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On the relaxation of a lass of funtionalsde�ned on Riemannian distanesAndrea DaviniDipartimento di MatematiaUniversit�a di Pisavia Buonarroti 2, 56127 Pisa (Italy)e-mail: davini�dm.unipi.itNovember 1, 2002AbstratIn this paper we study the relaxation of a lass of funtionals de�ned on distanesindued by isotropi Riemannian metris on an open subset of RN . We prove thatisotropi Riemannian metris are dense in Finsler ones and we show that the relaxedfuntionals admit a spei� integral representation.Keywords: Riemannian and Finsler metris, relaxation, Gamma onvergene1 IntrodutionIn this paper we study an integral funtional of the formF(da) := Z
 F (x; a(x)) dx; (1)de�ned on the family I of distanes da indued by isotropi, ontinuous Riemannian metristhrough the formulada(x; y) := inf nLa() :  2 Lip([0; 1℄; 
); (0) = x; (1) = y o (2)for every (x; y) 2 
� 
, where the length funtional La is de�ned as followsLa() := Z 10 a((t))j _(t)j dt: (3)Here a varies on the family of positive ontinuous funtions from 
 to the interval [�; �℄,where � and � are �xed positive onstants. Distanes of this type have already been studiedin [6, 3℄ and, in a more geometri framework, in [8℄. The set I an be seen as a subspaeof the spae of Finslerian distanes D (see Setion 2) endowed with the metrizable topologygiven by the uniform onvergene on ompat subset of 
 � 
. It has been proved in[6℄ that the onvergene of a sequene (dn)n2N to d in this topology is equivalent to the�-onvergene of the assoiated length funtionals Ldn to Ld with respet to the uniformonvergene of urves (see Setion 2 for de�nitions). The main problem arising in our studyis that I is not losed with respet to this topology. Indeed, one an build sequenes ofontinuous metris (an)n2N whih develop an osillatory behavior in suh a way that the1



indued distanes onverge to an element d whih do not belong to I (see [1℄). Therefore,it is natural to onsider the relaxed funtional of (1), namelyF(d) := infflim infn F(dn) : dn D�! d; (dn)n2N � Ig; (4)de�ned for every d belonging to the losure of I, where we have denoted by D�! the on-vergene with respet to the topology of D.In this paper we prove that the spae I is dense in D and, under suitable assumptionson the integrand F in (1), that the relaxed funtional (4), whih is therefore de�ned on thewhole D, has the following integral representation:F(d) = Z
 F (x;�d(x)) dx; (5)where �d(x) := supj�j=1 'd(x; �) and 'd is the Finslerian metri assoiated to d by deriva-tion (see Setion 2).We onlude this introdution with some onsiderations. It is lear by the de�nition thatthe relaxed funtional F is lower semiontinuous. Moreover, it an be shown that it is thegreatest among all lower semiontinuous ones whih are bounded from above by F on I (see[4℄ for various results on this topi). Therefore, in order to prove our relaxation result, wehave to show �rst that the funtional (5) is lower semiontinuous. The proof of this issueis just a tehnial adaptation of the arguments desribed in [5℄. To prove the maximalityof (5), we will approximate eah d 2 D by means of a sequene of suitably hosen distanesdn 2 I, namely suh thatlim supn Z
 F (x;�dn(x)) dx � Z
 F (x;�d(x)) dx:Then, by a standard argument (see Setion 4), the maximality of (5) follows.Indeed, �nding suh an approximating sequene is a deliate matter. In fat, one shouldde�ne the Riemannian metris an in suh a way to have �-onvergene of the relative lengthfuntionals Lan to L'd and this problem is not trivial even in the simpli�ed situation of anisotropi Riemannian metri 'd, i.e. suh that 'd = b(x)j�j where b is a Borel funtion from
 to [�; �℄. It is lear, in fat, that this onvergene strongly relies upon the onvergene ofthe approximating metris on urves, whih is muh �ner than onvergene almost every-where in 
. Moreover we do not have muh information on the properties of the metri 'd;we only know it is Borel measurable and suh that the assoiated length funtional L'd islower semiontinuous with respet to the uniform onvergene of urves (see Setion 2). Inthe general ase of a non-isotropi metri the situation is obviously more deliate.The key idea of our proof is that it is suÆient to ontrol the onvergene of the approximat-ing distanes only on a �xed ountable and dense subset of 
�
 (Lemma 3.7). Therefore,when we de�ne the Riemannian metris, we have only to ontrol the value of the assoiateddistane dn on the �rst n points of the ountable, dense subset. This will be done by ap-proximating the Finsler metri 'd along geodesis (or, more preisely, quasi-geodesis, see(20)).The problem of the density of (smooth) isotropi, Riemannian metris in Finsler ones hasalready been studied. The question was raised in [6℄, and partially answered in [3℄ under theadditional assumption that 'd is lower semiontinuous in the �rst variable. We remark thatour proof does not require any assumption on the Finsler metri and therefore ompletelyanswers to the question. Indeed, as pointed out in [3℄, one we have the density result forontinuous and isotropi Riemannian metris, the analogous result for smooth ones is easilyreovered via a regularization argument (see Remark 4.4).2



We onlude the paper by showing that every Finsler distane d 2 D an indeed be seen asgenerated by a suitable Borel measurable, isotropi Riemannian metri a : 
 ! [�; �℄ (a-ording to de�nition (28), see Proposition 4.8). In other words, by allowing the isotropi met-ri a to vary in a somehow \unontrolled" way, one an reover all the possible anisotropiesof 'd.The paper is organized as follows: in Setion 2 we reall the main notation used in thesequel and some results on Finsler metris, Setion 3 ontains some preliminary lemmas andin Setion 4 we prove our main results.Aknowledgements.- The author wish to thank Giuseppe Buttazzo for having suggestedthe problem and for several useful disussions on the subjet.2 Notation and preliminaries on Finsler metrisWe write here a list of symbols used throughout this paper.
