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Abstract. We consider the Hamilton–Jacobi equation

∂tu+H(x,Du) = 0 in (0,+∞)× TN

where TN is the flatN–dimensional torus, and the HamiltonianH(x, p) is assumed
continuous in x and strictly convex and coercive in p. We study the large time
behavior of solutions, and we identify the limit through a Lax–type formula. Some
convergence results are also given for H solely convex. Our qualitative method
is based on the analysis of the dynamical properties of the so called Aubry set,
performed in the spirit of [13]. This can be viewed as a generalization of the
techniques used in [11] and [18]. Analogous results have been obtained in [4]
using PDE methods.

1. Introduction

This paper is about the large time behavior of the equation

∂tu+H(x,Du) = 0

in the flat torus TN . Here and in the sequel (sub–super) solutions are meant in the
viscosity sense (see [2, 3, 14]).

The subject has been extensively investigated, first in [16], and subsequently in
[11], [4], [18]. It is therefore well understood that, under suitable assumptions on H,

u(t, x) + ct

converges uniformly, for t diverging positively, to a solution v of the stationary
equation

H(x,Dϕ) = c in TN ,

where c is the so–called critical value of the Hamiltonian, i.e. given by

c = min{a : H(x,Dϕ) = a has a subsolution}.

This is also the unique value of a for which H(x,Dϕ) = a admits a solution on the
whole torus, see [15], [13]. Any (sub) solution of the previous equation with a = c
will be called critical in the sequel.

This problem has been attacked, in the quoted literature, either by means of
dynamical techniques or by using viscosity solutions methods.

The dynamical approach, which can be found in [11], [18], requires strong regu-
larity assumptions on the Hamiltonian (C2–regularity, strict convexity and super-
linearity at infinity in the second variable), since it is based on the analysis of the
associated Hamiltonian flow. The latter is related to the solution u through the
Lax–Oleinik formula. As first pointed out in [11], a crucial role is played by the
Aubry set, which consists of accumulation points of the flow and is invariant.
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The conditions on H can be considerably relaxed by using pure PDE methods. In
[4] the authors are able to prove the convergence assuming H to be just continuous
and satisfying a coercivity condition. Moreover they require the Hamiltonian to
fulfill a convexity–type inequality, which includes also some nonconvex functions,
but not all strictly convex Hamiltonians.

The main contribution of the present paper is to employ generalized dynamical
methods to achieve the above convergence result in presence of a weak regularity of
H, which is taken continuous, strictly convex and coercive.

Our procedure yields, also in the continuous case, a deeper insight of the conver-
gence phenomenon as well as remarkably simple proofs which avoid any technicality.

The core of our argument is the discovery of some distinguished curves on the torus
along which the difference of u and any critical subsolution ϕ enjoys a monotonicity
property. This is a generalization of something already proved in [18] for curves
of the Hamiltonian flow lying on the Aubry set. The crux is that, of course, no
Hamiltonian flow can be in general defined in our setting.

We overcome this difficulty following the ideas of [13], where some aspects of the
Aubry–Mather theory are extended to continuous quasiconvex Hamiltonians. Using
a nonsymmetric semidistance, denoted by S, suitably related to the c–sublevel set
of the Hamiltonian, it is, in particular, defined a generalized (projected) Aubry set,
say A, and some relevant properties, holding for the classical Aubry set when H is
C2, are recovered.

Under the additional assumption that H is Lipschitz–continuous with respect to
x, it is proved in [13], for instance, that a multivalued dynamics can be defined
on A. We make here a further step by showing that, even for continuous H, some
dynamical properties are encoded in the structure of the Aubry set. We prove indeed
that through any point of A it passes a curve η defined on R and satisfying

S(η(t1), η(t2)) =

∫ t2

t1

(L(η, η̇) + c) ds = −S(η(t2), η(t1)) for any t1, t2 ∈ R,

where L is the Lagrangian function related to H. These are precisely the curves
satisfying the monotonicity property previously mentioned.

Beside this, we get the convergence result by exploiting, as in [18], the relaxed
semilimits theory and a generalization of the fact, proved in [13], that all critical
subsolutions are differentiable on A and have same gradient.

An advantage of our method is to single out the point where the strict convexity
condition on H — or, to be more precise, the C1–regularity of L, which is an
equivalent condition — is employed (see Lemma 5.2). This is an interesting issue.
It is in fact well known, as shown in an example in [4], that the simple convexity of
H does not ensure, in general, the convergence phenomenon.

However we can prove that such property is actually enough when the equilibrium
points form a uniqueness set for the critical equation. This accounts for the fact
that a small perturbation, in a convex Hamiltonian, can produce a passage from a
convergence to a non convergence situation, see Example 5.9. This generalizes the
results of [16], where the Hamiltonian is taken only convex, as well.

We are furthermore able to identify the limit function v through a representation
formula, which involves u(·, 0), the Aubry set, and the semidistance S. It is the
critical solution coinciding on A with the maximal critical subsolution not exceeding
u(·, 0). This should be compared to the formula given in [11] for Hamiltonians of
class C2 using the Peierls barrier. Our formula has been exploited in [19] to perform

2



a numerical approximation of the Aubry set

The paper is organized as follows: in Section 2 some preliminary material is
collected, including the definition of the semidistance S, of the generalized Aubry set,
as well as some properties of the critical solutions and of the Lax–Oleinik semigroup.
In Section 3 we introduce, through a representation formula, a distinguished critical
solution, which will be proved to be the limit of u(t, x)+ct for t→ +∞. Section 4 is
devoted to study the dynamical properties of the Aubry set and to single out a class
of special curves covering A. The main results are finally proved in Section 5. In
the Appendix we show that the usual integral representation formula for the Lax–
Oleinik semigroup holds also in the case where H is coercive, but not necessarily
superlinear at infinity, and so the Lagrangian L is possibly infinite–valued at some
points of TN × RN .

Acknowledgements. − The first author has been partially supported by MIUR
through the Cofin project 2002 ”Viscosity, metric and control theoretic methods in
nonlinear PDEs”. He gratefully acknowledges the hospitality and support of the
Department of Mathematics of the University of Roma 1 ”La Sapienza”, where this
research was initiated.

2. Assumptions and preliminary results

We write below a list of symbols used throughout this paper.

N an integer number
BR(x0) the closed ball in RN centered at x0 of radius R
BR the closed ball in RN centered at 0 of radius R
⟨ · , · ⟩ the scalar product in RN

| · | the Euclidean norm in RN

R+ the set of nonnegative real numbers
TN the N–dimensional flat torus
C(TN ) the space of real–valued continuous functions on TN

Lip(TN ) the space of real–valued Lipschitz–continuous functions on TN

A subset of Rk is called negligible if its k–dimensional Lebesgue measure is equal to
zero. We say that a property holds almost everywhere (a.e. for short) on Rk if it
holds up to a negligible subset of Rk. Given a measurable function φ : TN → R, its
L∞–norm on TN will be denoted by ∥φ∥∞. We will write φn ⇒ φ on TN to mean
that the sequence of functions (φn)n uniformly converges to φ on TN .

By modulus we mean a nondecreasing function from R+ to R+, vanishing and
continuous at 0. Given a closed convex subset Z of Rk, and p0 ∈ Z, we define
the normal cone of Z at p0, in symbols NZ(p0), as the set {q ∈ RN : ⟨q, p0⟩ =
maxp∈Z⟨q, p⟩}.

We endow the flat torus TN with the Riemannian metric induced by the Euclidean
metric on RN . We recall that TN can be viewed as the quotient space RN/ ZN ,
obtained by identifying all points x, y ∈ RN such that x− y ∈ ZN .

With the term curve, without any further specification, we refer to a Lipschitz–
continuous function from some given interval [a, b] to TN . The space of all such
curves is denoted by Lip([a, b],TN ), while Lipx,y([a, b],TN ) stands for the family of
curves γ joining x to y, i.e. such that γ(a) = x and γ(b) = y, for any fixed x,
y in TN . We denote by W 1,1([a, b],TN ) the space of absolutely continuous curves
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defined in [a, b]. Given a curve γ defined on some interval [a, b], a curve γ′ defined
on [a′, b′] will be called a reparametrization of γ if there exists an order preserving
Lipschitz–continuous map f : [a′, b′] → [a, b] surjective and such that γ′ = γ ◦ f . The
Euclidean length of a curve γ is denoted by ℓ(γ).

