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Abstract. We perform a qualitative analysis of the critical equation associated
with a stationary ergodic Hamiltonian through a stochastic version of the metric
method, where the notion of closed random stationary set, issued from stochastic
geometry, plays a major role. Our purpose is to give an appropriate notion of
random Aubry set, to single out characterizing conditions for the existence of exact
or approximate correctors, and write down representation formulae for them. For
the last task, we make use of a Lax–type formula, adapted to the stochastic
environment. This material can be regarded as a first step of a long–term project
to develop a random analog of Weak KAM Theory, generalizing what done in the
periodic case or, more generally, when the underlying space is a compact manifold.

1. Introduction

For a given a probability space Ω, on which RN acts ergodically, we consider the
family of Hamilton–Jacobi equations

H(x,Dv, ω) = a in RN ,

where a varies in R, and H is a continuous Hamiltonian, convex and superlinear
in the momentum variable, and stationary with respect to the action of RN . As
it is well known, this framework includes the periodic [16], quasi–periodic [2] and
almost–periodic cases [12] as particular instances.

A stationary critical value, denoted by c, can be defined in this setting as the
minimal value a for which the above equation possesses admissible subsolutions, that
is Lipschitz random functions that have stationary gradient with mean 0 and that
are almost sure subsolutions either in the viscosity sense or, equivalently, almost
everywhere in RN . The condition on the gradient implies almost sure sublinear
growth at infinity, see [9, 10]. The stationary critical value is in general distinct from
the free critical value cf , i.e. the minimal value a for which the above equation admits
subsolutions, without any further qualification. More precisely cf (ω) is a random
variable, almost surely constant because of the ergodicity assumption. Clearly c ≥
cf .

The relevance of the stationary critical value c relies on the fact that it is the
only level of H for which the corresponding critical equation can have admissible
exact or approximate solutions, also named exact and approximate correctors for
the role they play in associated homogenization problems, see Section 3 for precise
definitions.

The aim of the paper is to perform a qualitative study of the critical equation,
in any space dimensions, through the metric approach, by developing the ideas of
[9, 10]. The adaptation of this pattern to the stationary ergodic setting requires the
use of some tools from random set theory, the leading idea being that the stationary
ergodic structure of the Hamiltonian induces a stochastic geometry in the space of
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the state variable, where the fundamental entities are the closed random stationary
sets which, somehow, play the same role as the points in the deterministic case.

More specifically, our purpose is to give an appropriate notion of random Aubry
set, to single out characterizing conditions for the existence of exact or approximate
correctors, and write down representation formulae for them. This material can be
regarded as a first step of a long–term project to develop a random analog of Weak
KAM Theory, generalizing what done in the periodic case or, more generally, when
the underlying space is a compact manifold, see [11].

We recall that the random version of the metric method has allowed to com-
pletely clarify the setup in the one–dimensional case [9], where it has been proved
the existence of approximate or exact correctors via Lax representation formulae,
depending on whether 0 belongs or not to the interior of the flat part of the effec-
tive Hamiltonian obtained via homogenization [19, 22]. This permits, among other
things, to carry out the homogenization procedures through Evans’ perturbed test
function method.

Even if in the multidimensional analysis [10] many analogies with the one–dimen-
sional setting appear, the topic is definitely more involved, due to the increased
degrees of freedom, so that the picture is far from being complete. In particular
the issue of the existence of approximate correctors is a relevant open problem, see
Section 6.

Our investigation can be briefly described as follows. We associate to the critical
equation a Finsler–type random semidistance S on RN , and we consider the family
of fundamental (critical) admissible subsolutions obtained via the Lax formula

inf{g(y, ω) + S(y, x, ω) : y ∈ C(ω) }, (1)

where C(ω) is a closed random stationary set and g is an admissible critical subso-
lution.

We first address our attention to detect characterizing conditions on g and C(ω)
under which the above formula defines an exact corrector. In case c = cf , this holds
true if C(ω) ⊂ Af (ω) almost surely, where Af (ω) is the classical Aubry set, made
up, as in the deterministic case, by points around which some degeneracy of S takes
place. It can be defined through conditions on cycles, see Section 3. If instead c > cf
or c = cf and C(ω) ∩ Af (ω) = ∅ a.s., we find that formula (1) gives a solution if
and only if any point y0 in C(ω) is connected with the “infinity” through a curve
along which g(·, ω) is equal to g(·, ω) + S(·, y0, ω). This, in turn, implies that the
asymptotic norm associated to S is degenerate.

The subsequent step is to use this information to propose a suitable notion of
random Aubry set and to explore its properties. Our choice, in analogy with the
periodic setting, is to define the random Aubry set A as the maximal stationary
closed random set that plugged into (1) in place of C defines a corrector for any
choice of the admissible subsolution g. We find that if c = cf then Af (ω) ⊂ A(ω)
a.s. and if, in addition, no metric degeneracy occurs at infinity or, in other term,
the stable norm associated with S is strictly positive in any direction, then A(ω)
and Af (ω) almost surely coincide.

Further we prove, generalizing a property holding in the deterministic case, the
existence of an admissible critical subsolution v which is weakly strict in RN \A(ω),
i.e. almost surely satisfying

v(x, ω)− v(y, ω) < S(y, x, ω) for every x, y ∈ RN \ A(ω) with x 6= y.
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We are also able to extend to the stationary ergodic case some dynamical properties
of the Aubry set. More precisely, we show that the random Aubry set is almost
surely foliated by curves defined in R along which any critical subsolution agrees
with the semidistance S, up to additive constants. These curves turn out to be
global minimizers for the action of the Lagrangian in duality with H, and, when H
is regular enough, they are in addition integral curves of the Hamiltonian flow.

The results on the random Aubry set are obtained under the crucial hypothesis
that Ω is separable from the measure theoretic viewpoint, meaning that L2(Ω) is
separable. This assumption, while standard in the probabilistic literature, would
exclude here the almost–periodic case. Following the usual approach, in fact, an
almost–periodic function can be seen as the restriction on RN of a continuous map
defined on GN , the Bohr compactification of RN . The associated normalized Haar
measure is a probability measure which is ergodic with respect to the action of
RN . This allows to include the almost–periodic case within the stationary ergodic
framework, but the problem is that GN is non–separable, see [1] for similar issues.

Thus we have to resort to a different construction, exposed in the Appendix, that
we believe of independent interest. We basically exploit that any almost–periodic
function on RN is the uniform limit of a sequence of quasi–periodic functions, which,
in turn, can be seen as specific realizations of stationary ergodic maps defined on
k–dimensional tori, with k suitably chosen.

By properly defining the objects we work with, we obtain that a given almost–
periodic Hamiltonian can be seen as a specific realization of a stationary ergodic one,
with Ω equal to a countable product of finite dimensional tori. The latter, endowed
with the product distance, is a compact metric space, thus separable both from
a topological and a measure–theoretic viewpoint. Some attention must be paid in
the previous construction in order to preserve the ergodicity of the action of RN on Ω.

The paper is organized as follows: in Section 2 we fix notations and expose some
preliminary material, in particular we present definitions and properties of stationary
closed random sets and random functions that are relevant for our analysis. Sec-
tion 3 is focused on stochastic Hamilton–Jacobi equations, we introduce the metric
tools we will need, and recall some basic facts about Aubry–Mather theory in the
deterministic setting. Section 4 is devoted to Lax formulae in the stationary ergodic
setting, in particular to derive characterizing conditions on the source set and on
the trace under which the corresponding Lax formula defines an exact corrector.
In Section 5 we define the random Aubry set and study its properties. In Section
6 we discuss some questions left open by our study. The Appendix contains the
construction outlined above, addressed to include the almost–periodic case in our
framework.
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Albert Fathi for many interesting discussions and suggestions.
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2. Preliminaries

We write below a list of symbols used throughout this paper.

N an integer number
BR(x0) the closed ball in RN centered at x0 of radius R
BR the closed ball in Rk centered at 0 of radius R
〈 · , · 〉 the scalar product in RN
| · | the Euclidean norm in RN
R+ the set of nonnegative real numbers
B(Rk) the σ–algebra of Borel subsets of Rk
χE the characteristic function of the set E

Given a subset U of RN , we denote by U its closure. We furthermore say that
U is compactly contained in a subset V of RN if U is compact and contained in V .
If E is a Lebesgue measurable subset of RN , we denote by |E| its N–dimensional
Lebesgue measure, and qualify E as negligible whenever |E| = 0. We say that a
property holds almost everywhere (a.e. for short) on RN if it holds up to a negligible
set. We will write ϕn ⇒ ϕ on RN to mean that the sequence of functions (ϕn)n
uniformly converges to ϕ on compact subsets of RN .

With the term curve, without any further specification, we refer to a Lipschitz–
continuous function from some given interval [a, b] to RN . The space of all such
curves is denoted by Lip([a, b],RN ), while Lipx,y([a, b],RN ) stands for the family of
curves γ joining x to y, i.e. such that γ(a) = x and γ(b) = y, for any fixed x, y in
RN . The Euclidean length of a curve γ is denoted by H1(γ).

Throughout the paper, (Ω,F ,P) will denote a separable probability space, where P
is the probability measure and F the σ–algebra of P–measurable sets. Here separable
is understood in the measure theoretic sense, meaning that the Hilbert space L2(Ω)
is separable, cf. [23] also for other equivalent definitions. A property will be said to
hold almost surely (a.s. for short) on Ω if it holds up to a subset of probability 0.
We will indicate by Lp(Ω), p ≥ 1, the usual Lebesgue space on Ω with respect to P.
If f ∈ L1(Ω), we write E(f) for the mean of f on Ω, i.e. the quantity

∫
Ω f(ω) dP(ω).

We qualify as measurable a map from Ω to itself, or to a topological spaceM with
Borel σ–algebra B(M), if the inverse image of any set in F or in B(M) belongs to
F . The latter will be also called random variable with values in M.

We will be particulary interested in the case where the range of a random variable
is a Polish space, namely a complete and separable metric space. By C(RN ) and
Lipκ(Rn), we will denote the Polish space of continuous and Lipschitz–continuous
real functions (with Lipschitz constant less than or equal to κ > 0), defined in RN ,
both endowed with the metric d inducing the topology of uniform convergence on
compact subsets of RN . We will use the expressions continuous random function,
κ–Lipschitz random function, respectively, for the previously introduced random
variables. We will more simply say Lipschitz random function to mean a κ–Lipschitz
random function for some κ > 0. See [9] for more detail on this point.

