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Abstract. In this paper we consider the notion of commutation for a pair of
continuous and convex Hamiltonians, given in terms of commutation of their Lax–
Oleinik semigroups. This is equivalent to the solvability of an associated multi–
time Hamilton–Jacobi equation. We examine the weak KAM theoretic aspects
of the commutation property and show that the two Hamiltonians have the same
weak KAM solutions and the same Aubry set, thus generalizing a result recently
obtained by the second author for Tonelli Hamiltonians. We make a further step
by proving that the Hamiltonians admit a common critical subsolution, strict
outside their Aubry set. This subsolution can be taken of class C1,1 in the Tonelli
case. To prove our main results in full generality, it is crucial to establish suitable
differentiability properties of the critical subsolutions on the Aubry set. These
latter results are new in the purely continuous case and of independent interest.

1. Introduction

In the last decades, the study of Hamiltonian systems has been impacted by a
few new tools and methods. For general Hamiltonians, the framework of symplectic
geometry led Gromov to his non–squeezing lemma [34], which gave rise to the key
notion of symplectic capacity, now uniformly used in the field.

In the particular case of Tonelli (smooth, strictly convex, superlinear) Hamiltoni-
ans, some variational techniques led to significant improvements and results. John
Mather led the way in this direction in [43, 42]. In the first paper he studied free
time minimizers of the Lagrangian action functional, introducing the Aubry set,
while in the second one he studied invariant minimizing measures, introducing what
is now called the Mather set.

Later Fathi, through his weak KAM Theorem and Theory, showed the link be-
tween the variational sets introduced by Mather and the Hamilton–Jacobi equation.
This allowed to simplify some proofs of Mather and to establish new PDE results,
in connection with the theory of homogenization [40]. This material is presented in
[30].

The main challenge now seems to find analogues of the Aubry–Mather theory in
wider settings. There are mainly two approaches to this problem. The first one is
to lower the regularity of the Hamiltonians. This is a rather natural issue in view of
applicability to Optimal Control and Hamilton–Jacobi equations. A generalization
of the weak KAM theory to continuous and quasi–convex Hamiltonians was first
given by Fathi and Siconolfi in [33]. Their approach has been subsequently developed
and applied in different contexts, see for instance [12, 23, 24, 25, 26, 32, 35, 36, 38,
39, 46].
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The second is to drop the convexity and coercivity assumptions, thus preventing
from using traditional variational arguments. A generalization of weak KAM Theory
to this framework is an outstanding and widely open question. On the other hand,
the theory of viscosity solutions, introduced by Crandall and Lions [19], provides
powerful tools to study Hamilton–Jacobi equations in broad generality. With regard
to the problems studied in the references above mentioned, these techniques have
been successfully employed to obtain similar results under different, and in some
cases weaker, assumptions on the Hamiltonians, see for instance [1, 2, 5, 6, 7, 15].

The present paper is addressed to explore the weak KAM theoretic aspects of
commuting Hamiltonians. This issue is related to the solvability of a multi–time
Hamilton–Jacobi equation of the kind

∂tu+H(x,Dxu) = 0 in (0,+∞)× (0,+∞)×M

∂su+G(x,Dxu) = 0 in (0,+∞)× (0,+∞)×M

u(0, 0, x) = u0(x) on M,

(1)

where M stands either for the Euclidean space RN or the N–dimensional flat torus
TN , H and G denote two real valued functions on M ×RN , and u0 :M → R is any
given Lipschitz continuous initial datum.

The first existence and uniqueness results appeared in [41] for Tonelli Hamilto-
nians independent of x via a representation formula for solutions of the Hamilton–
Jacobi equation: the Hopf–Lax formula. Related problems were studied in [37].

A generalization of this result came much later in [8], where dependance on x
is introduced (and the convexity hypothesis is kept). As a counterpart, the au-
thors explain the necessity to impose the following commutation property on the
Hamiltonians:

〈DxG, DpH〉 − 〈DxH, DpG〉 = 0 in M × RN . (2)

Note that this condition is automatically satisfied when the Hamiltonians are in-
dependent of x. The proof involves an a priori different Hamilton–Jacobi equation
with parameters and makes use of fine viscosity solution techniques. In [48], un-
der stronger hypotheses, a more geometrical proof, following the original idea of
Lions–Rochet, is given.

This equation was then studied under weaker regularity assumptions in [44]. The
convexity is dropped in [16] in the framework of symplectic geometry and variational
solutions. Finally, let us mention that in [47] the influence of first integrals (not
necessarily of Tonelli type) on the dynamics of a Tonelli Hamiltonian is studied.

In [48] the second author has explored relation (2) for a pair of Tonelli Hamilto-
nians in the framework of weak KAM Theory to discover that the notions of Aubry
set, of Peierls barrier and of weak KAM solution are invariants of the commutation
property. Similar results were independently obtained in [20, 21].

This article deals with the first approach: we will consider purely continuous
Hamiltonians, but we will keep the convexity and coercivity assumptions in the
gradient variable. Here, we will say that H and G commute to simply mean that
the multi–time Hamilton–Jacobi equation (1) admits a viscosity solution for any
Lipschitz initial datum. This is formulated in terms of commutation of their Lax–
Oleinik semigroups, and is equivalent to (2) when the Hamiltonians are smooth
enough, see [8] and Appendix C.
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The purpose of the paper is to explore the weak KAM consequences of the com-
mutation property in this setting. Our main achievement in this direction is the
following Theorem, which generalizes the main new result of [48]:

Theorem 1.1. Let H and G be a pair of continuous, strictly convex and superlinear
Hamiltonians on TN × RN . If H and G commute, then they have the same weak
KAM (or critical) solutions and the same Aubry set.

We want to emphasize that the extension of this result to the non–regular setting
was far from being straightforward. First, there is a problem of techniques: the
crucial point in the proof of [48] is based on a careful study of the flows associated
with H and G and exploits properties and tools developed in the framework of
symplectic geometry and weak KAM Theory. For instance, a key ingredient is a
deep result due to Bernard [10], stating that the Aubry set is a symplectic invariant.
The use of all this machinery is possible only when the Hamiltonians are smooth
enough.

But there is more: looking at the arguments in [48], one realizes that the commu-
tation hypothesis (2) entails a certain rigidity of the dynamics and of the underlying
geometric frame of the equations. Even if in the purely continuous case some analo-
gies can be drawn, all this rich structure is lost. To put it differently, the problem
did not seem to us just of technical nature: the role of regularity for the validity of
the result had to be clarified.

The proof given here borrows some arguments from [48], but the conclusion is
reached via a different and rather simple remark on the time–dependent equations.
Incidentally, with this idea the proof in the smooth case can be made considerably
simpler. It is also worth noticing that Theorem 1.1 applies, in particular, to a pair of
Hamiltonians of class C1 satisfying (2), that is, to a case not covered by the previous
works on the subject [20, 21, 48]. As a byproduct, our study allows us to obtain a
new result also for classical Tonelli Hamiltonians:

Theorem 1.2. Let H and G be two commuting Tonelli Hamiltonians. Then they
admit a C1,1 critical subsolution which is strict outside their common Aubry set.

In the end, our research reveals that the invariants observed in the framework of
weak KAM Theory are consequence of the commutation of the Lax–Oleinik semi-
groups only, with no further reference to the Hamiltonian flows, that cannot be even
defined in our setting. The only point where a kind of generalized dynamics plays a
role is when we establish some differentiability properties of critical subsolutions on
the Aubry set, which are crucial to state Theorem 1.1 in its full generality. These
results are presented in Section 4, where we will prove a more precise version of the
following

Theorem 1.3. Let H be a continuous, strictly convex and superlinear Hamiltonian
on TN × RN . Then there exists a set D ⊂ TN such that any subsolution u of the
critical Hamilton–Jacobi equation is differentiable on D. Moreover, its gradient Du
is independent of u on D. Last, D is a uniqueness set for the critical equation, that
is, if two weak KAM (or critical) solutions coincide on D, then they are in fact
equal.

These latter results are new and we believe interesting per se. They generalize, in
a weaker form, Theorem 7.8 in [33], and bring the hope of extending to the purely
continuous case the results of [33] about the existence of a C1 critical subsolution,
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strict outside the Aubry set. Such a generalization, however, seems out of reach
without any further idea.

The article is organized as follows. In Section 2.1 we present the main notations
and assumptions used throughout the paper, while in Section 2.2 we recall the defi-
nitions and the results about Hamilton–Jacobi equations that will be needed in the
sequel. Section 3 consists in a brief overview of weak KAM Theory for non–regular
Hamiltonians. Some proofs are postponed to Appendix A. In Section 4 we prove
the differentiability properties of critical subsolutions above mentioned. In Section
5 we examine the weak KAM theoretic aspects of the commutation property and we
establish our main results for continuous and strictly convex Hamiltonians. Some
auxiliary lemmas are stated and proved in Appendix B. Appendix C contains an
argument showing the equivalence between the notion of commutation considered
in this paper and the one given in terms of cancellation of the Poisson bracket when
the Hamiltonians are of Tonelli type.

2. Preliminaries

2.1. Notations and standing assumptions. With the symbols R+ and R− we
will refer to the set of nonnegative and nonpositive real numbers, respectively. We
say that a property holds almost everywhere (a.e. for short) on Rk if it holds up to
a negligible subset, i.e. a subset of zero k–dimensional Lebesgue measure.

By modulus we mean a nondecreasing function from R+ to R+, vanishing and
continuous at 0. A function g : R+ → R will be termed superlinear if

lim
h→+∞

g(h)

h
= +∞.

Given a metric space X, we will write ϕn ⇒ ϕ on X to mean that the sequence of
functions (ϕn)n uniformly converges to ϕ on compact subsets of X. Furthermore,
we will denote by Lip(X) the family of Lipschitz–continuous real functions defined
on X.

Throughout the paper, M will refer either to the Euclidean space RN or to the
N–dimensional flat torus TN , where N is an integer number. The scalar product in
RN will be denoted by 〈 · , · 〉, while the symbol | · | stands for the Euclidean norm.
Note that the latter induces a norm on TN , still denoted by | · |, defined as

|x| := min
κ∈ZN

|x+ k| for every x ∈ TN .

We will denote by BR(x0) and BR the closed balls in M of radius R centered at x0
and 0, respectively.

With the term curve, without any further specification, we refer to an absolutely
continuous function from some given interval [a, b] to M . The space of all such
curves is denoted by W 1,1([a, b];M), while Lipx,y([a, b];M) stands for the family of
Lipschitz–continuous curves γ joining x to y, i.e. such that γ(a) = x and γ(b) = y,
for any fixed x, y in M .

With the notation ‖g‖∞ we will refer to the usual L∞–norm of g, where the latter
will be either a measurable real function on M or a vector–valued measurable map
defined on some interval.

Let u be a continuous function on M . A subtangent (respectively, supertangent)
of u at x0 is a function φ ∈ C1(M) such that φ(x0) = u(x0) and φ(x) 6 u(x) for
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every x ∈ M (resp., >). Its gradient Dφ(x0) will be called a subdifferential (resp.
superdifferential) of u at x0, respectively. The set of sub and superdifferentials of
u at x0 will be denoted D−u(x0) and D+u(x0), respectively. We recall that u is
differentiable at x0 if and only if D+u(x0) and D

−u(x0) are both nonempty. In this
instance, D+u(x0) = D−u(x0) = {Du(x0)}, where Du(x0) denotes the differential
of u at x0. We refer the reader to [13] for the proofs.

When u is locally Lipschitz in M , we will denote by ∂∗u(x0) the set of reachable
gradients of u at x0, that is the set

∂∗u(x0) = {lim
n
Du(xn) : u is differentiable at xn, xn → x0 },

while the Clarke’s generalized gradient ∂cu(x0) is the closed convex hull of ∂∗u(x0).
The set ∂cu(x0) contains both D+u(x0) and D−u(x0), in particular Du(x0) ∈
∂cu(x0) at any differentiability point x0 of u. We recall that the set–valued map
x 7→ ∂cu(x) is upper semicontinuous with respect to set inclusion. When ∂cu(x0)
reduces to a singleton, the function u is said to be strictly differentiable at that
point. In this instance, u is differentiable at x0 and its gradient is continuous at x0.
We refer the reader to [17] for a detailed treatment of the subject.