 an open subset of RNSN�1 the unitary sphere of RNBr(x) the open ball in RN of radius r entred in xI the losed interval [0; 1℄LN the N�dimensional Lebesgue measureHN the N�dimensional Hausdor� measurejuj the Eulidean norm of the vetor u 2 RN�E the harateristi funtion of the set Eargmin(P) the set of minimizers of the problem (P)In this paper the letter N denotes an integer number greater or equal to 2. We will saythat a set ! is well ontained in 
 and we will write ! �� 
 to mean that its losure ! isontained in 
. With the word urve or path we will always indiate a Lipshitz funtionfrom the interval I := [0; 1℄ to an open subset 
 of RN . Any urve  is always supposedto be parametrized by onstant speed, i.e. in suh a way that j _(t)j is onstant for L1-a.e.t 2 I . We will say that a sequene of urves (n)n2N (uniformly) onverges to a urve  tomean that supt2I jn(t)�(t)j tends to zero as n goes to in�nity. We will denote by Lx;y thefamily of urves  whih join x to y, i.e. suh that (0) = x and (1) = y. We remark thatif a sequene of urves (n)n2N � Lx;y is suh that supn R 10 j _(t)jdt < +1 then, sine theyare all parametrized by onstant speed, we have that their �rst derivative is bounded fromabove. Therefore, by applying Asoli-Arzel�a theorem, we an �nd a urve  2 Lx;y suhthat a subsequene (ni)i2N onverges to . This argument will be widely used throughoutthe paper with no further explanation.The funtion F : 
 � [�; �℄ ! R appearing in the integrand of (1) is assumed to beontinuous and to ful�ll the following onditions:(i) the funtion F (x; �) is onvex and nondereasing for LN -a.e. x 2 
;(ii) R
 F (x; �) dx < +1. (6)We reall the notion of �-onvergene. Let (X; �) be a topologial spae satisfying the �rstaxiom of ountability at the point x 2 X . A sequene of funtionals Fn : X ! R is said to�-onverge at x if �� lim inf Fn(x) = �� lim supFn(x);3



where � �� lim inf Fn(x) := inf f lim infn Fn(xn) : xn ��!x g�� lim supFn(x) := inf f lim supn Fn(xn) : xn ��!x g:De�nition 2.1. A Borel funtion ' : 
� RN ! [0;+1) is said to be a Finsler metri onthe open set 
 � RN if the funtion '(x; �) is positively 1-homogeneous for every x 2 
 andonvex for LN -a.e. x 2 
.Given a Finsler metri, we an de�ne a distane d' on 
 through the formulad' (x; y) := inf fL' () j  2 Lx;y g ; (7)where the Finslerian length funtional L' is de�ned byL'() := Z 10 '((t); _(t))dt:A distane deriving from a Finsler metri through (7) is said to be of Finsler type. We willsay that a distane d is loally equivalent to the Eulidean one if, for every x 2 
, thereexists an open neighborhood Ux and some positive onstants x; Cx suh that xjx � yj �d(x; y) � Cxjx� yj for every y 2 Ux. We will say that a distane funtion is of geodesi typeif it satis�es the following identity:d(x; y) = inf nLd() j  2 Lx;yo for every (x; y) 2 
� 
; (8)where Ld () denotes the lassial d-length of , obtained as the supremum of the d-lengthsof insribed polygonal urves:Ld() := supnXi d�(ti); (ti+1)� : 0 = t0 < t1 < :: < tr = 1; r 2 No : (9)It an be easily shown by the de�nition thatProposition 2.2. The length funtional Ld is lower semiontinuous with respet to theuniform onvergene of paths, namely if (n)n2N onverges to  thenLd() � lim infn!+1 Ld(n):If the distane d is loally equivalent to the Eulidean one, then it an be proved (f.[8℄) that the length funtional Ld admits the integral representationLd() = Z 10 'd ( (t) ; _(t)) dtfor every urve , where 'd is the Finsler metri assoiated to d by derivation, namely'd (x; �) := lim supt!0+ d (x; x+ t�)t (x; �) 2 
� RN :Denote by d
(x; y) the Eulidean geodesi distane in 
, that is d
 := da aording to(2), with a identially equal to 1. We remark that d
 loally oinides with the Eulideandistane. We �x two positive onstants �; � with � > � and we setM := f' Finsler metri on 
 : � j�j � ' (x; �) � � j�jg :Then we de�ne the family D of distanes on 
 generated by the metris M, namely D :=fd' j ' 2 Mg. Obviously the set I, made up by distanes da de�ned by (2) with a : 
 ![�; �℄ ontinuous, is trivially inluded in D identifying a(x) with the metri a(x)j�j. It isalso evident that �d
 � d � � d
 for every d 2 D, so suh distanes are loally equivalentto the Eulidean one. Moreover one an easily show the following result.4