We proceed by recalling some basic facts on convergence in probability. Given a
Polish space (F, d) and a sequence (fn)n of random variables taking values in F, we
will say that fn converge to f in probability if, for every ε > 0,

P ({ω ∈ Ω : d(fn(ω), f(ω)) > ε})→ 0 as n→ +∞.
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The limit f is still a random variable. Since F is a separable metric space, almost sure
convergence, i.e. d (fn(ω), f(ω)) → 0 a.s. in ω, implies convergence in probability,
while the converse is not true in general. However, the following characterization
holds:

Theorem 2.1. Let fn, f be random variables with values in F. Then fn → f in
probability if and only if every subsequence (fnk)k has a subsequence converging to
f a.s..

We denote by L0(Ω,F) the space made up by the equivalence classes of random
variables with value in F for the relation of almost sure equality. For every f, g ∈
L0(Ω,F), we set

α(f, g) := inf{ε ≥ 0 : P
(
{ω ∈ Ω : d(f(ω), g(ω)) > ε}

)
≤ ε}.

Theorem 2.2. α is a metric, named after Ky Fan, which metrizes convergence in
probability, i.e. α(fn, f)→ 0 if and only if fn → f in probability, and turns L0(Ω,F)
into a Polish space.

An N–dimensional dynamical system (τx)x∈RN is defined as a family of mappings
τx : Ω→ Ω which satisfy the following properties:

(1) the group property: τ0 = id, τx+y = τx◦τy;
(2) the mappings τx : Ω → Ω are measurable and measure preserving, i.e.

P(τxE) = P(E) for every E ∈ F ;
(3) the map (x, ω) 7→ τxω from RN×Ω to Ω is jointly measurable, i.e. measurable

with respect to the product σ–algebra B(RN )⊗F .

We will moreover assume that (τx)x∈RN is ergodic, i.e. that one of the following
equivalent conditions hold:

(i) every measurable function f defined on Ω such that, for every x ∈ RN ,
f(τxω) = f(ω) a.s. in Ω, is almost surely constant;

(ii) every set A ∈ F such that P(τxA∆A) = 0 for every x ∈ RN has probability
either 0 or 1, where ∆ stands for the symmetric difference.

Given a random variable f : Ω→ R, for any fixed ω ∈ Ω the function x 7→ f(τxω)
is said to be a realization of f . The following properties follow from Fubini’s Theo-
rem, see [14]: if f ∈ Lp(Ω), then P–almost all its realizations belong to Lploc(R

N ); if
fn → f in Lp(Ω), then P–almost all realizations of fn converge to the correspond-
ing realization of f in Lploc(R

N ). The Lebesgue spaces on RN are understood with
respect to the Lebesgue measure.

The next lemma guarantees that a modification of a random variable on a set of
zero probability does not affect its realizations on sets of positive Lebesgue measure
on RN , almost surely in ω. The proof is based on Fubini’s Theorem again, see
Lemma 7.1 in [14].

Lemma 2.3. Let Ω̂ be a set of full measure in Ω. Then there exists a set of full

measure Ω′ ⊆ Ω̂ such that for any ω ∈ Ω′ we have τxω ∈ Ω̂ for almost every x ∈ RN .

A jointly measurable function v defined in RN ×Ω is said stationary if, for every
z ∈ RN , there exists a set Ωz with probability 1 such that for every ω ∈ Ωz

v(·+ z, ω) = v(·, τzω) on RN

It is clear that a real random variable φ gives rise to a stationary function v by
setting v(x, ω) = φ(τxω). Conversely, according to Proposition 3.1 in [9], a stationary
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function v is, a.s. in ω, the realization of the measurable function ω 7→ v(0, ω). More
precisely, there exists a set Ω′ of probability 1 such that for every ω ∈ Ω′

v(x, ω) = v(0, τxω) for a.e. x ∈ RN . (2)

With the term (graph–measurable ) random set we indicate a set–valued function
X : Ω→ B(RN ) with

Γ(X) :=
{

(x, ω) ∈ RN × Ω : x ∈ X(ω)
}

jointly measurable in RN ×Ω. A random set X will be qualified as stationary if for
every for every z ∈ RN , there exists a set Ωz of probability 1 such that

X(τzω) = X(ω)− z for every ω ∈ Ωz. (3)

We use a stronger notion of measurability, which is usually named in the literature
after Effros, to define a closed random set, say X(ω). Namely we require X(ω) to
be a closed subset of RN for any ω and

{ω : X(ω) ∩K 6= ∅} ∈ F
with K varying among the compact (equivalently, open) subsets of RN . This con-
dition can be analogously expressed by saying that X is measurable with respect to
the Borel σ–algebra related to the Fell topology on the family of closed subsets of
RN . This, in turn, coincides with the Effros σ–algebra. If X(ω) is measurable in
this sense then it is also graph–measurable, see [18] for more details.

A closed random set X is called stationary if it, in addition, satisfies (3). Note
that in this event the set {ω : X(ω) 6= ∅ }, which is measurable by the Effros
measurability of X, is invariant with respect to the group of translations (τx)x∈RN
by stationarity, so it has probability either 0 or 1 by the ergodicity assumption.

Proposition 2.4. Let f be a continuous random function and C a closed subset of
R. Then

X(ω) := {x : f(x, ω) ∈ C}
is a closed random set in RN . If in addition f is stationary, then X is stationary.

See [9] for a proof.
For a random stationary set X it is immediate, by exploiting that the maps

{τx}x∈RN are measure preserving, that P(X−1(x)) does not depend on x, where

X−1(x) = {ω : x ∈ X(ω)}.
Such quantity will be called volume fraction of X and denoted by qX . Note that to
any measurable subset Ω′ of Ω it can be associated a stationary set Y through the
formula

Y (ω) := {x : τxω ∈ Ω′}.
In this case Y −1(x) = τ−xΩ′, and so qY = P(Ω′). By exploiting the ergodicity
assumption and Birkhoff Ergodic Theorem it is possible to derive an interesting in-
formation on the asymptotic structure of closed stationary sets.It says, in particular,
they are spread with some uniformity in the space. We refer the reader to [9] for a
proof.

Proposition 2.5. Let X be an almost surely nonempty stationary closed random
set in RN . Then for every ε > 0 there exists Rε > 0 such that

lim
r→+∞

| (X(ω) +BR) ∩Br|
|Br|

≥ 1− ε a.s. in Ω,
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whenever R ≥ Rε.

Given a Lipschitz random function v, we set

∆v(ω) :=
{
x ∈ RN : v(·, ω) is differentiable at x

}
.

Definition 2.6. A random Lipschitz function v is said to have stationary increments
if, for every z ∈ RN , there exists a set Ωz of probability 1 such that

v(x+ z, ω)− v(y + z, ω) = v(x, τzω)− v(y, τzω) for all x, y ∈ RN (4)

for every ω ∈ Ωz.

The following holds:

Proposition 2.7. Let v be a Lipschitz random function, then ∆v is a random
set. In addition, it is stationary with volume fraction 1 whenever v has stationary
increments.

Let v be a Lipschitz random function with stationary gradient. For every fixed x ∈
RN , the random variable Dv(x, ·) is well defined on ∆−1

v (x), which has probability 1
since ∆v is a stationary set with volume fraction 1. Accordingly, we can define the
mean E(Dv(x, ·)), which is furthermore independent of x by the stationary character
of Dv. In the sequel, we will be especially interested in the case when this mean is
zero.

Definition 2.8. A Lipschitz random function will be called admissible if it has
stationary increments and gradient with mean 0.

We state two characterizations of admissible random functions, and a result that
guarantees that stationary Lipschitz random functions are admissible.

Theorem 2.9. A Lipschitz random function v with stationary increments has gra-
dient with vanishing mean if and only if it is almost surely sublinear at infinity,
namely

lim
|x|→+∞

v(x, ω)

|x|
= 0 a.s. in ω. (5)

Theorem 2.10. A Lipschitz random function v with stationary increments has
gradient with vanishing mean if and only if

x 7→ E(v(y, ·)− v(x, ·)) = 0 for any x, y ∈ RN . (6)

Theorem 2.11. Any stationary Lipschitz random function v is admissible.

Notice that the mean E(v(x, ·)) of a Lipschitz random function is independent of
x, so when such a quantity is finite Theorem 2.11 is just a consequence of Theorem
2.10.

3. Stochastic Hamilton–Jacobi equations

We consider an Hamiltonian

H : RN × RN × Ω→ R
satisfying the following conditions:

(H1) the map ω 7→ H(·, ·, ω) from Ω to the Polish space C(RN×RN ) is measurable;
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(H2) for every (x, ω) ∈ RN × Ω, H(x, ·, ω) is convex on RN ;

(H3) there exist two superlinear functions α, β : R+ → R such that

α (|p|) ≤ H(x, p, ω) ≤ β (|p|) for all (x, p, ω) ∈ RN × RN × Ω;

(H4) for every (x, ω) ∈ RN × Ω, the set of minimizers of H(x, ·, ω) has empty
interior;

(H5) H(·+ z, ·, ω) = H(·, ·, τzω) for every (z, ω) ∈ RN × Ω.

Remark 3.1. Condition (H3) is equivalent to saying that H is superlinear and
locally bounded in p, uniformly with respect to (x, ω). We deduce from (H2)

|H(x, p, ω)−H(x, q, ω)| ≤ LR|p− q| for all x, ω, and p, q in BR, (7)

where LR = sup{ |H(x, p, ω)| : (x, ω) ∈ RN ×Ω, |p| ≤ R+2 }, which is finite thanks
to (H3). For a comment on hypothesis (H4), see Remark 3.6.

Remark 3.2. Any given periodic, quasi–periodic or almost–periodic Hamiltonian
H0 : RN × RN → R can be seen as a specific realization of a suitably defined
stationary ergodic Hamiltonian, cf. Remark 4.2 in [9]. In the periodic and quasi–
periodic cases we take as Ω a k–dimensional torus, with k suitably chosen, which
is separable both from the topological and the measure theoretic viewpoint. In the
almost–periodic case, the usual construction is to take as Ω the Bohr compacti-
fication of RN , which however is not separable, cf. [1]. In order to include this
interesting case in our treatment, we will show in the Appendix that, for a given
almost–periodic Hamiltonian H0, it is possible to construct a separable probability
space Ω, equipped with an ergodic group of translations, such that H0 can be seen
as a specific realization of a stationary ergodic Hamiltonian.

For every a ∈ R, we are interested in the stochastic Hamilton–Jacobi equation

H(x,Dv(x, ω), ω) = a in RN . (8)

The material we are about to expose has been already presented in [9, 10], to which
we refer for the details. Here we just recall the main items.