A function u will be said to be semiconcave on an open subset U ofM if for every
x ∈ U there exists a vector px ∈ RN such that

u(y)− u(x) 6 〈px, y − x〉+ |y − x|ω(|y − x|) for every y ∈ U ,

where ω is a modulus. The vectors px satisfying such inequality are precisely the
elements of D+u(x), which is thus always nonempty in U . Moreover, ∂cu(x) =
D+u(x) for every x ∈ U , yielding in particular that Du is continuous on its domain
of definition in U , see [13]. This property will be exploited in the proof of Lemma
B.3.

Throughout the paper, we will call convex Hamiltonian a function H satisfying
the following set of assuptions:

(H1) H :M × RN → R is continuous;

(H2) p 7→ H(x, p) is convex on RN for any x ∈M ;

(H3) there exist two superlinear functions α, β : R+ → R such that

α (|p|) 6 H(x, p) 6 β (|p|) for all (x, p) ∈M × RN .

We define the Fenchel transform L :M × RN → R of H via

L(x, q) = H∗(x, q) := sup
p∈RN

{〈p, q〉 −H(x, p)} . (3)

The function L is called the Lagrangian associated with the Hamiltonian H; it sat-
isfies the following properties, see Appendix A.2 in [13]:

(L1) L :M × RN → R is continuous;

(L2) q 7→ L(x, q) is convex on RN for any x ∈M ;
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(L3) there exist two superlinear functions α∗, β∗ : R+ → R s.t.

α∗ (|q|) 6 L(x, q) 6 β∗ (|q|) for all (x, q) ∈M × RN .

Remark 2.1. The functions α∗, β∗ and α, β in (L3) and (H3), respectively, can be
taken continuous (in fact, convex), without any loss of generality.

With the term strictly convex Hamiltonian we will refer to a convex Hamiltonian
with (H2) replaced by the following stronger assumption:

(H2)′ p 7→ H(x, p) is strictly convex on RN for any x ∈M .

We point out that, in this event, L enjoys

(L2)′ q 7→ L(x, q) is convex and of class C1 on RN for any x ∈M .

Furthermore, the map (x, q) 7→ DqL(x, q) is continuous in M × RN . This fact will
be exploited in the proof of Proposition 4.4. Here and in the sequel, DqL(x, q)
and DxL(x, q) denote the partial derivative of L at (x, q) with respect to q and x,
respectively. An analogous notation will be used for the Hamiltonian.

A Tonelli Hamiltonian is a particular kind of Hamiltonian satisfying conditions
(H1), (H2)′ and (H3). It is additionally assumed of class C2 inM×RN and condition
(H2)′ is strengthen by requiring, for every (x, p) ∈M × RN , that

∂2H

∂p2
(x, p) is positive definite as a quadratic form. (4)

The associated Lagrangian has the same regularity as H and enjoys the analogous
condition (4). We remark that, under these conditions, the associated Hamiltonian
and Lagrangian flows are complete even in the case M = RN .

2.2. Hamilton–Jacobi equations. Let us consider a family of Hamilton–Jacobi
equations of the kind

H(x,Du) = a in M , (5)

where a ∈ R. In the sequel, with the term subsolution (resp. supersolution) of
(5) we will always refer to a continuous function u which is a subsolution (resp. a
supersolution) of (5) in the viscosity sense, i.e. for every x ∈M

H(x, p) 6 a for any p ∈ D+u(x)(
resp. H(x, p) > a for any p ∈ D−u(x)

)
.

A function will be called a solution of (5) if it is both a subsolution and a superso-
lution.

Remark 2.2. Since H is coercive, i.e. satisfies the first inequality in (H3), it is
well known that any continuous viscosity subsolution v of (5) is Lipschitz, see for
instance [4]. In particular, v is an almost everywhere subsolution, i.e.

H
(
x,Dv(x)

)
6 a for a.e. x ∈M.

By the convexity assumption (H2), the converse holds as well: any Lipschitz, almost
everywhere subsolution solves (5) in the viscosity sense, see [45]. In particular, v is
a subsolution of (5) if and only if −v is a subsolution of

H(x,−Du) = a in M .
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We define the critical value c as

c = min{a ∈ R : equation (5) admits subsolutions }. (6)

Following [33], we carry out the study of properties of subsolutions of (5), for a > c,

by means of the semidistances Sa defined on M ×M as follows:

Sa(x, y) = inf

{∫ 1

0
σa

(
γ(s), γ̇(s)

)
ds : γ ∈ Lipx,y([0, 1];M)

}
, (7)

where σa(x, q) is the support function of the a–sublevel Za(x) of H, namely

σa(x, q) := sup {〈q, p〉 : p ∈ Za(x) } (8)

and Za(x) := {p ∈ RN : H(x, p) 6 a }. The function σa(x, q) is convex in q
and upper semicontinuous in x (and even continuous at points such that Za(x) has
nonempty interior or reduces to a point), while Sa satisfies the following properties:

Sa(x, y) 6 Sa(x, z) + Sa(z, y)

Sa(x, y) 6 κa|x− y|
for all x, y, z ∈M and for some positive constant κa. The following properties hold,
see [33]:

Proposition 2.3. Let a > c.

(i) A function φ is a viscosity subsolution of (5) if and only if

φ(x)− φ(y) 6 Sa(y, x) for all x, y ∈M .

In particular, all viscosity subsolutions of (5) are κa–Lipschitz continuous.

(ii) For any y ∈M , the functions Sa(y, ·) and −Sa(·, y) are both subsolutions of
(5).

(iii) For any y ∈M

Sa(y, x) = sup{v(x) : v is a subsolution to (5) with v(y) = 0 }.
In particular, by maximality, Sa(y, ·) is a viscosity solution of (5) inM \{y}.

Definition 2.4. For t > 0 fixed, let us define the function ht :M ×M → R by

ht(x, y) = inf

{∫ 0

−t
L(γ, γ̇) ds : γ ∈W 1,1([−t, 0];M), γ(−t) = x, γ(0) = y

}
. (9)

It is well known, by classical result of Calculus of Variations, that the infimum
in (9) is achieved. The curves that realize the minimum are called Lagrangian
minimizers. The following more precise result will be needed in the sequel, see
[3, 18, 22]:

Proposition 2.5. Let x, y ∈ M , t > 0 and C ∈ R such that ht(x, y) < tC.
Then any Lagrangian minimizer γ for ht(x, y) is Lipschitz continuous and satisfies
‖γ̇‖∞ 6 κ, where κ is a constant only depending on C, α∗, β∗.

We recall some properties of ht, see for instance [22].

Proposition 2.6. Let t > 0. Then ht is locally Lipschitz continuous in M ×M .
More precisely, for every r > 0 there exists K = K(r, α∗, β∗) such that the map

(x, y, t) 7→ ht(x, y) is K–Lipschitz continuous in Cr,

where Cr := {(x, y, t) ∈M ×M × (0,+∞) : |x− y| < r t }.
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We remark that, for every a > c, the following holds:

L(x, q) > max
p∈Za(x)

〈p, q〉−H(x, p) > σa(x, q)−a for every (x, q) ∈M × RN , (10)

yielding in particular ht(y, x) + a t > Sa(y, x) for every x, y ∈ M . The next result
can be proved by making use of suitable reparametrization techniques, see [23, 33].

Lemma 2.7. Let a > c. Then

Sa(y, x) = inf
t>0

(
ht(y, x) + at

)
for every x, y ∈ M ,

and the infimum is always reached when a > c.

For every t > 0, we define a function on M as follows:(
S(t)u

)
(x) = inf

{
u
(
γ(0)

)
+

∫ 0

−t
L(γ, γ̇) ds : γ ∈W 1,1([−t, 0];M), γ(0) = x

}
(11)

where u :M → R ∪ {+∞} is an initial datum satisfying

u(·) > a| · |+ b on M (12)

for some a, b ∈ R. Any function of this kind will be called admissible initial datum
in the sequel.

The following properties hold:

Proposition 2.8.

(i) For every admissible initial datum u, the map (t, x) 7→
(
S(t)u

)
(x) is finite

valued and locally Lipschitz in (0,+∞)×M.

(ii)
(
S(t)

)
t>0

is a semigroup, i.e. for every admissible initial datum u

S(t)
(
S(s)u

)
= S(t+ s)u for every t, s > 0.

(iii) S(t) is monotone and commutes with constants, i.e. for every admissible
initial data u, v and any a ∈ R we have

u 6 v =⇒ S(t)u 6 S(t)v and S(t)(u+ a) = S(t)u+ a.

In particular, S(t) is weakly contracting, i.e.

‖S(t)u− S(t)v‖∞ 6 ‖u− v‖∞.

(iv) If u ∈ Lip(M), then the map (t, x) 7→
(
S(t)u

)
(x) is Lipschitz continuous in

[0,+∞)×M and
lim
t→0+

‖S(t)u− u‖∞ = 0.

The semigroup
(
S(t)

)
t>0

is called Lax–Oleinik semigroup and (11) is termed Lax–
Oleinik formula. The relation with Hamilton–Jacobi equations is clarified by the
next classical results, see for instance Section 10.3 in [29].

Theorem 2.9. Let H be a convex Hamiltonian. Then, for every u0 ∈ Lip(M), the
Cauchy Problem {

∂tu+H(x,Du) = 0 in (0,+∞)×M

u(0, x) = u0(x) on M
(13)

admits a unique viscosity solution u(t, x) in Lip([0,+∞)×M). Moreover,

u(t, x) =
(
S(t)u0

)
(x) for every (t, x) ∈ (0,+∞)×M.
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With regard to the stationary equation (5), the following characterization holds:

Proposition 2.10. Let u be a continuous function on M . The following facts hold:

(i) u is a subsolution of (5) if and only if t 7→ S(t)u+ a t is non decreasing;

(ii) u is a solution of (5) if and only if u ≡ S(t)u+ a t for every t > 0.

Proof. (i) If u is a subsolution of (5), then for every x, y ∈M

u(x) 6 u(y) + Sa(y, x) 6 u(y) + ht(y, x) + a t for every t > 0,

hence

u 6 inf
y∈M

(
u(y) + ht(y, ·) + a t

)
= S(t)u+ a t.

This readily implies, by monotonicity of the semi–group,

S(h)u+ a h 6 S(t+ h)u+ a (t+ h) for every h > 0,

i.e. t 7→ S(t)u+ a t is non decreasing.
Conversely, if t 7→ S(t)u+ a t is non decreasing, then for every fixed x, y ∈M we

have

u(x) 6 u(y) + ht(y, x) + a t for every t > 0.

By taking the infimum in t of the right–hand side term, we obtain u(x) − u(y) 6
Sa(y, x) for every x, y ∈M by Lemma 2.7, i.e. u is a subsolution of (5).

Assertion (ii) easily follows by noticing that u is a solution of (5) if and only if
u(x)− at is a solution of (13) with u0 := u. �

We conclude this section by proving a result that we will need later in the paper.

Lemma 2.11. Let H be a strictly convex Hamiltonian and u an admissible datum.
Then, for each x ∈M , the function t 7→ S(t)u(x) is locally semi-concave on (0,+∞).
Moreover, the modulus of semi-concavity is locally uniform in x.

Proof. For simplicity, we prove the assertion for M = TN . The proof in the general
case goes along the same lines, but one has to localize the arguments. More precisely,
one needs to use the fact that for any positive real number T and any compact set
K ⊂ RN , there exists a compact set K ′ ⊂ RN such that any curve realizing the
minimum in (S(t)u)(x), for t 6 T and x ∈ K, is included in K ′.

Let I be an open interval compactly contained in (0,+∞). By the compactness
of TN and condition (L3), it is not hard to see that there exists a constant C such
that

ht(x, y) 6 C t for every x, y ∈ TN and t ∈ I.

Let κ be the constant chosen according to Proposition 2.5. Fix x ∈ TN , t ∈ I and
let γ be a Lipschitz curve (of Lipschitz constant κ) verifying γ(t) = x and such that(

S(t)u
)
(x) = u

(
γ(0)

)
+

∫ t

0
L
(
γ(s), γ̇(s)

)
ds.

For h such that |h| < t/2 we set γh : [0, t+ h] → TN by

γh(s) = γ
( ts

t+ h

)
, s ∈ [0, t+ h].

