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Abstract. We perform a qualitative investigation of critical Hamilton–Jacobi
equations, with stationary ergodic Hamiltonian, in dimension 1. We show the ex-
istence of approximate correctors, give characterizing conditions for the existence
of correctors, provide Lax–type representation formulae and establish comparison
principles. The results are applied to look into the corresponding effective Hamil-
tonian and to study a homogenization problem. In the analysis a crucial role is
played by tools from stochastic geometry such as, for instance, closed random
stationary sets.

1. Introduction

Given a 1–dimensional ergodic dynamical system (τx)x∈R on a probability space
(Ω,F ,P), we consider a stationary Hamiltonian H(x, p, ω), defined in R × R × Ω,
enjoying suitable continuity, quasiconvexity and coercivity conditions, and the family
of stochastic Hamilton–Jacobi equations

H(x, v′(x, ω), ω) = a in R,

with a ∈ R. Note that the periodic and the almost–periodic case are particular
instances of this setting, see Remark 4.2. The aim of this paper is to perform a
qualitative study of the previous equation when the parameter in the right–hand
side is set as the minimum for which it has admissible subsolutions, that is to
say Lipschitz random functions which are a.e. subsolutions, behave sublinearly at
infinity, and possess stationary increments, almost surely with respect to ω. This
distinguished value will be denoted from now on by c and termed as (stationary)
critical.

The relevance of the critical equation is that it is the unique among those of
the family for which admissible (viscosity) solutions or approximate solutions may
possibly exist, see Section 4 for precise definitions. As we will discuss later with
more detail, these functions enter as exact or approximate correctors in homoge-
nization problems associated with H, and the notions of critical value and effective
Hamiltonian, primarily introduced in [15] in the periodic homogenization setting, are
strictly related (see Section 7). We will use, in what follows, the term (approximate)
corrector in place of admissible (approximate) solution.

The achievements of the paper can be broken down as follows: we prove that ap-
proximate correctors do always exist, give characterizing conditions for the existence
of correctors, provide Lax–type representation formulae and establish comparison
results. We moreover apply this material to study the effective Hamiltonian and a
homogenization problem as well.

While it is clear that, due to the lack of compactness, one cannot expect to
find, in general, correctors, the problem of the existence of approximate correctors,
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even in the 1–dimensional case, was not yet clarified. For instance in [16] Lions and
Souganidis tackle this issues and exploit a Crandall’s result on Eikonal Hamiltonians
to construct a 1–dimensional example showing that bounded approximate correctors
in general do not exist, in contrast to what happens in the almost periodic case, see
[2, 13]

The point is that, in the almost periodic setting, the probability space Ω can
be endowed with a topology making it compact and the Hamiltonian, because of
its stationary character, continuous, which accounts for the existence of bounded
approximate correctors. In the general stationary ergodic environment this topo-
logical construction cannot be carried out, and consequently bounded approximate
correctors are not to be expected. According to our results, (possibly unbounded)
approximate correctors in dimension 1 do always exist, while the problem is still
open in any space dimension.

Beyond the results obtained, we strongly believe that the method we have em-
ployed, based on an interplay between stochastic geometry and viscosity solutions
theory, brings some novelties and is capable to be applied in more general contexts.
The key idea is to regard the stationary ergodic setting as inducing a stochastic
geometry on R, whose fundamental objects are the closed random stationary sets,
see Section 3. Such random sets play in a sense the same role as points in the
deterministic case. Taking also into account that, as a consequence of the Birkhoff
Ergodic Theorem, they are spread with some uniformity at infinity (see Proposition
3.5), we can understand, in the end, that some form of compactness is inscribed in
the model.

Bearing the previous considerations in mind, we could adapt to the random en-
vironment the analysis performed for the critical equation in the periodic setting
or, more generally, when the underlying space is a compact manifold, see [12]. It
is based on the definition of a (random) distance intrinsically related to the Hamil-
tonian, and on the property that any suitably chosen trace on a closed random
stationary set can be extended by means of such a distance to the whole R through
a Lax–type formula, yielding a class of fundamental admissible subsolutions.

For special choices of the closed random stationary set appearing in the Lax
formula we get, in addition, admissible correctors or approximate correctors. The
setup can be described in terms of a generalized Aubry set adapted to our context,
see Remark 6.10, and which is, of course, closed random stationary.

Let us recall that such an object has been revealed to be useful, for H deter-
ministic, in various contexts, see [6, 9, 12]. It reduces to the classical Aubry set of
dynamical systems when the Hamiltonian is sufficiently regular, but it can be also
defined, through the metric approach, under broader assumption on H, without
making any reference to the Hamiltonian flow. Indeed, it consists of points such
that the intrinsic distance from them is a critical solution.

In our case we find that a corrector does exist if and only if the generalized Aubry
set is almost surely nonempty. It may be empty only when the critical value c
equals supx∈R (minp∈R H(x, p, ω) ), almost surely in ω; note that the latter quantity
is indeed almost surely constant by the ergodicity condition, and, in addition, is the
minimum value of the corresponding effective Hamiltonian, see Section 7. In this
situation the Aubry set is made up by the maximizers in R of the function x 7→
minp∈R H(x, p, ω), and is accordingly empty if such maximizers do not exist, almost
surely in ω (and this can actually happen, even for quasi–periodic Hamiltonians, as

2



shown in [16]). In this case, however, we are able to define approximate Aubry sets
that provide approximate correctors via the Lax formula.

When c > supx∈R (minp∈R H(x, p, ω) ), the Aubry set coincides with the whole
R and then there is a unique admissible subsolution, up to addition of real random
variables, which is a corrector of class C1, almost surely in ω.

Altogether, the quite surprising output is that, in dimension 1, the picture is not
so different from that of the periodic case, even if, of course, a tribute must be paid
to the lack of compactness in the fact that the generalized Aubry set can be empty.

The only antecedent we know in our line of research, outlined above, is the already
cited work by Lions and Souganidis [16], where the existence of correctors is put in
relation with the nonemptiness of a random generalization of the Mather set.

As we have already pointed out, the subject of our investigation has a clear
connection with the homogenization of Hamilton–Jacobi equations in the stationary
ergodic environment. This topic has recently attracted a considerable interest both
from a theoretical and an application point of view. The existence of sublinear
approximate correctors makes the Evans’ perturbed test function method [10, 11]
viable for carrying out the homogenization procedure in our setting. This seems new
because, so far, all the available homogenization methods for stochastic Hamilton–
Jacobi equations are based on representation formulae for solutions of the equations
involved, and so require the Hamiltonian to be convex in the second argument, while
here we are just assuming quasiconvexity.

More precisely in [18, 19], the authors deal with the homogenization of a time–
dependent equation, and the result is obtained by passing to the limit in the Lax–
Oleinik formulae representing the solutions of the equations with the oscillating
variables, when the oscillation parameter goes to 0, through a Γ–convergence type
argument, and by using the Subadditive Ergodic Theorem.

We finally wish to emphasize another peculiarity of our work. Even if some
results that we present are not new, in particular in the first two sections which
are of introductory nature, often it has been not easy to adapt them to the topic
we are dealing with, starting from the form they appear in the literature. So we
claim some originality in the presentation of this material and hope that it will be
useful for further investigations on the subject. This is the case, for instance, of the
stability principle for Lipschitz random functions with stationary increments stated
in Theorem 3.8. It has been a valuable tool for our analysis, taking the place, in
some sense, of Ascoli Theorem, not valid in the random setting.

The paper is organized as follows: in Section 2 we fix terminology and nota-
tions, and introduce some basic material that will be repeatedly used throughout
the paper. Section 3 is devoted to illustrate the main properties of some classes
of random variables that are of primary importance for our analysis. In Section
4 the requirements on the stochastic Hamiltonian are detailed and discussed, the
intrinsic distance is defined and the key notions of stationary and free critical value
are given. In Section 5 we provide a version of Lax formulae for representing admis-
sible subsolutions of stochastic Hamilton–Jacobi equations. Section 6 contains the
main results on exact and approximate correctors, and, finally, the application to
stationary ergodic homogenization is presented in Section 7.
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Piccioni for many helpful discussions. They also wish to thank an anonymous ref-
eree for the careful reading of the paper and for several corrections and comments
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2. Preliminaries

We start by introducing some notations and concepts that will be used throughout
the paper.

We denote by R+ the set of nonnegative real numbers and by Q the set of rational
numbers. We will call modulus any nondecreasing function from R+ to R+ vanishing
and continuous at 0. A real function θ defined either on R or on R+ will be called
coercive if lim|h|→+∞ θ(h) = +∞.

Given some Euclidean ground space and a subset A, we denote by A its closure,
by Int(A) its interior and by ∂A its boundary; we furthermore indicate by BR(x0)
and BR the closed ball of radius R centered in x0 and 0, respectively. The symbol
|x| stands for the Euclidean norm of x.

For any Lebesgue measurable subset E, we denote by |E| its Lebesgue measure,
and we call E negligible whenever |E| = 0. When |E| is a positive real number and
f is an integrable function on E, the notation

∫
E− f dx stands for the integral mean

value of f on E.
We say that a property holds almost everywhere (a.e. for short) if it is valid up to

a negligible subset. We write χE for the characteristic function of a set E, i.e. the
function taking the value 1 on E and 0 outside. We write ϕn ⇒ ϕ to mean that a
sequence of functions (ϕn)n locally uniformly converges to ϕ.

We will repeatedly make use of the notion of (sub, super) solution to some
Hamilton–Jacobi equation in the viscosity sense, see [3, 4]. Given a locally Lip-
schitz function φ on R, we denote by ∂φ(x) its Clarke generalized gradient [8] at
x ∈ R, defined as

∂φ(x) := co{ lim
i

φ′(xi) : φ differentiable at xi, limi xi = x },
where co(A) stands for the closed convex hull of a subset A of R.