We say that a Lipschitz random function is a solution (resp. subsolution) of (8)
if it is a viscosity solution (resp. a.e. subsolution) a.s. in ω (see [3, 4] for the
definition of viscosity (sub)solution in the deterministic case). Notice that any such
subsolution is almost surely in Lipκa(Rn), where

κa := sup{ |p| : H(x, p, ω) ≤ a for some (x, ω) ∈ RN × Ω }, (9)

which is finite thanks to (H3). We are interested in the class of admissible subso-
lutions, hereafter denoted by Sa, i.e. random functions taking values in Lipκa(R)
with stationary increments and zero mean gradient that are subsolutions of (8).
An admissible solution will be also named exact corrector, remembering its role in
homogenization. Further, for any δ > 0, a random function vδ will be called a
δ–approximate corrector for the equation (8) if it belongs to Sa+δ and satisfies the
inequalities

a− δ ≤ H(x,Dvδ(x, ω), ω) ≤ a+ δ

in the viscosity sense a.s. in ω. We say that (8) has approximate correctors if it
admits δ–approximate correctors for any δ > 0.
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We proceed by defining the free and the stationary critical value, denoted by cf (ω)
and c respectively, as follows:

cf (ω) = inf
{
a ∈ R : (8) has a subsolution v ∈ Lip(RN )

}
, (10)

c = inf{a ∈ R : Sa 6= ∅ }. (11)

We emphasize that in definition (10) we are considering deterministic a.e. subsolu-
tions v of the equation (8), where ω is treated as a fixed parameter. Furthermore,
we note that cf (τzω) = cf (ω) for every (z, ω) ∈ RN × Ω, so that, by ergodicity,
the random variable cf (ω) is almost surely equal to a constant, still denoted by cf .
Hereafter we will write Ωf for the set of probability 1 where cf (ω) equals cf .

Concerning the definition of the critical value c, we notice that the set appearing at
the right–hand side of (11) is non void, since it contains the value sup(x,ω)H(x, 0, ω),

which is finite thanks to (H3). Moreover, the infimum is attained. In fact, see [10, 17]

Theorem 3.3. Sc 6= ∅.

It is apparent by the definitions that c ≥ cf . A more precise result, establishing
the relation with the effective Hamiltonian obtained via the homogenization [19, 22],
will be discussed in the next section.

In the sequel, we mostly focus our attention on the critical equation

H(x,Dv(x, ω), ω) = c in RN . (12)

The relevance of the critical value is given by the following result, see Theorem 4.5
in [9] for the proof.

Theorem 3.4. The critical equation (12) is the unique among the equations (8) for
which either an exact corrector or approximate correctors may exist.

Following the so called metric method for the analysis of (8), see [11], we introduce
an intrinsic path distance. In next formulae we assume that a ≥ cf and ω ∈ Ωf . We
start by defining the sublevels

Za(x, ω) := {p : H(x, p, ω) ≤ a },

and the related support functions

σa(x, q, ω) := sup {〈q, p〉 : p ∈ Za(x, ω) } .

It comes from (7) (cf. Lemma 4.6 in [9]) that, given b > a, we can find δ = δ(b, a) > 0
with

Za(x, ω) +Bδ ⊆ Zb(x, ω) for every (x, ω) ∈ RN × Ωf . (13)

This property is needed in the proof of Theorem 3.4. It is straightforward to check
that σa is convex in q, upper semicontinuous in x and, in addition, continuous
whenever Za(x, ω) has nonempty interior or reduces to a point. We extend the
definition of σa to RN ×RN ×Ω by setting σa(·, ·, ω) ≡ 0 for every ω ∈ Ω\Ωf . With

this choice, the function σa is jointly measurable in RN × RN × Ω and enjoys the
stationarity property

σa(·+ z, ·, ω) = σa(·, ·, τzω) for every z ∈ RN and ω ∈ Ω.

We define the semidistance Sa as

Sa(x, y, ω) = inf

{∫ 1

0
σa(γ(s), γ̇(s), ω) ds : γ ∈ Lipx,y([0, 1],RN )

}
, (14)
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The function Sa is measurable on RN×RN×Ω with respect to the product σ–algebra
B(RN )⊗ B(RN )⊗F , and satisfies the following properties:

Sa(x, y, τzω) = S(x+ z, y + z, ω)

Sa(x, y, ω) ≤ Sa(x, z, ω) + Sa(z, y, ω)

Sa(x, y, ω) ≤ κa|x− y|

for all x, y, z ∈ RN and ω ∈ Ω.
In the study of equation (8), a special role is played by the classical (projected)

Aubry set (cf. [11]), defined for every ω ∈ Ωf as the collection of points y ∈ RN such
that

inf

{∫ 1

0
σa(γ, γ̇, ω) ds : γ ∈ Lipy,y([0, 1],RN ), H1(γ) ≥ δ

}
= 0

for some δ > 0, or, equivalently (cf. [11, Lemma 5.1]), for any δ > 0. From the
Aubry–Mather theory for deterministic Hamiltonians we know that, when a > cf ,
this set is empty for all ω ∈ Ωf , i.e. almost surely. Hence, the only interesting case
is the one corresponding to a = cf . Hereafter we will denote by Af (ω) the collection

of points y of RN enjoying the above condition with a = cf . The set Af (ω) is closed
for every ω ∈ Ω.

We will also use later an equivalent definition of Af (ω), see [6]. For every ω ∈ Ω,
let

L(x, q, ω) := max
p∈RN

{〈p, q〉 −H(x, p, ω)} , (x, q) ∈ RN × RN

and, for every t > 0,

ht(x, y, ω) := inf

{∫ t

0
(L(γ, γ̇, ω) + c) ds : γ(0) = x, γ(t) = y

}
, x, y ∈ RN .

Then

Af (ω) = { y ∈ RN : lim inf
t→+∞

ht(y, y, ω) = 0 }. (15)

In the next theorem we outline the main deterministic properties linking Af (ω)
to equation (8), see [11].

Theorem 3.5. Let ω ∈ Ωf . The following holds:

(i) Assume that Af (ω) 6= ∅. If w0 is a function defined on C ⊂ Af (ω) such that

w0(x)− w0(y) ≤ Scf (y, x, ω) for every x, y ∈ C,

then the function

w(x) := min
y∈C

(
w0(y) + Scf (y, x, ω)

)
x ∈ RN

is the maximal subsolution of (8) with a = cf equaling w0 on C, and a
solution as well.

(ii) Let U be a bounded open subset of RN , and assume that either a > cf , or
a = cf and U ∩ Af (ω) = ∅. Let w0 be a function defined on ∂U such that

w0(x)− w0(y) ≤ Sa(y, x, ω) for every x, y ∈ ∂U .

Then the function

w(x) := inf
y∈∂U

(
w0(y) + Sa(y, x, ω)

)
x ∈ U

10



is the unique viscosity solution of the Dirichlet Problem:{
H(x,Dφ(x), ω) = a in U

φ(x) = w0(x) on ∂U .

(iii) Assume that a = cf and let U be a bounded open subset of RN with U ∩
Af (ω) 6= ∅. Let w0 be a function defined in ∂U ∪Af 1–Lipschitz continuous
with respect to Sa. Then the function

w(x) := inf
{
w0(y) + Sa(y, x, ω) : y ∈ ∂U ∪ (U ∩ Af )

}
x ∈ U \ Af

is the unique viscosity solution of the Dirichlet Problem:{
H(x,Dφ(x), ω) = a in U \ Af
φ(x) = w0(x) on ∂U ∪ (U ∩ Af ).

We define, for every ω ∈ Ω, the set of equilibria, as follows:

E(ω) := {y ∈ R : min
p
H(y, p, ω) = cf }.

The set E(ω) is a (possibly empty) closed subset of Af (ω) (cf. [11, Lemma 5.2]). It
is apparent that cf ≥ supx∈RN minp∈RN H(x, p, ω) a.s. in ω; we point out that E(ω)
is nonempty if and only if the previous formula holds with an equality. In this case,
E(ω) is made up by the points y where the maximum is attained.

Remark 3.6. The inclusion E(ω) ⊆ Af (ω) depends on the fact that the cf–sublevel
{p : H(y, p, ω) ≤ cf} is non–void and has empty interior when y ∈ E(ω). The latter
is a consequence of (H4), and this is actually the unique point where such condition
is used.

We recall for later use a result from [10].

Proposition 3.7. E(ω) and Af (ω) are stationary closed random sets.

4. Lax formula and closed random sets

In this section we give a stochastic version of Lax formula and investigate when
it provides an exact corrector.

Let C(ω) be an almost surely nonempty stationary closed random set in RN . Take
a Lipschitz random function g and set, for a ≥ cf ,

u(x, ω) := inf{g(y, ω) + Sa(y, x, ω) : y ∈ C(ω) } x ∈ RN , (16)

where we agree that u(·, ω) ≡ 0 when either C(ω) = ∅ or the above infimum is equal
to −∞. The following holds, see [9, 10]:

Proposition 4.1. Let a ≥ cf and C(ω), u as above.

(i) Let g be a stationary random function and assume that the infimum in (16)
is a.s. finite. Then u is a stationary random variable belonging to Sa and
satisfies u(·, ω) ≤ g(·, ω) on C(ω) a.s. in ω. Moreover, u is a viscosity
solution of (8) in RN \ C(ω) a.s. in ω.

(ii) Assume g ∈ Sa. Then the random Lipschitz function u belongs to Sa and
satisfies u(·, ω) = g(·, ω) on C(ω) a.s. in ω. Moreover, u is a viscosity
solution of (8) in RN \ C(ω) a.s. in ω.
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We recall that the effective Hamiltonian H is the function associating to any
P ∈ RN the critical value of the Hamiltonian H(x, p + P, ω), equivalently it can
be defined by homogenization, see [19, 22]. It can be proved, see [9, 10], that it is
convex and superlinear, and minRN H = cf . For any a ≥ cf we denote by Za the

a–sublevel of H. By making use of Propositions 4.1 and 3.7, the following result has
been proved in [10]

Theorem 4.2.

(i) If c = cf and the classical Aubry set Af (ω) is almost surely nonempty, then
the extension of any g ∈ Sc from Af through Lax formula with distance Sc
provides an exact corrector for (12);

(ii) If 0 ∈ Int
(
Zc
)
, then c = cf and there exists an exact corrector for (12) if

and only if the classical Aubry set Af (ω) is almost surely nonempty.

To ease notations, from now on we will always write S, σ and S in place of Sc, σc
and Sc, respectively.

The next result shows that the property that the Lax formula with source a
random set C(ω) and trace g ∈ S gives an exact corrector can be solely detected
looking at the behavior of g on C. This will be used in the next section for studying
the random Aubry set.