Unless otherwise specified, the term (sub, super) solution to some PDE equation
is understood in the viscosity sense. Given a continuous function g defined in Rk

and x0 ∈ Rk, we denote by D+g(x0) (resp. D
−g(x0)) the superdifferential (resp. the

subdifferential) of g at x0, i.e. the (possibly empty) set made up by the differentials
of viscosity test function from above (resp. from below) of g at x0. Note that, in
the case where g is convex, D−g coincides with the usual subdifferential of convex
analysis. When g is defined on Rm × Rk and (x0, p0) ∈ Rm × Rk, we will denote
by D−

p g(x0, p0) the subdifferential of the function g(x0, ·) at p0. For a function

g : Rk → (−∞,+∞], we denote by dom(g) its effective domain, i.e. the subset of
Rk where g is finite valued.

We deal with an HamiltonianH, defined on the cotangent bundle T ∗TN , identified
to TN × RN , satisfying the following set of assumptions:

(H1) H : TN × RN → R is continuous;

(H2) p 7→ H(x, p) is convex on RN for any x ∈ TN ;

(H3) lim
|p|→+∞

(
inf

x∈TN
H(x, p)

)
= +∞;

(H4) the set of minimizers of p 7→ H(x, p) has empty interior, for any x ∈ TN .

To obtain our general convergence result (see in particular Proposition 5.3, which
will constitute a crucial step for that), we will moreover assume:

(H2)′ p 7→ H(x, p) is strictly convex on RN for any x ∈ TN .

Notice that condition (H4) is certainly satisfied when (H2)′ holds true, since, in this
case, the set of minimizers of H(x, ·) reduces to a point, for any x ∈ TN .

Remark 2.1. Exploiting the subdifferentiability properties of the function p 7→
H(x, p), for any fixed x, we see that the Lipschitz constant of such a function in BR,
for any R > 0, can be estimated, uniformly with respect to x, in terms of R and of
max{H(x, p) : (x, p) ∈ TN ×B2R}, see e.g. [17, Proposition 2.2.6].

Remark 2.2. The problem we are dealing with can equivalently formulated in RN ,
instead of TN , with ZN–periodicity conditions.

We consider the family of Hamilton–Jacobi equations

H(x,Dϕ) = a on TN , (1)

with a real parameter, and set

c := inf {a ∈ R : equation (1) has a subsolution} .
This is called the critical value of the Hamiltonian H and is characterized by the
property of being the unique value for a such that equation (1) admits (at least) one
solution (see e.g. [15], [13]). A solution (resp. supersolution, subsolution) of

H(x,Dϕ) = c in TN . (2)
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will be qualified as critical in the sequel. Thanks to hypothesis (H3), all subsolu-
tions of (1) are Lipschitz–continuous. Moreover, by the convexity assumption, there
is a complete equivalence between the notions of (viscosity) subsolution and a.e.
subsolution (see [2]).

Following [13], we carry out the study of properties of subsolutions to (1) by
means of the semidistances Sa defined on TN × TN , for a ≥ c, as follows:

Sa(x, y) = inf

{∫ 1

0
σa(γ(s), γ̇(s)) ds : γ ∈ Lipx,y([0, 1],TN )

}
, (3)

where σa(x, q) is the support function of the a–sublevel of H, namely

σa(x, q) := sup {⟨q, p⟩ : H(x, p) ≤ a } . (4)

The function σa(x, q) is convex in q and upper semicontinuous in x (and even con-
tinuous in all points x where the set {p ∈ RN : H(x, p) ≤ a } has nonempty interior
or reduces to a point), while Sa satisfies the following properties:

Sa(x, y) ≤ Sa(x, z) + Sa(z, y)

Sa(x, y) ≤ ba|x− y|
for all x, y, z ∈ TN and for some positive constant ba. The following properties hold
(see [13]):

Proposition 2.3. Given a ≥ c, we have:

(i) For any y ∈ TN , the functions Sa(y, ·) and −Sa(·, y) are both subsolutions
of (1).

(ii) A function ϕ is a subsolution of (1) if and only if

ϕ(x)− ϕ(y) ≤ Sa(y, x) for all x, y ∈ TN .

To ease notations, in the sequel we will write S, σ in place of Sc, σc, respectively.

In the analysis of the behavior of critical subsolutions, a special role is played
by a set A, which has been called in [13] the (projected) Aubry set, defined as the
collection of points y ∈ TN such that

inf

{∫ 1

0
σ(γ, γ̇) ds : γ ∈ Lipy,y([0, 1],TN ), ℓ(γ) ≥ δ

}
= 0 for some δ > 0,

or, equivalently (cf. [13, Lemma 5.1]),

inf

{∫ 1

0
σ(γ, γ̇) ds : γ ∈ Lipy,y([0, 1],TN ), ℓ(γ) ≥ δ

}
= 0 for any δ > 0.

The set A is closed and nonempty (cf. [13, Corollaries 5.7 and 5.9]). In the next
theorem we outline the main properties linking A to equation (2) (see [13]).

Theorem 2.4.

(i) If ϕ and w are a subsolution and a supersolution of (2) respectively and
ϕ ≤ w on A, then ϕ ≤ w on TN . In particular, if two solutions of (2)
coincide on A, then they coincide on TN .

(ii) If w0 is a function defined on C ⊂ A such that

w0(x)− w0(y) ≤ S(y, x) for every x, y ∈ C,

then the function

w(x) := min
y∈C

(
w0(y) + S(y, x)

)
(5)
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is the maximal critical subsolution of (2) equaling w0 on C, and a critical
solution as well.

(iii) If we furthermore set C = A in (5), then w is the unique critical solution
equaling w0 on A.

We call y ∈ TN an equilibrium point if minpH(y, p) = c. The collection of all
such points will be denoted by E . The set E is a (possibly empty) closed subset
of A (cf. [13, Lemma 5.2]). This property depends on the fact that the c–sublevel
{p : H(y, p) ≤ c} is non–void and has empty interior when y ∈ E (the latter is a
consequence of (H4), and this is actually the unique point where such condition is
used). It is apparent that c ≥ maxx∈TN minp∈RN H(x, p); we point out that E is
nonempty if and only if the previous formula holds with an equality. In this case, E
is made up by the points x where the maximum is attained.

Let us now focus our attention on the Cauchy problem{
∂tu+H(x,Du) = 0 in (0,+∞)× TN

u(0, x) = u0(x) on TN ,
(6)

where u0 is a continuous initial datum. The following result holds (see e.g. [6]):

Theorem 2.5. Assume H satisfies assumptions (H1), (H2), (H3), (H4). Then
the Cauchy problem (6) admits a unique uniformly continuous solution u(t, x) on
R+ × TN , for any u0 ∈ C(TN ). If, moreover, the initial datum u0 ∈ Lip(TN ), then
u(t, x) is Lipschitz–continuous on R+ × TN and satisfies

∥Du∥∞ ≤M, ∥∂tu∥∞ ≤ ess sup{|H| : |p| ≤M }
for any positive constant M such that

M > ∥Du0∥∞, inf {H : |p| > M } > sup {|H| : |p| ≤ ∥Du0∥∞ }. (7)

In view of the previous theorem, we can define, for any t > 0, a nonlinear operator
S(t) on C(TN ) by setting S(t)ϕ := u(t, ·) for every ϕ ∈ C(TN ), where u(t, x) denotes
the unique solution of the Cauchy problem (6) with u0 = ϕ. The family of operators(
S(t)

)
t>0

forms a semigroup, whose main properties are summarized below.

Proposition 2.6.

(i) (Semigroup Property) For any t, s > 0 we have S(t+ s) = S(t)◦S(s).
(ii) (Monotonicity Property) For every ϕ, ψ ∈ C(TN ) and each t > 0 we have

ϕ ≤ ψ ⇒ S(t)ϕ ≤ S(t)ψ.
(iii) For any a ∈ R and ϕ ∈ C(TN ), we have S(t)(ϕ+ a) = S(t)ϕ+ a.
(iv) (Non–expansiveness) For each t > 0, the map S(t) is non–expansive, i.e.

∥S(t)ϕ− S(t)ψ∥∞ ≤ ∥ϕ− ψ∥∞ for every ϕ, ψ ∈ C(TN ).

(v) For every ϕ ∈ C(TN ), we have limt→0 S(t)ϕ = ϕ.

We define the Fenchel transform L : TN × RN → (−∞,+∞] of H via

L(x, q) := sup
p∈RN

{⟨p, q⟩ −H(x, p)} . (8)

The function L is called the Lagrangian related to the Hamiltonian H. We record
for later use:
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Proposition 2.7. Let H satisfy assumptions (H1), (H2), (H3). Then the following
properties hold for the Lagrangian L:

(i) L(x, q) is lower semicontinuous on TN × RN , and convex in q for any fixed
x ∈ TN .

(ii) L is continuous on int(domL) =: Ω.

If , in addition, H satisfies (H2)′ then:

(iii) for every (x, q) ∈ Ω, L is differentiable with respect to q, and (x, q) 7→
DqL(x, q) is continuous on Ω.

(iv) If (x, q) is such that the supremum in the definition of L(x, q) is a maximum
then (x, q) belongs to Ω.