By definition of the Lax-Oleinik semigroup, we have the following obvious inequality:(
S(t+ h)u

)
(x) 6 u

(
γ(0)

)
+

∫ t+h

0
L
(
γh(s), γ̇h(s)

)
ds.
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Therefore, the following holds:(
S(t+ h)u

)
(x)−

(
S(t)u

)
(x) 6

∫ t+h

0
L(γh, γ̇h) ds−

∫ t

0
L(γ, γ̇) ds

=

∫ t

0

(
L
(
γ(s), γ̇(s) · t

t+ h

)
· t+ h

t
− L

(
γ(s), γ̇(s)

))
ds.

We make a Taylor expansion to obtain that∣∣L(γ(s), γ̇(s) · t

t+ h

)
− L

(
γ(s), γ̇(s)

)
−
〈∂L
∂q

(
γ(s), γ̇(s)

)
, γ̇(s)

〉∣∣
6 κ|h|
t+ h

ω
( κ|h|
t+ h

)
6 2κ|h|

t
ω
(2κ|h|

t

)
,

where ω is a continuity modulus for ∂L/∂q in TN ×B2κ. We deduce that(
S(t+ h)u

)
(x)−

(
S(t)u

)
(x)

6
∫ t

0

(h
t
L
(
γ(s), γ̇(s)

)
− h

t

〈∂L
∂q

(
γ(s), γ(s)

)
, γ̇(s)

〉
+ 2

κ|h|
t
ω
(2κ|h|

t

))
ds

= h pt + 2κ|h|ω
(2κ|h|

t

)
,

where

pt =

∫
−

t

0

(
L
(
γ(s), γ̇(s)

)
−

〈∂L
∂q

(
γ(s), γ̇(s)

)
, γ̇(s)

〉)
ds,

and

∫
−

t

0
stands for the mean value

1

t

∫ t

0
.

�

3. Nonregular weak KAM theory

The purpose of this Section is to present the main results of weak KAM Theory
we are going to use in the sequel. This material is not new. It is well known
for Tonelli Hamiltonians, see [30], while the extension to the non regular setting is
either contained in other papers or can be easily recovered from the results proved
therein. Nevertheless, it is less standard and it is not always possible to give precise
references. For the reader’s convenience, we provide here a brief presentation. Some
proofs are postponed to Appendix A.

Throughout this Section, M stands either for RN or for TN and conditions (H1),
(H2) and (H3) are assumed.

We focus our attention on the critical equation

H(x,Du) = c in M , (14)

where, we recall, the constant c is the constant defined through (6).
A subsolution, supersolution or solution of (14) will be termed critical in the sequel.
To ease notations, we will moreover write S and σ in place of Sc and σc, respectively.
Finally, by possibly considering H − c instead of H, we will assume c = 0.

We define the Aubry set A as

A := {y ∈M : S(y, ·) is a critical solution }.
In the sequel, we will sometimes write Sy to denote the function S(y, ·).

We will assume that the following holds
10



(A) A is nonempty.

This condition is always fulfilled when M is compact, but it may be false in the non
compact case.

We define the set E of equilibrium points as

E := {y ∈M : min
p
H(y, p) = 0 }.

This set may be empty, but if not it is a closed subset of the Aubry set A.
Next, we define a family of curves, called static. In the next Section we will

investigate the behavior of the critical subsolutions on such curves.

Definition 3.1. A curve γ defined on an interval J is called static if

S
(
γ(t1), γ(t2)

)
=

∫ t2

t1

L(γ, γ̇) ds = −S
(
γ(t2), γ(t1)

)
for every t1, t2 in J with t2 > t1.

We first show that static curves are always contained in the Aubry set.

Lemma 3.2. Let γ be a static curve defined on some interval J . Then γ is contained
in the Aubry set and satisfies

L
(
γ(s), γ̇(s)

)
= σ

(
γ(s), γ̇(s)

)
for a.e. s ∈ J. (15)

Proof. The definition of the semidistance S and inequality (10) with a = c readily
implies that γ enjoys (15).

Let us prove that γ is contained in the Aubry set. If γ is a steady curve, i.e.
γ(t) = y for every t ∈ J , then for (a, b) ⊂ J we get

(b− a)L(y, 0) =

∫ b

a
L(γ, γ̇) ds = S(y, y) = 0,

yielding that y ∈ E ⊆ A for L(y, 0) = −minRN H(y, ·).
Let us then assume that γ is nonsteady. We want to prove that, for every fixed

t ∈ J , the point y := γ(t) belongs to A, i.e. that S(y, ·) is a critical solution on
M . Of course, we just need to check that S(y, ·) is a supersolution of (14) at y, by
Proposition 2.3. To this purpose, choose a point z ∈ γ(J) with z 6= y. Since γ is
static, we have

S(y, z) + S(z, y) = 0.

This and the triangular inequality imply that the function w(·) = S(y, z) + S(z, ·)
touches S(y, ·) from above at y, hence D−Sy(y) ⊆ D−w(y). Since w is a viscosity
solution in M \ {z} we derive

H(y, p) > 0 for every p ∈ D−Sy(y),

that is, Sy is a supersolution of (14) at y and so a critical solution on M . �

The next result states that static curves fully cover the Aubry set.

Theorem 3.3. Let y ∈ A, then there exists a static curve η defined on R with
η(0) = y.

11



This result is proved in [23] by exploiting some ideas contained in [33]. A more
concise and self–contained proof of this fact is proposed in the Appendix A.

We denote by K the family of all static curves defined on R, and by K(y) the
subset of K made up by those equaling y at t = 0.

The Peierls barrier is the function h :M ×M → R defined by

h(x, y) = lim inf
t→+∞

ht(x, y). (16)

The following holds:

Theorem 3.4. A = {y ∈M : h(y, y) = 0 }.

Proof. Take y ∈ M such that h(y, y) = 0 and set u(·) := S(y, ·). We want to
prove that u is a critical solution in M ; equivalently, by Proposition 2.3, that u is a
critical supersolution at y. To this purpose, we first note that, since u is a critical
subsolution on M , the functions S(t)u are increasing in t, see Proposition 2.10, and
equi–Lipschitz in x for u is Lipschitz continuous, see Proposition 2.8. Let us set

v(x) = sup
t>0

(
S(t)u

)
(x) = lim

t→+∞

(
S(t)u

)
(x) for every x ∈M.

According to what was remarked above, v > u. Furthermore, v is Lipschitz contin-
uous provided it is finite everywhere, or, equivalently, at some point. We claim that
v(y) = u(y).

Indeed, let (tn)n∈N be a diverging sequence such that limn∈N h
tn(y, y) = h(y, y) =

0. By definition of S(t) we have(
S(tn)u

)
(y) 6 u(y) + htn(y, y) for each n ∈ N,

hence
v(y) = lim

n→+∞

(
S(tn)u

)
(y) 6 lim

n→+∞

(
u(y) + htn(y, y)

)
= u(y),

as it was claimed. This also implies that v touches u from above at y, yielding
D−u(y) ⊆ D−v(y). Furthermore, v is a critical solution since it is a fixed point of
the (continuous) semigroup S(t), see Proposition 2.10, in particular it is a critical
supersolution at y. Collecting the information, we conclude that

H(y, p) > 0 for every p ∈ D−u(y),

finally showing that u is a critical supersolution at y.

Let us prove the opposite inclusion. Take y ∈ A. To prove that h(y, y) = 0, it
will be enough, in view of Lemma 2.7, to find a diverging sequence (tn)n∈N such that
lim infn∈N h

tn(y, y) = 0.
To this purpose, let η ∈ K(y). Then

−S
(
η(n), y

)
=

∫ n

0
L(η, η̇) ds = S

(
y, η(n)

)
for each n ∈ N. By Lemma 2.7 there exist sn > 0 such that

S
(
η(n), y

)
6 hsn

(
η(n), y

)
< S

(
η(n), y

)
+

1

n
.

By definition of ht we get

hn+sn(y, y) 6 hn
(
y, η(n)

)
+ hsn

(
η(n), y

)
< S

(
y, η(n)

)
+ S

(
η(n), y

)
+

1

n
=

1

n
,

and the assertion is proved by taking tn := n+ sn. �
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Here and in the remainder of the paper, by Ȟ we will denote the Hamiltonian
defined as

Ȟ(x, p) := H(x,−p) for every (x, p) ∈M × RN .

The following holds:

Proposition 3.5. The Hamiltonians H and Ȟ have the same critical value and the
same Aubry set.

Proof. The fact thatH and Ȟ have the same critical value immediately follows from
the definition in view of Remark 2.2. Furthermore, the Peierls barrier ȟ associated
with Ȟ enjoys ȟ(x, y) = h(y, x) for every x, y ∈M . Hence H and Ȟ have the same
Aubry set in view of Theorem 3.4. �

We end this section by proving some important properties of the Peierls barrier.

Proposition 3.6. Under assumption (A) the following properties hold:

(i) h is finite valued and Lipschitz continuous.

(ii) If v is a critical subsolution, then h(y, x) > v(x)−v(y) for every x, y ∈M .

(iii) For every x, y, z ∈M and t > 0

h(y, x) 6 h(y, z) + ht(z, x) and h(y, x) 6 ht(y, z) + h(z, x).

In particular, h(y, x) 6 h(y, z) + h(z, x).

(iv) h(x, y) = S(x, y) if either x or y belong to A.

(v) h(y, ·) is a critical solution for every fixed y ∈M .

Furthermore, when M is compact and condition (H2)′ is assumed, we have

ht ⇒
t→+∞

h in M ×M .

Proof. (i) Let K1 be the constant given by Proposition 2.6 with r = 1. It is easily
seen that for every bounded open set V ⊂ M ×M there exists tV such that the
functions {ht : t > tV } are K1–Lipschitz continuous in V . Moreover we already
know, by Theorem 3.4, that h(y, y) = 0 for every y ∈ A. This implies that h is finite
valued and Lipschitz–continuous on the whole M ×M .

Items (ii) and (iii) follow directly from the definition of h and from assertion (ii)
in Proposition 2.6.

(iv) Let us assume, for definiteness, that y ∈ A. Let (tn)n∈N be a diverging
sequence such that 0 6 htn(y, y) < 1/n. Then for every t > 0 and n ∈ N

S(x, y) 6 ht+tn(x, y) 6 ht(x, y) + htn(y, y) 6 ht(x, y) +
1

n
,

yielding

S(x, y) 6 lim inf
t→+∞

ht(x, y) 6 inf
t>0

ht(x, y) = S(x, y)

in view of Lemma 2.7.
(v) By Proposition 2.10–(ii), it suffices to prove that S(t)hy = hy for every fixed

t > 0 and y ∈ M , where hy denotes the function h(y, ·). First notice that, by (iii)
and Lemma 2.7,

hy(x)− hy(z) 6 inf
t>0

ht(z, x) = S(z, x),

that is, hy is a critical subsolution. By Proposition 2.10–(i), that implies S(t)hy >
hy.

13



Let us prove the reverse inequality. For any fixed x ∈M , pick a diverging sequence
(tn)n∈N with tn > t for every n ∈ N and a family of curves γn : [−tn, 0] → M

connecting y to x such that htn(y, x) =
∫ 0
−tn

L(γn, γ̇n) ds and

lim
n→+∞

∫ 0

−tn

L(γn, γ̇n) ds = h(y, x). (17)

The functions htn are equi–Lipschitz, see Proposition 2.6. This yields, by Proposition
2.5, that the curves γn are equi–Lipschitz. Up to extraction of a subsequence, we
can then assume that there is a curve γ : [−t, 0] →M such that

γn ⇒ γ in [−t, 0] and γ̇n ⇀ γ̇ in L1
(
[−t, 0];M

)
.

Set z = γ(−t). By a classical semi–continuity result of the Calculus of Variations,
see Theorem 3.6 in [11], we have

hy(x) = lim inf
n→+∞

∫ 0

−tn

L(γn, γ̇n) ds

> lim inf
n→+∞

∫ −t

−tn

L(γn, γ̇n) ds + lim inf
n→+∞

∫ 0

−t
L(γn, γ̇n) ds

> h(y, z) +

∫ 0

−t
L(γ, γ̇) ds >

(
S(t)hy

)
(x).