Theorem 4.3. Let C(ω) and g be a stationary closed random set and a critical
subsolution, respectively. Assume that either c > cf , or c = cf and Af (ω)∩C(ω) = ∅
a.s. in ω. Then the Lax extension of g from C(ω) with distance S, denoted by u, is
an exact corrector if and only if

for any y0 ∈ C(ω) there exists a diverging sequence (yn)n in C(ω)

such that (17)

g(y0, ω) = lim
n
g(yn, ω) + S(yn, y0, ω),

a.s. in ω.

Proof. (17) holds ⇒ u is an exact corrector

In view of Proposition 4.1, we can select a subset Ω′ of Ω with P(Ω′) = 1 such
that C(ω) 6= ∅, (17) holds and u(·, ω) is a viscosity solution to (12) in RN \ C(ω),
whenever ω ∈ Ω′. Let us fix ω in Ω′. If u(·, ω) is not a critical solution, there exist
x0 ∈ C(ω) and a strict C1 subtangent ϕ to u(·, ω) at x0 with

H(x0, Dϕ(x0), ω) < c.

By the usual technique of pushing up such test function, we can construct a deter-
ministic subsolution v to H(x,Du, x, ω) = c such that

v(x0) > u(x0, ω) and v(yn) = u(yn, ω) definitively in n.

For n sufficiently large we then get

v(yn) + S(yn, x0, ω) < v(x0),

which is impossible by the subsolution property of v.

u is an admissible solution ⇒ (17) holds

Let us fix ω ∈ Ω such that C(ω) 6= ∅, C(ω) ∩ Af (ω) 6= ∅, and u(·, ω) and g(·, ω) are
an admissible critical solution and subsolution, respectively. These properties hold
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in a subset of Ω with probability 1. We introduce a partial order relation in C(ω)
by setting

y1 � y2 ⇐⇒ g(y2, ω) = g(y1, ω) + S(y1, y2, ω).

We exploit the triangle inequality on S and the fact that g(·, ω) is a subsolution,
to see that this relation enjoys the transitivity property. To prove that it is also
antisymmetric, we consider y1, y2 with y1 � y2 and y2 � y1, accordingly

g(y2, ω) = g(y1, ω) + S(y1, y2, ω) and g(y1, ω) = g(y2, ω) + S(y2, y1, ω).

By summing up, we get S(y1, y2, ω) + S(y2, y1, ω) = 0, which gives y1 = y2, as
desired, since Af (ω) ∩ C(ω) = ∅.

For a fixed y0 ∈ C(ω), let

Cy0(ω) = {y ∈ C(ω) : y � y0 }.
Using the continuity of g(·, ω), S(·, y0, ω) and the closed character of C(ω), it is easy
to check that this set is closed. If we show that Cy0(ω) is unbounded, the assertion
is obtained.

Let us then assume, for purposes of contradiction, that Cy0(ω) is compact. We
show that in this case Cy0(ω) admits a maximal element with respect to �. Thanks
to Zorn lemma, it suffices to prove:

Claim: any totally ordered subset E of Cy0(ω) admits an upper bound in Cy0(ω).

We first show that E is totally ordered, i.e. y � y′, y′ � y or y = y′ for any pair
y, y′ of elements of E. Let

y = lim
n
yn, y′ = lim

n
y′n, with yn, y

′
n ∈ E for every n ∈ N.

If definitively yn � y′n, then passing to the limit in the equality

g(y′n, ω) = g(yn, ω) + S(yn, y
′
n, ω)

we get y � y′. Similarly y′ � y if y′n � yn definitively. Finally, if there exist two
subsequences with

y′nj � ynj and ynk � y
′
nk
,

we get y = y′, for both y � y′ and y′ � y hold, and � enjoys the antisymmetric
property.

Since E is compact, for every ε > 0 we find a finite number m = m(ε) of points
yε1, . . . , y

ε
m in E such that E ⊂ ∪iBε(yεi ). Up to a reordering, we can as well assume

yε1 � yεj for all j 6= 1. For every y ∈ E and a suitable i ∈ {1, . . . ,m} we have

g(y, ω) ≥ g(yεi , ω) + S(yεi , y, ω)− 2κc ε

≥ g(yε1, ω) + S(yε1, y
ε
i , ω) + S(yεi , y, ω)− 2κcε ≥ g(yε1, ω) + S(yε1, y, ω)− 2κcε.

Taking the limit as ε → 0 of yε1 and using the compactness of E, we get an upper
bound for E, as it was claimed.

We denote by ỹ a maximal element in Cy0(ω) with respect to �. Since u(·, ω)
agrees with g(·, ω) on C(ω) and is a viscosity solution of (12), and Af (ω)∩C(ω) = ∅,
Theorem 3.5 yields that there exists y′ 6= ỹ with

g(ỹ, ω) = u(y′, ω) + S(y′, ỹ, ω).

If
u(y′, ω) = g(z, ω) + S(z, y′, ω) for some z ∈ C(ω),

then
g(ỹ, ω) = g(z, ω) + S(z, y′, ω) + S(y′, ỹ, ω) ≥ g(z, ω) + S(z, ỹ, ω),
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which, in turn, implies z = ỹ since z ∈ Cy0(ω) by the transitivity property of �
and ỹ is maximal; consequently S(ỹ, y′, ω)+S(y′, ỹ, ω) = 0 which is impossible since
ỹ 6= y′ and Af (ω) ∩ C(ω) = ∅. Therefore

u(y′, ω) = lim
n

(
g(yn, ω) + S(yn, y

′, ω)
)
,

for some diverging sequence (yn)n in C(ω). We derive

g(ỹ, ω) = lim
n

(
g(yn, ω) + S(yn, y

′, ω) + S(y′, ỹ, ω)
)

≥ lim
n

(
g(yn, ω) + S(yn, ỹ, ω)

)
≥ g(ỹ, ω),

and, since ỹ � y0,

g(y0, ω) = g(ỹ, ω) + S(ỹ, y0, ω) = lim
n
g(yn, ω) + S(yn, ỹ, ω) + S(ỹ, y0, ω)

≥ lim
n
g(yn, ω) + S(yn, y0, ω).

Since the converse inequality also holds as g(·, ω) is a critical subsolution, we finally
obtain that yn ∈ Cy0(ω) for any n, which is impossible since yn is a diverging
sequence and Cy0(ω) is a compact set, by assumption. �

We point out that, in the previous theorem, the argument for deriving from (17)
that u is an exact corrector, can be used to get a slight more general assertion, that
we write down below for later use.

Corollary 4.4. Let C(ω) and u be a stationary closed random set and the Lax
extension of some critical subsolution from C(ω) with distance S, respectively. If for
any y0 ∈ C(ω) there exists y1 6= y0 with

u(y0, ω) = u(y1, ω) + S(y1, y0, ω),

a.s. in ω, then u is an exact corrector.

We derive a further corollary of Theorem 4.3:

Corollary 4.5. Let C(ω) and g be a stationary closed random and an admissible
critical subsolution, respectively. Assume that either c > cf , or c = cf and Af (ω) ∩
C(ω) = ∅ a.s. in ω. If the Lax extension of g from C(ω) with distance S is an exact
corrector then

for any y0 ∈ C(ω) there exists a diverging sequence (zn)n in Rn

such that (18)

g(y0, ω) = g(zn, ω) + S(zn, y0, ω) for any n,

a.s. in ω.

Proof. Given ω in a subset of Ω with probability 1 and y0 ∈ C(ω), there is, by
Theorem 4.3, a diverging sequence (yn)n in C(ω) satisfying (17). Given k ∈ N, we
can assume, without loss of generality, that |yn| > k, for any n. Let (ξn)n a sequence
of curves, defined in [0, 1], joining yn to y0 with∫ 1

0
σ(ξn, ξ̇n, ω) ds+ g(yn, ω) ≤ g(y0, ω) + 1/n for any n ∈ N. (19)

Since |yn| > k, there is, for any n, tn ∈ [0, 1] with

|ξ(tn)| = k.
14



From (19) we derive

S(yn, ξn(tn), ω) + S(ξn(tn), y0, ω)

≤
(
g(ξn(tn), ω)− g(yn, ω)

)
+
(
g(y0, ω)− g(ξn(tn), ω)

)
+ 1/n

and taking into account that g is a critical subsolution, we get

lim
n
S(ξn(tn), y0, ω) = lim

n
g (y0, ω)− g (ξn(tn), ω)

For any limit point zk of (ξn(tn)), we find

g(y0, ω)− g(zk, ω) = S(zk, y0, ω) where |zk| = k,

and since k ∈ N was arbitrarily chosen, the assertion follows. �

5. Random Aubry set

We start by introducing a notion of Aubry set adapted to the stationary ergodic
setting, see also Remark 6.9 in [9]. To motivate it, we recall that in the deterministic
case the Aubry set can be characterized by the property that the critical intrinsic
distance from any of its points is a critical solution. Roughly speaking, the idea un-
derlying the next definition is to replace points by random stationary closed subsets
and make use of the Lax formula taking as trace any critical admissible subsolutions.

Definition 5.1. A stationary closed random set A(ω) is called random Aubry set
if

(i) the extension of any admissible critical subsolution from A(ω) via the Lax
formula (16) yields an exact corrector;

(ii) any closed random stationary set C(ω) enjoying the previous property is
almost surely contained in A(ω).

We also need the following

Definition 5.2. An admissible critical subsolution is called weakly strict on some
random set X(ω) if a.s. in ω

v(x, ω)− v(y, ω) < S(y, x, ω) for every x, y ∈ X(ω) with x 6= y.

The main result of the first part of the section is

Theorem 5.3. Assume that c > cf or c = cf and Af (ω) = ∅ a.s. in ω. Then there

exists a critical admissible subsolution which is weakly strict in RN \A(ω) a.s. in ω.

This, in particular, implies the existence of a critical admissible subsolution,
weakly strict on the whole RN , if the random Aubry set is almost surely empty.

We postpone the proof after some preliminary analysis. When c = cf it is clear
by Theorem 4.2 that Af (ω) ⊆ A(ω), and this inclusion can be strict a.s. in ω. This
occurs even in the periodic setting. Albert Fathi provided us with an example of
a periodic Hamiltonian for which Af is empty, while, of course, A is not. In this

example, however, 0 ∈ ∂Zcf . Actually we have:

Proposition 5.4. Assume that 0 ∈ Int
(
Zcf
)

and, consequently, that c = cf . Then
A(ω) = Af (ω) a.s. in ω. Moreover Af (ω) is a uniqueness set for (12).
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Proof. If Af = ∅ a.s. in ω, then A is also almost surely empty since no correctors
can exist by Theorem 4.2 (ii). Let us assume that Af (ω) 6= ∅ a.s. in ω, and, in
addition, for purposes of contradiction, that Af (ω) ( A(ω) a.s in ω. We claim that,
in this case, there exists a closed random stationary a.s. nonempty set C(ω) with

C(ω) ⊂ A(ω) and C(ω) ∩ Af (ω) = ∅ a.s. in ω.