Proposition 2.3. Let d := d' for some ' 2 M. Then Ld() � L'() for every urve .In partiular, d is a distane of geodesi type aording to de�nition (8).Remark 2.4. The inequality in the previous proposition may be strit. For example, take
 := [�1; 1℄�[�1; 1℄, � := f0g�[�1; 1℄ and a(x) := �
(x)+��(x). Then da(x; y) = jx�yj. Ifnow we take (t) := (0;�1=2)(1�t)+(0; 1=2)t, it is easily seen that Lda() = 1 < 2 = La().We endow D with the topology given by the uniform onvergene on ompat subset of
� 
. We will write dn D�! d to mean that the sequene (dn)n2N � D onverges to d 2 Dwith respet to this topology. It has been proved [6, Theorem 3.1℄ that this onvergene isequivalent to the �-onvergene of the relative length funtionals with respet to the uniformonvergene of paths. Moreover, we have the following result (ompare to [5, Proposition 4℄and [6, Theorem 3.1℄):Proposition 2.5. Let 
 be an open subset of RN suh that d
(x; y) � Crjx� yj for everyx and y in 
\Br(0) and every r > 0, where Cr is some positive onstant whih depends onr. Then D is a metrizable ompat spae.Throughout this paper we will always work with sets 
 whih satisfy the ondition statedin the proposition above. Therefore we will always assume that D is ompat. In partiular,this holds whenever 
 has a loally Lipshitz boundary.Given a distane d 2 D, we de�ne for every x 2 
�d(x) := supj�j=1'd(x; �); (10)whih represents, with analogy to the Riemannian ase 'd(x; �) = B(x)� � � with B(x) asymmetri and positive de�nite matrix, the largest \eigenvalue" of 'd(x; �) at the point x. Wenotie that �d(x) is a Lebesgue measurable funtion. Indeed, if (�n)n2N is a dense sequenein SN�1, we have that �d(x) oinides with the Borel measurable funtion supn 'd(x; �n) on
 nE, where E is the set of points where 'd(x; �) is not ontinuous. We know that 'd(x; �)is onvex for almost every x by de�nition of Finsler metri, therefore E is LN -negligible andthe laim follows.3 Preliminary resultsIn this setion we prepare the tools whih will be used in the proof of our relaxation results.We reall that the funtion F : 
 � [�; �℄ ! R is ontinuous and ful�lls onditions (6).We haveLemma 3.1. Let ('n)n2N � M suh that d'n D�! d for some d 2 D. Then, for everybounded Borel set ! �� 
 and every � 2 SN�1, we haveZ! F (x; 'd(x; �)) dx � lim infn!1 Z! F (x; 'n(x; �)) dx :Proof : Let ! be a bounded Borel set well ontained in 
. Choose a bounded open setA �� 
 that ontains !. Arguing as in the proof of [5, Proposition 9℄, for every �xed� 2 SN�1 it is possible to �nd a subsequene of ('n)n2N and a sequene of positive numberstn ! 0 suh that, for a.e. x 2 A,F (x; ' (x; �)) = limn!1�An(x)F �x; d'n (x; x+ tn�)tn � ; (11)5



where An := fx 2 A j dist(x; �A) > tng. Now, integrating (11) over ! and applying thedominated onvergene theorem, we get:Z! F (x; ' (x; �)) dx = limn!1 Z! �An(x)F �x; d'n (x; x+ tn�)tn � dx: (12)Sine d'n (x; x+ tn�) is less than or equal to the (Finslerian) length of the straight linesegment joining x and x+ tn�, we haved'n (x; x + tn�) � Z 10 'n (x+ stn�; tn�) ds:By the monotoniity and onvexity of the funtion F (x; �) for a.e. x we get, by using Jenseninequality, that for a.e. x 2 A,F �x; d'n (x; x + tn�)tn � � Z 10 F (x; 'n (x+ stn�; �))ds: (13)Combining (12) and (13), we obtainZ! F (x; ' (x; �))dx � lim infn!1 Z
�An\!(x) Z 10 F (x; 'n (x+ stn�; �))ds dx= lim infn!1 Z 10 Z
�An\! (x� stn�)F (x� stn�; 'n (x; �))dx ds= lim infn!1 Z! F (x; 'n (x; �))dx :The following two lemmas are analogous to [5, Lemma10, Lemma 11℄ and may be proved inthe same way, up to some tehnial adaptations.Lemma 3.2. Let ' 2M be a ontinuous Finsler metri. Then, for every bounded open setA �� 
 and for every " > 0, there exists Æ > 0 suh thatZDÆi\A F (x;�'(x)) dx � supj�j=1 ZDÆi\A [F (x; '(x; �)) + "℄ dx for all i 2 ZN;where we have set DÆi := 
 \ �i+ [�Æ; Æ)N �.Lemma 3.3. Let ' 2 M suh that '(x; �) is onvex for every x 2 
. Then for everybounded open set A �� 
 and for every " > 0 there exists a ompat set K" � A suh thatLN (A nK") < " and ' is ontinuous on K" � RN .By using the previous lemmas we an prove the followingProposition 3.4. Let ' 2 M. Assume that, for a sequene (�n)n2N of nonnegative Borelmeasures on 
, the following property holds:supj�j=1 Z! F (x; '(x; �)) dx � lim infn!1 �n (!) for every Borel set ! �� 