The symbol (Ω,F ,P) indicates a probability space, where P is the probability
measure on Ω and F the σ–algebra of P–measurable subsets. A property is said to
hold almost surely (a.s. for short) in ω if it is valid up to a subset of probability 0.
We indicate by Lp(Ω), p ≥ 1, the usual Lebesgue space on Ω with respect to P. If
f ∈ L1(Ω), we write E(f) for the mean of f on Ω, i.e. the quantity

∫
Ω f(ω) dP(ω).

We qualify as measurable a map from Ω to itself, or to a topological space M with
Borel σ–algebra B(M), if the inverse image of any set in F or in B(M) belongs to
F . The latter will be also called random variable with values in M.

In what follows we will be interested in random variables taking values in C(R) and
Lipκ(R), the spaces of continuous and Lipschitz–continuous functions with Lipschitz
constant less than or equal to κ > 0, defined on R, respectively. Such spaces are
both endowed with the metrizable topology of the uniform convergence on compact
subsets of R. We will use the expressions continuous random function, Lipschitz
random function (with Lipschitz constant less than or equal to κ), respectively,
for the previously introduced random variables. The following characterization of
random continuous functions will be used in the sequel.

Proposition 2.1. Let ω 7→ v(·, ω) be a map from Ω to C(R). The following are
equivalent facts:
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(i) v is a random continuous function;
(ii) for every x ∈ R, the function ω 7→ v(x, ω) is measurable in Ω;
(iii) the function (x, ω) 7→ v(x, ω) is jointly measurable in R×Ω, i.e. measurable

with respect to the product σ–algebra B(R)⊗F .

Proof. (i) ⇒ (ii). The function appearing in item (ii) is the composition of v and
the evaluation map assigning to any continuous function its value in x. From the
fact that the latter is continuous from C(R) to R, we derive the claimed implication.

(ii) ⇒ (iii). Let Qn
i := i/n + [−1, 1)/2n for every i ∈ Z, n ∈ N. Then the

functions
vn(x, ω) :=

∑

i

χQn
i
(x) v(i/n, ω)

are clearly measurable on R × Ω with respect to B(R) ⊗ F . Since they converge
pointwise to v on R× Ω, assertion (iii) follows.

(iii) ⇒ (i). We have to show that, for every r > 0,

Ωr := {ω ∈ Ω : d(v(·, ω), 0) ≤ r } ∈ F ,

where d is a distance on C(R) inducing the topology of the local uniform convergence
on R, say

d(f, g) :=
∞∑

n=1

1
2n

‖f − g‖L∞(Bn)

‖f − g‖L∞(Bn) + 1
f, g ∈ C(R).

For every n ∈ N, let (xn
i )i∈N be a dense sequence in Bn. By the continuity of v(·, ω)

for every ω, it is easy to check that

Ωr =
+∞⋂

i, n=1

{
ω ∈ Ω :

|v(xn
i , ω)|

|v(xn
i , ω)|+ 1

≤ 2n r

}
.

The claim follows from the fact that, for every fixed x ∈ R, the map ω 7→ v(x, ω) is
measurable by Fubini’s Theorem. ¤

A 1–dimensional dynamical system (τx)x∈R is defined as a family of mappings
τx : Ω → Ω which satisfy the following properties:

(1) the group property: τ0 = id, τx+y = τx◦τy;
(2) τx : Ω → Ω is measurable and measure preserving for any x, i.e. P(τxE) =

P(E) for every E ∈ F ;
(3) the map (x, ω) 7→ τxω from R×Ω to Ω is jointly measurable, i.e. measurable

with respect to the product σ–algebra B(R)⊗F .
We make the crucial assumption that (τx)x∈R is ergodic, i.e. such that one of the

following equivalent conditions hold:
(i) every measurable function f defined on Ω with f(τxω) = f(ω) a.s. in Ω, for

any x ∈ R, is almost surely constant;
(ii) every set A ∈ F with P(τxA∆ A) = 0 for every x ∈ R has probability either

0 or 1, where ∆ stands for the symmetric difference.
Given a random variable f : Ω → R, for any fixed ω ∈ Ω the function x 7→

f(τxω) is said to be a realization of f . The following properties follow from Fubini’s
Theorem, see [14]: if f ∈ Lp(Ω), then P–almost all its realizations belong to Lp

loc(R);
if fn → f in Lp(Ω), then P–almost all realizations of fn converge to the corresponding
realization of f in Lp

loc(R). The Lebesgue spaces on R are with respect to the
Lebesgue measure.
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The next lemma guarantees that it is possible to modify a random variable on a
set of zero probability without affecting its realizations on sets of positive Lebesgue
measure on R, almost surely in ω. It will be exploited, for instance, in Theorem 3.7.
The proof is based on Fubini’s Theorem again, see Lemma 7.1 in [14].

Lemma 2.2. Let Ω̂ be a set of full measure in Ω. Then there exists a set of full
measure Ω′ ⊆ Ω̂ such that for any ω ∈ Ω′ we have τxω ∈ Ω̂ for almost every x ∈ R.

We finish the section by stating the Birkhoff Ergodic Theorem for ergodic 1–
dimensional dynamical systems. It establishes a relation between statistical and
spatial means.

Theorem 2.3 (Birkhoff Ergodic Theorem). Let (Ω,F ,P) be a probability space
and (τx)x∈R an ergodic group of translations as above. Then, for any f ∈ L1(Ω),

E(f) = lim
t→+∞

∫

tE
− f(τxω) dx a.s. in ω,

where E is any Borel subset of R with |E| > 0.

3. Stationary random variables

In this section we give the notion of stationarity for random functions and ex-
tend it, via characteristic functions, to random sets. These objects will be of cru-
cial relevance to get Lax-type formulae representing admissible (sub) solutions of
Hamilton–Jacobi equations in the stationary ergodic setting. The concept of sta-
tionary random set, as well as other material we expose in this section, comes from
Stochastic Geometry. We refer the interested reader to [17] for a nice presentation of
this topic. In the last part of the section we introduce the class of random Lipschitz–
functions with stationary increments, and prove an Ascoli–type stability result for
such random functions.

We say that a jointly measurable function v defined in R× Ω is stationary if for
any z ∈ R there exists a set Ωz of probability 1 such that

v(x + z, ω) = v(x, τzω) for every x ∈ R and ω ∈ Ωz.

Proposition 3.1. Assume a jointly measurable function v defined on R × Ω to be
stationary. Then there exist a measurable function φ defined on Ω and a set Ω′ of
probability 1 such that for every ω ∈ Ω′

v(x, ω) = φ(τxω) for a.e. x ∈ R.

Proof. Let us set φ(ω) := v(0, ω), which is measurable by Fubini’s Theorem, and

E := {(x, ω) : v(x, ω) 6= φ(τxω)}.
By the fact that (x, ω) 7→ φ(τxω) is jointly measurable we get E ∈ B(R) ⊗ F . The
stationarity assumption implies that the x–section of E at any fixed x ∈ R equals
Ω \ Ωx, which is a set of probability 0, so E is negligible in the product measure.
This implies that P–almost all the ω–sections of E has 0 Lebesgue measure, which
gives the assertion. ¤

With the term (graph–measurable) random set we will denote a set–valued func-
tion X : Ω → B(R) such that

Γ(X) := {(x, ω) ∈ R× Ω : x ∈ X(ω) }
6



is measurable in R × Ω with respect to the product σ–algebra B(R) ⊗ F . In other
term, we require the characteristic function χΓ(X) to be jointly measurable.

A random set X will be qualified as stationary if for every z ∈ R there exists a
set Ωz of probability 1 such that

X(τzω) = X(ω)− z for every ω ∈ Ωz. (1)

We use a stronger notion of measurability, which is usually named in the literature
after Effros, to define a closed random set, say X(ω). Namely we require X(ω) to
be a closed subset of R for any ω and

{ω : X(ω) ∩K 6= ∅} ∈ F
with K varying among the compact (equivalently, open) subsets of R. This condition
can be analogously expressed by saying that X is measurable with respect to the
Borel σ–algebra related to the Fell topology on the family of closed subsets of R.
This, in turn, coincides with the Effros σ–algebra, see [17] for more details. If X(ω)
is measurable in this sense then it is also graph–measurable.

A closed random set X is called stationary if it, in addition, satisfies (1). Note
that in this event the set {ω : X(ω) 6= ∅ }, which is measurable by the Effros
measurability of X, is invariant with respect to the group of translations (τx)x∈R by
stationarity, so it has probability either 0 or 1 by the ergodicity assumption.

A convenient way to produce random closed (stationary) sets in R is indicated by
the next result.

Proposition 3.2. Let f be a continuous random function and C a closed subset of
R. Then

X(ω) := {x : f(x, ω) ∈ C}
is a closed random set. If in addition f is stationary, then X is stationary.

Proof. It is clear that X(ω) is a closed subset of R for every ω. Let K be a compact
subset of R. Pick a dense sequence (yk)k∈N in K. By the continuous character of
f(·, ω) for every ω we get

{ω : X(ω) ∩K 6= ∅ } =
⋂
n

⋃

k

{ω : f(yk, ω) ∈ C + B1/n }.