For this, we denote by f(x, ω) the Euclidean distance of x from Af (ω), for any x, ω
(with the convention that it is equal to −∞ whenever Af (ω) is empty) and, for any
n ∈ N, and consider the random set

Cn(ω) := A(ω) ∩ {x : f(x, ω) ≥ 1/n}.

We see that it is closed stationary taking into account that f is a stationary con-
tinuous random function, Proposition 2.4, and the fact that the intersection of two
closed random stationary sets inherits the same property. If Cn(ω) = ∅ a.s. in ω,
for any n, then

A(ω) ⊂
⋂
n

{x : f(x, ω) < 1/n} = Af (ω) a.s. in ω,

which is in contrast with our assumption. Accordingly, there exists n0 with Cn0 6= ∅
a.s in ω. The claim is proved by taking C = Cn0 .

Let now u be any critical admissible subsolution. By the very definition of random
Aubry set, the Lax extension of u from C via S yields an exact corrector, then,
according to Theorem 4.3 and (17), we find a.s. in ω

u(y0, ω) = lim
n
u(yn, ω) + S(yn, y0, ω)

for any y0 ∈ C(ω) and some diverging sequence (yn)n of elements of C(ω). On the
other side, since 0 ∈ intZc, we have a.s. in ω

lim
|y|→+∞

u(y, ω) + S(y, y0, ω) = +∞ for any y0 ∈ RN , (20)

which yields a contradiction.
Let us finally prove the asserted uniqueness property of Af . Let v be an exact

corrector, we fix ω such that Af (ω) 6= ∅, v(·, ω) is a solution to H(x,Du, ω) = c and
(20) holds true. We consider the sequence of Dirichlet problems.{

H(x,Du, ω) = c in Bn \ Af (ω)

u(x) = v(x, ω) in ∂Bn ∪ (Bn ∩ Af (ω).

According to Theorem 3.5, we find, for any n, the relation

v(0, ω) := inf
{
v(y, ω) + S(y, 0, ω) : y ∈ ∂Bn ∪ (Bn ∩ Af )

}
.

Letting n go to infinity and taking into account (20), we deduce the existence of
y0 ∈ Af (ω) satisfying

v(0, ω) = v(y0, ω) + S(y0, 0, ω).

By applying the previous argument to any x ∈ RN in place of 0, we finally get

v(x, ω) = inf{v(y, ω) + S(y, x, ω) : x ∈ Af (ω), }

which says that any exact corrector is the Lax extension of its trace on Af (ω) a.s.
in ω. This ends the proof. �
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We assume from now on that c > cf or c = cf and Af (ω) = ∅ a.s. in ω. For any
v ∈ S, we define

rv(x, ω) = max{r ≥ 0 : inf
y∈∂Br(x)

(
v(y, ω) + S(y, x, ω)

)
= v(x, ω) }, ω ∈ Ω. (21)

Proposition 5.5. Let v ∈ S. The following properties hold:

(i) the map rv : RN × Ω→ R is jointly measurable in Ω× RN ;

(ii) rv is stationary;

(iii) rv(·, ω) is upper semicontinuous on RN for every ω ∈ Ω;

(iv) for every z ∈ RN , rv(·, τzω) = rv(·+ z, ω) a.s. in ω;

(v) if v(·, ω) is the local uniform limit in RN of a sequence vn(·, ω), with vn ∈ S
for every n, then

lim sup
n→+∞

rvn(x, ω) ≤ rv(x, ω) for every x ∈ RN .

(vi) if v̂ := v − v(0, ω) for every ω, then rv̂ = rv in RN × Ω.

Proof. Let us denote by ψr(x, ω) the infimum appearing in formula (21). Fix r > 0
and let (zn)n be a dense subset of ∂Br. It is clear that

ψr(x, ω) = inf
n∈N

(v(x+ zn, ω) + S(x+ zn, x, ω)) ,

which implies that ψr is measurable on RN ×Ω. Let now (rn)n be a dense subset of
R+ and, for each n ∈ N, set

En := {(x, ω) ∈ RN × Ω : ψrn(x, ω) = v(x, ω) }.
Then rv(x, ω) = supn rn χEn(x, ω) on RN × Ω, and this proves (i). Assertions (ii)–
(vi) follow from the very definition of rv and the fact that v has stationary incre-
ments. �

We will also need the following:

Lemma 5.6. Let v ∈ S and α > 0. Then the sets

Cα(ω) := {x ∈ RN : rv(x, ω) ≥ α }, C∞(ω) := {x ∈ RN : rv(x, ω) = +∞}
are stationary closed random sets.

Proof. It is clear by Proposition 5.5 (ii) that Cα is stationary. In order to prove that
Cα is a closed random set, we note that Cα(ω) = {x ∈ RN : Gα(x, ω) = v(x, ω) },
where

Gα(x, ω) := min
y∈∂Bα

(
v(x+ y, ω) + S(x+ y, x, ω)

)
, (x, ω) ∈ RN × Ω.

It is easily seen that Gα is jointly measurable and continuous in x for any fixed
ω, thus proving the asserted property for Cα(ω) in view of Proposition 2.4. The
remainder of the statement follows since C∞(ω) =

⋂
nCn(ω) and the intersection

of a countable family of stationary closed random sets is still a stationary closed
random set. �

Theorem 4.3 suggests that the following identity should hold

A(ω) =
⋂
v∈S
{x ∈ RN : rv(x, ω) = +∞},
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a.s in ω. However this need not be true, the main difficulty being that the above
intersection is not countable in general. To avoid this problem, we essentially exploit
the separability assumption on Ω. According to Theorems 2.1 and 2.2, the family
of renormalized critical subsolution

Ŝ := {v̂ ∈ S : v̂(0, ω) = 0 for every ω}

is a subspace of L0(Ω,C(RN )), in particular it is separable with respect to the Ky
Fan metric. Therefore there exists a sequence of Lipschitz random functions (vn)n
which is dense in Ŝ with respect to the convergence in probability. That implies,
in view of Theorem 2.1, that (vn)n is also dense for the almost sure convergence in
C(RN ). We have

Theorem 5.7. Let (vn)n as above. Then

A(ω) =
⋂
n∈N
{x ∈ RN : rvn(x, ω) = +∞} a.s. in ω. (22)

Proof. Let us denote by C(ω) the set appearing at the right–hand side of (22),
for every ω ∈ Ω. The fact that C(ω) is a stationary closed random set follows from
Lemma 5.6. Let us show that C(ω) ⊆ A(ω) a.s. in ω. By definition of Aubry set,
we need to show that C(ω) enjoys item (i) in Definition 5.1. According to Corollary
4.4, this amounts to requiring the following identity to hold almost surely:

rv(·, ω) > 0 on C(ω), (23)

whenever v is the Lax extension of some admissible trace from C(ω). We set v̂ =

v− v(0, ω) for every ω. Clearly v̂ ∈ Ŝ, so there exists a sequence (vnk)k and a set Ω0

of probability 1 such that vnk(·, ω)⇒ v̂(·, ω) in RN for every ω ∈ Ω0. By Proposition
5.5 for any such ω we get

lim sup
k→+∞

rvnk (x, ω) ≤ rv̂(x, ω) = rv(x, ω) for every x ∈ RN ,

thus proving (23) by the definition of C(ω). Conversely, since A(ω) enjoys item
(i) in Definition 5.1, we have in particular that rvn(·, ω) ≡ +∞ on A(ω) a.s. in ω
for every n ∈ N by Corollary 4.5. That implies A(ω) ⊆ C(ω) and concludes the
proof. �

We proceed by showing the existence of a random function v in S enjoying a
minimality property.

Proposition 5.8. There exist v ∈ S such that, for every v ∈ S, the following
inequality holds almost surely:

rv(x, ω) ≤ rv(x, ω) in RN .

In particular, A(ω) = {x ∈ RN : rv(x, ω) = +∞} a.s. in ω.

Proof. Let us take a sequence of positive real numbers (λn)n with
∑

n λn = 1 and
set

v(x, ω) =
+∞∑
n=1

λnvn(x, ω), for every (x, ω) ∈ RN × Ω, (24)

where vn are the renormalized critical subsolutions appearing in (22). It is easy to
check that v ∈ S. Let Ω0 be a set of probability 1 such that for ω ∈ Ω0 all the
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functions vn(·, ω) are subsolutions of the critical equation (12). Let us fix ω ∈ Ω0

and x ∈ RN . If |y − x| > rvn(x, ω) for some n ∈ N, then

v(x, ω)− v(y, ω) =
∑
k 6=n

λk (vk(x, ω)− vk(y, ω)) + λn (vn(x, ω)− vn(y, ω))

<
∑
k 6=n

λkS(y, x, ω) + λnS(y, x, ω) = S(y, x, ω).

We derive

rv(x, ω) ≤ rvn(x, ω) for every x ∈ RN and n ∈ N. (25)

To show that (25) holds true almost surely when vn is replaced by any v ∈ S, set

v̂ = v−v(0, ω). Clearly v̂ ∈ Ŝ, and being (vn)n dense in Ŝ with respect to the almost
sure convergence, we derive by Proposition 5.5 (iii), (vi) that

lim inf
n→+∞

rvn(x, ω) ≤ rv̂(x, ω) = rv(x, ω) for every x ∈ RN

a.s. in ω. This shows the minimality of rv and, consequently, that {x ∈ RN :
rv(x, ω) = +∞} ⊆ A(ω) a.s. in ω. The opposite inclusion holds as well since
rv(·, ω) ≡ +∞ on A(ω) a.s. in ω by definition of Aubry set, as already remarked in
the proof of Theorem 5.7. �

Proof of Theorem 5.3. More precisely, we will prove that there exists v ∈ S
such that

rv(·, ω) ≡ +∞ on A(ω), rv(·, ω) ≡ 0 in RN \ A(ω),

a.s. in ω.
Let v the admissible critical subsolution given by Proposition 5.8, see (24). If v is

weakly strict on the whole RN , we derive from Proposition 5.8 that A(ω) is almost
surely empty and the assertion follows. If, on the other hand, v is not weakly strict
on RN , for a suitable α > 0 the set

Cα(ω) := {x ∈ RN : rv(x, ω) ≥ α}

is a.s. nonempty, and is in addition a closed stationary random set by Lemma 5.6.
In view of Proposition 5.8

Cα(ω) ⊇ {x ∈ RN : rv(x, ω) = +∞} = A(ω) a.s in ω. (26)

To show that the opposite inclusion holds as well, let u be the random function
obtained via the Lax–formula (16) with Cα(ω) in place of C(ω) and v in place of
g. By the minimality property of rv, we derive that ru(·, ω) is strictly positive on
Cα(ω) a.s in ω, so combining Corollary 4.4 with Proposition 4.1 we get that u is
an exact corrector with trace v(·, ω) on Cα(ω). Then we invoke Theorem 4.3 to see
that rv(·, ω) ≡ +∞ on Cα(ω) a.s. in ω. This proves that Cα(ω) agrees with A(ω)
a.s. in ω, and that A(ω) is almost surely nonempty. As a consequence we deduce
that Cα(ω) is almost surely nonempty for every α > 0, see (26). We can therefore
iterate the above argument to prove that, for every α > 0, Cα(ω) = A(ω) a.s. in ω,
i.e.