 :Then Z
 F (x;�'(x)) dx � lim infn!1 �n (
) : (14)6



Proof : Let (
l)l2N be a sequene of bounded open sets well ontained in 
 suh that
l � 
l+1 and 
 = Sl2N
l. We �rst remark that it is suÆient to prove that (14) holdsfor 
 := 
l for every l 2 N. Then, the laim is easily obtained by adapting the proof givenin [5, Proposition 12℄ and by using Lemmas 3.1, 3.2 and 3.3.Next, we show some results on Finsler metris. We start by the followingProposition 3.5. Let ' 2 M and d := d'. Then(i) 'd(x; �) � '(x; �) for a.e. x 2 
 and for every � 2 RN . In partiular �d(x) �supj�j=1 '(x; �) for a.e. x 2 
;(ii) if '(x; �) := a(x)j�j with a : 
 ! [�; �℄ lower semiontinuous, then 'd(x; �) � a(x)j�jfor every (x; �) 2 
� RN . In partiular a(x) = �d(x) for a.e. x 2 
.Proof : Let us �x a � 2 SN�1. For every x 2 
 let us de�ne the urve x(t) := x + t�.Then by Proposition 2.3 we have thatLd(x) := Z 10 'd(x; �) dt � Z 10 '(x; �) dt =: L'(x):Therefore we dedue that 'd(x; �) � '(x; �) for a.e. x 2 
. Then we an take a densesequene (�n)n2N in SN�1 and repeat the argument above for eah �n. Realling that thefuntions 'd(x; �) and '(x; �) are ontinuous and 1-homogeneous for a.e. x 2 
, we eventuallyget, by the density of (�n)n2N, that 'd(x; �) � '(x; �) for a.e. x 2 
 and for every � 2 RN .In partiular we get �d(x) � supj�j=1'(x; �) a.e. in 
: (15)Let us now take '(x; �) := a(x)j�j with a lower semiontinuous. Then we have, by thelower semiontinuity, that a(x) = supr>0 �infBr(x) a�. Therefore for every �xed x 2 
 andfor every " > 0 there exists r" > 0 suh that Br"(x) � 
 and a(y) � a(x) � " for everyy 2 Br"(x). Let us �x a � 2 SN�1 and take 0 < t < �r"=(2�). Choose a d-minimizingsequene (n)n2N � Lx;x+t� suh that La(n) � d(x; x + t�) + �r"=2 for every n. Then theurves n lie within Br"(x). In fat for every n and for every s � 1:�jn(s)� xj � Z s0 a()j _njd� � d(x; x + t�) + �r"=2 � �d
(x; x+ t�) + �r"=2 < �r";where we have used the fat that d
(x; y) = jx� yj if y 2 Br"(x). Then we have for every nLa(n) := Z 10 a(n)j _nj d� � (a(x)� ") Z 10 j _nj d� � (a(x) � ")tand letting n go to in�nity we obtaind(x; x + t�)t � a(x)� ": (16)By passing to the limsup in (16) as t ! 0 and sine " > 0, x 2 
 and � 2 SN�1 werearbitrary we obtain 'd(x; �) � a(x) for every (x; �) 2 
� SN�1 (17)and the laim follows by the 1-homogeneity of 'd(x; �). In partiular, by taking the sup ofthe left-hand side of (17) over all � 2 SN�1 and by using (15) we get that �d(x) = a(x) fora.e. x 2 
. 7



Remark 3.6. If a and b are two ontinuous isotropi metris whih give rise to the samedistane funtion d through (2), then a(x) = b(x) for every x in 
. In fat, by point (ii) ofthe stated lemma, we have that the previous equality holds almost everywhere, and thereforeeverywhere by the ontinuity of the metris. In partiular, this shows that the funtional(1) is well de�nite.The key idea used in the proof of the density result is stated in the followingLemma 3.7. Let (dn)n2N be a sequene ontained in D whih onverges pointwise to somed 2 D on a dense subset of 
� 
. Then dn D�! d.Proof : By the ompatness of D, we already know that there is a subsequene (dnk)k2Nsuh that dnk D�! Æ for some Æ 2 D. By the pointwise onvergene we get that Æ(x; y) =d(x; y) on a dense subset of 
 � 
 and therefore Æ oinides with d sine they are bothontinuous funtions. If the whole sequene did not onverge uniformly (on ompat subsetof 
� 
) to d, by the ompatness of D there would exists a subsequene whih onvergesto some Æ 2 D with Æ 6= d. By arguing as above, this would lead to a ontradition.The next result shows that the monotone onvergene of metris implies the onvergene ofthe indued distanes.Lemma 3.8. Let ('n)n2N be a sequene in M suh that for every (x; �) 2 
�RN 'n(x; �)onverge inreasingly (resp. dereasingly) to '(x; �) for some ' 2M. Then d'n D�! d'.Proof : By Lemma 3.7 it is suÆient to prove that (d'n)n2N onverges pointwise to d'.We start by onsidering the ase of an inreasing sequene of metris. By the monotoniityof 'n we obviously have that L'() � L'n() � L'n�1() for every urve  and therefore(d'n(x; y))n2N is an inreasing sequene and d'(x; y) � supn d'n(x; y) for every (x; y) 2
 � 
