a2 > 0. Then any continuous
viscosity solution of −∆u+H(x,Du(x)) = c0 in Td is of class C2,α.

Proof. Define F (x, p,M) = −TrM +H(x, p)− c0 so that the viscous HJ equation is
F (x,Du,D2u) = 0. We first show that the solution u is actually Lipschitz continuous
on Td. We want to apply [2, Theorem 1]. Let us check that condition (H1) in [2,
Theorem 1] is satisfied, namely that there exist a constant α > 0 such that

∂xH · p+ g0TrM
2 ≥ α
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in a neighborhood W (L) of the set {(x, p,M) : |p| ≥ L,Mp = 0, F = 0} for a
sufficiently large L > 0, where g0 =

√
2(2−

√
2)(

√
2+1)−1. Indeed, in the set F = 0

we have dTrM2 ≥ (TrM)2 = (H(x, p)− c0)
2 and so

∂xH·p+g0TrM
2 ≥ −|p|(a1H+a2)+

g0
d
(H−c0)

2 = |p|2
(
−a1H + a2

|p|
+

g0(H − c0)
2

d|p|2

)
.

The superlinearity of H implies that there is L > 0 such that

∂xH · p+ g0TrM
2 > 1

when F (x, p,M) = 0 and |p| ≥ L. From [2, Theorem 1] we get that u is Lipschitz
continuous.

As u is Lipschitz, H(x,Du) is at least essentially bounded. Now, plug this into
the viscous Hamilton–Jacobi equation to yield that u is in W 2,p for any p > 1, and
in particular, it means that u is C1,α. Since u is C1,α and H is C1, we have that
H(x,Du) is in C0,α, and therefore, by Schauder’s estimates, u is in C2,α. □

Proposition A.2. The following conditions are equivalent:

(i) H(x, p) ≤ b1|p|2 + b2 for some constants b1, b2 > 0.
(ii) |q|2 ≤ c1L(x, q) + c2 for some constants c1, c2 > 0.

Proof. Suppose (i) holds. Let x ∈ Td, q ∈ Rd, for |p| ≤ |q|
2b1

we have

p · q −H(x, p) ≥ p · q − |q|2

4b1
− b2,

thus

L(x, q) ≥ max

{
p · q −H(x, p) : |p| ≤ |q|

2b1

}
≥ max

{
p · q − |q|2

4b1
− b2 : |p| ≤

|q|
2b1

}
=

|q|2

4b1
− b2

Suppose (ii) holds. Let x ∈ Td, p ∈ Rd, then

H(x, p) = max
q

p · q − L(x, q) ≤ max
q

p · q − |q|2

c1
+

c2
c1

=
c1p

2

4
+

c2
c1
.

□
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