{x ∈ RN : rv(x, ω) ≥ α} = {x ∈ RN : rv(x, ω) = +∞} a.s. in ω.

This readily gives RN \ A(ω) = {x ∈ RN : rv(x, ω) = 0}, as it was to be shown.
�
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In the second part of the section we prove that the random Aubry set is almost
surely foliated by curves defined in R enjoying some minimality conditions, where
the critical admissible subsolutions coincide up to an additive constant. When H is
regular enough, such curves turn out to be integral curves of the Hamiltonian flow.
This generalizes properties holding in the deterministic setting.

Theorem 5.9. Assume A(ω) 6= ∅ a.s. in ω. Then there exists a set Ω0 of probability
1 such that for any ω ∈ Ω0 and any x ∈ A(ω) we can find a curve ηx : R → A(ω)
(depending on ω) with ηx(0) = x satisfying the following properties:

(i) for every a < b in R

S(ηx(a), ηx(b), ω) =

∫ b

a
(L(ηx, η̇x, ω) + c) ds;

(ii) lim
t→±∞

|ηx(t)| = +∞;

(iii) for every v ∈ S the following equality holds a.s. in ω:∫ b

a
(L(ηx, η̇x, ω) + c) ds = v(ηx(b), ω)− v(ηx(a), ω) for every a < b in R.

We start by some preliminary remarks.
Let Ȟ(x, p, ω) = H(x,−p, ω), and denote by č, Š and Ǎ(ω) the associated critical

value, the family of admissible subsolutions of Ȟ(x,Dv, ω) = č and the Aubry set,
respectively. It is easy to see that č = c. We also have:

Proposition 5.10. Ǎ(ω) = A(ω) a.s. in ω.

Proof. Let Š the semi–distance associated to Ȟ. It is easy to check that

Š(x, y, ω) = S(y, x, ω) for every x, y ∈ RN and ω ∈ Ω.

Let v be a random function of S weakly strict outside the Aubry set, see Theorem
5.3. Clearly −v ∈ Š. Let Ω0 be a set of probability 1 such that for every ω ∈ Ω0

the function v(·, ω) is a critical subsolution and

RN \ A(ω) = {x ∈ RN : rv(x, ω) = 0 }.
We claim that the stationary random function ř−v(·, ω), defined through (21) with
−v in place of v and Š in place of S, vanishes in RN \ A(ω) for every ω ∈ Ω0. This
would imply Ǎ(ω) ⊂ A(ω) a.s. in ω, and arguing analogously the opposite inclusion
can be obtained as well.

To prove the claim, we argue by contradiction by assuming that there exist an
ω ∈ Ω0 and a point x ∈ RN \ A(ω) such that ř−v(x, ω) > 0. Then there exist an
r > 0 and a point y ∈ ∂Br(x) such that

−v(x, ω) = −v(y, ω) + Š(y, x, ω). (27)

Since A(ω) is closed and −v(·, ω) is a critical subsolution for Ȟ, we can choose r > 0
small enough such that ∂Br(x) ⊂ RN \ A(ω). From (27) we obtain

v(y, ω) = v(x, ω) + S(x, y, ω),

yielding rv(y, ω) > 0 with y ∈ RN \ A(ω), a contradiction to the choice of Ω0. �

Let
L(x, q, ω) := max

p∈RN
{〈p, q〉 −H(x, p, ω)} .
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The inequality

L(x, q, ω) ≥ max
H(x,p,ω)≤c

{〈p, q〉 −H(x, p, ω)} = σ(x, q, ω)− c

yields ∫ b

a
(L(γ, γ̇, ω) + c) dt ≥

∫ b

a
σ(γ, γ̇, ω) dt

for every curve γ : [a, b]→ RN . We also recall the relation

S(y, x, ω) = inf

{∫ t

0
(L(γ, γ̇, ω) + c) ds : γ(0) = x, γ(t) = y, t > 0

}
for every x, y ∈ RN and ω ∈ Ω.

We approach the proof of Theorem 5.9 by proving a weaker version of it.

Proposition 5.11. Assume A(ω) 6= ∅ a.s. in ω and let v ∈ S be weakly strict
outside the Aubry set. Then there exists a set Ωv of probability 1 such that for any
ω ∈ Ωv and any x ∈ A(ω) we can find a curve ηx : R → A(ω) (depending on ω)
with ηx(0) = x satisfying

S(ηx(a), ηx(b), ω) =

∫ b

a
(L(ηx, η̇x, ω) + c) ds = v(ηx(b), ω)− v(ηx(a), ω),

whenever a < b in R. In addition lim
t→±∞

|ηx(t)| = +∞.

Proof. We take Ωv such that for every ω ∈ Ωv the function v(·, ω) is a critical
subsolution, A(ω) 6= ∅ and

A(ω) = {x ∈ RN : rv(x, ω) = +∞}, RN \ A(ω) = {x ∈ RN : rv(x, ω) = 0}.
Fix ω ∈ Ωv. The function

u(x) := inf{v(x, ω) + S(y, x, ω) : y ∈ A(ω) }, x ∈ RN ,

is a viscosity solution of
H(x,Du, ω) = c in RN ,

and consequently u(x) − c t is a solution of the time–dependent Hamilton–Jacobi
Cauchy problem {

∂tw +H(x,Dw, ω) = 0 in (0,+∞)× RN

w(0, x, ω) = u(x) in RN .

Hence the following Lax–Oleinik representation formula holds for every x ∈ RN and
t > 0:

u(x) = inf

{
u(γ(−t)) +

∫ 0

−t
(L(γ(s), γ̇(s), ω) + c) ds : γ(0) = x

}
, (28)

where γ varies in the family of absolutely continuous curves from [−t, 0] to RN , see
[8]. By standard arguments of the Calculus of Variations [5], a minimizing absolutely
continuous curve does exist for any fixed t > 0 thanks to the coercivity and lower
semicontinuity properties of L. Moreover such curves turn out to be equi–Lipschitz
continuous, see [7]. Given an increasing sequence tn with limn tn = +∞, we denote
by γn the corresponding minimizers and extend them on the whole interval (−∞, 0]
by setting γn(t) = γn(−tn) in (−∞,−tn), for any n. Thanks to Ascoli Theorem, the
sequence γn so defined has a local uniform limit, denoted by γx, in (−∞, 0], up to
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subsequences. Taking into account the optimality of the γn and the fact that u is a
critical (sub)solution, we get for any t > 0

u(γx(0))− u(γx(−t)) =

∫ 0

−t
(L(γx, γ̇x, ω) + c) ds = S(γx(−t), γx(0), ω), (29)

and for any a < b ≤ 0,

u(γx(b))− u(γx(a)) =

∫ b

a
(L(γx, γ̇x, ω) + c) ds = S(γx(a), γx(b), ω).

If, in particular, x = γx(0) ∈ A(ω), we have

u(γx(0)) = v(γx(0), ω), u(γx(−t)) ≥ v(γx(−t), ω) for every t > 0.

From (29) we then derive

S(γx(−t), γx(0), ω) ≤ v(γx(0), ω)− v(γx(−t), ω),

which in turn implies that v(·, ω) and u(·) coincide on γx. Since rv(·, ω) vanishes
outside A(ω), we conclude the support of γx is contained in A(ω), as claimed.

The same argument can be applied to the function−v(·, ω) and to the Hamiltonian
Ȟ(x, p, ω) := H(x,−p, ω). In view of Proposition 5.10, we can assume, without any
loss of generality, that Ǎ(ω) = A(ω). Taking into account the relations

Ľ(x, q, ω) = L(x,−q, ω), σ̌(x, q, ω) = σ(x,−q, ω), Š(x, y, ω) = S(y, x, ω)

for every x, y, q ∈ RN , we deduce as above that for every x ∈ A(ω) there exists a
curve ξx : (−∞, 0]→ A(ω) with ξx(0) = x satisfying

−v(ξx(b), ω) + v(ξx(a), ω) =

∫ b

a
Ľ(ξx, ξ̇x, ω) ds = Š(ξx(a), ξx(b), ω)

for every a < b ≤ 0. The curve ηx with the claimed properties is obtained by setting

ηx(t) :=

{
ξx(−t) if t ≥ 0

γx(t) if t ≤ 0.

Finally, if there is a limit point x̃ of ηx for t→ ±∞, we can find a sequence of compact
intervals [an, bn] with bn − an ≥ n such that ηx(an) and ηx(bn) both converge to x̃
and ∫ bn

an

(L(ηx, η̇x, ω) + c) ds = S(ηx(an), ηx(bn), ω)→ 0.

By joining x̃ to ηx(an) and to ηx(bn) with two segments, we can define a sequence
of loops ξn : [0, tn]→ RN with x̃ as base point such that tn → +∞ and∫ tn

0
(L(ξn, ξ̇n, ω) + c) ds→ 0.

This would imply that x̃ ∈ Af (ω) in view of (15). Since Af (ω) is almost surely
empty by hypothesis, we see that no such points can exist and the limit relation at
infinity asserted in the statement follows. �

We proceed to show that the minimal curves ηx can be chosen independently of
v ∈ S.
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Proof of Theorem 5.9. The critical subsolution v appearing in the statement of
Proposition 5.8 is weakly strict outside the Aubry set and has the form

v(x, ω) =
∑
n

λnvn(x, ω) for every (x, ω) ∈ RN × Ω,

where the (λn)n are positive constants satisfying
∑

n λn = 1, and (vn)n is a sequence

dense in Ŝ with respect to the the almost sure convergence in C(RN ). By Proposition
5.11 there exists a set Ω0 of probability 1 such that, for every ω ∈ Ω0 and every x ∈
A(ω), we can find a curve ηx : R → R satisfying ηx(0) = x, limt→±∞ |ηx(t)| = +∞
and

v(ηx(b), ω)− v(ηx(a), ω) =

∫ b

a
(L(ηx, η̇x, ω) + c) ds = S(ηx(a), ηx(b), ω) (30)

whenever a < b in R. Since vn ∈ S, up to removing from Ω0 a set of probability 0, we
can furthermore assume that, for any ω ∈ Ω0, each function vn(·, ω) is a subsolution
of (12). This readily implies that, for any such ω, equality (30) holds with vn in
place of v, for every n ∈ N.