Each random variable f(yk, ω) is measurable by Tonelli’s Theorem since f is jointly
measurable. That implies {ω : X(ω) ∩K 6= ∅ } ∈ F , as it was to be shown. The
fact that X is stationary if f is stationary is immediate. ¤

Remark 3.3. We record for later use that, for a positive radius r, the set

Xr(ω) := X(ω) + Br, ω ∈ Ω,

is closed random whenever X is an almost surely nonempty closed random set. In
fact, for every compact set K in R, Xr(ω)∩K 6= ∅ if and only if X(ω)∩(K+Br) 6= ∅,
hence

{ω : Xr(ω) ∩K 6= ∅} = {ω : X(ω) ∩ (K + Br) 6= ∅}
and the assertion follows by the Effros measurability of X.
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Remark 3.4. In this section, where the tools of Stochastic Geometry we employ
are essentially based on Fubini’s Theorem, the graph measurability of random sets
is all we need to carry out the arguments. But for the metric analysis of stochastic
Hamilton–Jacobi equations we will develop in the sequel this notion is too weak
since, for instance, the crucial property outlined in the previous remak does not
hold in general for random sets that are just graph–measurable. This is the reason
we have introduced the more stringent definition of Effros measurability for random
sets with closed values.

When the σ–algebra F is complete, graph and Effros measurability are equivalent,
see Theorem 2.3 in [17], but this assumption on F is definitively too strong in our
context since it would exclude the model examples of periodic and quasi–periodic
Hamiltonians, see Remark 4.2.

In the sequel, we will use the following notation

X−1(x) := {ω ∈ Ω : x ∈ X(ω)}, x ∈ R.

We will call volume fraction of a stationary random set X the number qX =
P(X−1(0)). Note that

qX = P(X−1(x)) for every x ∈ R,

for X−1(x) and τ−x(X−1(0)) coincide up to a set of probability 0 by stationarity
of X and the probability measure is invariant by translation. We also remark that
qX > 0 implies X(ω) 6= ∅ a.s. in ω, as a straightforward application of Fubini’s
Theorem shows.

We next exploit the ergodicity assumption to get, through the Birkhoff Ergodic
Theorem, an interesting information on the asymptotic structure of closed random
stationary sets. It says that they are spread with some uniformity at infinity. This
accounts for the fact that homogenization results can be obtained in this setting.

Proposition 3.5. Let X be an almost surely nonempty closed random stationary
set in R. Then for every ε > 0 there exists Rε > 0 such that

lim
r→+∞

| (X(ω) + BR) ∩Br|
|Br| ≥ 1− ε a.s. in ω,

provided R ≥ Rε,

Proof. For each n ∈ N, set Xn(ω) := X(ω) + Bn, which are stationary closed
random sets by Remark 3.3, and denote by qn their volume fractions. Exploiting
the stationary character of the Xn and arguing as in the proof of Proposition 3.1,
we derive that there exists a set Ω′ of probability 1 such that for every ω ∈ Ω′

fn(x, ω) := χXn(ω)(x) = χXn(τxω)(0) = fn(0, τxω) for a.e. x ∈ R.

Birkhoff Ergodic Theorem then yields

| (X(ω) + Bn) ∩Br|
|Br| =

∫

Br

− fn(x, ω) dx =
∫

Br

− fn(0, τxω) dx −→
r→+∞ qn a.s. in ω.

To conclude, it is enough to show that supn qn = 1. But this follows from the Mono-
tone Convergence Theorem for (χX−1

n (0))n is an increasing sequence of functions
converging to the function identically equal to 1. ¤
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We say that a random Lipschitz function v has stationary increments if for any
z ∈ R there exists a set Ωz of probability 1 such that for every ω ∈ Ωz.

v(x + z, ω)− v(y + z, ω) = v(x, τzω)− v(y, τzω) for all x, y ∈ R.

This is equivalent to requiring

v(·+ z, ω) = v(·, τzω) + k(ω) on R

a.s. in ω, where k is a random variable depending on z. We define

∆v(ω) := {x ∈ R : v(·, ω) is differentiable at x } .

We derive from Proposition 3.1.

Proposition 3.6. Let v be a random Lipschitz function with stationary increments.
Then ∆v is a stationary random set, and there exist Φ ∈ L∞(Ω) and a set Ω′ of
probability 1 such that for every ω ∈ Ω′

v′(x, ω) = Φ(τxω) for a.e. x ∈ R.

Moreover, for every x ∈ R, v′(x, ·) exists a.s. in ω and E
(
v′(x, ω)

)
= E(Φ).

Proof. Let κ > 0 be such that v(·, ω) ∈ Lipκ(R) for every ω. Let us set

ϕ(x, ω) := sup
n∈N

inf
h∈Q∩B1/n

v(x + h, ω)− v(x, ω)
h

,

ϕ(x, ω) := inf
n∈N

sup
h∈Q∩B1/n

v(x + h, ω)− v(x, ω)
h

.

Clearly, ϕ, ϕ are jointly measurable on R×Ω, and stationary since v has stationary
increments. Since

∆v(ω) = {x ∈ R : ϕ(x, ω) = ϕ(x, ω) } for every ω ∈ Ω,

the asserted property for ∆v follows. Set Φ(ω) := ϕ(0, ω). Clearly Φ ∈ L∞(Ω), and,
according to Proposition 3.1, there exists a set Ω′ of probability 1 such that, for
every ω ∈ Ω′,

ϕ(x, ω) = Φ(τxω) for a.e. x ∈ R.

This concludes the proof of the first part of the statement since v′(·, ω) = ϕ(·, ω) in
∆v(ω), i.e. almost everywhere in R by the Lipschitz–continuity of v(·, ω).

To prove the remainder, we note that, by the stationary random character of ∆v,
the set

X(ω) := {x ∈ ∆v(ω) : v′(x, ω) = Φ(τxω)} ω ∈ Ω,

is stationary random as well. Since X(ω) has full measure in R for every ω, we
derive from Fubini’s Theorem that

P(X−1(x)) = 1 for a.e. x ∈ R.

The stationarity of X yields that this equality holds for every x ∈ R, in particular
v′(x, ·) is almost surely well defined and E(v′(x, ·)) = E(Φ) for every x ∈ R, as it
was to be shown. ¤

A converse construction is also possible, namely to any function in L∞(Ω) we can
associate an antiderivative which is a Lipschitz continuous random function with
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stationary increments. To this purpose, we introduce a 1–parameter group (Ux)x∈R
of isometries on L2(Ω) by setting

Ux : L2(Ω) → L2(Ω)
Φ(ω) 7→ Φ(τxω)

which is strongly continuous, in the sense that

lim
x→0

‖UxΦ− Φ‖L2(Ω) = 0, Φ ∈ ÃL2(Ω).

We exploit this property to give a meaning in the Cauchy sense to the following
integral ∫ x

0
Φ(τsω) ds

as an element of L2(Ω), for every fixed x ∈ R.

Theorem 3.7. Let Φ ∈ L∞(Ω). There exist a Lipschitz random function v with
stationary increments and a set Ω′ of probability 1 such that for every ω ∈ Ω′

v′(x, ω) = Φ(τxω) for a.e. x ∈ R.

Proof. Let κ = ‖Φ‖∞. Up to redefining Φ on a measurable set of probability 0 it
is not restrictive in view of Lemma 2.2 to assume that |Φ(ω)| ≤ κ for every ω ∈ Ω.
We set

v(x, ω) :=
∫ x

0
Φ(τs ω) ds,

For every ω, the function x 7→ Φ(τxω) is measurable and bounded on R, therefore
v′(x, ω) = Φ(τxω) for a.e. x ∈ R, and this in turn shows that v(·, ω) belongs to
Lipκ(R) for every ω. To prove that v is jointly measurable in R×Ω, notice that the
function

g(x, s, ω) := χ[0,+∞)(s)χ[0,+∞)(x− s)Φ(τsω)
is jointly measurable on R× R× Ω. Since

v(x, ω) =
∫

R
g(x, s, ω) ds,

the asserted measurability of v follows by Fubini’s Theorem. Last, we have that,
given z ∈ R,

v(x+z, ω)−v(y+z, ω) =
∫ x+z

y+z
Φ(τs ω) ds =

∫ x

y
Φ(τs+z ω) ds = v(x, τzω)−v(y, τzω)

for every ω ∈ Ω and x, y ∈ R, which proves that v has stationary increments. ¤

We call a sequence (vn)n of random functions equiLipschitz if all the vn take value
in Lipκ(R), for some fixed κ > 0

We proceed by stating and proving a crucial stability result for the class of Lips-
chitz random functions with stationary increments.

Theorem 3.8. Let (vn)n be an equiLipschitz sequence of random functions with sta-
tionary increments. Then there exist a random Lipschitz function v with stationary
increments, a sequence wk =

∑
n≥nk

λk
nvn of finite convex combinations of the vn

and a sequence gk of real random variables such that

wk(·, ω) + gk(ω) ⇒ v(·, ω) a.s. in ω.

In addition the sequence of indices (nk)k can be taken diverging.
10



Proof. Let κ be a Lipschitz constant for all the vn. We denote by Φn the functions
of L∞(Ω) associated to vn through Proposition 3.6. We have ‖Φn‖∞ ≤ κ for every
n, therefore Φn weakly converge in L2(Ω) to some Φ, and a sequence made up by
finite convex combinations of the Φn, say Ψk =

∑
n≥nk

λk
nΦn, strongly converges to

Φ in L2(Ω). We can also assume, up to extraction of a subsequence, that Ψk a.s.
converges to Φ, in particular ‖Φ‖∞ ≤ κ. Let us consider the set

E := {(x, ω) : lim
k

Ψk(τxω) = Φ(τxω)},

which is clearly measurable with respect to the product σ–algebra B(R) ⊗ F . The
almost sure convergence of Ψk to Φ implies that the x–section of E has probability
1 for every fixed x ∈ R. By Fubini’s Theorem we derive that there exists a set Ω′ of
probability 1 such that, for every ω ∈ Ω′,

Ψk(τxω) → Φ(τxω) for a.e. x ∈ R. (2)

Let wk be a sequence of random functions defined according to the statement. Note
that each wk is an antiderivative of Ψk, for any k. Set gk := −wk(0, ·), which is a
random variable by Proposition 2.1. For every x ∈ R we set

v(x, ω) :=
∫ x

0
Φ(τsω) ds a.s. in ω.