We refer to the Appendix for the proof.

Each operator S(t) can be represented through the following integral formula(
S(t)ϕ

)
(x) = inf

{
ϕ(γ(0)) +

∫ t

0
L(γ(s), γ̇(s)) ds : γ ∈W 1,1([0, t],TN ), γ(t) = x

}
(9)

for any ϕ ∈ C(TN ). The family of operators
(
S(t)

)
t>0

is called the Lax–Oleinik
semigroup.

Remark 2.8. When ϕ ∈ Lip(TN ) and L is finite–valued, the validity of (9) can be
seen, for instance, by combining [10, Theorem 1.1] with Theorem 2.5. This is the
case when H is uniformly superlinear in p. The infimum in (9) is then a minimum
by classical results of the Calculus of Variations (see e.g. [5]), and all minimizers
are Lipschitz–continuous (cf. [1] for some results on this topic).

We present in the Appendix a proof of (9) for ϕ ∈ C(TN ) and general L, possibly
infinite–valued in some subset of TN ×RN , and we show the existence of minimizers
in this case too.

We will use the following Tonelli–type semicontinuity theorem (see e.g. [5, Theo-
rem 3.6]) in the proof of Propositions 4.12 and A.6.

Theorem 2.9. Let J be a bounded interval of R, and let F : RN×RN → (−∞,+∞]
be a function satisfying the following conditions:

(i) F is lower semicontinuous;
(ii) F (x, ·) is convex on RN for every x ∈ RN ;
(iii) F is bounded from below by a constant.

Then the functional

F(γ) :=

∫
J
F (γ(s), γ̇(s)) ds

is sequentially weakly lower semicontinuous in W 1,1(J,RN ), i.e. if (γk)k converges
weakly in W 1,1(J,RN ) to γ, then

F(γ) ≤ lim inf
k→+∞

F(γk). (10)

Equivalently, we can say that (10) holds if (γk)k converges uniformly to γ and the
measures νk(E) :=

∫
E |γ̇k| ds are equiabsolutely continuous on J with respect to the

Lebesgue measure.
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3. A distinguished critical solution

Before attacking the convergence problem, we try to guess what the asymptotic
limit of S(t)u0 + ct should be like. We start by providing a Lax–type formula
which involves the initial datum u0, the Aubry set and the semidistance S, and
we show that this defines a critical solution, more precisely the one whose trace
on A coincides with that of the maximal critical subsolution not exceeding u0. It
furthermore generalizes the one given in (5).

Theorem 3.1. Let w0 : TN → R be any function bounded from below. Set

v(x) := inf
y∈A

(
S(y, x) + inf

z∈TN
(w0(z) + S(z, y))

)
for every x ∈ TN . (11)

Then

(i) infy∈TN (S(y, ·) + w0(y)) =: v0 is the maximal critical subsolution not ex-

ceeding w0 on TN .
(ii) The function v is the critical solution equaling v0 on A.
(iii) If the inequality w0(y) − w0(x) ≤ S(x, y) holds for all x, y ∈ TN , then

v = miny∈A(w0(y) + S(y, ·)) on TN , and v0 = w0 on A.

We show separately, in the next lemma, the relevant fact on which the proof of
Theorem 3.1 relies.

Lemma 3.2. Let C be a subset of TN and w0 : C → R be any function bounded
from below. Then

w(x) := inf
z∈C

(
w0(z) + S(z, x)

)
.

is the maximal subsolution of (2) not exceeding w0 on C. The function w is moreover
a critical solution in TN \ C, and in the whole TN whenever C ⊂ A.

Proof. It is easy to check, exploiting the very definition of w, that w ≤ w0 on C and
w(x)−w(y) ≤ S(y, x) for every x, y ∈ TN . The latter inequality implies that w is a
critical subsolution by Proposition 2.3. If ϕ is any critical subsolution with ϕ ≤ w0

on C then, taking into account that ϕ(x) − ϕ(y) ≤ S(y, x) for every x, y ∈ TN , we
get

ϕ(x) ≤ min
z∈C

(
ϕ(z) + S(z, x)

)
≤ w(x) for every x ∈ TN ,

which gives the maximality of w. Such a property also implies that w is a su-
persolution of (2) in TN \ C through a standard argument (see, e.g., the proof
of Proposition 3.2 in [13]). If furthermore C ⊂ A, then by Theorem 2.4 (ii)
w = minz∈C

(
w(z) + S(z, x)

)
, and so it is a critical solution in TN . □

Proof of Theorem 3.1. Item (i) comes directly from Lemma 3.2 with C = TN ,
(ii) is therefore a consequence of Theorem 2.4 (iii). Item (iii) can be finally deduced
from Theorem 2.4 (ii). □

The proof that the function given in formula (11), with w0 = u0, actually coincides
with the asymptotic limit of S(t)u0 + ct is, of course, the main goal of our analysis,
and will be attained in the subsequent sections. The remainder of the present one is
devoted, instead, to some preliminary remarks which give support to our guess and
which cast some light for our further analysis.

We start by noticing that, given a solution w of (2) and a general initial datum
8



u0 ∈ C(TN ), there exist, since TN is compact, some constants α, β such that

w + α ≤ u0 ≤ w + β on TN .

This implies, in view of the relation S(t)w = w − ct, which holds for every t > 0,
and the Monotonicity Property of the semigroup

(
S(t)

)
t>0

,

w + α− ct ≤ S(t)u0 ≤ w + β − ct on TN

for any t > 0, or, in other terms

w + α ≤ S(t)u0 + ct ≤ w + β on TN . (12)

Since the family of functions
(
S(t)u0+ ct

)
t>0

is equicontinuous (in view of Theorem

2.5), and equibounded thanks to (12), we can define the relaxed semilimits

u(x) = lim sup
t→+∞

∗ (S(t)u0) (x) + ct := sup

{
lim sup
n→+∞

(S(tn)u0) (xn) + ctn

}
(13)

u(x) = lim inf
t→+∞∗ (S(t)u0) (x) + ct := inf

{
lim inf
n→+∞

(S(tn)u0) (xn) + ctn

}
(14)

where the supremum and the infimum in (13) and (14) respectively are taken for all
sequences (xn)n converging to x and all diverging sequences (tn)n. Moreover, thanks
to the uniform continuity of the function (S(t)u0) (x) on R+ × TN (cf. Theorem
2.5), the sequences (xn)n may be chosen identically equal to x, so that the following
identities hold true:

u(x) = sup {ψ(x) : ψ ∈ ωS(u0) }
u(x) = inf {ψ(x) : ψ ∈ ωS(u0) }

where

ωS(u0) :=

{
ψ ∈ C(TN ) : ψ = lim

n→+∞
S(tn)u0 + ctn for some diverging sequence (tn)n

}
.

We have (cf. proof of Theorem 1 in [16]):

Theorem 3.3. The functions u and u defined by (13) and (14) are a subsolution
and a supersolution of equation (2), respectively.

We proceed to establish the asymptotic convergence of S(t)u0+ct to the function
v given in (11) with w0 = u0, provided u0 is a critical sub or supersolution.

Theorem 3.4. Let u0 ∈ C(TN ) be either a subsolution or a supersolution of (2).
Then S(t)u0 + ct uniformly converges, as t goes to +∞, to the critical solution v
defined by (11) with w0 = u0.

Proof. Let us first assume u0 to be a subsolution of (2). By Theorem 3.1 (iii), v
is the maximal critical subsolution satisfying v = u0 on A, hence v ≥ u0 on TN .
As u0 − ct and v − ct are a subsolution and a supersolution of (2) respectively, the
Comparison Principle yields

u0 − ct ≤ S(t)u0 ≤ v − ct on TN ,

and consequently, since v = u0 on A, we get

u0 = S(t)u0 + ct = v on A.

for every t > 0. It follows that v = u = u on A, and we finally deduce from Theorem
2.4 (i) v = u = u on TN . This proves the assertion when u0 is a critical subsolution.

9



Let us now assume u0 to be a supersolution of (2). Let v0 be the maximal critical
subsolution not exceeding u0 on TN , i.e.

v0 = min
y∈TN

(S(y, ·) + u0(y)) .