. To prove the reverse inequality, let us take a sequene of urves (n)n2N � Lx;ysuh that L'n(n) � d'n(x; y) + 1=n. Sine the funtionals L'n are equi-oerive (in fatL'n() � � R 10 j _jdt for every n), we may �nd a subsequene (ni)i2N whih onvergesuniformly to some urve  2 Lx;y. Now, by [7, Remark 5.5℄, we know that the funtionalsL'ni �-onverge to L' with respet to the uniform onvergene of path and therefore wehave d'(x; y) � L'() � lim infi!+1 L'ni (ni) � lim infi!+1 d'ni (x; y) = supn d'n(x; y):Sine (x; y) 2 
� 
 was arbitrary the laim follows.The proof in the ase of a dereasing sequene of metris is even simpler. In fat, bymonotoniity we get d'(x; y) � infn d'n(x; y) for every (x; y) 2 
�
. To show the reverseinequality, take a urve  2 Lx;y. By the monotone onvergene theorem and by thede�nition of d'n(x; y) we haveL'() = infn L'n() � infn d'n(x; y);and the laim easily follows by taking the in�mum over all urves in Lx;y.We end this setion with the proof of two lemmas whih will be useful in the sequel.Lemma 3.9. Let fi j i 2 Lxi;yi ; i � ng be a �nite olletion of urves suh thatd(xi; yi) � Ld(i) � d(xi; yi) + 1n (18)for some �xed points (xi; yi) 2 
 � 
 and for some n 2 N. Then it is possible to �nd afamily of urves f~i j ~i 2 Lxi;yi ; i � ng still satisfying (18) and suh that8



(i) ~i is injetive for every i � n;(ii) ~i(I) \ ~j(I) is a (possibly void) disjoint �nite union of losed ars for every 1 � i �j � n.Proof : Let N be a 1-reti�able losed set suh that N � [i�ni. First we remark thatfor every i � n the set Ri := argminfLd() j  2 Lxi;yi ; (I) � Ngis non-void. Indeed, the lass of urves on whih we minimize Ld is non-void, as it ontainsi, and losed with respet to the uniform onvergene of urves, as N is losed, thereforeit ontains an aumulation point ~i of a minimizing sequene. Suh a urve is of minimald-length by the lower semiontinuity of Ld and so it belongs to Ri. Moreover, it is injetiveand satis�es (18) by minimality.The proof of the lemma is by indution on n. For n = 1 the laim is satis�ed by hoosing a~1 whih belongs to R1. Let us then suppose the laim satis�ed up to n�1 and let us proveit for n. By indution we may �nd urves ~i 2 Ri for i � n � 1 suh to satisfy the laim.Let us hoose a urve � in Rn. For every j � n� 1 let us set tj := minft 2 I j�(t) 2 ~j(I) gand Tj := maxft 2 I j�(t) 2 ~j(I) g. Up to reordering the urves ~j , we an suppose thatt1 = minftj j j � n � 1 g. Then we de�ne �1 2 Lxn;yn to be the urve obtained by movingfrom �(0) to �(t1) along �, from �(t1) to �(T1) along ~1 and from �(T1) to �(1) along� again. Remark that, by minimality, ~1 is a path whih onnets �(t1) to �(T1) in theshortest way among all those ontained in N and so we have not inreased the length, i.e.Ld(�1) � Ld(�) and �1 2 Rn. Moreover �1([0; T1℄) \ ~i(I) is a disjoint �nite union of losedars for every 1 � i � n� 1. Then we set � := �1 j[T1;1℄ and we repeat the argument aboveto obtain a �2 : [T1; 1℄! N . By iterating this proedure we eventually �nd a �nite numberof urves f�h j 1 � h �Mg for some M < n. Then we de�ne~n(t) :=8<: �1(t) if t 2 [0; T1℄�h(t) if t 2 [Th�1; Th℄ and 1 < h < M�M (t) if t 2 [TM�1; 1℄:By what previously observed, we have that ~n still belongs to Rn and is therefore injetiveby minimality. Moreover, it is suh that ~n(I)\ ~i(I) is a disjoint �nite union of losed arsfor every i � n� 1 by onstrution. The laim is thus proved.Lemma 3.10. Let  be an injetive urve, � := ((0; 1)) � 
 and a : 
 ! [�; �℄ a Borelfuntion. Then there exists a sequene of ontinuous funtions �k : � ! [�; �℄ suh that�k(x) onverge to a(x) for H1-a.e. x 2 �. Moreover, for every " > 0 there exists a Borelsubset B" � � suh that H1(� nB") < " and �k onverge uniformly to a on B".Proof : The funtion aÆ : (0; 1) ! [�; �℄ is Borel measurable, therefore there exists asequene (fk)k2N of ontinuous funtions fk : (0; 1) ! [�; �℄ suh that fk(t) onverges toaÆ(t) for a.e. t 2 (0; 1). Moreover, by Severini-Egoro�'s theorem [9, Setion 1.2, Theorem3℄, for every " > 0 there exist an in�nitesimal sequene (Æk)k2N and a Borel set E" suh thatH1((0; 1) n E") < " and jfk(t) � aÆ(t)j < Æk for every t 2 E". The laim then follows bysetting �k(x) := fk(�1(x)) and B" := (E").4 Main resultsOur main result is stated as follows. 9



Theorem 4.1. Let F be the funtional de�ned on I by (1), where F : 