Then

|wk(x, ω) + gk(ω)− v(x, ω)| ≤
∫ x

0
|Ψk(τsω)− Φ(τsω)|ds,

and the integral in the above formula becomes almost surely infinitesimal as k goes to
infinity, by (2) and the Dominated Convergence Theorem. This proves the asserted
convergence. ¤

In the sequel, we will be interested in random Lipschitz functions with stationary
increments and gradient with mean 0. We deduce from Birkhoff Ergodic Theorem
that such a random function has a sublinear behavior for |x| going to infinity.

Theorem 3.9. Let v be a random Lipschitz function with stationary increments.
The following are equivalent facts:

(i) E(v′(x, ·)) = 0 for every x ∈ R;
(ii) for every x ∈ R

lim
t→±∞

v(x + t, ω)
t

= 0 a.s. in ω.

The following result holds:

Theorem 3.10. Let v be a random Lipschitz function with stationary increments.
The following are equivalent facts:

(i) E(v′(x, ·)) = 0 for every x ∈ R;
(ii) E(v(x, ·)− v(y, ·)) = 0 for every x, y ∈ R.

Proof. Set Q := E(v′(0, ·)). In view of Proposition 3.6, we have that

Q = E(v′(x, ·)) for every x ∈ R.
11



Let us fix x, q ∈ R. For every ω we have

v(x + q, ω)− v(x, ω) =
∫ 1

0
v′(x + tq, ω) q dt.

By integrating on Ω, we get

E(v(x + q, ·))− E(v(x, ·)) =
∫

Ω

(∫ 1

0
v′(x + tq, ω) q dt

)
dP (3)

=
∫ 1

0
q

(∫

Ω
v′(x + tq, ω) dP

)
dt = q Q.

Now, if (i) holds, i.e. if Q = 0, then (ii) follows for the choice of q was arbitrary in
R. Conversely, if (ii) holds, then it is enough to take q = Q in (3) to get Q = 0, i.e.
(i). ¤

Remark 3.11. Theorems 3.9 and 3.10 could be equivalently restated by requiring
(i) to hold for some x ∈ R, in view of Proposition 3.6.

Definition 3.12. We call admissible any Lipschitz random function with stationary
increments and zero mean gradient. The class of such random functions will be
denoted by S.

The following property is immediate.

Proposition 3.13. The class of admissible random functions is stable under the
addition of real random variables.

Remark 3.14. Looking at the proof of Theorem 3.8 it is easy to see that if the
sequence in the statement is made up by admissible random functions then the limit
is admissible too.

If v is a stationary function then clearly E(v(x, ·)) does not depend on x, and so
we derive:

Corollary 3.15. Any stationary random Lipschitz function is admissible.

4. Stochastic Hamilton–Jacobi equations

We consider a Hamiltonian

H : R× R× Ω → R
satisfying the following conditions:

(H1) the map ω 7→ H(·, ·, ω) from Ω to C(R × R), endowed with the topology
induced by the local uniform convergence, is measurable;

(H2) Za(x, ω) := { p ∈ R : H(x, p, ω) ≤ a } is a (possibly empty) interval;

(H3) ∂Za(x, ω) = { p ∈ R : H(x, p, ω) = a };
(H4) for every R > 0 there exists a modulus ηR such that

|H(x, p, ω)−H(x, q, ω)| ≤ ηR(|p− q|) for all p, q ∈ BR;

(H5) there exist two continuous coercive functions θ, Θ : R+ → R such that

θ (|p|) ≤ H(x, p, ω) ≤ Θ(|p|) for all p ∈ R;
12



(H6) H(·+ z, ·, ω) = H(·, ·, τzω),

for any a, x, z in R, and ω ∈ Ω.

Remark 4.1. Condition (H5) amounts to requiring H to be coercive and locally
bounded in p, uniformly with respect to (x, ω). We point out that conditions (H2)
and (H4) are always fulfilled by Hamiltonians convex in p and satisfying (H5). In
this case, we can choose ηR(h) = LR h with

LR := sup{ |H(x, p, ω)| : (x.ω) ∈ R× Ω, |p| ≤ R + 2 },
which is finite thanks to (H5). For a convex Hamiltonian, condition (H3) is equiva-
lent to the set of minimizers of H(x, ·, ω) being a singleton, for any x, ω.

Remark 4.2. Any given periodic, quasi–periodic or almost–periodic Hamiltonian
H0 : R×R→ R can be seen as a specific realization of a suitably defined stationary
ergodic Hamiltonian.
The periodic and quasi–periodic case consist in assuming H0(x, p) =

∑m
i=1 Hi(x, p),

m ≥ 1, where each Hi is λi–periodic in x, and λ1, . . . , λm are rationally independent.
We take as Ω the set Πm

i=1[0, λi], as P the m–dimensional Lebesgue measure restricted
to Ω, renormalized to be a probability measure, and as F the σ–algebra of Borel
subset of Ω. The action of R on Ω is defined as

(τxω)i = ωi + x (mod λi) i = 1, · · · ,m

for any ω = (ω1, . . . , ωm) ∈ Ω, x ∈ R. A stationary Hamiltonian is obtained by
setting

H(x, p, ω) =
m∑

i=1

Hi(x + ωi, p).

In the almost–periodic case, we can choose as Ω the Bohr compactification of R,
as P the Haar measure on Ω, renormalized to be a probability measure, and as F
the σ–algebra of Borel subsets of Ω. As well known (see for instance [1]), R embeds
as a dense subset in Ω and the usual addition on R uniquely extends to an addition
operation on Ω, still denoted by +, which gives it the structure of topological group,
containing R as a dense subgroup. The family of translations on Ω, defined by
τxω := x + ω for every x ∈ R, ω ∈ Ω, turns out to be ergodic with respect to P.
By exploiting the fact that any almost–periodic function on R extends uniquely to
a continuous function on Ω, it is not hard to show that H0 extends uniquely to a
continuous function H : Ω × R → R. A stationary Hamiltonian is readily obtained
by setting H(x, p, ω) = H(x + ω, p).

We point out that in all these three cases, Ω is a compact topological space with
P(U) > 0 for every nonempty open subset U of Ω, and that the map ω 7→ H(·, ·, ω)
from Ω to C(R×R) is continuous with respect to the uniform convergence on R×BR,
for every R > 0.

Let us recall the definition of viscosity (super, sub) solution in the deterministic
case. For a fixed ω0, a continuous function f(x) is said to be a viscosity subsolution
(resp. supersolution) of H(x, v′, ω0) = a if H(x0, ϕ

′(x0), ω0) ≤ a (resp. ≥ a)
for any C1 function ϕ : R → R and any local maximizer (resp. minimizer) x0

of f − ϕ. Due to the quasiconvex and coercive character of the Hamiltonian, a
continuous function is a subsolution in the previous sense if and only if it is a
Lipschitz–continuous almost everywhere subsolution. Finally a continuous function
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is called viscosity solution if it is sub and supersolution at the same time.
For a ∈ R, we focus our attention on the stochastic equation

H(x, v′(x, ω), ω) = a in R. (4)

A continuous random function is called subsolution to (4) if it is a viscosity subso-
lution a.s. in ω. In particular, by what previously noticed, any subsolution to (4)
belongs to Lipκa

(R) almost surely, where

κa := sup{ |p| : p ∈ Za(x, ω), (x, ω) ∈ R× Ω }, (5)

which is finite thanks to (H4). We are interested in the class of admissible subsolu-
tions, hereafter denoted by Sa, i.e. random functions taking values in Lipκa

(R) with
stationary increments and zero mean gradient that are subsolutions of (4).

A solution to (4) is nothing but a Lipschitz random functions which solves the
equation in the viscosity sense almost surely. An admissible solution will be prefer-
ably called an exact corrector taking into account the role it plays in the homoge-
nization procedure.

Given δ > 0, a random function vδ will be called a δ–approximate corrector for
the equation (4) if it belongs to Sa+δ and satisfies

a− δ ≤ H(x, v′δ(x, ω), ω) ≤ a + δ in R

in the viscosity sense, a.s. in ω. We say that (4) has approximate correctors if there
are δ–approximate correctors for any δ > 0.

The application of Theorem 3.8 and Proposition 3.13 in this context yields:

Theorem 4.3. Let (an)n be a sequence of real numbers and vn a random function in
San for each n. If an converges to some a, there exist v ∈ Sa and a sequence (wk)k

made up by finite convex combinations of the vn, up to an additive real random
variable, such that

wk(·, ω) ⇒ v(·, ω) a.s. in ω. (6)

Proof. Since (an)n is bounded, the random functions vn all belong to Sb for some b,
and therefore are equiLipschitz. By Theorem 3.8 the convergence in (6) takes place
for a sequence wk(x, ω) =

∑
n≥nk

λk
nvn(x, ω) + gk(ω) of finite convex combinations

of the vn plus a real random variable, where limk→+∞ nk = +∞; in addition, by
Remark 3.14, the limit random function v is admissible.