The maximality of v0, combined with the fact that u0 is a critical supersolution,
implies that v0 is a critical solution as well, so that the identity v = v0 on TN holds
true. Arguing as in the first part of the proof, we therefore obtain

v ≤ S(t)u0 + ct ≤ u0 on TN ,

for every t > 0. This entails v ≤ u ≤ u ≤ u0 on TN . From the fact that u is a
critical subsolution, and from the maximality property of v0 = v, we get u ≤ v, and
so v = u = u on TN . □

We deduce from Theorem 3.4:

Proposition 3.5. Assume u0 ∈ C(TN ), and let v be the function defined by (11)
with w0 = u0. Then the relaxed semilimits u and u, defined by (13) and (14)
respectively, satisfy

v(x) ≤ u(x) ≤ u(x) for every x ∈ TN . (15)

Proof. Set v0 = miny∈TN (S(y, ·) + u0(y)). It is apparent that v0 ≤ u0 on TN ,

hence, by the Monotonicity Property of the semigroup
(
S(t)

)
t>0

, we obtain S(t)v0+
ct ≤ S(t)u0+ct on TN , and (15) follows in view of Theorem 3.4 and Theorem 3.1. □

Proposition 3.5, Theorem 2.4, and the fact that v is a critical solution and u a
critical subsolution imply that the convergence result we aim at is proved as soon
as the equality v = u is obtained on A. This suggests, in the end, that what really
matters in our analysis is the asymptotic behavior of S(t)u0 + ct on A.

4. Dynamical properties of the projected Aubry set

Here we define a family of curves, called critical, fully covering the Aubry set,
which will play an important role in the convergence result of the next section. We
will furthermore investigate the behavior of critical subsolutions on such curves.
Throughout the section, conditions (H1), (H2), (H3), (H4) are assumed.

Definition 4.1. A curve γ defined on an interval J is called critical if

S(γ(t1), γ(t2)) =

∫ t2

t1

(L(γ, γ̇) + c) ds = −S(γ(t2), γ(t1))

for every t1, t2 in J with t2 ≥ t1.

Lemma 4.2. Any critical curve is contained in the Aubry set.

Proof. Let γ be a critical curve, which we first assume to be nonconstant, defined
in some interval J . Given t1, t2 in J with t2 ≥ t1 and γ(t1) ̸= γ(t2), we can find two
sequences of curves γ1n ∈ Lipγ(t1),γ(t2)([0, 1],T

N ) and γ2n ∈ Lipγ(t2),γ(t1)([0, 1],T
N )

which approximate the semidistance S of their end points up to 1/n, for any n. The
10



cycles γn, obtained by juxtaposition of γ1n and γ2n, and change of parametrization to
[0, 1], are of length ℓ(γn) ≥ 2|γ(t2)− γ(t1)| and satisfy by Definition 4.1

lim
n

∫ 1

0
σ(γn(s), γ̇n(s)) ds = 0

which shows that γ(t1), γ(t2) are in A. If, on the contrary, the support of γ is
reduced to a point, say x0, we find∫

J
(L(x0, 0) + c) ds = 0,

which implies x0 ∈ E ⊂ A. □

A further step in the analysis is carried out by picking up a special parametrization
for curves on the torus. To do this, we use the Lagrangian function related to H.

Definition 4.3. A curve γ defined on an interval J is said to have a Lagrangian
parametrization if

L(γ(t), γ̇(t)) + c = σ(γ(t), γ̇(t)) for a.e. t ∈ J . (16)

The definition of the semidistance S and the inequality L(x, q) ≥ σ(x, q) − c,
which holds for every x and q, imply:

Proposition 4.4. Any critical curve has a Lagrangian parametrization.

More generally, the following reparametrization lemma holds.

Proposition 4.5. Any curve with closure of the support disjoint from E admits a
Lagrangian reparametrization. If, in addition, the curve is defined on a bounded
interval, the same holds true for its Lagrangian reparametrization.

Proof. The first step is to show the existence of an u.s.c. (resp. l.s.c.) function
λ(x, q) (resp. λ(x, q)) defined in (TN \ E)× (RN \ {0}) such that the equality

L(x, λ(x, q)q) = λ(x, q)σ(x, q)− c (17)

and the similar one obtained by replacing λ(·, ·) by λ(·, ·) hold true.
Given (x, q) ∈ (TN \ E) × (RN \ {0}), and denoted {p : H(x, p) ≤ c} by Z, we

have that q ∈ NZ(p0) for some p0 with H(x, p0) = c, therefore

λq ∈ D−
p H(x, p0) for some λ > 0 (18)

in force of Theorem 23.7 of [17]. Consequently the set of nonnegative λ satisfying
(17) in place of λ(x, q), denoted by F (x, q), is nonempty, see Theorem A.2. It is
moreover a compact subset of (0,+∞). We see, in fact, that, for λ large, relation (18)
is impossible, when H(x, p0) = c, since Z is compact and H(x, ·) locally Lipschitz–
continuous. This shows that F (x, q) is bounded from above. It is also closed thanks
to the continuity of σ(x, ·) and L(x, ·), respectively, and the inequality

L(x, λq) ≥ σ(x, λq)− c for every λ ≥ 0.

Moreover, 0 ̸∈ F (x, q) because x ̸∈ E , and consequently L(x, 0) = −maxpH(x, p) <
−c. We then define

λ(x, q) = max
F (x,q)

λ , λ(x, q) = min
F (x,q)

λ

11



and we see that these functions, for (x, q) varying in (TN \E)× (RN \{0}), are u.s.c.
and l.s.c., respectively.

The assertion is finally obtained arguing as in [13] Proposition 7.4. □

Remark 4.6. A notion of Lagrangian parametrization can be given at any level
a > c, by replacing in (16) c and σ by a and σa, respectively. Proposition 4.5 can
be accordingly generalized providing Lagrangian reparametrizations for any curve,
without the requirement of empty intersection with E . Such a restriction comes, in
fact, from the necessity of avoiding that a p0 satisfying H(x0, p0) = c, for some x0,
is a minimizer of p 7→ H(x0, p). This possibility is actually ruled out for a p0 with
H(x0, p0) = a when a > c.

Exploiting the previous remark, we can provide, in a sense, a generalization of
Proposition 4.5. This result will be used in the proof of Proposition 5.5.

Lemma 4.7. Let γ ∈ Lip([0, 1],TN ). For any T > 0 we set

[γ]T := { ξ ∈ Lip([0, T ],TN ) : ξ is a reparametrization of γ }.

Then ∫ 1

0
σ(γ, γ̇) ds = inf

{∫ T

0

(
L(ξ, ξ̇) + c

)
ds : ξ ∈ [γ]T , T > 0

}
. (19)

Proof. It is apparent that the left–hand side term of (19) is not greater than that
in the right–hand side one. To prove the converse inequality, we select a decreasing
sequence (δn)n with δn ↓ 0. Since σ(x, q) = infn σc+δn(x, q) for every (x, q) ∈
TN × RN , by the monotone convergence theorem we get∫ 1

0
σ(γ, γ̇) ds = inf

n

∫ 1

0
σc+δn(γ, γ̇) ds. (20)

Taking into account Remark 4.6, we have a Lagrangian reparametrization γn of γ
at level a = c+ δn, for any n, defined in some interval [0, Tn], with Tn > 0, such that∫ 1

0
σc+δn(γ, γ̇) ds =

∫ Tn

0
σc+δn(γn, γ̇n) ds =

∫ Tn

0
(L(γn, γ̇n) + c+ δn) ds

≥
∫ Tn

0
(L(γn, γ̇n) + c) ds.

The assertion therefore follows from (20). □

The main result we aim at, in this section, is the following:

Theorem 4.8. Through any point of A it passes a critical curve defined on the
whole R.

We start by a lemma, then prove a local version of Theorem 4.8, and thereafter
get the full result by using Zorn’s lemma.

Lemma 4.9. There exists a real number R > 0 such that

{q ∈ RN : L(x, q) + c = σ(x, q) for some x ∈ TN } ⊆ BR.

12



Proof. We can take R as the Lipschitz constant of the function p 7→ H(x, p) for
x ∈ TN and p satisfying H(x, p) = c. To see that this quantity is actually well
defined, note that the condition on (x, p) singles out a compact set in TN × RN in
force of the coercivity assumption (H3), and take into account Remark 2.1.

If q ∈ RN , x0 ∈ TN are such that L(x0, q) + c = σ(x0, q), then q ∈ D−
p H(x0, p0)

for some p0 with H(x0, p0) = c, and so |q| ≤ R. □

Lemma 4.10. For any y ∈ A, there exists δ ∈ (0,+∞] and a critical curve η, which
is defined in (−δ, δ) and satisfies η(0) = y.

Proof. If y ∈ E , we simply set η(t) = y, for every t ∈ R. By the definition of
equilibrium point, we have

L(y, 0) + c = max
p∈RN

−H(x, p) + c = 0 (21)

for every t ∈ R, which shows that η is indeed a critical curve. If y ∈ A\E , we exploit
Lemma 9.4 of [13] to see that there exists a curve γ contained in A, and defined in
some neighborhood J of t = 0, such that γ(0) = y and

S(γ(t1), γ(t2)) =

∫ t2

t1

σ(γ, γ̇) ds = −S(γ(t2), γ(t1))

for every t1, t2 ∈ J with t2 > t1. Note that this result does not require the Lipschitz
continuity of H in x, which was assumed in that paper, and therefore holds also in
our present setting.