Last, let us show that ht uniformly converges to h for t → +∞ when M is com-
pact and condition (H2)′ is assumed. Let y ∈M be fixed. Then the convergence of
ht(y, ·) to h(y, ·) is actually uniform, in view of the asymptotic convergence results
proved in [7, 23] and of the equality ht(y, ·) = S(t − 1)u with u = h1(y, ·). The
assertion follows from the fact that y was arbitrarily chosen in M and the functions
{ht : t > 1} are equi–Lipschitz in M ×M in view of Proposition 2.6. �

4. Differentiability properties of critical subsolutions

The purpose of this Section is to prove some differentiability properties of critical
subsolutions on the Aubry set. These results will be exploited in the subsequent
section to obtain some information for commuting Hamiltonians.

Let us consider, for any fixed t > 0, the locally Lipschitz function defined on M
as (

S(t)u
)
(·) = inf

z∈M

(
u(z) + ht(z, ·)

)
,

where u is an admissible initial datum. If the latter is additionally assumed contin-
uous, then the infimum is actually a minimum, and, as previously noticed, for every
fixed y ∈M there exists a Lipschitz curve γ : [−t, 0] →M with γ(0) = y such that(

S(t)u
)
(y) = u

(
γ(−t)

)
+

∫ 0

−t
L(γ, γ̇) ds.

As first step in our analysis, we prove some differentiability properties of S(t)u at y
and of u at γ(−t) in terms of γ, thus generalizing to this setting some known results
in the regular case, see [30].

We start by dealing with the case when the Hamiltonian is independent of x. We
need a lemma first.
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Lemma 4.1. Let H be a strictly convex Hamiltonian that does not depend on x.
Then any (Lipschitz) Lagrangian minimizer γ : [−t, 0] →M with t > 0 satisfies

DqL
(
γ̇(s)

)
= DqL

(γ(0)− γ(−t)
t

)
for a.e. s ∈ [−t, 0], (18)

with equality holding for every s if γ is of class C1.

Remark 4.2. We remark for later use that, since equality (18) holds for almost every
s ∈ [−t, 0], then it holds in particular for every s that is both a differentiability point
of γ and a Lebesgue point of DqL

(
γ̇(·)

)
in [−t, 0].

Proof. Let us set

v :=
γ(0)− γ(−t)

t
and η(s) = γ(0) + sv.

It is easy to see, by the convexity of L and Jensen’s inequality, that∫ 0

−t
L(γ̇) ds > t L(v) =

∫ 0

−t
L(η̇) ds,

while the converse inequality is true since γ is a Lagrangian minimizer. By exploiting
the convexity of L again, we get

L(q) > L(v) + 〈DqL(v), q − v〉 for every q ∈ RN . (19)

On the other hand,∫ 0

−t
L
(
γ̇(s)

)
ds = t L(v) =

∫ 0

−t

(
L(v) + 〈DqL(v), γ̇(s)− v〉

)
ds,

meaning that we have an equality in (19) at γ̇(s) for a.e. s ∈ [−t, 0]. Equality (18)
follows by differentiability of L. �

Proposition 4.3. Let H be a strictly convex Hamiltonian that does not depend on
x. Let u be an admissible initial datum and γ : [−t, 0] → M a Lipschitz continuous
curve such that γ(0) = y and(

S(t)u
)
(y) = u

(
γ(−t)

)
+

∫ 0

−t
L
(
γ̇(s)

)
ds

for some t > 0 and y ∈M . Then

DqL
(γ(0)− γ(−t)

t

)
∈ D+

(
S(t)u

)
(y) and DqL

(γ(0)− γ(−t)
t

)
∈ D−u

(
γ(−t)

)
.

Proof. To ease notations, we set

v :=
γ(0)− γ(−t)

t

and denote by z the point γ(−t). Let us first prove that DqL (v) ∈ D+
(
S(t)u

)
(y).

According to the proof of Lemma 4.1, it is enough to prove the assertion when γ is
the segment joining z to y. For every x ∈ M , we define a curve γx : [−t, 0] → M
joining z to x by setting γx(s) = γ(s) + (s+ t)(x− y)/t. Let

ϕ(x) := u(z) +

∫ 0

−t
L(γ̇x) ds, x ∈M .

15



Then
(
S(t)u

)
(·) 6 ϕ(·) with equality holding at y. It is easy to see, using the local

Lipschitz character of L, that ϕ is locally Lipschitz continuous. We want to show that
DqL(v) ∈ D+ϕ(y), which clearly implies the assertion as D+ϕ(y) ⊆ D+

(
S(t)u

)
(y).

By the standard result of differentiation under the integral sign, the function ϕ is
in fact C1 and we may compute its differential at y by the following formula:

Dϕ(y) =
(∫ 0

−t

∂

∂x
L(γ̇x) ds

)
|
x=y

= DqL (v) .

Let us now prove that DqL(v) ∈ D−u(z).

For every x ∈ M , we define a curve ηx : [−t, 0] → M joining x to y by setting
ηx(s) := γ(s) + s (z − x)/t. Let

ψ(x) := −
∫ 0

−t
L(η̇x) ds+

(
S(t)u

)
(y), x ∈M .

Then ψ(·) 6 u(·) with equality holding at z. We want to show that DqL(v) ∈
D−ψ(z), which is enough to conclude as D−ψ(z) ⊆ D−u(z). Arguing as above, we
actually see that ψ is in fact C1 and

Dψ(z) = DqL (v) .

This concludes the proof. �

We proceed to show a more general version of the previous result.

Proposition 4.4. Let H be a strictly convex Hamiltonian and u an admissible initial
datum. Let γ : [−t, 0] →M be a Lipschitz continuous curve with γ(0) = y such that(

S(t)u
)
(y) = u

(
γ(−t)

)
+

∫ 0

−t
L
(
γ(s), γ̇(s)

)
ds

for some t > 0 and y ∈M . The following holds:

(i) if 0 is a differentiability point for γ and a Lebesgue point for DqL
(
γ(·), γ̇(·)

)
,

then DqL
(
γ(0), γ̇(0)

)
∈ D+

(
S(t)u

)
(y).

(ii) Assume u ∈ Lip(M). If −t is a differentiability point for γ and a Lebesgue
point for DqL

(
γ(·), γ̇(·)

)
, then DqL

(
γ(−t), γ̇(−t)

)
∈ D−u

(
γ(−t)

)
.

Proof. Let us choose an R > 1 sufficiently large in such a way that ‖γ̇‖∞ 6 R and
γ
(
[−t, 0]

)
⊆ BR. To ease notations, in the sequel we will call z the point γ(−t).

Let ω : R+ → R+ be a modulus such that

|L(x, q)− L(y, q)| 6 ω(|x− y|)2 for every x, y ∈ B2R and q ∈ B2R.

If ω(h) = O(h) then L(x, q) = L(q) on B2R × B2R, and the assertion follows from
Proposition 4.3 when γ is the segment joining z to y, and from Remark 4.2 when γ
is any Lipschitz continuous minimizer.

Let us then assume ω(h)/h is unbounded. Without loss of generality, we may
require ω to be concave, in particular

ω(h)

h
→ +∞ as h→ 0+.

Let δ : (0,+∞) → (0,+∞) be such that

δ(h)ω(h) = h for every h > 0,
16



i.e.

δ(h) :=
h

ω(h)
for every h > 0.

Since S(t)u is Lipschitz in M , to prove assertion (i) it is in fact enough to show
that the following inequality holds for every ξ ∈ ∂BR:(
S(t)u

)
(y+ hξ)−

(
S(t)u

)
(y) 6 h

〈
DqL

(
γ(0), γ̇(0)

)
, ξ
〉
+ o(h) for h→ 0+. (20)

To this purpose, for every h ∈ [0, 1] and for every ξ ∈ ∂B1 we define a Lipschitz
curve γhξ : [−t, 0] →M joining z to y + hξ by setting

γhξ(s) :=

{
γ(s) if s ∈ [−t,−δ(h)]
γ(s) + ω(h)

(
δ(h) + s

)
ξ if s ∈ [−δ(h), 0].

By definition of
(
S(t)u

)
, we get(

S(t)u
)
(y + hξ)−

(
S(t)u

)
(y) 6

∫ 0

−δ(h)

(
L(γhξ, γ̇hξ)− L(γ, γ̇)

)
dt (21)

=

∫ 0

−δ(h)

(
L(γhξ, γ̇hξ)− L(γ, γ̇hξ)

)
dt︸ ︷︷ ︸

A

+

∫ 0

−δ(h)

(
L(γ, γ̇hξ)− L(γ, γ̇)

)
dt︸ ︷︷ ︸

B

.

For h small enough we have

|γhξ(t)− γ(t)| 6 h < R for every t ∈ [−δ(h), 0],
|γ̇hξ(t)| = |γ̇(t) + ω(h)ξ| < 2R for a.e. t ∈ [−δ(h), 0],

hence

|L(γhξ, γ̇hξ)− L(γ, γ̇hξ)| 6 ω(h)2 for a.e. t ∈ [−δ(h), 0].
This yields

A 6 δ(h)ω(h)2 = hω(h). (22)

To evaluate B, we use the Taylor expansion of L(γ, γ̇hξ) to get

L
(
γ, γ̇ + ω(h)ξ

)
6 L(γ, γ̇) + ω(h) 〈DqL(γ, γ̇), ξ〉+ ω(h)Θ

(
ω(h)

)
for a.e. t ∈ [−δ(h), 0], where Θ is a continuity modulus for DqL on B2R × B2R.
From this we obtain

B 6 ω(h)

∫ 0

−δ(h)
〈DqL(γ, γ̇), ξ〉dt+ δ(h)ω(h)Θ

(
ω(h)

)
6 h

〈
DqL

(
γ(0), γ̇(0)

)
, ξ
〉
+ h

∫
−

0

−δ(h)

∣∣DqL(γ, γ̇)−DqL
(
γ(0), γ̇(0)

)∣∣dt+ hΘ
(
ω(h)

)
,

i.e.

B 6 h
〈
DqL

(
γ(0), γ̇(0)

)
, ξ
〉
+ o(h) (23)

by recalling that t = 0 is a Lebesgue point for DqL
(
γ(·), γ̇(·)

)
. Relations (22) and

(23) together with (21) finally give (20).

To prove (ii), it suffices to show, by the Lipschitz character of u, that for every
fixed ξ ∈ ∂B1

u(y + hξ)− u(y) > h
〈
DqL

(
γ(0), γ̇(0)

)
, ξ
〉
+ o(h) for h→ 0+. (24)
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To this purpose, for every h ∈ [0, 1] and for every ξ ∈ ∂B1 we define a Lipschitz
curve ηhξ : [−t, 0] →M joining z + hξ to y by setting

ηhξ(s) :=

{
γ(s) + ω(h)

(
δ(h)− t− s

)
ξ if s ∈ [−t, −t+ δ(h)]

γ(s) if s ∈ [−t+ δ(h), 0].

By definition of
(
S(t)u

)
(y), we get

u(z + hξ)− u(z) >
∫ −t+δ(h)

−t

(
L(γ, γ̇)− L(ηhξ, η̇hξ)

)
dt

=

∫ −t+δ(h)

−t

(
L(γ, γ̇)− L(γ, η̇hξ)

)
dt︸ ︷︷ ︸

A′

+

∫ 0

−δ(h)

(
L(γ, η̇hξ)− L(ηhξ, η̇hξ)

)
dt︸ ︷︷ ︸

B′

.

To evaluate B′, we argue as above to get B′ > −hω(h). To evaluate A′, we use the
Taylor expansion of L(γ, η̇hξ) to get

L
(
γ, γ̇ − ω(h)ξ

)
6 L(γ, γ̇)− ω(h) 〈DqL(γ, γ̇), ξ〉+ ω(h)Θ

(
ω(h)

)
for a.e. t ∈ [−δ(h), 0]. Arguing as above we finally get

A′ > h
〈
DqL

(
γ(0), γ̇(0)

)
, ξ
〉
+ o(h),

and (24) follows. �

We now exploit the information gathered to deduce some differentiability proper-
ties of critical subsolutions. In what follows, we stress the fact that we have assumed
the critical value c to be equal to 0, which is not restrictive up to the addition of a
constant to the Hamiltonian.

We start by recalling some results proved in previous works. We underline that
the compactness of M , which is assumed in these papers, does not actually play any
role for the results we are about to state. The first one has been proved in [33].

Proposition 4.5. Let H be a convex Hamiltonian. For every y ∈ M \ A the set
Z0(y) has nonempty interior and

D−Sy(y) = Z0(y).

In particular, Sy is not differentiable at y.