It is left to prove that v ∈ Sa. For any ε > 0, the wk ∈ Sa+ε for k large enough
thanks to the quasiconvex character of the Hamiltonian. Since the subsolutions of a
deterministic Hamilton–Jacobi equation are stable under local uniform convergence,
we deduce that v ∈ Sa+ε. The assertion is then obtained since ε was arbitrarily
chosen. ¤

We define the (stationary) critical value c as

c := inf{a ∈ R : Sa 6= ∅ }. (7)

We note that the set appearing at the right–hand side of (7) is non void since it
contains the value Θ(0). We also consider the critical equation

H(x, v′(x, ω), ω) = c in R. (8)

We obtain as a corollary of Theorem 4.3 (see [16]):

Corollary 4.4. Sc 6= ∅.
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Therefore the infimum appearing in (7) is indeed a minimum, and the critical
value can be equivalently defined via

c = min
v∈S

(
ess sup

x∈R
H(x, v′(x, ω), ω)

)
a.s. in ω,

where, we recall, S stands for the class of all admissible random functions.
The relevance of the critical value is given by the following:

Theorem 4.5. The equation (4) has neither exact corrector nor approximate cor-
rectors if a 6= c.

A lemma is preliminary.

Lemma 4.6. Let b > a. Then there exists δ = δ(b, a) > 0 such that

Za(x, ω) + Bδ ⊆ Zb(x, ω)

for every (x, ω) ∈ R× Ω for which Za(x, ω) 6= ∅.
Proof. Choose ηR as in assumption (H4) with R := sup{|p| : θ(|p|) ≤ b }, and set
δ = inf{ t ≥ 0 : ηR(t) ≥ b − a }, which is strictly positive as ηR is continuous and
vanishing at 0. Fix (x, ω) ∈ R×Ω such that Za(x, ω) 6= ∅. As Za(x, ω) ⊆ Zb(x, ω) ⊆
BR, for every pb ∈ ∂Zb(x, ω) and pa ∈ ∂Za(x, ω) we get

ηR(|pb − pa|) ≥ H(x, pb, ω)−H(x, pa, ω) = b− a,

yielding |pb − pa| ≥ δ. The assertion follows by the convexity of Za(x, ω) and
Zb(x, ω). ¤

Proof of Theorem 4.5. It suffices to prove the assertion for approximate correc-
tors. Let us assume that equation (4) admits approximate correctors, i.e. for every
δ > 0 there exists a δ–approximate corrector vδ for (4). We aim to show that a = c.
Passing to the limit of the vδ, for δ → 0, we find an admissible subsolution to (4)
via Theorem 4.3, which implies a ≥ c.

We assume for purposes of contradiction that the strict inequality a > c holds.
We select a δ with a − δ > c and denote by v, to notations, the corresponding
δ–approximate corrector. Recall that v satisfies

H(x, v′(x, ω), ω) ≥ a− δ > c in the viscosity sense

a.s. in ω. We finally denote by u an admissible critical subsolution.
We proceed by picking an ω0 ∈ Ω for which v(·, ω0), u(·, ω0) are sublinear at infin-

ity, and all the previously listed almost sure properties of the random variables H,
v, u hold. We denote by H0, v0, u0 the corresponding deterministic objects obtained
by fixing ω = ω0. We invoke the following property of viscosity supersolutions, see
Proposition 4.3 in [5]: since H0(x, v′0) ≥ a−δ in the viscosity sense, for any Lipschitz
function ϕ and any x0 local minimizer of v0 − ϕ, there exist p0 ∈ ∂ϕ(x0) satisfying
H0(x0, p0) ≥ a− δ. We set uε

0(x) := u0(x)− ε|x| for ε > 0, and we find

∂uε
0(x) ⊂ ∂u0(x) + Bε for any x ∈ R,

so that, thanks to Lemma 4.6, ε can be chosen in such a way that

H0(x, p) < a− δ for any x ∈ R and p ∈ ∂uε
0(x). (9)

Since both v0 and u0 are sublinear at infinity, there are minimizers of v0 − uε
0 in

the whole R, and at any of such points a contradiction comes out from (9) and the
previous recalled property of viscosity supersolutions. ¤
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Another critical value, that we call free to distinguish it from c, will be relevant
in our analysis. To introduce it we start by considering the random variable

cf (ω) := sup
x∈R

(
min
p∈R

H(x, p, ω)
)

.

Since cf (τzω) = cf (ω) for every (z, ω) ∈ R × Ω, we deduce, by the ergodicity
assumption, that cf (ω) is almost surely equal to a constant denoted cf , which is
actually the announced free critical value. It is apparent by the definition that
cf ≤ c.

To study the properties of subsolutions of (4) and the problem of the existence
of admissible correctors for (8), we will make use of the so called metric approach,
adopted for instance in [12]. Let Ωf be the set of probability 1 where cf (ω) is equal
to the free critical value cf . For every a ≥ cf , we define the support function σa of
the a–sublevel of H by setting

σa(x, q, ω) := sup {q p : p ∈ Za(x, ω) } ,

where we agree that σa(·, ·, ω) ≡ 0 when ω ∈ Ω \ Ωf .

Proposition 4.7. For every a ≥ cf , the function σa is jointly measurable in R ×
R× Ω, i.e. with respect to the product σ–algebra B(R)⊗ B(R)⊗F . Moreover, it is
continuous in x, convex in q, and enjoys

σa(·+ z, ·, ω) = σa(·, ·, τzω) for every z ∈ R and ω ∈ Ω.

Proof. The measurable and convex character of σa are easily derived from its very
definition. To show that σa is continuous in x, it suffices to notice that, for every
ω ∈ Ωf , the set Za(x, ω) has either nonempty interior or is a singleton in view of
assumption (H3). Last, the stationary character of σa follows by its very definition
in view of assumption (H6) and of the fact that τzΩf = Ωf for every z ∈ R. ¤

Next, we define for any x, y and ω

Sa(x, y, ω) =
∫ 1

0
σa

(
(1− t)x + ty, y − x, ω

)
dt

The function Sa is jointly measurable in R× R× Ω, and satisfies Sa(x, x, ω) = 0
for every x ∈ R and ω ∈ Ω. In addition, it is a semidistance, as it can be deduced
from the following result.

Lemma 4.8. Let a ≥ cf . Then

Sa(x, y, ω) + Sa(y, x, ω) ≥ 0 for any x, y ∈ R
a.s. in ω. If, in addition, a > cf and x 6= y, then the previous formula holds with
strict inequality.

Proof. Let ω in Ωf and x, y ∈ R. We can assume that x 6= y, being the assertion
trivially satisfied otherwise for Sa(x, x, ω) = 0. We observe that, for any z ∈ R,
σa(z, 1, ω), −σa(z,−1, ω) are given by the right and the left endpoint of Za(z, ω),
respectively. From this we get

σa(z, 1, ω) + σa(z,−1, ω) ≥ 0 for any z ∈ R.

If, in addition, Za(z, ω) does not reduce to a singleton, which is the case when a > cf ,
the inequality in the previous formula is strict. Let γ(t) := (1 − t)x + ty. After a
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change of variable in the second integral, we deduce from (4) and from the positive
1–homogeneous character of σa(x, ·, ω) that

Sa(x, y, ω) + Sa(y, x, ω) =
∫ 1

0
σa

(
γ(t), y − x, ω

)
+ σa

(
γ(t),−(y − x), ω

)
dt ≥ 0,

with strict inequality holding if a > cf . ¤

We derive from Lemma 4.8

Sa(x, y, ω) ≤ Sa(x, z, ω) + Sa(z, y, ω)

for all x, y, z ∈ R and ω ∈ Ω, where the equality holds when z lies between x and y.
We also have by the very definition of Sa

Sa(x, y, ω) ≤ κa|x− y| for any x, y ∈ R, ω ∈ Ω.

As a consequence we see that Sa(y, ·, ω) belongs to Lipκa
(R) for every y ∈ R and

ω ∈ Ω. In addition, by the previously recalled joint measurability property of Sa

and Proposition 2.1, ω 7→ Sa(y, ·, ω) is a Lipschitz random function for every fixed y.
Same argument applies to ω 7→ Sa(·, y, ω). Taking into account the corresponding
properties holding in the deterministic case (see [12]), we also have:

Proposition 4.9. A Lipschitz random function v is a subsolution of (4) if and only
if

v(x, ω)− v(y, ω) ≤ Sa(y, x, ω) for all x, y ∈ R,

a.s. in ω. In particular, Sa(y, ·, ω) and −Sa(·, y, ω) are both subsolutions of (4).

Furthermore,

Sa(x + z, y + z, ω) = Sa(x, y, τzω) for every x, y, z ∈ R and ω ∈ Ω,

which clearly follows from the stationary character of σa.

Remark 4.10. When the Hamiltonian is convex in p and a Lagrangian L can be
defined through the Fenchel transform, the following identity holds true (cf. [9])

Sa(x, y, ω) = inf
{∫ t

0

(
L(ξ, ξ̇, ω) + a

)
ds

}
,

where the infimum is taken letting ξ vary in the family of Lipschitz–continuous
parametrizations in [0, t] of the segment joining x to y, for every t > 0.

5. Lax–type formulae

In this section we adapt Lax formulae to the stationary ergodic setting. We start
by recalling the setup for deterministic Hamilton–Jacobi equations, see [12]. For
every ω, let

E(ω) := {y ∈ R : min
p

H(y, p, ω) = cf } (10)

the (possibly empty) set of equilibria.

Theorem 5.1. Let us fix ω ∈ Ωf , a ≥ cf . We have
17



(i) Let K, h be a closed subset of R and a continuous function defined on it,
respectively. We define

ψ(x) = inf
y∈K

(
h(y) + Sa(y, x, ω)

)
, x ∈ R.

If ψ 6≡ −∞ then it is a subsolution to (4) in R and a viscosity solution in
R \K.