To prove (iii), fix v ∈ S and set v̂ = v − v(0, ω). Clearly, it suffices to show the

assertion for v̂. Since v̂ ∈ Ŝ, there exists a subsequence (vnk)k and a set Ω̂ ⊆ Ω0 of

probability 1 such that vnk(·, ω) ⇒ v(·, ω) for any ω ∈ Ω̂. By passing to the limit,

we derive that equality (30) holds with v̂ in place of v for any such ω ∈ Ω̂, as it was
to be shown. �

6. Open questions

This is the third of a series of papers we have devoted to the analysis of criti-
cal equations for stationary ergodic Hamiltonians, see [9, 10], by using the metric
approach combined with some tools from Random Set Theory. This method has
allowed to get a complete picture of the setup when the state variable space is
1–dimensional, as specified in the introduction, and, we think, has revealed to be
effective also in the multidimensional setting, highlighting some interesting analogies
with the compact case. However many crucial problems are still to be clarified. The
more striking is:

(1) In case of existence of an exact corrector, is the random Aubry set almost
surely nonempty ?

In view of Theorem 5.3, we can put it more dramatically:

(1′) Is it impossible the simultaneous existence of an exact corrector and a global
weakly strict admissible critical subsolution ?

In this respect, it should be helpful to strengthen Theorem 5.3, as in periodic
case. So we would also like to know:

(2) If the Aubry set is a.s. empty, there exist strict global critical subsolutions?
Can we find one of such subsolution which is, in addition, smooth?

If the answer to (1), (1′) is positive, another question urges itself upon us:

(3) Is any exact corrector the Lax extension from the Aubry set of an admissible
trace ?

Or, in other terms, is the Aubry set an uniqueness set for the critical equation,
as in the deterministic compact case? Notice that both questions (1) and (3) have
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positive answer when N = 1, see [9], and in any space dimension when c = cf =
supx minpH(x, p, ω) and the critical stable norm in nondegenerate, see [10].

On the contrary, if c = cf , Af (ω) is a.s. empty and the critical stable norm is
nondegenerate, then no exact solutions can exist. We stress that, as far as we know,
all counterexamples published in the literature to the existence of exact correctors
are in this frame. It should be interesting to find, if possible, counterexamples in
cases where the previous conditions are not satisfied.

The above nonexistence result morally says that we can hope to have exact cor-
rectors only if some metric degeneracy of Sc takes place either at finite points (i.e.
when Af (ω) 6= ∅ a.s. in ω) or at infinity (i.e. when the stable norm vanishes in some
directions).

The converse is partially true, in the sense that when c = cf and the classical
Aubry set Af (ω) is almost surely nonempty, we know that exact correctors do exist.
One should wonder if a corrector does exist in case of sole metric degeneracy at
infinity. Indeed, this is unclear even if c = cf and, evidently, Af (ω) is a.s. empty.
We have exhibited an example in [10], see Example 6.8, of Eikonal equation of the
type

|Du(x, ω)|2 = V (x, ω) in RN , (31)

where the potential V is a random continuous stationary bounded positive function
with infimum a.s. equal to 0, with the peculiarity that the corresponding critical
stable norm is equal to 0, i.e. vanishes in any direction. Note that here c = cf = 0
since the null function is a strict admissible subsolution, and no subsolutions of (8)
exist for a < 0. Here we face a dilemma: either an exact corrector does exist, and
then the question (1), (1′) has a negative answer, since the Aubry set A(ω) must
be a.s. empty (for the null function is a strict admissible subsolution); or we have
to recognize that metric degeneracy at infinity is not sufficient for yielding critical
solutions.

We remark that a negative answer to questions (1), (1′) would come from the
finiteness of

lim inf
|y|→+∞

S(y, 0, ω) a.s. in ω,

where S, as usual, is the critical distance associate to (31). In fact, if such limit is
less than +∞, then, by the triangle inequality and other properties enjoyed by S, it
is easily seen that

Ω0 := {ω : lim inf
|y|→+∞

S(y, x, ω) < +∞ for some x ∈ RN},

has probability 1, and so a finite–valued random function u can be defined by setting

u(x, ω) = lim inf
|y|→+∞

S(y, x, ω) for ω ∈ Ω0

and u(x, ω) = 0 otherwise, for every x ∈ RN . Via standard arguments, it can be
then proved that u(·, ω) is a solution of (31).

Another subject of interest is about approximate correctors. So far we don’t have
any counterexamples to their existence when exact correctors do not exist. Hence
the main question is:

(4) Do approximate correctors always exist?
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This issue is also strongly related to homogenization problems and a positive
answer would be an important step towards generalizations of the results proved in
[19, 22] to more general Hamiltonians.

As usual, the answer is positive if N = 1, or in any space dimension if c = cf =
supx minpH(x, p, ω). In this setting, we have in addition proved that approximate
correctors can be represented by Lax formula (16), taking as random source set the
δ–maximizers over RN of the function x 7→ minpH(x, p, ω). This result essentially
exploits the assumption that cf is the supremum of such function, which is always
the case in the 1–dimensional setting.

To extend it in more general setups, at least when c = cf , the idea could be
to replace the δ–minimizers by some sort of approximate Aubry set. But such a
set seems not easy to define even assuming the existence of a smooth strict critical
subsolution, and so this attempt has not given, till now, any output.

Note that the existence results of [12] for approximate correctors in the almost–
periodic case are based on an ergodic approximation of the Hamilton–Jacobi equa-
tion, and so are not constructive. A final question, which stems from the previous
discussion, then is

(5) At least in the almost–periodic case, are the approximate correctors repre-
sentable through Lax formulae?

Appendix A

We begin recalling that a function f defined on RN is said to be almost–periodic
if it is bounded, continuous and if it can be approximated, uniformly on RN , by
finite linear combinations of functions in the set {e2πi〈λ, x〉 : λ ∈ RN }, see [1, 21] for
instance.

This appendix is devoted to show that any almost–periodic Hamiltonian is a
specific realization of a stationary ergodic Hamiltonian, with underlying probability
space Ω separable in a measure theoretic sense. Generalizing the construction of the
quasi–periodic case, we more precisely prove that Ω can be taken as the infinite–
dimensional torus with RN appropriately acting on it. Therefore Ω is in addition
a compact metric space with the product topology, and is as well separable from a
topological viewpoint.

The statement of the main result is the following:

Theorem A.1. Let H0 : RN ×RN → R be a continuous Hamiltonian satisfying the
following assumptions:

(B1) H0(·, p) is almost–periodic in RN for every fixed p ∈ RN ;

(B2) H0(x, ·) is convex on RN for every x ∈ RN ;

(B3) there exist two superlinear continuous functions α, β : R+ → R such that

α (|p|) ≤ H0(x, p) ≤ β (|p|) for all (x, p) ∈ RN × RN ;

(B4) the set of minimizers of H0(x, ·) has empty interior for every x ∈ RN .

Then there exist a separable probability space (Ω,F ,P), an ergodic group of transla-
tions (τx)x∈RN and an Hamiltonian H : RN × RN × Ω → R satisfying assumptions
(H1)–(H5) of Section 3 such that

H(x, p, ω0) = H0(x, p) for every (x, p) ∈ RN × RN ,

for some ω0 ∈ Ω.
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The proof of Theorem A.1 will require some preliminary work. We start by some
classical definitions and results from the theory of dynamical systems, see [13].

A continuous map τ : Ω → Ω defined on a Hausdorff topological space Ω will be
said to be minimal if the orbit

orb(ω) := {τn(ω) : n ∈ Z}
of every point ω ∈ Ω is dense in Ω. A Borel probability measure µ on Ω is called
τ–invariant if µ(τ−1(E)) = µ(E) for every µ–measurable set E. A measurable
subset E of Ω is called τ–invariant if µ(τ−1(E) ∆E) = 0, where ∆ stands for the
symmetric difference. A τ–invariant measure µ is called ergodic (with respect to τ)
if for any τ–invariant measurable set E ⊂ Ω either µ(E) = 0 or µ(E) = 1. When
Ω is a metrizable compact space, τ will be called uniquely ergodic if it has only one
invariant Borel probability measure µ. In this instance µ is necessarily ergodic with
respect to τ , see [13, Proposition 4.1.8].

We will use the following result from [13, Proposition 4.1.15].

Proposition A.2. Let Ω be a metrizable compact space and τ : Ω→ Ω a continuous
map. If for every continuous function ϕ belonging to a dense set in the space C(Ω)

the time averages (1/n)
∑n−1

k=0 ϕ(τk(ω)) converge uniformly to a constant, then τ is
uniquely ergodic.

By applying Proposition A.2, we show

Proposition A.3. Let Ω and τ be a compact metric space and an isometry on it,
respectively. If τ has a dense orbit, then it is uniquely ergodic.

Proof. Let ϕ ∈ C(Ω). In view of Proposition A.2 it suffices to show that the
functions

ϕn(ω) =
1

n

n−1∑
k=0

ϕ(τk(ω))

uniformly converge to a constant. It is easy to see that the functions ϕn are equi–
bounded by ‖ϕ‖∞, which is finite since Ω is compact and ϕ is continuous. Moreover,
they are equi–continuous, because a continuity modulus for ϕ plays the same role
for each of the ϕn, since τ preserves the distance. By Ascoli–Arzelà Theorem we
infer that ϕn uniformly converge to a function ψ which is τ–invariant, i.e. constant
on the orbits of f . Since there is a dense orbit by hypothesis and ψ is continuous,
we conclude that ψ is constant, as it was to be proved. �

Note that the previous result applies, in particular, to minimal maps, for which
all the orbits are dense.

Let T1 be the one–dimensional flat torus endowed with the flat Riemannian met-
ric, still denoted by | · |, induced by the Euclidean metric on R. We define a distance
d on T∞ := Π+∞

j=1T1 via

d(ω, ω′) =

+∞∑
n=1

1

2n
|ωn − ω′n| ω = (ωn)n, ω′ = (ω′n)n in T∞. (32)

By Tychonoff Theorem, T∞ is a compact metric space with respect to d. We consider
on T∞ the product probability measure µ := Π+∞

j=1L1xT1. For every m ∈ N we
denote by πm : T∞ → Tm the projection on the first m–components, and by µm :=
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πm\ µ the push–forward on Tm of the measure µ, i.e. the probability measure given
by

µm(E) = µ
(
π−1
m (E)

)
for every Borel set E ⊆ Tm.