Therefore, critical subsolutions are in general not differentiable outside the Aubry
set. The situation is quite different on it. A fine result proved in [33] shows that,
when H is locally Lipschitz–continuous in x and condition (H2)′ is assumed, all
critical subsolutions are (strictly) differentiable at any point of the Aubry set, and
have the same gradient. These results are based upon some semiconcavity estimates
which, in turn, depend essentially on the Lipschitz character of the Hamiltonian in
x. Something analogous still survives in the case of a purely continuous and convex
Hamiltonian by looking at the behavior of the critical subsolutions on static curves,
see [23].

Theorem 4.6. Let H be a convex Hamiltonian and γ ∈ K. Then there exists
a negligible set Σ ⊂ R such that, for any critical subsolution u, the map u◦γ is
differentiable on R \ Σ and satisfies

d

dt
(u◦ γ) (t0) = σ

(
γ(t0), γ̇(t0)

)
whenever t0 ∈ R \ Σ. (25)
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Here we want to strengthen Theorem 4.6 by proving that, when condition (H2)′ is
assumed, any critical subsolution is actually differentiable at H1–a.e. point of γ(R).
We give a definition first.

Definition 4.7. Let γ be an absolutely continuous curve defined on R. We will
denote by Σγ the negligible subset of R such that R \ Σγ is the following set:{
t ∈ R : t is a differentiability point of γ and a Lebesgue point of DqL

(
γ(·), γ̇(·)

) }
.

Theorem 4.8. Let H be a strictly convex Hamiltonian. Then, for any γ ∈ K, every
critical subsolution u is differentiable at γ(t0) for any t0 ∈ R \ Σγ, and we have

Du
(
γ(t0)

)
= DqL

(
γ(t0), γ̇(t0)

)
for every t0 ∈ R \ Σγ. (26)

Proof. Fix t0 ∈ R \ Σ. As u is a critical subsolution, it is easily seen that(
S(t0)u

)
(x) > u(x) for every x ∈M,

with equality holding at γ(t0) since(
S(t0)u

)(
γ(t0)

)
6 u

(
γ(0)

)
+

∫ t0

0
L(γ, γ̇) ds = u

(
γ(t0)

)
.

By this and by Proposition 4.4 we obtain

DqL
(
γ(t0), γ̇(t0)

)
∈ D+

(
S(t0)u

)(
γ(t0)

)
⊆ D+u

(
γ(t0)

)
.

Analogously (
S(t0 + 1)u

)(
γ(t0 + 1)

)
= u

(
γ(t0)

)
+

∫ t0+1

t0

L(γ, γ̇) ds,

and by Proposition 4.4 we have

DqL
(
γ(t0), γ̇(t0)

)
∈ D−u

(
γ(t0)

)
.

Then u is differentiable at γ(t0) and Du
(
γ(t0)

)
= DqL

(
γ(t0), γ̇(t0)

)
, as it was meant

to be shown. �

Let us denote by SS the set of critical subsolutions for H, i.e. the subsolutions
of equation (14). We define the set

D :=
⋂

v∈SS

{y ∈M : v and Sy are differentiable at y, Dv(y) = DSy(y) } , (27)

where Sy stands for the function S(y, ·). The following holds:

Proposition 4.9. Let H be a strictly convex Hamiltonian. Then D is a dense subset
of A. When M is compact, we have in particular that D is a uniqueness set for the
critical equation, i.e. if two critical solutions agree on D, then they agree on the
whole M .

Proof. It is clear by Proposition 4.5 that D is contained in A. Pick y ∈ A and
choose a static curve γ ∈ K passing through y. According to Theorem 4.8, there
exists a sequence of points yn ∈ γ(R) ∩ D converging to y. This proves that D is
dense in A.

The fact that D is a uniqueness set is now a direct consequence of the fact that
A is a uniqueness set, see [33]. �
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Remark 4.10. We underline for later use that, by definition of D, any two critical
subsolutions u and v are differentiable on D and have same gradient.

5. Commuting Hamiltonians and critical equations

The purpose of this section is to explore the relation between the critical equations
associated with a pair of commuting Hamiltonians. We open by making precise what
we mean by commuting when referred to a pair of convex Hamiltonians that are just
continuous. After deriving a result that will be needed later, we restrict to the
case when M is compact and we look into the corresponding critical equations. We
discover in the end that the commutation property entails very strong informations.

Throughout this section H and G will denote a pair of Hamiltonians satisfying
assumptions (H1), (H2) and (H3). The following notations will be assumed

• LH and LG are the Lagrangians associated through the Fenchel transform
with H and G, respectively.

• SH and SG denote the Lax–Oleinik semigroups associated with H and G,
respectively.

• htH and htG will denote, for every t > 0, the functions associated via (9) with
H and G, respectively.

• hH and hG are the Peierls barriers associated with H and G, respectively.

Definition 5.1. We will say that two convex Hamiltonians H and G commute if

SG(s)
(
SH(t)u

)
(x) = SH(t)

(
SG(s)u

)
(x) for every s, t > 0 and x ∈M , (28)

and for every function admissible initial datum u :M → R ∪ {+∞}.

Remark 5.2. Note that a Hamiltonian function H always commutes with itself.
Also note that, when M is compact, any continuous function is an admissible initial
datum.

We emphasize that the notion of commutation given in Definition 5.1 is nothing
but a rephrasing of the fact that the the multi–time Hamilton–Jacobi equation (1)
admits a solution for every Lipschitz continuous initial datum.

A very natural question is that of finding direct and easy–to–check conditions
on the Hamiltonians that ensure the commutation property. As explained in the
introduction, the problem has been already considered in literature. Here we recall
one of the main results proved in [8], that can be stated in our setting as follows:

Theorem 5.3. Let H and G be a pair of convex Hamiltonians, locally Lipschitz in
x, such that

{G,H} := 〈DxG, DpH〉 − 〈DxH, DpG〉 = 0 for a.e. (x, p) ∈M × RN .

If either H or G is of class C1 on M × RN , then (28) holds for any u ∈ Lip(M).

Remark 5.4. The definition of commutation given above via (28) is actually equiv-
alent to the cancellation of the Poisson bracket, {·, ·}, when the Hamiltonians are
additionally assumed of class C1. The proof of this fact is sketched in the introduc-
tion of [8], and is detailed in Appendix C in the case of Tonelli Hamiltonians. This
equivalence will be used to establish Theorem 5.17, see the proof of Lemma 5.18.
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Remark 5.5. There is another procedure to construct commuting continuous Hamil-
tonians which already appeared in the literature. In their fundamental work, Cardin
and Viterbo [16] proved that if two sequences of smooth Hamiltonians (Hn) and (Gn)
verify Hn ⇒ H, Gn ⇒ G and {Hn, Gn} ⇒ 0, then H and G admit variational so-
lutions to the multi–time Hamilton–Jacobi equation. Under these hypotheses, H
and G are termed C0–commuting. In particular, if H and G are smooth, their Pois-
son bracket vanishes. This is what they call C0–rigidity of the Poisson bracket, see
[16, 28] and references therein for more details.

In the case of convex Hamiltonians, variational solutions coincide with viscosity
solutions. This implies that a pair of Hamiltonians satisfying conditions (H1)–(H3)
that C0–commutes, also commute in the sense of Definition 5.1. The converse,
however, is not clear.

It would be interesting to understand if the null Poisson bracket condition can
be somehow relaxed to less regular Hamiltonians. For instance, one may wonder
if the commutation condition (28) holds for pairs of locally Lipschitz Hamiltonians
having Poisson bracket almost everywhere zero. We will describe in Remark 5.11
how a non–trivial class of locally Lipschitz Hamiltonians enjoying this property can
be provided.

We prove a result that will be needed in the sequel.

Proposition 5.6. Assume H1 and H2 are two commuting convex Hamiltonians and
set

G(x, p) = max{H1(x, p), H2(x, p)} for every (x, p) ∈M × RN .

Then G commutes both with H1 and H2.

We need three auxiliary results first.

Proposition 5.7. A pair of continuous convex Hamiltonians H and G commutes
if and only if

min
z∈M

(
htH(y, z) + hsG(z, x)

)
= min

z∈M

(
hsG(y, z) + htH(z, x)

)
(29)

for every x, y ∈M and t, s > 0.

Remark 5.8. Formula (29) holds with minima even when M is non compact. In-
deed,

τ α∗

( |z − ζ|
τ

)
6 hτH(z, ζ) 6 τ β∗

( |z − ζ|
τ

)
,

and the same is valid for hτG(z, ζ). This readily implies that the infima in (29) are
finite and that every minimizing sequence must stay in a compact subset of M .

Proof. Let u :M → R∪{+∞} be an admissible initial datum. Using the definitions
and the commutation of two nested infima we get, for every x ∈M and t, s > 0

SG(s)
(
SH(t)u

)
(x) = inf

z∈M
inf
ζ∈M

(
htH(ζ, z) + hsG(z, x) + u(ζ)

)
= inf

ζ∈M

(
inf
z∈M

(
htH(ζ, z) + hsG(z, x)

)
+ u(ζ)

)
, (30)

SH(t)
(
SG(s)u

)
(x) = inf

z∈M
inf
ζ∈M

(
hsG(ζ, z) + htH(z, x) + u(ζ)

)
= inf

ζ∈M

(
inf
z∈M

(
hsG(ζ, z) + htH(z, x)

)
+ u(ζ)

)
. (31)

21



Now, if H and G commute, then (29) follows by plugging in the above equalities as
u the function equal to 0 at y and +∞ elsewhere, for every fixed y ∈M . Conversely,
if (29) holds true, then (30) and (31) are equal for any admissible u, so H and G
commute. �

We set L(x, q) := min{LH1(x, q), LH2(x, q)} for all (x, q) ∈ M × RN . To ease
notations, in the sequel we will write Li, h

t
i in place of LHi , h

t
Hi
. We recall that L∗

denotes the Fenchel transform of L, defined according to (3).

Lemma 5.9. For every x, y ∈M and t > 0

htG(x, y) = inf

{∫ t

0
L(γ, γ̇) ds : γ ∈ C1([0, t];M), γ(0) = x, γ(t) = y

}
. (32)

Proof. By classical results of Calculus of Variations, see for instance [11], we know
that the infimum appearing in (32) agrees with

inf

{∫ t

0
L∗∗(γ, γ̇) ds : γ ∈W 1,1([0, t];M), γ(0) = x, γ(t) = y

}
,

so to conclude we only need to prove that L∗∗ = LG. From the inequalities G > Hi

we derive LG 6 Li for i ∈ {1, 2}, so LG 6 L. By duality

G = L∗
G > L∗ > L∗

i = H i, i ∈ {1, 2},

so G > L∗ > max{H1, H2} = G. Hence G = L∗ and consequently LG = L∗∗. �

Lemma 5.10. For every x, y ∈M and t > 0

htG(x, y) = inf
{ n∑

i=1

htiσ(i)(xi−1, xi) : x0 = x, xn = y,
∑
i

ti = t, σ ∈ {1, 2}n, n ∈ N
}
.

Proof. The fact that the right–hand side term of the above equality is non smaller
than htG(x, y) is an immediate consequence of the inequalities Li > LG for i ∈ {1, 2}.
To prove the opposite inequality, in view of Lemma 5.9, it suffices to show that for
every ε > 0 and for every curve γ : [0, t] →M of class C1 joining x to y we have

ε+

∫ t

0
L(γ, γ̇) ds >

n∑
i=1

∫ ti

ti−1

Lσ(i)(γ, γ̇) ds

for a suitable choice of n ∈ N, {ti : 0 6 i 6 n } and σ ∈ {1, 2}n.
To this purpose, choose a sufficiently large positive number R such that ‖γ̇‖∞ < R

and γ([0, t]) ⊆ BR. Denote by ω a continuity modulus for L1 and L2 in BR × BR.
Let r be an arbitrarily chosen positive number and choose n ∈ N large enough in
such a way that

|γ(s)− γ(τ)|+ |γ̇(s)− γ̇(τ)| < r for any s, τ ∈ [0, t] with |s− τ | < t
n .

Let ti := i t/n for 0 6 i 6 n and define σ ∈ {1, 2}n in such a way that

Lσ(i)

(
γ(ti), γ̇(ti)

)
= L

(
γ(ti), γ̇(ti)

)
for every 1 6 i 6 n.