 � [�; �℄ ! R isontinuous and satis�es onditions (6). Then its relaxed funtional (4) has the followingintegral representation: F(d) = Z
 F (x;�d(x)) dx (19)for all d 2 D.The proof of the theorem above is based on the following two results whih we state sepa-rately.Theorem 4.2. If dn D�! d, then lim infn!+1 Z
 F (x;�dn(x)) dx � Z
 F (x;�d(x)) dx.Theorem 4.3. The family I of distanes indued by ontinuous and isotropi Riemannianmetris is dense in D. Moreover, for every d 2 D we an hoose a sequene (dn)n2N � Isuh that dn D�! d andlim supn!+1 Z
 F (x;�dn(x)) dx � Z
 F (x;�d(x)) dx:Remark 4.4. The lass of distanes indued by smooth isotropi Riemannian metris isdense in I. Therefore, by the theorem just stated, smooth isotropi Riemannian metris aredense in the lass of Finsler metris. In fat, let us take a distane d in I. Then d = dafor some ontinuous metri a : 
 ! [�; �℄. We may extend a to the whole Rn by settinga identially equal to � outside 
. Then, by taking a sequene of onvolution kernels �n,we de�ne the sequene of smooth isotropi metris an : 
 ! [�; �℄ by regularization, i.e.an(x) := �n �a(x), and we all dn the indued distanes. Sine the funtions an onverge toa uniformly on ompat subset of 
�
, it an be easily shown that the length funtionalsLan �-onverge to La with respet to the uniform onvergene of urves. Then, by [6,Theorem 3.1℄, we have that dn D�! d (this ould also have been proved diretly by using theequi-oerivity of the length funtionals to show that the above onvergene of distanes ispointwise and then applying Lemma 3.7).One Theorem 4.2 and Theorem 4.3 are proved, the proof of Theorem 4.1 will triviallyfollows. In fat, Theorem 4.2 gives that the funtional (19) is lower semiontinuous withrespet to the uniform onvergene of distanes, and Theorem 4.3 implies it is the greatestlower semiontinuous funtional de�ned on D whih is bounded from above by F on I. Infat, let G be another andidate and let d 2 D. Choose a sequene (dn)n2N � I as in thestatement of Theorem 4.3. We haveG(d) � lim infn!+1 G(dn) � lim infn!+1F(dn) � lim supn!+1 F(dn) � Z
 F (x;�d(x)) dx;hene the laim. We remark that by Proposition 3.5 the funtional (19) atually oinideswith F on I.Let us then start by proving Theorem 4.2.Proof of Theorem 4.2: By applying Lemma 3.1 with 'n := 'dn , we obtainsupj�j=1 Z! F (x; 'd(x; �)) dx � lim infn!1 Z! F (x;�dn(x)) dx:The laim then follows by applying Proposition 3.4 with �n(!) := R! F (x;�dn(x)) dx.10



Remark 4.5. The proof above still works for slightly more general funtionals. Indeed, itis suÆient that there exists a sequene of ontinuous funtions Fk : 
� [�; �℄ ! R whihsatisfy onditions (6) and suh that F (x; �) = supk Fk(x; �) for LN -a.e. x 2 
 and for every� 2 RN . In fat, one an apply the argument above to eah Fk to getZ! Fk (x;�d(x)) dx � lim infn!1 Z! F (x;�dn(x)) dx;and the laim immediately follows by taking the supremum over k of the left-hand side termand by the monotone onvergene theorem.We now ome to the proof of Theorem 4.3. The proof is essentially divided in two steps: �rst,we approximate a given d 2 D with distanes indued by a sequene of Borel measurableand isotropi Riemannian metris, then we approximate eah distane of the sequene bymeans of distanes in I.Proposition 4.6. Let d 2 D. Then there exists a sequene of Borel measurable isotropimetris an : 
! [�; �℄ suh that(i) dan D�! d;(ii) an(x) = �d(x) for a.e. x 2 
.Proof : By Lemma 3.7, it is suÆient to de�ne the funtions an in suh a way thatthe generated distanes dan onverges pointwise to d on a dense subset of 
 � 
. Let usstart then by setting S := QN \ 
. Obviously S � S is dense in 
 � 
 and ountable,so we write S � S := f(xi; yi) j i 2 Ng. For eah (xi; yi) we take a d-minimizing sequene(in)n2N � Lxi;yi , i.e. suh thatd(xi; yi) � Ld(in) � d(xi; yi) + 1n: (20)By Lemma 3.9, the urves in an be hosen in suh a way to satisfy onditions (i) and (ii)of the mentioned lemma (this assumption is not really needed here, but will be important inthe proof of Theorem 4.3). By ondition (ii), eah non-empty set in(I) \ jn(I) is a disjoint�nite union of losed ars. Let us denote by Tn the �nite set given by the extreme points ofsuh ars for every 1 � i � j � n and set Nn := [i�nin(I). Let �n be a Borel H1-negligiblesubset of Nn whih ontains the points where the 1-reti�able set Nn is not di�erentiable(this is possible by the regularity of the measure H1 and by the di�erentiability propertyof reti�able sets [10, Theorem 1.6, Theorems 3.8 and 3.14℄). Then we de�ne the funtionan : 