(ii) Let U be a bounded open subset of R. We assume that either a > cf or
a = cf and E(ω) ∩ U = ∅, and consider a function w0 on ∂U with

w0(x)− w0(y) ≤ Sa(y, x, ω) for every x, y ∈ ∂U .

Then the function

w(x) := inf
y∈∂U

(
w0(y) + Sa(y, x, ω)

)
, x ∈ U

is the unique viscosity solution of the Dirichlet Problem:
{

H(x, φ′(x), ω) = a in U

φ(x) = w0(x) on ∂U .

We proceed giving a stochastic version of the previous properties. Let C(ω) be
an almost surely nonempty stationary closed random set and g a Lipschitz random
function. For a ≥ cf set

u(x, ω) := inf{g(y, ω) + Sa(y, x, ω) : y ∈ C(ω) }, x ∈ R, (11)

where we agree that u(·, ω) ≡ 0 when either C(ω) = ∅ or the infimum above equals
−∞. The following holds:

Proposition 5.2. Let g be a stationary Lipschitz random function and C(ω), u as
above. Let us assume that, for some a ≥ cf , the infimum in (11) is finite a.s. in ω.
Then u is a stationary random variable belonging to Sa and satisfies u(·, ω) ≤ g(·, ω)
on C(ω) a.s. in ω. Moreover, u is a viscosity solution of (4) in R \C(ω) a.s. in ω.

Proof. We first show that u is jointly measurable in (x, ω). Let us denote by ũ(x, ω)
the right–hand side term of (11), where we agree that ũ(x, ω) = 0 when C(ω) = ∅,
and set Ω0 := {ω : C(ω) 6= ∅, ũ(·, ω) 6≡ −∞}. Since u(x, ω) = χΩ0

(ω) ũ(x, ω) in
R × Ω, it is enough to show that ũ is jointly measurable in (x, ω), as this in turn
implies that Ω0 is measurable too. To this aim, for each n ∈ N we set Cn(ω) :=
C(ω) + B1/n and

un(x, ω) := inf
yk∈Q

(
g(yk, ω) + Sa(yk, x, ω) + δΓ(Cn)(yk, ω)

)
, (x, ω) ∈ R× Ω,

where as usual we agree that un(·, ω) ≡ 0 when C(ω) = ∅. Here δΓ(Cn) denotes
the function identically equal to 0 on Γ(Cn) and +∞ outside. Since Cn is a closed
random set by Remark 3.3, its graph is measurable in R×Ω and this in turn implies
that un is jointly measurable in R× Ω. By using the fact that the functions g(·, ω)
and Sa(·, x, ω) are equi–Lipschitz in R, uniformly with respect to x and ω, we derive
that un converges to ũ pointwise in R× Ω, which is thus jointly measurable.

In view of Theorem 5.1 we know that u(·, ω) is a viscosity subsolution of (4), and
a solution as well in R \C(ω) for every ω ∈ Ω0. It is also apparent by the definition
that u(x, ω) ≤ g(x, ω) for every x ∈ C(ω).
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Let us show that u is stationary. Let us fix z ∈ R. Since g is stationary, we have
that g(·, τzω) = g(·+ z, ω) on R almost surely in ω. Hence, a.s. in ω, we have

u(x, τzω) = inf
ζ∈C(τzω)

{g(ζ, τzω) + Sa(ζ, x, τzω)}

= inf
ζ+z∈C(ω)

{g(ζ + z, ω) + Sa(ζ + z, x + z, ω)} = u(x + z, ω)

for every x ∈ R. In the second equality, we have exploited the fact that C(ω) is
stationary. The conclusion follows in view of Corollary 3.15. ¤

We go on by providing a variation of the previous result which will allow us to
deduce a uniqueness principle for exact correctors in Section 6.

Proposition 5.3. We use the same notations of the previous proposition, with the
difference that now g is assumed to be in Sa. Then u belongs to Sa. In addition, it
is a viscosity solution of (4) in R \ C(ω), and takes the value g(·, ω) on C(ω) a.s.
in ω.

Proof. The joint measurability of u follows arguing as in the proof of the previous
proposition. Set Ω0 := {ω : C(ω) 6= ∅, g(·, ω) is a subsolution of (4)}. Let ω ∈ Ω0.
Since by Proposition 4.9

g(x, ω)− g(y, ω) ≤ Sa(y, x, ω) for any x, y ∈ R,

we derive that u(·, ω) = g(·, ω) in C(ω), and consequently u(·, ω) 6≡ −∞. We also
infer by Theorem 5.1 that u(·, ω) is a viscosity subsolution of (4), and a solution as
well in R \ C(ω).

We proceed to prove that u has stationary increments. Since g has stationary
increments, for every fixed z in R there exists a random variable k with g(·, τzω) =
g(· + z, ω) + k(ω) on R, a.s. in ω. Then we argue as in the proof of the previous
proposition to infer that

u(·, τzω) = u(·+ z, ω) + k(ω) on R

a.s. in ω, which gives the claim.
Let us finally show that u has sublinear behavior at infinity a.s. in ω. For this

we will essentially use the asymptotic formula for random stationary sets given in
Proposition 3.5. Let us denote by Ω̂0 a subset of Ω0 of probability 1 such that, for
every ω ∈ Ω̂0, g(·, ω) is sublinear and

lim
r→+∞

| (C(ω) + Bn) ∩Br|
|Br| > 1− εn for each n ∈ N,

where (εn)n is a sequence decreasing to 0, according to Proposition 3.5. Fix ω ∈ Ω̂0

and n ∈ N. Then for every x ∈ R with |x| large enough, we have

| (C(ω) + Bn) ∩B2|x||
|B2|x||

> 1− εn.

For n sufficiently large B2εn|x|(x) ⊆ B2|x|, and from the above inequality we infer
that

B2εn|x|(x) ∩ (C(ω) + Bn) 6= ∅,
19



i.e. there exists y = y(x, n) in C(ω) such that |y − x| < 2 εn|x|+ n. Then, recalling
that u(y, ω) = g(y, ω), we get

|u(x, ω)| ≤ |u(x, ω)− u(y, ω)|+ |g(y, ω)− g(x, ω)|+ |g(x, ω)|
≤ 2κa (2 εn |x|+ n) + |g(x, ω)|.

From this we obtain, by the sublinear character of g,

lim sup
|x|→+∞

|u(x, ω)|
|x| ≤ 4κa εn,

and the claim follows letting n → +∞. ¤

As a simple consequence of Proposition 5.2 we deduce:

Theorem 5.4. For any a > c there is a stationary subsolution to (4).

Proof. We first aim to show that

inf
x∈R

Sa(x, x0, ω) > −∞ for any x0 ∈ R (12)

a.s. in ω. We start by proving

lim
|x|→+∞

Sa(x, x0, ω) = +∞ for any x0 ∈ R

a.s. in ω, from which (12) can be immediately deduced. We denote by w a critical
admissible subsolution, and take ω such that w(·, ω) is sublinear at infinity and
satisfies H(x,w′(x), ω) ≤ c for a.e. x ∈ R. Let us fix x0. By Lemma 4.6 there is
δ > 0 with

w′(y, ω)q + δ|q| ≤ σa(y, q, ω) for a.e. y ∈ R,

and consequently

w(x0, ω)− w(x, ω) + δ|x− x0| ≤ Sa(x, x0, ω) for any x ∈ R.

Dividing both sides by |x− x0|, and exploiting the sublinear character of w(·, ω) in
the limit for |x| → +∞, we obtain

lim inf
|x|→+∞

Sa(x, x0, ω)
|x− x0| ≥ δ,

which, finally implies (5) and, consequently, (12).
Let u be the random function defined trough (11) with C(ω) = R and g(·, ω) ≡ 0

for every ω. By (12) the infimum in (11) is almost surely finite, and the assertion
follows by Proposition 5.2. ¤

We derive from the previous theorem a new definition for the critical value c:

c := inf{a ∈ R : (4) admits stationary subsolution}. (13)

In this case the infimum appearing in the formula is not necessarily a minimum,
namely we cannot expect, in general, to find stationary critical subsolutions.
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6. Existence of exact and approximate correctors

Here we prove that exact correctors do always exist if c > cf . In the case c = cf ,
we provide characterizing conditions for their existence involving the random set of
equilibria. If there are no correctors, we however show the existence of approximate
correctors, which are constructed by means of approximate sets of equilibria and a
Lax–type formula. Finally, in Remark 6.10, we interpret the previous results in the
light of a generalized notion of Aubry set adapted to the random setting.

We write, for every a ≥ cf ,

Za(x, ω) = [αa(x, ω), βa(x, ω)], (x, ω) ∈ R× Ωf .

We extend the definition of αa and βa on the whole R × Ω by setting αa(·, ω) ≡ 0,
βa(·, ω) ≡ 0 when ω ∈ Ω \ Ωf . Note that αa(x, ω) = −σa(x,−1, ω) and βa(x, ω) =
σa(x, 1, ω), so we directly derive from Proposition 4.7

Proposition 6.1. For any a ≥ cf , αa and βa are stationary random continuous
functions.

As a consequence of the previous proposition, the means E
(
αa(x, ·)), E(

βa(x, ·))
do not depend on x, so in the sequel we will simply write E(αa), E(βa).

We define the averaged a–sublevel

E[Za] := [E(αa), E(βa)] for any a ≥ cf .

We have:

Proposition 6.2. The functions a 7→ −E(αa), a 7→ E(βa) are strictly increasing,
continuous and coercive in [cf ,+∞).