Because of the local character of the construction, we can assume that γ stays
away from A. We thus consider a Lagrangian reparametrization of γ, which does
exist in force of Proposition 4.5, to get the required curve. □

Proposition 4.11. Let y ∈ A. Then there exists a critical curve η defined on R
with η(0) = y.

Proof. In view of Lemma 4.10, we may assume that y ∈ A\E . We denote by C the
set of pairs (T, η), where T ∈ (0,+∞], and η is a critical curve defined on (−T, T )
and equaling y at 0. We give an order relation in C by defining

(T, η) ⪯ (T ′, η′) if T ≤ T ′ and η′|(−T,T ) = η.

The set C is nonempty by Lemma 4.10 . To prove that C is inductively ordered,
we take a nonempty chain {(Ti, ηi)}, with i in some set of indices I, and observe

that an upper bound (T̂ , η̂) ∈ C can be defined through

T̂ := sup
i
Ti and η̂(t) := ηi(t) if t ∈ (−Ti, Ti), for every i ∈ I.

Zorn’s Lemma hence provides the existence of a maximal element (Ty, ηy) in C.
We claim that Ty = +∞. If, in fact, this were not the case, and Ty < +∞, then the
curve ηy should have limit (belonging to A) for t going to ±Ty, in view of Lemma
4.9. It would then be possible to extend ηy to some interval (−Ty − δ, Ty + δ) for a
suitable δ > 0, by applying Lemma 4.10 to these limit points. This would violate
the maximality of (Ty, ηy). □

We denote by K the family of all maximal critical curves, and by K(y) the subset
of K made up by those equaling y at t = 0, for each y ∈ A.

We proceed to prove a compactness property for K.
13



Proposition 4.12. K is a compact metric space with respect to the local uniform
convergence on R.

Proof. Let (ηk)k be a sequence in K. The curves ηk are uniformly bounded by
the compactness of TN , and equiLipschitz continuous by Lemma 4.9, hence we can
apply Ascoli–Arzelà Theorem to infer the existence of a subsequence (not relabeled)
which converges locally uniformly to some curve η defined on R. The limit curve η
is contained in A, as the Aubry set is closed, and clearly satisfies

S(η(t1), η(t2)) = −S(η(t2), η(t1)) (22)

for every t1, t2 in R. If, in addition, t2 > t1, we have

S(ηk(t1), ηk(t2)) =

∫ t2

t1

(L(ηk(s), η̇k(s)) + c) ds.

for every k, and we therefore deduce, thanks to Theorem 2.9,

S(η(t1), η(t2)) = lim
k→+∞

∫ t2

t1

(L(ηk(s), η̇k(s)) + c) ds ≥
∫ t2

t1

(L(η(s), η̇(s)) + c) ds.

Since the converse inequality is apparent, we get in the end

S(η(t1), η(t2)) =

∫ t2

t1

(L(η(s), η̇(s)) + c) ds. (23)

Relations (22), (23) show that η ∈ K. □

Given η ∈ K, we denote by ω(η) the set of its ω–limits, i.e. of the points x0
satisfying

x0 = lim
k
η(sk) with sk → +∞ as k → +∞ (24)

We deduce from Proposition 4.12 that through any point x0 of ω(η) there passes a
critical curve entirely lying in ω(η). If, in fact, (24) holds, then {η(sk+·)}k converges
locally uniformly, up to a subsequence, to a curve γ, which equals x0 at 0, and is
contained in ω(η).

Remark 4.13. We can describe more precisely ω(η) if the sequence sk, appearing
in (24), is increasing and such that sk+1 − sk converges to a finite limit, necessarily
nonnegative, say T , and {η(sk + ·)}k converges locally uniformly to a curve γ.

In this case ω(η) coincides with the support of γ, which is a cycle of period T
because of the relations

γ(t+ T ) = lim
k
η(sk + T + t) = lim

k
η(sk+1 + t) = γ(t)

which hold for any t. If, in fact, y0 := limn η(tn) belongs to ω(η), with (tn)n diverging
sequence, then we can select, for any n, an index kn ∈ N satisfying skn ≤ tn < skn+1.
The sequence tn− skn is therefore bounded and so convergent, up to a subsequence,
to some t0 ∈ [0, T ]. It then follows that y0 = γ(t0).

If in particular T = 0, then γ reduces to a point, which must be the support of a
critical curve, and consequently belongs to E .

We know from [13] that, if H is Lipschitz–continuous in x, all critical subsolutions
are strictly differentiable at any point of the Aubry set, and have the same derivative.
This implies that they coincide, up to an additive constant, on every rectifiable
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subset of A. These results are based upon some semiconcavity estimates which, in
turn, depend essentially on the Lipschitz character of the Hamiltonian in x, that
we do not have here. We can nevertheless find something similar, in our setting,
looking at the behavior of the critical subsolutions on curves of K.

Theorem 4.14. Let η ∈ K. Then all critical subsolutions coincide on η(R), up to
an additive constant. There exists, in addition, a negligible set Σ ⊂ R such that, for
any critical subsolution ϕ, the map ϕ◦η is differentiable on R \ Σ and satisfies

d

dt
(ϕ◦ η) (t0) = σ(η(t0), η̇(t0)) whenever t0 ∈ R \ Σ. (25)

We show first an auxiliary lemma, on which the proof of Theorem 4.14 is based.

Proposition 4.15. Let η ∈ K. Then there exists a negligible set Σ ⊂ R such that
the functions η(·), S(η(t0), η(·)) and −S(η(·), η(t0)) are differentiable at any t0 in
R \ Σ, and

d

dt
S(η(t0), η(t))

∣∣∣
t=t0

= − d

dt
S(η(t), η(t0))

∣∣∣
t=t0

= σ(η(t0), η̇(t0)). (26)

Proof. Let Σ be a negligible subset of R such that every t0 ∈ R \ Σ is a differ-
entiability point for η(·) and a Lebesgue point for the function σ(η(·), η̇(·)). The
existence of such a set is guaranteed by Rademacher and Lebesgue differentiability
theorems. As the curve η is critical, we have

S(η(t0), η(t))

t− t0
=

1

t− t0

∫ t

t0

σ(η(s), η̇(s)) ds for every t > t0.

Since t0 is a Lebesgue point of σ(η(·), η̇(·)), we derive

lim
t→t0+

S(η(t0), η(t))

t− t0
= σ(η(t0), η̇(t0))

for every t0 ∈ R\Σ. A similar limit relation for t→ t0
− can be deduced analogously.

□

Proof of Theorem 4.14. Let Σ and ϕ be the subset of R given by Proposition
4.15 and a critical subsolution, respectively. By Proposition 2.3, we have

−S(η(t), η(t0)) ≤ ϕ(η(t))− ϕ(η(t0)) ≤ S(η(t0), η(t)) for every t, t0 ∈ R,

hence we get (25), for t0 ∈ R \ Σ, in view of Proposition 4.15. This fully proves the
assertion. □

We point out two consequences of the previous theorem that we will use in the
next section, and that we judge of independent interest, as well.

Proposition 4.16. Two critical subsolutions coinciding on M :=
∪

η∈K ω (η), must
also coincide on A.
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Proof. Let ϕ1, ϕ2 be two critical subsolutions coinciding on M. Take y and
η in A and in K(y), respectively. Let (tn)n be a diverging sequence such that
limn η(tn) = x ∈ M. As S(y, ·) is a critical subsolution (cf. Proposition 2.3),
Theorem 4.14 yields

ϕi(y) = ϕi(η(0))− S(y, η(0)) = ϕi(η(tn))− S(y, η(tn))

for every n ∈ N, i ∈ {1, 2}. Sending n to +∞, we get

ϕ1(y) = lim
n→+∞

ϕ1(η(tn))− S(y, η(tn)) = ϕ1(x)− S(y, x) = ϕ2(x)− S(y, x)

= lim
n→+∞

ϕ2(η(tn))− S(y, η(tn)) = ϕ2(y),

whence the assertion as y is an arbitrary point of A. □

Remark 4.17. As the curve η(t) := y, for every t ∈ R, is critical whenever y ∈ E ,
it is apparent from the definitions that the set E is always contained in M.

Proposition 4.18. The set M is an uniqueness set for (2), i.e. two solutions of
(2) coinciding on M, coincide on the whole torus too.

Proof. The assertion comes from the previous proposition and from the property
of being A a uniqueness set for (2), as established in Theorem 2.4. □

5. Convergence to steady states

We are now ready to prove our main convergence result. Throughout this section
we will assume, without any loss of generality, c = 0. We also assume H to satisfy
conditions (H1), (H2)′, (H3). We recall that u0 ∈ C(TN ) is the initial datum of
the Cauchy problem (6) and that ωS(u0) denotes the family of the uniform limits
of S(tn)u0, for some diverging sequence (tn)n. We start by establishing some mono-
tonicity properties for the function S(t)ψ − ϕ on the curves of K, where ψ is any
continuous function and ϕ any critical subsolution. The next result is the analogous
of Lemma 3.1 in [18].