For every s ∈ [ti−1, ti] we get∣∣Lσ(i)

(
γ(s), γ̇(s)

)
− L

(
γ(s), γ̇(s)

)∣∣ 6 ∣∣Lσ(i)

(
γ(s), γ̇(s)

)
− Lσ(i)

(
γ(ti), γ̇(ti)

)∣∣
+
∣∣L(γ(ti), γ̇(ti))− L

(
γ(s), γ̇(s)

)∣∣ 6 2ω(r).
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Then
n∑

i=1

∫ ti

ti−1

Lσ(i)(γ, γ̇) ds 6
∫ t

0
L(γ, γ̇) ds+ 2t ω(r),

and the assertion follows by choosing r small enough. �

Proof of Proposition 5.6. Let us prove that G commutes with Hi, where i has
been fixed, say i = 1 for definitiveness. In view of Proposition 5.7, we need to show
that (29) holds with H1 and G in place of H and G, respectively. Let us fix t, s > 0
and x, y ∈M . Let us show that

min
z∈M

(
htG(x, z) + hsH1

(z, y)
)
> min

z∈M

(
hsH1

(x, z) + htG(z, y)
)
. (33)

In view of Lemma 5.10, it will be enough to prove that, for every n ∈ N, the following
inequality holds:

n∑
i=1

htiσ(i)(xi−1, xi) + hsH1
(xn, y) > min

z∈M

(
hsH1

(x, z) + htG(z, y)
)

(34)

for every σ ∈ {1, 2}n, {xi : 0 6 i 6 n } with x0 = x, {ti : 0 6 i 6 n } with
∑

i ti = t.
The proof will be by induction on n.

For n = 1 inequality (34) holds true for

htσ(1)(x, x1) + hsH1
(x1, y) > min

z∈M

(
htσ(1)(x, z) + hsH1

(z, y)
)
,

and we conclude since Hσ(1) and H1 commute and htσ(1) > htG, for every σ(1) ∈
{1, 2}.

Let us now assume that (34) holds for n and let us show it holds for n + 1. Let
σ ∈ {1, 2}n+1, {xi : 0 6 i 6 n+1 } with x0 = x, {ti : 0 6 i 6 n+1 } with

∑
i ti = t.

We have
n∑

i=1

htiσ(i)(xi−1, xi) + h
tn+1

σ(n+1)(xn+1, y) + hsH1
(xn, y)

>
n∑

i=1

htiσ(i)(xi−1, xi) + min
z∈M

(
h
tn+1

σ(n+1)(xn, z) + hsH1
(z, y)

)
=

n∑
i=1

htiσ(i)(xi−1, xi) + min
z∈M

(
hsH1

(xn, z) + h
tn+1

σ(n+1)(z, y)
)
,

where we used the fact that H1 and Hσ(n+1) commute. Let us denote by z a point
realizing the minimum in the last row of the above expression. By making use of
the inductive hypothesis we get

n∑
i=1

htiσ(i)(xi−1, xi) + hsH1
(xn, z) + h

tn+1

σ(n+1)(z, y)

> min
ζ∈M

(
hsH1

(x, ζ) + h
t−tn+1

G (ζ, z)
)
+ h

tn+1

σ(n+1)(z, y)

= min
ζ∈M

(
hsH1

(x, ζ) + h
t−tn+1

G (ζ, z) + h
tn+1

σ(n+1)(z, y)
)

> min
ζ∈M

(
hsH1

(x, ζ) + htG(ζ, y)
)
.
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The opposite inequality in (33) comes in an analogous way. The proof is complete.
�

Remark 5.11. By suitably modifying the above arguments, we can prove the fol-
lowing more general version of Proposition 5.6: letH1 andH2 be a pair of commuting
continuous Hamiltonians and let f : R2 → R be a convex and increasing function.
Here increasing means that

f(a1, a2) ≤ f(b1, b2) if ai ≤ bi for i = 1, 2.

ThenH1 andH2 commute with f(H1,H2). The proof of this fact requires some extra
work that is beyond the purpose of the current paper. Here we just want to explain
how this procedure can be used to provide new non–trivial examples of commuting
continuous Hamiltonians. Let H1 be locally Lipschitz and H2 of class C1 such that
their Poisson bracket is almost everywhere zero. Then we know from [8] that H1 and
H2 commute. According to what is stated above, H1 and G := f(H1,H2) commute.

Remark 5.12. The result afore mentioned can be rephrased in the framework of
C0–commuting Hamiltonians as follows: if H1 and H2 is a pair of C0–commuting
Hamiltonian and f : R2 → R is a continuous function, then H1 and f(H1,H2)
C0–commute. The proof of this fact easily follows by applying the definition of
C0–commutation: a direct computation proves the statement when f is of class
C1, while the general case follows by approximating f with a sequence of regular
functions.

We know restrict our attention to the case M = TN and we investigate on the
relation between the associated critical equations. We will denote by cH and cG the
corresponding critical values of H and G, respectively. Up to adding a constant to
the Hamiltonians, we will assume that cH = cG = 0. Note that this does not affect
the commutation property. The symbols SH , SG and AH , AG refer to the critical
semidistance and the Aubry set associated with H and G, respectively.

We will also denote by SSH and SH the set of subsolutions and solutions of the
critical equations H = 0, respectively, and by SSG and SG the analogous objects
for the critical equation G = 0.

We start with two results which exploit the fact that H and G commute. Actu-
ally, the first result is a direct consequence of the monotonicity of the semigroups
and does not require M to be compact. The second one uses the fact that the
Lax–Oleinik semigroups are weakly contracting for the infinity norm and the proof
is done applying DeMarr’s theorem on existence of common fixed points for com-
muting weakly contracting maps on Banach spaces [27]. The compactness of M is
crucial to assure that such common fixed points are critical solutions for both the
Hamiltonians.

The proofs of these results may be found in [48] and will be omitted.

Proposition 5.13. Let H and G be a pair of commuting convex Hamiltonians.
Then, for every t > 0, we have

SH(t)u ∈ SSG for every u ∈ SSG,

SH(t)u ∈ SG for every u ∈ SG.
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Proposition 5.14. Let H and G be a pair of commuting convex Hamiltonians.
Then there exists u0 ∈ SH ∩SG. In particular,

H
(
x,Du0(x)

)
= G

(
x,Du0(x)

)
= 0

at any differentiability point x of u0.

We now assume strict convexity of the Hamiltonians and we exploit the differ-
entiability properties of critical subsolutions established in Section 4 to prove the
following

Theorem 5.15. Let H and G be a pair of strictly convex Hamiltonians. If H and
G commute, then SH = SG.

Proof. It is enough to show that SG ⊆ SH , since the opposite inclusion follows by
interchanging the roles of H and G.

Take u ∈ SG. To prove that u ∈ SH , it suffices to show, in view of Proposition
2.10–(ii), that

SH(t)u = u on TN for every t > 0.

Since SH(t)u ∈ SG, according to Proposition 4.9 it suffices to prove that

SH(t)u = u on DG for every t > 0.

Let u0 ∈ SSH ∩SSG, and pick a point y ∈ DG. By definition of DG, the function
u0 is differentiable at y. Moreover, see Remark 4.10, for every v ∈ SSG

v is differentiable at y and Dv(y) = Du0(y).

Then the function w(t, x) :=
(
SH(t)u

)
(x) is differentiable at y for every t > 0 and

H
(
y,Dxw(t, y)

)
= H

(
y,Du0(y)

)
= 0 for every t > 0 (35)

by Proposition 5.14.
Now we use the fact that w is a solution of the evolutive equation

∂tw +H(x,Dxw) = 0 in (0,+∞)× TN .

The underlining idea is very simple. To focus this point, we will first establish the
result by adding a mild regularity assumption on w. Then we will deal with the
general case, where some technicalities arise.

First Case: w is locally semiconcave in (0,+∞)× TN .

This condition is always fulfilled if, for instance, H is locally Lipschitz continuous
in x, see [14]. Since the map t 7→ w(t, y) is Lipschitz continuous, it is differentiable
for a.e. t > 0. In view of Lemma B.1 and of (35), we infer

∂tw(t, y) = ∂tw(t, y) +H
(
y,Dxw(t, y)

)
= 0 for a.e. t > 0,

yielding that w(·, y) is constant in R+. Hence(
SH(t)u

)
(y) = u(y) for every t > 0,

as it was to be shown.

The general case.

We only need to prove that w(·, y) is constant, i.e. that

∂tw(t, y) = 0 for a.e. t > 0.
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First we recall that, by convexity of the Hamiltonian, the fact that w is a subsolution
of the evolutive equation is equivalent to requiring

pt +H(x, px) ≤ 0 for every (pt, px) ∈ ∂cw(t, x)

for every (t, x) ∈ (0,+∞) × TN . Now the functions {w(·, x) : x ∈ TN} are locally
equi–semiconcave in (0,+∞), see Lemma 2.11. Moreover w has partial derivatives
at (t, y) for a.e. t > 0, so in view of Lemma B.2 we get

∂tw(t, y) = ∂tw(t, y) +H
(
y,Dxw(t, y)

)
≤ 0 for a.e. t > 0. (36)

Let us prove the opposite inequality, i.e.

∂tw(t, y) ≥ 0 at any differentiability point t > 0 of the function w(·, y).

In fact, if this were not the case, there would exist t0 > 0 such that w(·, y) is
differentiable at t0 and

∂tw(t0, y) < −ε for some ε > 0.

Since w is locally semiconcave in t, uniformly with respect to x, we infer that there
exists r > 0 such that

∂tw(t, x) < −ε for a.e. (t, x) ∈ Br(t0)×Br(y). (37)

This follows from [13, Theorem 3.3.3], which implies here the continuity of ∂tw with
respect to (t, x) on its domain of definition (via an argument analogous to the one
used in the proof of Lemma B.1).

By Lemma B.3, we infer that

H
(
x,Dxw(t0, x)

)
≥ ε in Br(y)

in the viscosity sense. On the other hand, w(t0, ·) = SH(t0)u ∈ SG, it is hence
differentiable at y and

H
(
y,Dxw(t0, y)

)
= 0,

yielding a contradiction. �

Theorem 5.15 has very strong consequences from the weak KAM theoretic view-
point. Indeed, we have

Theorem 5.16. Let H and G be a pair of commuting, strictly convex Hamiltonians.
Then

(i) hH = hG on TN × TN ;

(ii) AH = AG;

(iii) SH(x, y) = SG(x, y) if either x or y belong to AH = AG.

Proof. (i) Let us arbitrarily fix y ∈ TN . By Proposition 3.6, hH(y, ·) and hG(y, ·)
both belong to SH = SG, so

SG(s)hH(y, ·) = hH(y, ·), SH(t)hG(y, ·) = hG(y, ·)

for every s, t > 0. Moreover

htH ⇒
t→+∞

hH and hsG ⇒
s→+∞

hG in TN × TN .
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Let us denote by u the function being equal to 0 at y and +∞ elsewhere. For every
s > 0 we have

hH(y, ·) = SG(s)hH(y, ·) = lim
t→+∞

SG(s)h
t
H(y, ·)

= lim
t→+∞

SG(s)SH(t)u = lim
t→+∞

SH(t)SG(s)u = lim
t→+∞

SH(t)hsG(y, ·).

We derive

‖hH(y, ·)− hG(y, ·)‖∞ = lim
t→+∞

∥∥SH(t)
(
hsG(y, ·)

)
− SH(t)

(
hG(y, ·)

)∥∥
∞

6 ‖hsG(y, ·)− hG(y, ·)‖∞,
and the assertion follows sending s→ +∞.

Assertions (ii) and (iii) are a direct consequence of (i) in view of Theorem 3.4
and of Proposition 3.6, respectively. �

Next, we show that H and G admit a common strict subsolution.

Theorem 5.17. Let H and G be a pair of commuting, strictly convex Hamiltonians,
and let A denote AH = AG. Then there exists v ∈ SSH ∩SSG which is C∞ and
strict in TN \ A both for H and for G, i.e.

H
(
x,Dv(x)

)
< 0 and G

(
x,Dv(x)

)
< 0 for every x ∈ TN \ A. (38)

If H and G are locally Lipschitz continuous in TN ×RN , then v can be additionally
chosen in C1(TN ).

Finally, if H and G are Tonelli, then v can be chosen in C1,1(TN ).

Proof. Let us set

F (x, p) := max{H(x, p), G(x, p)} for every (x, p) ∈ TN × RN .