Proof. We prove the statement for the function a 7→ E(βa). We immediately see
that it is strictly increasing and coercive because of its very definition, by (H5) and
by Lemma 4.6. We therefore focus our attention on the continuity issue, which is
more delicate. We will prove the continuity from the right, being the proof of the
remaining case analogous. For this we claim

E(βb) = inf
a>b

E(βa) for every b ∈ [cf , +∞). (14)

We define, for every a ≥ cf and ω ∈ Ω the function

fa(ω) =
∫ 1

0
βa(t, ω) dt,

which is measurable and bounded in Ω. From the continuity properties of H in p,
inherited by a 7→ βa(t, ω), we derive

lim
a→b+

βa(t, ω) = βb(t, ω) for every (t, ω) ∈ R× Ω,

and we deduce through the Monotone Convergence Theorem

lim
a→b+

fa(ω) = fb(ω) for every ω ∈ Ω.

Bearing in mind this limit relation and using again the Monotone Convergence
Theorem, we get ∫

Ω
fb(ω) dP = inf

a>b

∫

Ω
fa(ω) dP.
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To see that this equality is equivalent to (14), we exploit the joint measurability of
βa in (x, ω) to obtain, for any a ≥ cf ,

∫

Ω
fa(ω) dP =

∫

Ω

(∫ 1

0
βa(t, ω) dt

)
dP =

∫ 1

0

(∫

Ω
βa(t, ω) dP

)
dt = E(βa).

¤
In order to apply the results of the previous section, we will also need the following

property of the set of equilibria E , see (10) for the definition.

Proposition 6.3. E is a closed random stationary set.

Proof. In view of Proposition 3.2, it is enough to show that the stationary function
f(x, ω) := minp H(x, p, ω) is jointly measurable in (x, ω) and is continuous in x for
every fixed ω. For the first assertion, simply notice that f(x, ω) = infpk∈QH(x, pk, ω)
by the continuity of H in p. The second assertion can be directly deduced from the
definition of f by making use of assumptions (H1) and (H5). ¤

Our subsequent analysis depends on whether 0 is in the interior of E[Zcf
], or

not. If the first instance occurs we further distinguish the subcases when the set of
equilibria is almost surely empty or nonempty. The following two results depict this
setup.

Theorem 6.4. If 0 ∈ IntE[Zcf
] and E(ω) 6= ∅ a.s. in ω, then c = cf and (8) admits

an exact corrector, which is, in addition, stationary.

Proof. The relevant consequence of the assumption on 0 that we are going to exploit
is

min{−E(αcf
), E(βcf

)} > 0.

We set
u(x, ω) := inf{Scf

(y, x, ω) : y ∈ E(ω) }, (x, ω) ∈ R× Ω, (15)
where we agree that u(·, ω) ≡ 0 when either E(ω) = ∅ or the infimum above is equal
to −∞. We know by Proposition 5.2 that u is a stationary admissible subsolution,
provided u(·, ω) 6≡ −∞ a.s. in ω. To see this, first note that, from the very definition
of Scf

,

Scf
(y, 0, ω)
|y| =

1
|y|

∫ 0

y
βcf

(s, ω) ds for y < 0,

Scf
(y, 0, ω)
|y| = − 1

|y|
∫ 0

y
αcf

(s, ω) ds for y > 0.

By applying the Birkhoff Ergodic Theorem we find

lim inf
|y|→+∞

Scf
(y, 0, ω)
|y| ≥ min{−E(αcf

), E(βcf
)} > 0

for every ω in a set Ω′ of probability 1, which, in turn, implies

lim
|y|→+∞

Scf
(y, 0, ω) = +∞ for every ω ∈ Ω′. (16)

Exploiting for instance the fact that Scf
(·, ·, ω) enjoys the triangular inequality,

we readily derive that (16) keeps holding when 0 is replaced by any fixed point
x ∈ R. In particular, we conclude that the infimum in (15) is attained for every
ω ∈ Ω′ such that E(ω) 6= ∅, hence u(x, ω) ∈ R a.s. in ω. For such an ω, we
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furthermore know that u(·, ω) is a viscosity solution on R \ E(ω) and a subsolution
in R of equation (4) with a = cf . It is left to show that u(·, ω) is a viscosity
supersolution on E(ω). We then pick up y ∈ E(ω) and let φ be a C1 test function
touching u(·, ω) in y from below. Since y is an equilibrium point, we clearly have
that H(y, φ′(y), ω) ≥ minp H(y, p, ω) = cf .

This proves that u is an exact corrector of (4) with a = cf , therefore c = cf in
view of Theorem 4.5, as it was claimed. ¤

If the random set of equilibria is almost surely empty, we have:

Theorem 6.5. If 0 ∈ IntE[Zcf
] and E(ω) = ∅ a.s. in ω, then c = cf and (8)

does not have admissible solutions. However there exist δ–approximate correctors
for every δ > 0 which are, in addition, stationary.

Proof. Fix a δ > 0 and set

Eδ(ω) := {y ∈ R : min
p

H(y, p, ω) ≥ cf − δ }
uδ(x, ω) := inf{Scf

(y, x, ω) : y ∈ Eδ(ω) }, (x, ω) ∈ R× Ω,

where we agree that uδ(·, ω) ≡ 0 when either Eδ(ω) = ∅ or the infimum above is
equal to −∞. By arguing as in Proposition 6.3, we see that Eδ(ω) is an almost surely
nonempty stationary closed random set. Arguing as in the proof of Theorem 6.4, we
see that uδ(·, ω) 6≡ −∞ a.s., hence it is an admissible subsolution of (4) with a = cf ,
and a solution as well on R \ Eδ(ω) a.s.. In particular, we get that cf ≥ c, and so
cf = c for the converse inequality trivially holds.

To prove that uδ is a δ–approximate corrector, we need to show that the inequality
H(y,Duδ(y, ω), ω) ≥ cf−δ in the viscosity sense for every y ∈ Eδ(ω) a.s in ω. To this
aim, fix ω such that Eδ(ω) 6= ∅ and pick up a y ∈ Eδ(ω). Let φ be a C1 test function
touching uδ(·, ω) in y from below. Then H(y, φ′(y), ω) ≥ minp H(y, p, ω) ≥ cf − δ,
as was to be shown.

Finally, to prove that equation (8) does not admit exact correctors, we argue by
contradiction. Let u be an admissible corrector, we pick up an ω such that u(·, ω)
is a viscosity solution of (8). We apply Theorem 5.1 with w0 = u, a = c and
U = (−n, n) for each n ∈ N to derive that there exists a diverging sequence (yn)n

such that
Sc(yn, 0, ω) = u(0, ω)− u(yn, ω) for every n ∈ N,

which implies, thanks to the sublinearity of u(·, ω), lim inf |y|→+∞ Sc(y, 0, ω)/|y| = 0,
in contrast with the limit relation

lim inf
|y|→+∞

Sc(y, 0, ω)
|y| ≥ min{−E(αc), E(βc)} > 0 a.s. in ω,

derived from Birkhoff Ergodic Theorem. ¤
Remark 6.6. We stress that the functions uδ defined in the previous proof are
actually admissible critical subsolutions.

If 0 is not in the interior of the averaged cf–sublevel we have:

Theorem 6.7. If 0 6∈ IntE[Zcf
], then

c = inf{a ≥ cf : 0 ∈ E[Za] }
and (8) admits an exact corrector (not necessarily stationary), almost surely of class
C1.
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Proof. For c defined as in the statement, we have, by Proposition 6.2, that either
E(βc) or E(αc) vanish. Let us assume, to fix ideas, that the first case occurs. We set

u(x, ω) =
∫ x

0
βc(s, ω) ds a.s. in ω, (17)

and we see that u′(x, ω) = βc(x, ω) a.s. in ω, and consequently u has stationary
gradient with mean 0. Moreover u(·, ω) is almost surely of class C1 for βc(·, ω) is
a.s. continuous, according to Proposition 6.1. In particular, it is a classical solution
of (8) a.s. in ω, which finally implies that c is the critical value by Theorem 4.5 and
u is the sought exact corrector. The proof is complete. ¤

We finish the section by showing some uniqueness results for exact correctors.

Theorem 6.8. Let us assume that either 0 6∈ E[Zcf
], or 0 ∈ ∂ E[Zcf

] and E(ω) = ∅
a.s. in ω. If u is an admissible solution of (8), then u(·, ω) is almost surely of class
C1, and

Sc = {u + k : k : Ω → R measurable },
i.e. u is the unique admissible subsolution, up to an additive real random variable.

Proof. We know by what seen above that 0 ∈ ∂E[Zc]. Let us assume, to fix
ideas, that E(βc) = 0, and let u be the random Lipschitz function defined via (17).
According to Theorem 6.7, u is an exact corrector almost surely of class C1. Given
a critical subsolution v, we set

Y (ω) := {x ∈ ∆u(ω) ∩∆v(ω) : u′(x, ω) 6= v′(x, ω)},
and notice that it is a random stationary set by Proposition 3.6. By the fact that v
is admissible, we have

E(v′(x, ·)) = 0 = E(βc(x, ·)) for any x,

and this together with the inequality v′(x, ·) ≤ βc(x, ·), holding a.s. in Ω because v is
a critical subsolution, yields v′(x, ·) = βc(x, ·) a.s. in Ω. In other terms P(Y −1(x)) =
0, and consequently |Y (ω)| = 0 a.s. in ω by Fubini’s Theorem. Summing up:

u′(x, ω) = v′(x, ω) for a.e. x ∈ R
a.s. in ω, and so u and v coincide up to a real random variable. ¤
Theorem 6.9. Assume that 0 ∈ E[Zcf

] and E(ω) 6= ∅ a.s. in ω. Then E is a
uniqueness set for the critical equation in the sense that if two exact correctors u
and v agree on E(ω) a.s. in ω, then they coincide on the whole R a.s. in ω.