Proposition 5.1. Let η ∈ K. Then the map t 7→
(
S(t)ψ

)
(η(t))− ϕ(η(t)) is nonin-

creasing on R+ for any ψ ∈ C(TN ), and any critical subsolution ϕ.

Proof. Let t1, t2 in R+ with t2 ≥ t1. Taking into account Theorem 4.14 and the
integral representation formula for the Lax–Oleinik semigroup, we get(

S(t2)ψ
)
(η(t2))−

(
S(t1)ψ

)
(η(t1)) ≤

∫ t2

t1

L(η(s), η̇(s)) ds = ϕ(η(t2))− ϕ(η(t1)),

which proves the assertion. □

We proceed to prove that a strict monotonicity property actually holds on the
critical curves under appropriate assumptions. This result relies on a lemma, that
we demonstrate first, which estimates the modification of the line integral of the
Lagrangian on a critical curve, when the Lagrangian parametrization is suitably
perturbed. We emphasize that, for this, we essentially use the differentiability of L
in q and the continuity of DqL(x, q) in int(domL), a property that is equivalent, for
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a continuous Hamiltonian, to the strict convexity of H in the second variable (cf.
[7]). These results are key tools for the forthcoming convergence theorem.

Lemma 5.2. There is a modulus ω(·) such that, if η is any curve in K and λ is
suitably close to 1, we have∫ t2

t1

L(ηλ, η̇λ) ds ≤ S(ηλ(t1), ηλ(t2)) + |λ− 1|ω(|λ− 1|)(t2 − t1)

for every t1, t2 with t2 > t1, where ηλ(t) := η(λt) for all t ∈ R.

Proof. We claim that K := {(x, q) ∈ A × RN : L(x, q) = σ(x, q) } is a compact
subset of int(domL). It is in fact closed by the lower and upper semicontinuity of
L and σ, respectively, bounded by Lemma 4.9 and contained in int(domL) thanks
to Proposition 2.7 (iv). There thus exists δ > 0 such that the set Kδ := {(x, λq) :
(x, q) ∈ K, |λ− 1| ≤ δ } is compactly contained in int(domL).

Let us now fix λ in (1 − δ, 1 + δ), and denote by θ a continuity modulus for the
function (x, q) 7→ DqL(x, q) in Kδ. For a.e. s ∈ R we have

(η(λs), η̇(λs)) ∈ K, (27)

⟨Dq L(η(λs), η̇(λs)), η̇(λs)⟩ = σ(η(λs), η̇(λs)), (28)

where the first relation comes from the very definition of critical curve, and the
second one holds in view of Theorem A.2. Let s be such that (27) and (28) hold.
The application of the mean value theorem to the function µ 7→ L(η(λs), µη(λs)) in
the interval with end points 1 and λ yields

L(η(λs), λ η̇(λs))− L(η(λs), η̇(λs)) = (λ− 1)⟨Dq L(η(λs), µ0 η̇(λs)), η̇(λs)⟩.

where µ0 is a suitable constant between λ and 1. By using (27), (28), and the
definition of θ(·), we derive from this identity

L(η(λs), λ η̇(λs)) ≤ λσ(η(λs), η̇(λs)) +R|λ− 1| θ(|λ− 1|R),

where R is the positive constant provided by Lemma 4.9. We now exploit the
previous estimate and the fact that η is a critical curve, to get for any t1, t2 in R
with t2 > t1∫ t2

t1

L(ηλ, η̇λ) ds =

∫ t2

t1

L(η(λs), λη̇(λs)) ds

≤
∫ t2

t1

λσ(η(λs), η̇(λs)) ds+ (t2 − t1)|λ− 1|R θ(R |λ− 1|)

= S(ηλ(t1), ηλ(t2)) + (t2 − t1)|λ− 1|R θ(R |λ− 1|).

□

Proposition 5.3. Let η ∈ K, ψ ∈ C(TN ) and ϕ be a critical subsolution. Let us
assume D+

(
(ψ − ϕ)◦η

)
(0) \ {0} ̸= ∅ (recall that D+ indicates the superdifferential),

then

(S(t)ψ) (η(t))− ϕ(η(t)) < ψ(η(0))− ϕ(η(0)) for every t > 0. (29)

17



Proof. We fix t > 0. Inequality (29) will be proved for ϕ := −S(·, η(t)), which is
enough to get the full result, in view of Theorem 4.14. We also assume, without any
loss of generality in view of Proposition 2.6 (iii), that ψ(η(0)) − ϕ(η(0)) = 0. We
are thus lead to show that the left–hand side term of (29) is strictly negative. To
this aim, we take into account the integral formula for the Lax–Oleinik semigroup,
given in Section 2, to get, for λ close to 1 and ηλ defined as in Lemma 5.2,

(S(t)ψ) (η(t))− ϕ(η(t)) = (S(t)ψ) (η(t)) ≤
∫ t/λ

(1/λ−1)t
L(ηλ, η̇λ) ds+ ψ

(
η((1− λ)t)

)
,

whence, by Lemma 5.2,

(S(t)ψ) (η(t))− ϕ(η(t)) ≤ ψ
(
η((1− λ)t)

)
− ϕ

(
η((1− λ)t)

)
+ t|λ− 1|ω(|λ− 1|).

If m ̸= 0 is an element of D+
(
(ψ − ϕ)◦η

)
(0), we therefore have

(S(t)ψ) (η(t))− ϕ(η(t)) ≤ m
(
(1− λ)t

)
+ o

(
(1− λ)t

)
+ t|λ− 1|ω(|λ− 1|),

where o(·) satisfies limλ→1
o
(
(1−λ)t

)
1−λ = 0. A suitable choice of λ close to 1 makes thus

the left–hand side term of the previous formula strictly negative, and consequently
proves the assertion, for the arbitrariness of t. □

We combine the information gathered in Propositions 5.1 and 5.3 with some
properties of the Lax–Oleinik semigroup to get:

Proposition 5.4. Let ϕ be a critical subsolution, and ψ ∈ ωS(u0). For any x0 ∈ M
there exists a curve γ ∈ K(x0) such that the function t 7→ ψ(γ(t)) − ϕ(γ(t)) is
constant on R.

Proof. Let (sk)k and (tk)k be two diverging sequences, and η a curve of K such
that x0 = limk η(sk), and ψ is the uniform limit of S(tk)u0 in TN . We can assume
that the curve γ, defined by γ(t) = limk η(t + sk), for any t, is the local uniform
limit of the sequence η(sk + ·) in R, and so γ ∈ K. We assume, in addition, that
tk − sk → +∞, as k → +∞, and that S(tk − sk)u0 uniformly converges to some
ψ1 ∈ ωS(u0). The non–expansiveness of the Lax–Oleinik semigroup implies

∥S(tk)u0 − S(sk)ψ1∥∞ = ∥S(sk + tk − sk)u0 − S(sk)ψ1∥∞ ≤ ∥S(tk − sk)u0 − ψ1∥∞,
which entails S(sk)ψ1 ⇒ ψ in TN . We know from Proposition 5.1 that the function

s 7→ (S(s)ψ1) (η(s))− ϕ(η(s))

is nonincreasing in R+, hence it admits a limit, denoted by l, as s → +∞. Such a
limit is furthermore finite, since it is greater or equal than −∥u−ϕ∥∞. Given t > 0,
we have

l = lim
k→+∞

(S(sk + t)ψ1) (η(sk + t))− ϕ(η(sk + t)) = (S(t)ψ) (γ(t))− ϕ(γ(t)).

The function t 7→ (S(t)ψ) (γ(t))−ϕ(γ(t)) is therefore constant on R+. From this we
deduce, by applying Proposition 5.3 to the curve γ(s+ ·) ∈ K, for any fixed s, that
D+

(
(ψ − ϕ)◦γ

)
(s) \ {0} = ∅ for any s ∈ R. This implies that ψ − ϕ is constant on

γ. □

The previous proposition shows that any function ψ in ωS(u0) coincides, on any
given critical curve γ lying in M, with some critical subsolution ϕ. Such a critical
subsolution may a priori depend on the curve γ and on ψ. We proceed to show,
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on the contrary, that ϕ is uniquely determined and coincides with the function v
defined by (11), putting u0 in place of w0. In force of Proposition 5.4, it will be
enough to prove the following fact.

Proposition 5.5. Given η ∈ K, ψ ∈ ωS(u0), ε > 0, there exists τ ∈ R such that

|v(η(τ))− ψ(η(τ))| < ε

where v is the critical solution defined by (11) with w0 = u0.