! [�; �℄ by an(x) := 8<: �d(x) if x 2 
 nNn� if x 2 �n [ Tn'd(x; �x) if x 2 Nn n (�n [ Tn) (21)where �x is the unitary tangent to Nn at the point x. It is not diÆult to prove that an isBorel-measurable. Moreover it is lear that an satis�es point (ii) of the Proposition.We remark that, by [8, Corollary 2.7℄, we have that 'd(x; �x) = 'd(x;��x) for H1-a.e.x 2 Nn. By possibly enlarging the set �n we may suppose that this holds everywhere onNn n�n. Moreover, if x = ni (t) and ni is di�erentiable in t, we have that _ni (t) is parallelto �x and therefore 'd(ni (t); _ni (t)) = 'd(ni (t); �x)j _ni (t)j = an(ni (t))j _ni (t)j.11



Let dan be the distanes generated by suh funtions an. In order to prove point (i), weshow that the distanes dan onverge pointwise to d on S�S. We laim that for every i � nwe have d(xi; yi) � dan(xi; yi) � d(xi; yi) + 1n:Let us �x an i � n and let us prove the seond inequality. By the above remark and by (20)we have dan(xi; yi) � Z 10 an(in)j _inj dt = Z 10 'd(in; _in) dt � d(xi; yi) + 1n:To prove the �rst inequality, hoose a urve � 2 Lxi;yi and for every i � n set Ii := ft 2I j�(t) 2 in(I)g and I0 := I n[i�nIi. We remark that the vetor _�(t) is parallel to ��(t) a.e.on eah Ii and so an(�)j _�j = 'd(�; _�) a.e. on Ii. Therefore we haveLan(�) = Z 10 an(�)j _�j dt = nXi=1 ZIi an(�)j _�j dt+ ZI0 an(�)j _�j dt� nXi=1 ZIi 'd(�; _�) dt+ ZI0 'd(�; _�) dt � d(xi; yi);where we have used the fat that an(�)j _�j � 'd(�; _�) on I0. By passing to the in�mum overall possible urves � 2 Lxi;yi we get the laim.Proof of Theorem 4.3. The proof is organized in two steps.Step 1. We �rst remark that the losure of I ontains the family of distanes generatedby lower semiontinuous isotropi Riemannian metris. In fat, let b : 
! [�; �℄ be a lowersemiontinuous metri. It is well known that b(x) = supn2N ~an(x) for suitable ontinuousfuntions ~an (and we may as well suppose that � � ~an � � by possibly replaing thefuntion ~an with ~an _�). Setting an(x) := supi�n ~ai(x), we have that dan D�! db by Lemma3.8. Moreover, by Proposition 3.5 we have that �db(x) = b(x) and �dan (x) = an(x) almosteverywhere on 
 and therefore, by the monotone onvergene, we get thatlim supn Z
 F (x;�dan (x)) dx = Z
 F (x;�b(x)) dx:To prove the theorem, it is then suÆient to �nd a sequene of lower semiontinuous metrisbn : 
 ! [�; �℄ suh that the generated distanes dbn satisfy the laim of the theorem. In-deed, by ombining the idea just desribed with a diagonal argument, the onlusion wouldfollow at one.Step 2. To get the desired approximation of the distane d 2 D via lower semiontinuousisotropi metris, it is enough to prove that, for every �xed n 2 N there exists a sequene oflower semiontinuous isotropi metris bk : 
! [�; �℄ suh that(i) d(xi; yi) � lim supk!+1 dbk(xi; yi) � d(xi; yi) + 1n for every i � n;(ii) lim supk!+1 Z
 F (x; bk(x)) dx � Z
 F (x; an(x)) dx12



where an are the Borel isotropi metris built in the proof of Proposition 4.6.In fat the desired sequene of lower semiontinuous metris is then obtained via a diagonalargument and taking into aount that an(x) = �d(x) almost everywhere on 
 by Proposi-tion 4.6.Keeping the notation used in the proof of Proposition 4.6, we observe that the set NnnTnis a �nite, disjoint union of open ars. Therefore, by applying Lemma 3.10 to eah ar, wean �nd a sequene of ontinuous funtions �k : Nn n Tn ! [�; �℄ whih onverge to an H1-a.e. on Nn nTn. Let us set Ak := fx 2 
 j dist(x;Nn) < 1=kg. Let (
k)k2N be a sequene ofbounded open sets well ontained in 
 suh that 
k � 
k+1 and 
 = Sk2N
k. By Lusin'stheorem we may �nd a sequene of losed set Kk � 
k n Ak suh that a jKk is ontinuousand Ln((
k nAk) nKk) < 1=k. Then we de�ne bk : 
! [�; �℄ bybk(x) := 8>><>>: �k(x) if x 2 Nn n Tn� if x 2 Tnan(x) if x 2 Kk� elsewhere. (22)Notie that bk is lower semiontinuous. Moreover we havelim supk!+1 Z
 F (x; bk(x)) dx = lim supk!+1  ZKk F (x; an(x)) dx+ Z
nKk F (x; �) dx! : (23)Realling that F (x; �) is summable over 