Proof. Given an exact corrector u, we will show that

u(x, ω) = inf{u(y, ω) + Scf
(y, x, ω) : y ∈ E(ω) }, x ∈ R

almost surely in ω. We take into account Proposition 5.3 and the argument used
in the proof of Theorem 6.4 to see that the right hand–side of the previous formula
gives an exact corrector coinciding with u on E(ω) a.s. in ω. We will denote it by v.

We pick an ω for which E(ω) 6= ∅ and all the previous relations hold. Let x0 6∈
E(ω). Since E(ω) is closed there are y1 < y2 in E(ω) with

x0 ∈ [y1, y2] , (y1, y2) ∩ E(ω) = ∅.
By Theorem 5.1–(ii) we have

u(x0, ω) = min
i=1,2

{u(yi, ω) + Scf
(yi, x0, ω)},
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which implies u(x0, ω) ≥ v(x0, ω). To prove the opposite inequality, we note that
being u(·, ω) a subsolution yields, by Proposition 4.9,

u(x0, ω) ≤ u(y, ω) + Scf
(y, x0, ω) for every y ∈ E(ω),

and we conclude by taking the infimum over y ∈ E(ω) of the right–hand side term.
¤

Remark 6.10. We propose a notion of Aubry set adapted to the present random
environment. We recall, as a starting point, that in the deterministic case the
Aubry set is made up by points such that the intrinsic distance from them is a
critical solution. The idea here is to replace, as in the spirit of the whole paper,
points by closed random stationary set. This leads to the following definition: a
closed random stationary set A is called Aubry set if

(i) the extension of an admissible critical subsolution from any closed random
stationary subset ofA via the Lax formula, see (11), yields an exact corrector;

(ii) no closed random stationary set properly containing A enjoys the previous
property.

According to the results of the section, we easily derive that A = E if 0 ∈ intE[Zcf
],

and A = R otherwise. Note that this is exactly the setup in the periodic case, apart
from the fact that E(ω) can be almost surely empty, while the set of equilibria is
non void in the periodic setting. We have therefore proved that an exact corrector
does exist if and only if A(ω) 6= ∅ a.s. in ω.

7. An application to Stochastic Homogenization

In this section we will exploit the results previously obtained to extend the homog-
enization result proved by Souganidis [19] to the case of quasiconvex Hamiltonians.

For every P ∈ R we define the effective Hamiltonian H(P ) as the stationary
critical value of the Hamiltonian H(·, P + ·, ·), namely

H(P ) := min
v∈S

(
ess sup

x∈R
H(x, P + v′(x, ω), ω)

)
a.s. in ω.

Proposition 7.1. The function H : R → R is continuous and coercive, with min-
imum equal to cf . It is, in addition, quasiconvex in the sense that Za := {p ∈ R :
H(p) ≤ a} is a compact interval for a ≥ cf , and ∂Za = {p ∈ R : H(p) = a} for
a > cf .

Proof. We recall from Proposition 6.2 that the functions a 7→ E(αa), a 7→ E(βa)
admit inverse denoted by f and g, respectively, in [cf , +∞) with

f : (−∞,E(αcf
)] → [cf , +∞) , g : [E(βcf

), +∞) → [cf , +∞),

both strictly monotonic and continuous. According to what proved in the previous
section, we have

H(P ) =





f(P ) if P ∈ (−∞,E(αcf
)]

cf if P ∈ (E(αcf
),E(βcf

))

g(P ) if P ∈ [E(βcf
), +∞).

This formula proves all the points of the assertion. ¤

The main result of the section is the following:
25



Theorem 7.2. Let H : R × R × Ω → R satisfy (H1)–(H6). Then for any u0 ∈
UC(RN ), the unique viscosity solutions uε(·, ·, ω) ∈ UC

(
(0, +∞)× RN

)
of

{
∂tuε + H(x/ε, ∂xuε, ω) = 0 in (0, +∞)× R
uε(0, x, ω) = u0(x) on R

(18)

converge, locally uniformly in (0, +∞)×R as ε → 0+, to the unique viscosity solution
u ∈ UC

(
(0, +∞)× R)

of
{

∂tu + H(∂xu) = 0 in (0, +∞)× R
u(0, x) = u0(x) on R

(19)

a.s. in ω.

A result is preliminary.

Proposition 7.3. There exists a set Ω0 of probability 1 such that equation

H(x, P + v′(x, ω), ω) = H(P ) (20)

has approximate correctors, sublinear at infinity, for any ω ∈ Ω0 and P ∈ R.

Proof. Let (Pk)k be a dense sequence in R. By the results obtained in Section 6,
there exists, for each k ∈ N, a sequence of random functions (vk

n)n ⊆ S and a set Ωk

of probability 1 such that, given ω ∈ Ωk, the function vk
n(·, ω) is sublinear at infinity

and solves the following inequalities in the viscosity sense:

H(Pk)− 1
n
≤ H(x, Pk + (vk

n)′(x, ω), ω) ≤ H(Pk) +
1
n

in R.

We claim that the statement holds true by choosing Ω0 := ∩kΩk. Indeed, let us
fix ω ∈ Ω0 and P0 ∈ R, then a subsequence Phk

converge to P0 and the functions
vhk
n (·, ω) are equiLipschitz–continuous for hk large enough. Therefore we can employ

assumption (H4) to control

|H(x, P0 + p, ω)−H(x, Phk
+ p, ω)|

for any x, p ∈ ∂vhk
n (x, ω), hk large enough. Using this and the fact that H is

continuous, we can finally select, for any given δ > 0, two indices hk and n such that
the function φ(x) := vhk

n (x, ω) satisfies

H(P0)− δ ≤ H(x, P0 + φ′(x), ω) ≤ H(P0) + δ in R,

in the viscosity sense, which proves the claim. ¤

Proof of Theorem 7.2. Let us fix ω ∈ Ω0, where Ω0 is a set of probability 1
chosen according to Proposition 7.3. The family {uε(·, ·, ω) : ε > 0 } of solutions
to (18) is made up by equi–uniformly continuous functions in R+ × RN that agree
at t = 0, hence it is precompact in UC(R+ ×RN ) with respect to the local uniform
convergence. In order to get the assertion, it is enough to show that any convergent
subsequence has the (unique) solution u of (19) as limit.

The proof of this is based on the perturbed test function method (see [10, 11]) and
basically exploits the existence of approximate correctors sublinear at infinity, which
has been proved in Proposition 7.3. We just sketch it for the reader’s convenience.

We show, for instance, that any function v, obtained as limit of a sequence of
solutions to (18), say uεk

(·, ·, ω), is a viscosity subsolution of (19). Let a point (t, x)
26



be a local strict maximizer of v − φ, with φ of class C1, and let us assume, by
contradiction

δ := ∂tφ(t, x) + H(∂xφ(t, x)) > 0.

We denote by χ a δ/2–approximate corrector of (20) sublinear at infinity, with
P = ∂xφ(t, x), and set

φk(t, x) := φ(t, x) + εkχ(x/εk) for (t, x) ∈ R+ × R.

We can find r > 0 such that

∂φk(t, x) + H(x/εk, ∂xφk(t, x), ω) ≥ 0

in the viscosity sense in Vr := (t− r, t + r)× (x− r, x + r), for every k ∈ N. Hence,
by the comparison principle,

max
Vr

(uεk
(·, ·, ω)− φk) ≤ max

∂Vr

(uεk
(·, ·, ω)− φk).

By the sublinear character of χ, uεk
− φk ⇒ v− φ in R+×R, so that, by passing to

the limit in the above inequality, we obtain

max
Vr

(v − φ) ≤ max
∂Vr

(v − φ),

in contrast with (t, x) being a local strict maximum point for v − φ. ¤

When the probability space has also a topological structure and the Hamiltonian
is continuous with respect to ω, we can improve Theorem 7.2 by showing that the
homogenization results holds for every ω. This allows us to recover what is known
in the quasi–periodic and almost–periodic setting, see Remark 4.2.

Theorem 7.4. Let H : R × R × Ω → R satisfy (H1)–(H6). Let us additionally
assume that Ω is a topological space such that

(i) P(U) > 0 for every nonempty open set U ⊂ Ω;

(ii) the map ω 7→ H(·, ·, ω) from Ω to C(R×R) is continuous with respect to the
uniform convergence on R×BR for every R > 0.

Then the conclusion of Theorem 7.2 holds for every ω ∈ Ω.

Proof. Let Ω0 be a set of probability 1 chosen according to Proposition 7.3. Given
ω ∈ Ω\Ω0, we need to show that equation (20), with such an ω, admits approximate
correctors, sublinear ay infinity, for any P ∈ R.

Let us fix P ∈ R and δ > 0. Since P charges every open neighborhood of ω,
there is a sequence ωk contained in Ω0 such that H(·, ·, ωk) converge to H(·, ·, ω)
uniformly on R×BR for every R > 0. We denote by uk a δ/2–approximate corrector,
sublinear at infinity, of (20) with ωk in place of ω and note that such functions are
equiLipschitz–continuous, therefore for k large enough we have

|H(x, P + p, ω)−H(x, P + p, ωk)| < δ

2
for any x ∈ R, p ∈ ∂uk(x).

This implies that uk is a δ–approximate correctors of (20) for k large enough. The
proof is complete. ¤
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Dip. di Matematica, “Sapienza” Università di Roma, P.le Aldo Moro 2, 00185 Roma,
Italy

E-mail address: davini@mat.uniroma1.it, siconolf@mat.uniroma1.it

28