Proof. Since the curve η is contained in A, and in view of Theorem 3.1 (ii), we
have

v(η(0)) = min
z∈TN

(
u0(z) + S(z, η(0))

)
,

hence v(η(0)) = u0(z0) + S(z0, η(0)), for some z0 ∈ TN . We choose a curve γ ∈
Lipz0,η(0)([0, 1],T

N ) such that

v(η(0)) + ε/2 = u0(z0) + S(z0, η(0)) + ε/2 > u0(z0) +

∫ 1

0
σ(γ, γ̇) ds.

We, thereafter, take into account Lemma 4.7 and the integral representation formula
for the Lax–Oleinik semigroup, to get

v(η(0)) + ε/2 > u0(z0) +

∫ T

0
L(γT , γ̇T ) ds ≥

(
S(T )u0

)
(η(0)),

where γT is a suitable reparametrization of γ on [0, T ], for some T > 0. Let now
(τn)n be a diverging sequence with S(τn)u0 ⇒ ψ, we have

∥S(τn)u0 − ψ∥∞ < ε/2 and τn − T > 0 for n sufficiently large.

Pick such an n and set τ = τn − T , then use the above inequalities and Theorem
4.14 to obtain

ψ(η(τ))− ε/2 <
(
S(τn)u0

)
(η(τ)) =

(
S(τ)S(T )u0

)
(η(τ))

≤
(
S(T )u0

)
(η(0)) +

∫ τ

0
L(η, η̇) ds

< ε/2 + v(η(0)) +

∫ τ

0
L(η, η̇) ds = ε/2 + v(η(τ)).

This gives the assertion since ψ(η(τ))− v(η(τ)) ≥ 0 by Proposition 3.5. □

We directly derive from Propositions 5.4 and 5.5:

Theorem 5.6. Any function in ωS(u0) coincides with v on M, where v is the
critical subsolution defined by (11), with u0 in place of w0.

We finally prove our main result.

Theorem 5.7. Let H satisfy conditions (H1), (H2)′, (H3) and u0 ∈ C(TN ). Then
S(t)u0 uniformly converges to v on TN as t goes to +∞, where v is the critical
solution given by formula (11) with w0 = u0.
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Proof. Theorem 5.6 implies that v and u coincide on M, they therefore coincide
on A thanks to Proposition 4.16. The comparison principle given in Theorem 2.4
tells hence us that u ≤ v on the whole torus, since u is a critical subsolution and v
a critical solution. The assertion is at last obtained thanks to Proposition 3.5. □

We stress that the only point, in the present section (actually, in the whole paper),
where the strict convexity assumption is directly employed is Lemma 5.2. It is, more
precisely, used the global continuity of DqL(x, q) in int(domL), a property that is
equivalent to the strict convexity of H in p, as previously noticed. As a matter
of fact, we do not exploit such a condition in its full strength. The existence of
a continuity modulus for DqL(x, q) in a neighborhood of the image of the map
t 7→ (η, η̇), for each η ∈ K, might be sufficient.

Yet, since the stationary curve γ(·) = y belongs to K whenever y ∈ E , Proposition
5.5 — which has been proved without exploiting the strict convexity assumption
(H2)′ — directly implies that any function of ωS(u0) coincides with v on E . Hence,
whenever E is a uniqueness set for the critical equation (2), the same argument of
Theorem 5.7 gives the convergence result bypassing Proposition 5.4, which instead
relies on Lemma 5.2. This happens, for instance, when M = E . We can therefore
state:

Theorem 5.8. Let H satisfy conditions (H1), (H2), (H3), (H4) and u0 ∈ C(TN ).
Then any function in ωS(u0) coincides with v on E, where v is the critical subsolution
defined by (11), with u0 in place of w0. In particular, S(t)u0 uniformly converges
to v on TN , as t goes to +∞, when M = E, and, more generally, whenever E is a
uniqueness set for the critical equation (2).

Note that the previous theorem includes the results of [16], where the Hamiltonian
under investigation was assumed only convex and with the Aubry set consisting of
equilibria.

The next one–dimensional example deals with a family of Hamiltonians, depend-
ing on a parameter α ∈ R, which satisfy assumptions (H1), (H2), (H3), (H4). It is
shown that a suitable initial datum for the time–dependent equation can be selected
in such a way that the convergence to a steady state does not take place whenever
the Hamiltonian under consideration does not satisfy the assumptions of Theorem
5.8. It can be viewed as a development of the example given in [4, Section 5].

Example 5.9. Consider the Z–periodic Hamiltonian

H(x, p) = |p| − f(x)

defined in R (cf. Remark 2.2), where f is a continuous periodic potential with f ̸≡ 0,
f ≥ 0 and minR f = 0. The effective Hamiltonian H(α), i.e. the critical value of
H(x, p+ α), is given, for any α ∈ R, by

H(α) = max{0, |α| −
∫ 1

0
f ds}

see [15]. It is not difficult to check that, for α ∈ H
−1

(0), the set of equilibria
E(α), relative H(x, p + α), coincides with f−1(0) and is a uniqueness set for the
corresponding critical equation, while A(α) = M(α) = R and E(α) = ∅ as soon as
α lies outside the flat part.
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Given α ̸∈ H
−1

(0), we define in [0,+∞)× R the function

w(t, x) = u0(x− sgnα t) + sgnα

∫ x

0
f ds−

(
sgnα

∫ 1

0
f ds

)
x,

where sgn indicates the sign function, and u0 is a C1 nonconstant periodic function
satisfying

sgn

{
u′0(x) + sgnα

(
|α| −

∫ 1

0
f ds

)}
= sgnα for all x ∈ R. (30)

Note that relation (30) implies that

sgn

(
u′0(x) + sgnα f(y)− sgnα

∫ 1

0
f ds+ α

)
= sgnα for all x, y ∈ R (31)

as f is nonnegative. The function w(t, ·) is periodic in R for any t, as easily seen.
By taking into account (31), a direct calculation shows that

∂tw(t, x) + |∂xw(t, x) + α| − f(x)− |α|+
∫ 1

0
f ds = 0

for every (t, x) ∈ (0,+∞) × R. Hence w is a periodic C1–solution of the time–
dependent equation

∂tu+H(x, ∂xu+ α)−H(α) = 0 in (0,+∞)× R,

but it does not converge to any steady state for t→ +∞. Note that H is not strictly
convex in the second argument and that E(α) = ∅.

Such a construction is clearly not possible when α ∈ H
−1

(0), or, in other terms,

when |α| ≤
∫ 1
0 f ds, because condition (30) implies, in this case, that u′0 does not

change sign on R, in contrast with u0 being nonconstant and periodic.

Appendix A

We consider an Hamiltonian H : TN ×RN → R satisfying conditions (H1), (H2),
(H3), and the corresponding Lagrangian L : TN ×RN → (−∞,+∞] defined through
the Fenchel transform (8). As H is assumed coercive but not superlinear, the
Lagrangian L is not finite–valued in general. Our aim is to give first a proof of
Proposition 2.7, and afterward to show the validity of the integral representation
formula (9) for the Lax–Oleinik semigroup. We start by recalling some basic facts
of convex analysis, and by giving a characterization of the interior of dom(L), where
dom(L) := {(x, q) ∈ TN × RN : L(x, q) < +∞}.

Theorem A.1. Let f : RN → (−∞,+∞] be a convex function with f ̸≡ +∞. Then
D−f(q) is a nonempty bounded set if and only if q ∈ int(domf), and it is empty for
q ̸∈ domf .

We refer to [17, Theorem 23.4] for a proof. Note that L(x, ·) turns out to be con-
vex and lower semicontinuous on RN , as supremum of continuous convex functions,
for any x ∈ TN . Moreover L(x, ·) ̸≡ +∞ (cf. [17, Theorem 12.2]). We have (cf. [17,
Theorem 23.5]):
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Theorem A.2. Let x ∈ TN and p, q ∈ RN . The following conditions are equivalent:

(a) H(x, p) + L(x, q) ≤ ⟨p, q⟩;
(b) H(x, p) + L(x, q) = ⟨p, q⟩;
(c) q ∈ D−

p H(x, p);
(d) the function ⟨ · , q⟩ − L(x, ·) achieves its maximum at p;
(e) p ∈ D−

q L(x, q);
(f) the function ⟨p, · ⟩ − L(x, ·) achieves its maximum at q.

Theorem A.3.

(i) For any x ∈ TN , dom(L(x, ·)) has a nonempty interior.
(ii) int(domL) =

∪
x∈TN {x} × int(domL(x, ·)).

Proof. According to Corollary 13.4.2 in [17], the assertion in (i) holds true if and
only if there are no lines along which H(x, ·) is (finite and) affine. Such a condition
is actually a consequence of the coercivity assumption (H3).