This new Hamiltonian still satisfies (H1), (H2)′ and (H3). Moreover any u ∈ SH =
SG solves the equation

F (x,Du) = 0 in TN

in the viscosity sense, as it is easily seen by definition of F . This yields cF = 0 and,
according to Proposition 5.6 and Theorem 5.16, AF = A.

We now invoke the results proved [33]: by Theorem 6.2, there exists a critical
subsolution v for F which is strict and smooth in TN \ A. If H and G are locally
Lipschitz, the same holds for F , so v can be additionally chosen of class C1 on the
whole TN in view of Theorem 8.1. The inequalities (38) follow since F > H, G.

If now H and G are Tonelli Hamiltonians, the commutation property is equiv-
alent to the fact that the Poisson bracket {H,G} = 0 everywhere, as explained in
Appendix C. Starting with a C1 (or in fact any) common strict subsolution v, it is
possible to realize, as in [9], a Lasry–Lions regularization v0 of v, using alternatively
the positive and negative semigroups of H. More precisely,

v0 = SH(t)
(
S+
H(s) v

)
for s and t suitably chosen, where the positive Lax–Oleinik semigroup is defined as
follows:

S+
H(s)v = −

(
SȞ(−v)

)
.

Note that v0 is still a subsolution both for G and for H, see Remark 2.2 and Propo-
sition 5.13. The fact that it is strict in TN \ A is proved in the next lemma. The
fact that v0 is C1,1 for t and s small enough is proved in [9]. �
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We recall that a Lipschitz subsolution v ∈ SSG is said to be strict in an open
set U ⊂ TN if for any x0 ∈ U there is a neighborhood V of x0 and a constant ε > 0
such that G

(
x,Dv(x)

)
< −ε almost everywhere in V .

Note that if v is C1, it is strict on U if and only if G
(
x,Dv(x)

)
< 0 for any x ∈ U .

Lemma 5.18. Let G and H be two commuting Tonelli Hamiltonians. Assume v
is a critical subsolution for G which is strict outside A. Then, for all t > 0, both
SG(t) v and SH(t) v are critical subsolutions for G, strict outside A.

Proof. We will only prove the result for SH(t) v. The result for SG(t) v is then a
consequence for G = H. We already know by Proposition 5.13 that SH(t) v is a
critical subsolution of G. It is only left to prove the strict part. This is done in two
steps: in a first one, we prove a point–wise strictness at differentiability points of
SH(t) v. In a second one, we extend this result using Clarke’s gradient to any point
before concluding.

Let x ∈ TN \ A. Consider a curve γ verifying that γ(0) = x and(
SH(t) v

)
(x) = v

(
γ(−t)

)
+

∫ 0

−t
LH

(
γ(s), γ̇(s)

)
ds.

The curve (γ, γ̇) is then a piece of trajectory of the Euler–Lagrange flow of H. It
is also known (see [30] or Proposition 4.4) that DqLH

(
γ(−t), γ̇(−t)

)
∈ D−v

(
γ(−t)

)
and

DqLH

(
γ(s), γ̇(s)

)
∈ D+

(
SH(t+ s) v

)(
γ(s)

)
for every s ∈ (−t, 0].

Moreover, the curve γ does not intersect A. Indeed, if this were not the case, the
curve (γ, γ̇) would be included in the lifted Aubry set, which is invariant by the
Euler–Lagrange flow of H, see [30], while x = γ(0) /∈ A. We therefore deduce that
γ(−t) /∈ A and, since v is strict,

G
(
γ(−t), DqLH

(
γ(−t), γ̇(−t)

))
< 0.

Now G and H commute; since they are Tonelli, this means their Poisson bracket is
null, see Proposition C.1. Otherwise stated, G is constant on the integral curves of

the Hamiltonian flow of H, in particular on s 7→
(
γ(s), DqLH

(
γ(s), γ̇(s)

))
. Thus

G
(
x,DqLH

(
x, γ̇(0)

))
< 0,

from which we infer that G
(
x,D

(
SH(t) v

)
(x)

)
< 0 whenever SH(t) v is differentiable

at x. But this is not sufficient to conclude since the function SH(t) v is Lipschitz
continuous in TN , hence differentiable almost everywhere only. We will prove the
following:

Claim. Let x /∈ A. Then

G(x, p) < 0 for every p ∈ ∂∗
(
SH(t) v

)
(x),

where ∂∗
(
SH(t) v

)
(x) denotes the set of reachable gradients of SH(t) v at x. Note

that since SH(t) v is Lipschitz, this set is compact.
Let p ∈ ∂∗

(
SH(t) v

)
(x) and consider xn → x a sequence of differentiability points

for SH(t) v such that D
(
SH(t) v

)
(xn) → p. For each n, choose a curve γn : [−t, 0] →
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TN (which is in fact unique) such that(
SH(t) v

)
(xn) = v

(
γn(−t)

)
+

∫ 0

−t
LH

(
γn(s), γ̇n(s)

)
ds.

For each n, the curve (γn, γ̇n) is the (only) trajectory of the Euler–Lagrange flow
with initial condition verifying DqLH

(
xn, γ̇n(0)

)
= D

(
SH(t) v

)
(xn). By continuity

of this flow, they uniformly converge, along with their derivatives, to a curve γ. By
continuity, we obtain(

SH(t) v
)
(x) = v

(
γ(−t)

)
+

∫ 0

−t
LH

(
γ(s), γ̇(s)

)
ds.

Moreover, by passing to the limit in the equalitiesDqLH

(
xn, γ̇n(0)

)
= D

(
SH(t) v

)
(xn),

we obtain
DqLH

(
x, γ̇(0)

)
= p.

By arguing as above and by exploiting the fact that x /∈ A, we obtain G(x, p) < 0.
Since G is convex, we infer

G(x, p) < 0 for every p ∈ ∂c
(
SH(t) v

)
(x),

where ∂c
(
SH(t) v

)
(x) denotes the Clarke differential of SH(t) v at x, defined as the

convex hull of ∂∗
(
SH(t) v

)
(x). We now exploit the fact that the Clarke differential

is upper semi–continuous with respect to the inclusion and point–wise compact, see
[17]. Let x0 /∈ A and choose ε > 0 in such a way that

G(x0, p) < −2ε for every p ∈ ∂c
(
SH(t) v

)
(x0).

Then there exists a neighborhood V of x0 such that

G(x, p) < −ε for every p ∈ ∂
(
SH(t) v

)
(x) and x ∈ V .

In particular, G
(
x,Dv(x)

)
< −ε for almost every x ∈ V . The proof is complete. �
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Appendix A

The purpose of this Section is to give a self–contained proof of Theorem 3.3. We
prove two lemmas first. Recall that we are assuming that the critical value c is equal
to 0.

Lemma A.1. Let γ : [a, b] →M such that

S
(
γ(b), γ(a)

)
+

∫ b

a
L(γ, γ̇) ds = 0. (39)

Then γ is a static curve.
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Proof. Let s, t be points of [a, b] with s < t. We want to prove that

−S
(
γ(t), γ(s)

)
=

∫ t

s
L(γ, γ̇) dτ = S

(
γ(s), γ(t)

)
. (40)

We set y := γ(b) and observe that equality (39) can be equivalently written as

S
(
y, γ(b)

)
− S

(
y, γ(a)

)
=

∫ b

a
L(γ, γ̇) ds.

Since S(y, ·) is a critical subsolution, the following hold:

S
(
y, γ(b)

)
− S

(
y, γ(t)

)
6

∫ b

t
L(γ, γ̇) ds

and

S
(
y, γ(t)

)
− S

(
y, γ(a)

)
6

∫ t

a
L(γ, γ̇) ds.

Both inequalities are in fact equalities (summing them up gives an equality) and we
obtain

−S
(
y, γ(t)

)
= S

(
y, γ(b)

)
− S

(
y, γ(t)

)
=

∫ b

t
L(γ, γ̇) ds

for any t ∈ [a, b]. We infer

0 = S
(
y, γ(t)

)
+

∫ b

t
L(γ, γ̇) dτ > S

(
y, γ(t)

)
+ S

(
γ(t), y

)
> 0,

so

S
(
γ(t), y

)
=

∫ b

t
L(γ, γ̇) dτ = −S

(
y, γ(t)

)
.

In particular for every a 6 s < t 6 b

S
(
γ(s), y

)
− S

(
γ(t), y

)
=

∫ t

s
L(γ, γ̇) dτ.

The second equality in (40) then follows since

S
(
γ(s), y

)
− S

(
γ(t), y

)
6 S

(
γ(s), γ(t)

)
6

∫ t

s
L(γ, γ̇) dτ.

Let us now prove the other equality in (40). By making use of what was just proved,
we have ∫ t

s
L(γ, γ̇) dτ = S

(
γ(s), y

)
− S

(
γ(t), y

)
= −

(
S
(
y, γ(s)

)
+ S

(
γ(t), y

))
6 −S

(
γ(t), γ(s)

)
,

and the assertion follows for∫ t

s
L(γ, γ̇) dτ + S

(
γ(t), γ(s)

)
> S

(
γ(s), γ(t)

)
+ S

(
γ(t), γ(s)

)
> 0.

�

Lemma A.2. There exists a real number R > 0 such that⋃
x∈M

{q ∈ RN : L(x, q) = σ(x, q) } ⊆ BR.
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Proof. By assumption (H3) there exists a constant κ such that Z0(x) ⊆ Bκ for
every x ∈ M , so σ(x, q) 6 κ|q| for every (x, q) ∈ M × RN . By (L3) and by the
superlinear and continuous character of α∗, see Remark 2.1, there exists a constant
α0 > 0 such that

(κ+ 1)|q| − α0 6 α∗(|q|) 6 L(x, q) for every (x, q) ∈M × RN .

The assertion follows by choosing R := α0. �

Proof of Theorem 3.3. Fix y ∈ A and set u(·) = S(y, ·). The function w(x, t) =
u(x) is a solution of the equation

∂tw(x, t) +H
(
x,Dxw(x, t)

)
= 0, (41)

hence S(t)u = u for every t > 0. In particular, for each n ∈ N there exists a curve
γn : [−n, 0] →M with γn(0) = y such that

u(y) = u
(
γn(−n)

)
+

∫ 0

−n
L(γn, γ̇n) ds.

Now u(y) = 0 and u
(
γn(−n)

)
= S

(
y, γn(−n)

)
, so by Lemma A.1 we derive that

γn is a static curve. Lemma A.2 guarantees that the curves γn are equi–Lipschitz
continuous, in particular there exists a Lipschtiz curve γ : R− → M such that, up
to subsequences,

γn ⇒ γ in R− and γ̇n ⇀ γ̇ in L1
loc

(
R−;RN

)
.

By a classical semi–continuity result of the Calculus of Variations [11] we have

lim inf
n→+∞

∫ b

a
L(γn, γ̇n) ds >

∫ b

a
L(γ, γ̇) ds

for every a < b 6 0, yielding in particular that γ is static too.
We now consider the Hamiltonian Ȟ(x, p) = H(x,−p). By Proposition 3.5, we

know that the critical value and the Aubry set of Ȟ agree with 0 (i.e. the critical
value of H) and A. We can apply the previous argument with Š and Ľ in place of
S and L to obtain a curve ξ : R− → M which is static for Ȟ. We define a curve
η : R →M by setting

η(s) :=

{
ξ(−s) if s > 0

γ(s) if s 6 0.

We claim that η is the static curve we were looking for. To prove this, it will be
enough, in view of Lemma A.1, to show

S
(
η(b), η(a)

)
+

∫ b

a
L(η, η̇) ds = 0 (42)

for any fixed a < 0 < b. Indeed, by noticing that Ľ(x, q) = L(x,−q) and Š(x, y) =
S(y, x), we obtain∫ b

0
L(η, η̇) ds =

∫ 0

−b
Ľ(ξ, ξ̇) ds = −Š

(
ξ(0), ξ(−b)

)
= −S

(
η(b), η(0)

)
.

Hence ∫ b

a
L(η, η̇) ds =

∫ 0

a
L(η, η̇) ds+

∫ b

0
L(η, η̇) ds

= −S
(
η(b), η(0)

)
+ S

(
η(0), η(a)

)
6 −S

(
η(b), η(a)

)
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and (42) follows since the opposite inequality is always true. �

Appendix B

In this appendix we prove three auxiliary lemmas that are needed in the proof of
Proposition 5.14.