We endow Tm with the distance dm defined as

dm(ω, ω′) =
m∑
j=1

1

2j
|ωj − ω′j |, ω, ω′ ∈ Tm.

Given a sequence (λn)n of vectors in RN , we consider the group of translation
(τx)x∈RN defined as

(τxω)j ≡ ωj + 〈λj , x〉 (mod 1) for every j ∈ N, (33)

Note that µ is invariant with respect to (τx)x∈RN . We denote, for any x ∈ RN , by
τx|Tm : Tm → Tm the translation τx restricted to the first m components, i.e.

(τx|Tm ω)j ≡ ωj + 〈λj , x〉 (mod 1) for every j ∈ {1, . . . ,m},

for each ω = (ω1, . . . , ωm) ∈ Tm. Clearly µm is invariant with respect to (τx|Tm)x∈RN .
Motivated by the next result, we are specially interested to the case where the

sequence (λn)n in RN is rationally independent, i.e. when every finite combination
of elements of the sequence with rational coefficients is zero if and only all the
coefficients vanish.

The following holds

Proposition A.4. Let (λn)n be a countable family of rationally independent vectors
in RN . Then there exists x̂ ∈ RN such that the translations τx̂ and τx̂|Tm are minimal
on T∞ and on Tm for every m ∈ N, respectively. In particular, µ and µm are
uniquely ergodic with respect to τx̂ and τx̂|Tm, respectively.

We will exploit in the proof the following known fact, see [13, Proposition 1.4.1].

Proposition A.5. Let γ = (γ1, . . . , γm) be a vector of Rm and let Tγ be the trans-
lation on the torus Tm defined as

Tγ(ω1, . . . , ωm) ≡ (ω1 + γ1, . . . , ωm + γm) (mod 1).

Then Tγ is minimal if and only if
∑m

j=1 kjγj 6∈ Z for any choice of (k1, . . . , km) in

Zm \ {0}.

Proof of Proposition A.4. Let us consider the countable set

I := { k = (kn)n ∈ ZN : kj 6= 0 for a finite and positive number of indices j }.

For every k ∈ I, we define

Vk := {x ∈ RN :
∑
i

ki 〈λi, x〉 6∈ Z }

since
∑

i kiλi 6= 0, this set is open and dense in RN . Baire’s Theorem then implies
that V := ∩k∈I Vk is dense, in particular is non void. Pick x̂ ∈ V . The minimality
of τx̂|Tm in Tm for every m ∈ N follows from Proposition A.5.

Let us show that τx̂ is minimal in T∞, i.e.

orb(ω) ∩Br(ω′) 6= ∅ for any ω, ω′ in T∞, any r > 0.
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Let m ∈ N be large enough to have
∑∞

j=m+1 1/2j < r/2. Since τx̂|Tm is minimal on
Tm, there exists an integer k ∈ Z such that

m∑
j=1

1

2j
‖(τkx̂ (ω))j − ω′j‖ < r/2.

Hence

d(τkx̂ (ω), ω′) =

∞∑
j=1

1

2j
‖(τkx̂ (ω))j − ω′j‖ ≤

m∑
j=1

1

2j
‖(τkx̂ (ω))j − ω′j‖+

∞∑
j=m+1

1

2j
< r.

The remainder of the assertion is a straightforward consequence of Proposition A.3.
�

We summarize what we have proved so far in the next statement.

Theorem A.6. Let (λn)n be a countable family of rationally independent vectors
in RN , d the distance on T∞ defined via (32), (τx)x∈RN the group of translations
on T∞ defined according to (33), and µ the product probability measure defined as
µ := Π+∞

j=1L1xT1. Then (T∞, d) is a compact metric space, in particular separable,

and (τx)x∈RN is ergodic with respect to µ.

We proceed to show that given an almost–periodic function f on RN , a sequence of
rationally independent vectors (λn)n can be chosen in such a way that f is a specific
realization of a random variable on T∞ with respect to the group of translations
(τx)x∈RN defined via (33); in addition such random variable can be taken continuous.
In the sequel, we will denote by 0 the element of T∞ all of whose components are
equal to 0.

Proposition A.7. Let f be an almost periodic function in RN . There exist a
sequence of rationally independent vectors (λn)n in RN , inducing a dynamical system
(τx)x∈RN on T∞ via (33), and a continuous function f : T∞ → R such that f(x) =
f(τx0).

Proof. In what follows, we will use some known facts about almost–periodic func-
tions, see [21]. For every λ ∈ RN , let us set

aλ := lim
R→+∞

∫
BR

−f(x) e−2πi〈λ,x〉 dx

and Λ := {λ ∈ RN : aλ 6= 0 }. Since f is almost periodic, the set Λ is countable,

and we will write Λ = (λ̃n)n. For every n ∈ N, we define

fn(x) =
n∑
k=1

a
λ̃k

e2πi〈λ̃k,x〉

It is well known that fn converge uniformly to f in RN . We now want to write
f as limit of a totally convergent series. To this purpose, we choose an increasing

sequence of integers (k̃n)n in such a way that ‖f
k̃n
−f‖L∞(RN ) ≤ 1/2n+2, and we set

g1(·) = f
k̃1

(·) and, for n ≥ 2,

gn(x) := f
k̃n

(x)− f
k̃n−1

(x) =

k̃n∑
j=k̃n−1+1

a
λ̃j

e2πi〈λ̃j ,x〉 x ∈ RN .
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Clearly f(x) =
∑∞

n=1 gn(x). Furthermore, ‖gn‖L∞(RN ) ≤ C/2n for every n ∈ N,

where C is a constant greater than 1 + 2‖f
k̃1
‖L∞(RN ). From (λ̃n)n we extract a

sequence (λn)n of vectors rationally independent in such a way that each λ̃n is a

rational linear combination of λ1, . . . , λn. By expressing each λ̃j in gn in terms of
its rational finite linear combination via elements of (λn)n, we derive that

gn(x) = Gn (〈λ1, x〉, . . . , 〈λkn , x〉) , x ∈ RN ,

where (kn)n is a non decreasing sequence of indexes with kn ≤ k̃n, andGn(ω1, . . . , ωkn)
is a continuous function from Tkn to C. For every n, we define a continuous function
g
n

on T∞ by setting

g
n
(ω) = Gn◦πkn(ω), ω ∈ T∞.

Let (τx)x∈RN be the group of translations on T∞ associated with the vectors (λn)n
via (33). Note that g

n
(τx0) = gn(x) for every x ∈ RN . Since { τx(0) : x ∈ RN }

is dense in T∞ by Proposition A.4 and g
n

is continuous on T∞, we derive that

‖g
n
‖L∞(T∞) ≤ C/2n. This yields that the series

+∞∑
n=1

g
n
(ω), ω ∈ T∞

uniformly converges to a continuous function f : T∞ → C, in particular

f(τx0) =
+∞∑
n=1

g
n
(τx0) =

∞∑
n=1

gn(x) = f(x) for every x ∈ RN .

The fact that f(T∞) ⊂ R finally follows by noticing that the continuous function f

takes real values on { τx(0) : x ∈ RN }, which is dense in T∞. �

The last step consists in extending the previous result to functions that addition-
ally depend on p.

Proposition A.8. Let H0 : RN × RN → R be a continuous function satisfying the
following assumptions:

(A1) for every p ∈ RN the function H0(·, p) is almost–periodic in RN ;

(A2) for every R > 0 there exists a modulus ηR such that

|H0(x, p)−H0(x, q)| ≤ ηR(|p− q|) for every x ∈ RN and p, q ∈ BR.

Then there exists a continuous H : T∞ × RN → R such that

H(τx0, p) = H0(x, p) for every (x, p) ∈ RN × RN ,

where (τx)x∈RN is the group of translations on T∞ defined according to (33) for a
suitable chosen sequence of rationally independent vectors (λn)n in RN .

Proof. For every λ and p in RN let us set

aλ(p) := lim
R→+∞

∫
BR

−H0(x, p) e−2πi〈λ,x〉 dx.

The fact that aλ is continuous on RN for every fixed λ, follows from the estimate

|aλ(p)− aλ(q)| ≤ ηR(|p− q|),
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which holds for every R > 0, p, q ∈ BR. Let (pk)k be a dense sequence in RN and
set

Λ :=
⋃
k∈N
{λ ∈ RN : aλ(pk) 6= 0 }.

The almost–periodic character of H0(·, p) implies that Λ is countable, so we will

write Λ = (λ̃n)n. From the continuity of aλ we deduce

aλ(·) ≡ 0 for every λ 6∈ Λ.

From (λ̃n)n we extract a sequence (λn)n of rationally independent vectors in such

a way that each λ̃n is a rational linear combination of λ1, . . . , λn. Let (τx)x∈RN be
the group of translations on T∞ associated to the vectors (λn)n via (33). In view of
Proposition A.7, for every p ∈ RN there exists a continuous function H(·, p) : T∞ →
R such that

H(τx0, p) = H0(x, p) for every x ∈ RN .

From this we get that, for every ω ∈ { τx(0) : x ∈ RN },

|H(ω, p)−H(ω, q)| ≤ ηR(|p− q|) for every p, q ∈ BR and R > 0.

Since { τx(0) : x ∈ RN } is dense in T∞ and H(·, p) is continuous on T∞ for every
fixed p, we derive that the above inequality holds for every ω ∈ T∞. Hence H is
jointly continuous in (ω, p) and the proof is complete. �

We are now in position to prove Therem A.1.

Proof of Theorem A.1. We recall (see for instance [20]) that a convex function
ψ : RN → R is locally Lipschitz, and its Lipschitz constant in BR can be controlled
with the supremum of |ψ| on BR+2, for every R > 0. In particular the Hamiltonian
H satisfies assumption (A2) in Proposition A.8 with ηR(h) := LR h, where

LR := sup{ |H0(x, p)| : x ∈ RN , p ∈ BR+2 },

which is finite thanks to (B3). Therefore we can apply Proposition A.8 to find a
continuous H : T∞ × RN → R such

H(τx0, p) = H0(x, p) for every (x, p) ∈ RN × RN ,

where (τx)x∈RN is the group of translations on T∞ associated via (33) to a suitably
chosen sequence (λn)n of rationally independent vectors of RN . In particular, H
satisfies conditions (B2), (B3), (B4) on a dense subset of T∞ × RN , hence on the
whole T∞×RN by the continuity of H. The assertion readily follows with Ω := T∞
by setting

H(x, p, ω) = H(τxω, p) for every (x, p, ω) ∈ RN × RN × Ω,

and by choosing ω0 = 0. �
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