To ease notations, let us temporarily denote by Ω̃ the set at the right hand–side

of the equality in item (ii). It is apparent that int(domL) ⊂ Ω̃.
To prove the converse inclusion, we assume by contradiction the existence of

(x0, q0) ∈ Ω̃ \ int(domL). According to Theorem A.1, this implies that D−
q L(x0, q0)

is nonempty and bounded, and, moreover, that there is a sequence ((xn, qn))n con-
verging to (x0, q0), with D

−
q L(xn, qn) either empty or unbounded. In any case, we

may find a sequence (pn)n such that |pn| → +∞ and

⟨p0, qn⟩ −H(xn, p0) ≤ ⟨pn, qn⟩ −H(xn, pn), (32)

where p0 is any fixed element of D−
q L(x0, q0). Since the function p 7→ ⟨p, qn⟩ −

H(xn, qn) is concave for any n ∈ N, we see that (32) is still satisfied by putting
any convex combination of pn and p0 in place of pn, in particular it holds for some
sequence (pn)n with |pn−p0| = r, where r is an arbitrarily chosen positive constant.
Up to subsequences, we can assume that (pn)n converges to some p. Sending n to
+∞, we obtain

L(x0, q0) = ⟨p0, q0⟩ −H(x0, p0) ≤ ⟨p, q0⟩ −H(x0, p),

which implies that p ∈ D−
q L(x0, q0) by Theorem A.2. This is in contrast with

D−
q L(x0, q0) being bounded, because |p− p0| = r and r is arbitrarily large. □
The argument used for the proof of item (ii) in the previous theorem also gives

(compare to Remark 2.1):

Corollary A.4. The set–valued map (x, q) 7→ D−
q L(x, q) is locally uniformly bounded

in int(domL).

Proof of Proposition 2.7.

(i) The lower semicontinuous and the convex character of L have been already
pointed out at the beginning of the Appendix.

(ii) By item (i), we just need to show that L is upper semicontinuous in Ω.
Hence, let (x0, q0) ∈ Ω be the limit of some sequence

(
(xn, qn)

)
n
contained in Ω.

Given pn ∈ D−
q L(xn, qn), we have that (pn)n is bounded by Corollary A.4, and so

convergent, up to a subsequence, to some p0. Thanks to Theorem A.2 we know that

L(xn, qn) = ⟨pn, qn⟩ −H(xn, pn),
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and by sending n to infinity we get

lim sup
n→+∞

L(xn, qn) = lim
n→+∞

⟨pn, qn⟩ −H(xn, pn) = ⟨p0, q0⟩ −H(x0, p0) ≤ L(x0, q0),

which proves the claim.

(iii) Fix x ∈ TN . The C1 regularity of the function L(x, ·) in int(domL(x, ·)) is
equivalent to the strict convexity of H(x, ·) on RN (cf. [7]). In particular,

L(x, q) = ⟨DqL(x, q), q⟩ −H(x,DqL(x, q)) for all (x, q) ∈ Ω,

and p = DqL(x, q) is the unique maximizer of the function ⟨ · , q⟩ − H(x, ·). To
prove the continuity of DpL(x, q) in Ω, it suffices to show, by Corollary A.4, that
(xn, qn) → (x0, q0) in Ω and DqL(xn, qn) → p in RN imply p = DqL(x0, q0). This
actually follows from the continuity of L in Ω, since we can pass to the limit in the
equality L(xn, qn) = ⟨DqL(xn, qn), qn⟩ − H(xn, DqL(xn, qn)) to obtain L(x0, q0) =
⟨p, q0⟩ −H(x0, p), which gives p = DpL(x0, q0) by what previously remarked.

(iv) If the set of maximizers of p 7→ ⟨p, q⟩ −H(x, p) is nonempty, then it reduces
to a singleton by the strict convexity of H with respect to p. The assertion thus
follows from Theorem A.1 and Theorem A.3 (ii). □

Let us now define, for each n ∈ N,

Hn(x, p) := H(x, p) + max{|p|2 − n2, 0} for every (x, p) ∈ TN × RN ,

and denote by Ln the Fenchel transform of Hn. Note that (Hn)n is a decreasing
sequence of superlinear Hamiltonians, satisfying assumptions (H1), (H2), (H3), uni-
formly converging to H on compact subset of TN ×RN . This, in turn, implies that
(Ln)n is an increasing sequence of Lagrangians, defined and continuous on TN ×RN ,
converging pointwise to L on TN × RN , and uniformly superlinear at infinity in q,
as well (see e.g. [7]).

Theorem A.5. The representation formula (9) holds for every ϕ ∈ C(TN ), t > 0.

The proof of the theorem is based on a Γ–convergence result (cf. [9]) that we
show first. For this, we employ a classical sequential weak compactness criterion in
W 1,1 (see for instance Theorem 2.13 of [5]), which is in turn a consequence of the
Dunford–Pettis Theorem (cf. Theorem 2.11 in [5]).

Proposition A.6. For any fixed x ∈ TN and t > 0, denote by Xt(x) the space

{γ ∈W 1,1([0, t],TN ), γ(t) = x}

endowed with the strong topology of L1([0, t],TN ). For any ϕ ∈ C(TN ), let us set

Lt(γ) := ϕ(γ(0)) +

∫ t

0
L(γ(s), γ̇(s)) ds,

Lt
n(γ) := ϕ(γ(0)) +

∫ t

0
Ln(γ(s), γ̇(s)) ds.

Then the functionals Lt
n Γ–converge to Lt on Xt(x). Moreover

min
γ∈Xt(x)

Lt(γ) = lim
n→+∞

min
γ∈Xt(x)

Lt
n(γ).
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Proof. We first set

Θ(t) := inf
x∈TN

(
inf
|q|≥t

L1(x, q)

)
for every t ≥ 0.

and observe that

lim
t→+∞

Θ(t)

t
= +∞, Θ(|q|) ≤ Ln(x, q) ≤ L(x, q) (33)

for any n ∈ N and (x, q) ∈ TN × RN . We claim that the functionals Lt
n and

Lt are lower semicontinuous on Xt(x). In fact, any sequence (γn)n in Xt(x) with

limn Lt(γn) < +∞ also satisfies supn
∫ t
0 Θ(γ̇n) ds < +∞ by (33), and this in turn

implies that (γn)n is weakly convergent in W 1,1([0, t],TN ), up to subsequences (cf.
Theorem 2.13 of [5]). This shows the sequential lower semicontinuity of Lt in Xt(x),
in view of Theorem 2.9; the lower semicontinuity follows as Xt(x) is a metric space.
The same argument gives the claim for each Lt

n.
The Γ–convergence result is then assured by [9, Proposition 5.4], since (Lt

n)n is, in
addition, an increasing sequence of functionals converging pointwise to Lt on Xt(x).
To prove the asserted convergence of the minima, we remark that the set

Kt(x) := { γ ∈ Xt(x) :

∫ t

0
Θ(|γ̇|) ds ≤ ∥ϕ∥∞ + k t },

with k := supy∈TN L(y, 0), is sequentially weakly compact in W 1,1([0, t],TN ), hence
compact in Xt(x) because the weak convergence implies the uniform convergence
(cf. [5, Theorem 2.13]). Notice also that∫ t

0
Θ(|γ̇x|) ds ≤ Lt

n(γx) ≤ Lt(γx) ≤ ∥ϕ∥∞ + k t

for any n, where γx denotes the curve in Xt(x) constantly equal to x. Consequently
Kt(x) is nonempty and

inf{Lt
n(γ) : γ ∈ Xt(x) } = min{Lt

n(γ) : γ ∈ Kt(x) }

for each n, so the assertion follows in view of [9, Theorem 7.4]. □

Proof of Theorem A.5.

We first notice that it is enough to show the assertion for ϕ ∈ Lip(TN ). The
general case of a continuous initial datum may be in fact recovered by density,
thanks to the non–expansiveness property of the Lax–Oleinik semigroup.

We denote by Sn(t) the semigroup associated to the Cauchy Problem (6), with
Hn in place of H. Since ϕ ∈ Lip(TN ), we have by Theorem 2.5

S(t)ϕ = Sn(t)ϕ (34)

for n sufficiently large. By Remark 2.8 each Sn(t)ϕ admits an integral representation
of the form (9), with Ln in place of L. This fact can be equivalently expressed, using
the symbols introduced in Proposition A.6, by(

Sn(t)ϕ
)
(x) = min

γ∈Xt(x)
Lt
n(γ)

for every x ∈ TN and t > 0. In view of Proposition A.6, the assertion follows by
sending n to +∞ in (34). □
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Dip. di Matematica, Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185
Roma, Italy

E-mail address: siconolf@mat.uniroma1.it

26