Lemma B.1. Let w(t, x) be a locally semiconcave function in (0,+∞)×TN . Then
w has partial derivatives at a point (t0, x0) if and only if it is (strictly) differentiable
at that point.

Proof. Let us assume that w has partial derivative at a point (t0, x0). It will
be enough to show that the set ∂∗w(t0, x0) of reachable gradients of w at (t0, x0)
reduces to the singleton

(
∂tw(t0, x0), Dxw(t0, x0)

)
. Indeed, let (pt, px) ∈ ∂∗w(t0, x0)

and take a sequence (tn, xn) of differentiability points of w converging to (t0, x0)
such that

∂tw(tn, xn) =: ptn → pt, Dxw(tn, xn) =: pxn → px
as n→ +∞. The functions

φn(t) := w(t− t0 + tn, xn), ψn(x) = w(tn, x− x0 + xn)

are locally equi–semiconcave in (0,+∞) and TN and differentiable at the points
t = t0 and x = x0, respectively. Moreover

φn ⇒ w(·, x0) in (0,+∞), ψn ⇒ w(t0, ·) in TN .

By a well known fact about semiconcave functions, see Theorem 3.3.3 in [13], we get

ptn = φ′n(t0) → ∂tw(t0, x0), pxn = Dxψn(x0) → Dxw(t0, x0),

that is (pt0 , px0) =
(
∂tw(t0, x0), Dxw(t0, x0)

)
. �

In the subsequent lemma, by π1 we will denote the projection of R×RN onto the
first variable, i.e. π1(pt, px) = pt for every (pt, px) ∈ R× RN .

Lemma B.2. Let w(t, x) be a locally Lipschitz function on (0,+∞) × TN . Let us
assume that the family of functions {w(·, x) : x ∈ TN} are locally equi–semiconcave
in (0,+∞). If w has partial derivatives at a point (t0, x0), then

(i) π1
(
∂cw(t0, x0)

)
= {∂tw(t0, x0)};

(ii)
(
∂tw(t0, x0), Dxw(t0, x0)

)
∈ ∂cw(t0, x0).

Proof. Assertion (i) follows arguing as in the proof of Lemma B.1 above and
exploiting the semiconcavity of w in t. To prove item (ii) we argue as follows.
Assume by contradiction that Dxw(t0, x0) does not belong to π2

(
∂cw(t0, x0)

)
. Here

π2 denotes the projection of R × RN in the second variable, i.e. π2(pt, px) = px
for every (pt, px) ∈ R × RN . The set π2

(
∂cw(t0, x0)

)
is closed and convex, so by

Hahn–Banach Theorem there exist a vector q and a constant a ∈ R such that

〈Dxw(t0, x0), q〉 < a < 〈p, q〉 for every p ∈ ∂cw(t0, x0).

By upper semicontinuity of Clarke’s generalized gradient, the above inequality keeps
holding in a neighborhood V of (t0, x0), i.e. for every (t, x) ∈ V

〈Dxw(t0, x0), q〉 < a < 〈p, q〉 for every p ∈ ∂cw(t, x).
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For h 6= 0, let us consider the ratio

r(h) =
w(t0, x0 + hq)− w(t0, x0)

h
.

By the Nonsmooth Mean Value Theorem, see Theorem 2.3.7 in [17], there exists a
point xh on the segment joining x0 to x0 + hq and a vector (αh, pxh

) ∈ ∂cw(t0, xh)
such that

r(h) = 〈(αh, pxh
), (0, q)〉 = 〈pxh

, q〉.
For h small enough, we infer that r(h) > a. On the other hand

lim
h→0

r(h) = 〈Dxw(t0, x0), q〉 < a,

yielding a contradiction. �
We conclude this appendix by proving the following

Lemma B.3. Let H : TN×RN → R be a continuous function and w(t, x) a Lipschitz
function on R+ × TN satisfying

∂tw +H(x,Dw) > 0 in (0,+∞)× TN

in the viscosity sense. Let us assume that

(i) the functions {w(·, x) : x ∈ TN } are locally equi–semiconcave in (0,+∞);

(ii) there exist a constant a ∈ R and two open sets I ⊆ (0,+∞) and U ⊆ TN

such that

∂tw(t, x) < a for a.e. t ∈ I and for a.e. x ∈ U .

Then, for every t0 ∈ I, the function ut0 := w(t0, ·) satisfies
H(x,Dut0) > −a in U (43)

in the viscosity sense.

Proof. We divide the proof in two steps.

Step 1. Let us additionally assume that, for every t > 0, the function

w(t, ·) is locally semiconcave in TN .

Let Σ := {(t, x) ∈ (0,∞) × TN : w is not differentiable at (t, x) }. Then, for a.e.
t > 0, the set

Σt := {x ∈ TN : (t, x) ∈ Σ }
has N–dimensional Lebesgue measure equal to 0, so, for any such t > 0,

∂tw(t, x) +H
(
x,Dw(t, x)

)
> 0 for a.e. x ∈ TN .

In particular,

H
(
x,Dw(t, x)

)
> −∂tw(t, x) > −a for a.e. x ∈ U . (44)

Set ut = w(t, ·). By semiconcavity, the inequality (44) means that

H(x,Dut) > −a in U (45)

in the viscosity sense. Here we have used the fact that Dut is continuous on its
domain of definition and that the supersolution test is nonempty only at points
where ut is differentiable. If now t0 is any point of I, we choose a sequence of points
tn ∈ I converging to t0 for which (45) holds for every n. Since utn ⇒ ut0 in TN , by
stability of the notion of viscosity supersolution we get (43).
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Step 2. Let (t0, x0) ∈ I × U . Since the functions w(·, x) are locally equi–
semiconcave in t, we infer that there exists r > 0 such that

∂tw(t, x) < a for a.e. (t, x) ∈ B2r(t0)×B2r(x0). (46)

For every n ∈ N, set
wn(t, x) = min

y∈TN
{w(t, y) + n |x− y|2}.

Each wn(t, ·) is semiconcave in TN for every fixed t > 0 and satisfies the following
inequality in the viscosity sense

∂twn +H(y,Dxwn) > −δn in (0,+∞)× TN ,

where (δn)n∈N is an infinitesimal sequence, see [13]. Let us denote by Y (t, x) the set
of points y ∈ TN which realize the minimum in the definition of wn(t, x). If L is the
Lipschitz constant of w in R+ × TN , it is well known that

dist
(
Y (t, x), x

)
6 L

n
for every n ∈ N.

Furthermore

∂twn(t
′, x′) = ∂tw(t

′, y) for every y ∈ Y (t′, x′) (47)

at any point (t′, x′) where wn has partial derivative with respect to t. Indeed, if
ϕ(t) is a subtangent to wn(·, x′) at the point t′, the function ϕ(t) − n|x′ − y|2 is a
subtangent to w(·, y) at the point t′, so (47) follows by semiconcavity of wn and w
with respect to t.

In particular, for n big enough,

∂twn(t, x) < a for a.e. (t, x) ∈ Br(t0)×Br(x0).

By Step 1 we infer that the functions ut0n = wn(t0, ·) satisfy
H(x,Dut0n ) > −a− δn in Br(x0)

in the viscosity sense. Since ut0n ⇒ ut0 = w(t0, ·) in TN , we conclude by stability
that

H(x,Dut0) > −a in Br(x0).

The assertion follows since t0 and x0 were arbitrarily chosen in I and U , respectively,
together with the fact that the notion of viscosity supersolution is local. �

Appendix C

In this Appendix, we discuss the equivalence between the notion of commutation
given in Definition 5.1 and the one given in terms of cancellation of the Poisson
bracket when the Hamiltonians are regular enough. In [8] it is proved that for two
convex C1–Hamiltonians, G and H, having null Poisson bracket, i.e.

{G, H} := 〈DxG, DpH〉 − 〈DxH, DpG〉 = 0 in M × RN ,

the multi–time Hamilton–Jacobi equation (1) admits a (unique) viscosity solution
for any Lipschitz initial datum u0. This amounts to saying that the Lax–Oleinik
semigroups commute in the sense of (28). In [8], the question of the reciprocal
statement is treated by a heuristic argument. We feel natural to give a neat proof of
this fact, at least in the case of Tonelli Hamiltonians. For clarity of the exposition,
we will place ourself in the case of M = TN , but the results remain true if M = RN .
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Proposition C.1. Let G and H be two Tonelli Hamiltonians on TN ×RN . Assume
that

SG(s)
(
SH(t)u

)
(x) = SH(t)

(
SG(s)u

)
(x) for every s, t > 0 and x ∈ TN , (48)

and for every admissible initial datum u : TN → R ∪ {+∞}. Then the following
relation is identically verified:

〈DxG, DpH〉 − 〈DxH, DpG〉 = 0 in TN × RN .

In order to prove this, we will use some results about the behavior of solutions
of the Hamilton–Jacobi equation with smooth initial datum. We introduce some
notations. If f : TN → R is differentiable, then Γ(f) ⊂ TN × RN will denote the
graph of its differential. We will denote by φG (resp. φH) the Hamiltonian flow of
G (resp. H), that is, the flow generated by the vectorfield

XG(x, p) =
(
x, p, DpG(x, p), −DxG(x, p)

)
, (x, p) ∈ TN × RN ,(

resp. XH(x, p) =
(
x, p, DpH(x, p), −DxH(x, p)

))
.

The following is a reformulation of Lemma 3 in [9]:

Proposition C.2. For any C2 function u : TN → R, there is an ε > 0 such that
for any s, t < ε, the functions us,t = SG(s)

(
SH(t)u

)
and us,t = SH(t)

(
SG(s)u

)
are

C2. Moreover, Γ(us,t) = φsG ◦ φtH Γ(u) and Γ(us,t) = φtH ◦ φsG Γ(u).

Finally, for t < ε fixed (resp. s < ε fixed), the function (s, x) 7→ us,t(x)
(
resp.

(t, x) 7→ us,t(x)
)
is a classical solution to the Hamilton Jacobi equation

∂us,t
∂s

+G(x,Dxus,t) = 0 in (0,+∞)× TN ,

(resp.
∂us,t

∂t
+H(x,Dxu

s,t) = 0 in (0,+∞)× TN ).

Proof of Proposition C.1. Let us use Proposition C.2, differentiating various
times the Hamilton-Jacobi equation, to compute a Taylor expansion of us,t for small
times and smooth initial datum:

us,t(x) = u0,t(x)−sG
(
x,Dxu0,t(x)

)
−s

2

2

〈
DpG

(
x,Dxu0,t(x)

)
,
∂

∂s
Dxu0,t(x)

〉
+o(s2)

= u0,t(x)−sG
(
x,Dxu0,t(x)

)
+
s2

2

〈
DpG

(
x,Dxu0,t(x)

)
, DxG

(
x,Dxu0,t(x)

)〉
+o(s2).

Notice that similarly,

u0,t(x) = u(x)− tH
(
x,Du(x)

)
+
t2

2

〈
DpH

(
x,Du(x)

)
, DxH

(
x,Du(x)

)〉
+ o(t2)

and

Dxu0,t(x) = Du(x)− t
[
DxH

(
x,Du(x)

)
+D2u(x)DpH

(
x,Du(x)

)]
+ o(t).

By substitution, we obtain the following identity on TN :

ut,t = u− tH(x,Du) +
t2

2

〈
DpH(x,Du), DxH(x,Du)

〉
− t

(
G(x,Du)− t

〈
DpG(x,Du), DxH(x,Du) +D2 uDpH(x,Du)

〉)
+
t2

2

〈
DpG(x,Du), DxG(x,Du)

〉
+ o(t2),
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that is,

ut,t = u − t
(
H(x,Du) +G(x,Du)

)
+ t2

〈
DpG(x,Du), D

2 uDpH(x,Du)
〉

+
t2

2

(〈
DpH(x,Du), DxH(x,Du)

〉
+

〈
DpG(x,Du), DxG(x,Du)

〉)
+ t2

〈
DpG(x,Du), DxH(x,Du)

〉
+ o(t2).

We now make the symmetrical computation for ut,t and we subtract to get

ut,t − ut,t = t2
(〈
DpG(x,Du), DxH(x,Du)

〉
−
〈
DpH(x,Du), DxG(x,Du)

〉)
+ o(t2).

The left–hand side term is 0 by the commutation hypothesis, so the assertion follows
by letting t→ 0 and by exploiting the fact that u, and hence Du, is arbitrary. �
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