 (ondition (ii) of (6)), we have that the seondintegral in the right-hand side of (23) goes to zero. In fatZ
nKk F (x; �) dx = Z
n
k F (x; �) dx+ Z
knKk F (x; �) dx; (24)and the �rst and seond term of the right-hand side of (24) go to zero, respetively by thedominated onvergene theorem and the absolute ontinuity of the integral. Thereforelim supk!+1 Z
 F (x; bk(x)) dx � Z
 F (x; an(x)) dx;so point (ii) of the laim is satis�ed.Let us show now that (i) holds. We start by proving the seond inequality. For i � n wehave by de�nition dbk (xi; yi) � Lbk (ni ) = Z 10 �k(ni )j _ni j dt;therefore by the dominated onvergene theorem we getlim supk!+1 dbk (xi; yi) � lim supk!+1 Z 10 �k(ni )j _ni j dt = Z 10 an(ni )j _ni j dt= Z 10 'd(ni ; _ni ) dt � d(xi; yi) + 1n: (25)To prove the �rst inequality let us take for every k 2 N a urve k 2 Lxi;yi suh thatdk(xi; yi) � Lbk(k) � dk(xi; yi) + 1k : (26)13



One again, we remark that, by Lemma 3.9, it is not restritive to suppose that suh urvesare injetive. Sine � RI j _kj dt � Lbk(k), by (26) and (25) we get that lim supk RI j _kj dt <+1. Let us hoose an " > 0. By applying Lemma 3.10 to eah open ar of Nn n Tn,we an �nd a Borel set B" � Nn n Tn and an in�nitesimal sequene of positive numbers(Æk)k2N suh that H1(Nn n B") < " and j�k(x) � an(x)j < Æk for every x 2 B". Let us setIk := ft 2 I jk(t) 2 Nn nB"g. Then bk(k) � an(k)� Æk a.e. on I n Ik . Let us writeLbk(k) = ZIk bk(k)j _kjdt+ ZInIk bk(k)j _kjdt:We remark that, as k(Ik) � Nn nB" for every k 2 N, by the Area-formula we haveZIk j _kj dt = H1(k(Ik)) � H1(Nn nB") < ":Taking into aount this remark we getZIk bk(k)j _kjdt = ZIk an(k)j _kjdt+ ZIk (bk(k)� an(k))j _k jdt� ZIk an(k)j _kjdt� (� � �)":Then we have Lbk(k) � Z 10 an(k)j _kj dt� Æk ZInIk j _kj dt� (� � �)"� dan(xi; yi)� Æk Z 10 j _kj dt� (� � �)"and therefore, as Æk R 10 j _kj dt goes to zero, we obtainlim supk!+1 dbk (xi; yi) � lim supk!+1 Lbk (k) � dan(xi; yi)� (� � �)":The laim then follows sine " was arbitrary.Remark 4.7. It should be notied that the proof of Theorem 4.3 holds under very generalassumptions on the funtion F , namely it is suÆient to take an F whih is Borel measurableand satis�es assumption (ii) of (6), and suh that the funtion F (x; �) is non-dereasing forLN -a.e. x 2 
. This onsideration, together with Remark 4.5, enables us to onlude thatour relaxation result, namely Theorem 4.1, holds under the following milder onditions onF : 
� [�; �℄! R:(i) there exist a sequene of ontinuous funtions Fk : 
� [�; �℄! R satisfying onditions(6) and suh that F (x; �) = supk2NFk(x; �) for LN -a.e. x 2 
, for every � 2 RN ;(ii) R
 F (x; �) dx < +1.With a slight modi�ation of the argument used in the proof of Proposition 4.6 we anprove the following result.
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Proposition 4.8. Let d 2 D. Then there exists a Borel funtion a : 
 ! [�; �℄ suh that,for every (x; y) 2 
� 
,d(x; y) = inf nZ 10 a((t))j _(t)j dt :  2 Lip([0; 1℄; 
); (0) = x; (1) = y o:In partiular, if 
 := RN , for every d 2 D there exists a Borel measurable, isotropi Rie-mannian metri a : RN ! [�; �℄ suh that d = da aording to de�nition (2).Proof : Let us �rst remark that one an think the distane d 2 D to be de�ned on
 � 
 by extending it ontinuously up to the boundary. Therefore the d-length of everypath  : I ! 
 is de�ned, aording to de�nition (9). Let us de�ne the metri derivative ofthe path  at the point t 2 I asmdd()(t) := limh!0 d((t+ h); (t))h : (27)It is well known (see [2℄ for instane) that the limit in (27) exists for L1-a.e. t 2 I and thatLd() = Z 10 mdd()(t) dt:Notie also that, if (t) 2 
, then mdd()(t) = 'd((t); _(t)), as one an easily showomparing the de�nitions of 'd and mdd and realling that loally �jx � yj � d(x; y) ��jx � yj. Moreover, we observe that a Borel funtion a : 
 ! [�; �℄ indues a distane Æaon 
 through the formulaÆa(x; y) := inf nZ 10 a((t))j _(t)j dt :  2 Lip([0; 1℄; 
); (0) = x; (1) = y o (28)for every (x; y) 2 
�
.Comparing the de�nition of Æa with the one of da given in (2), we see that the maindi�erene relies upon the fat that the urves on whih we minimize the length La are nowallowed to lye in the losure of 
, therefore Æa depends also from the values assumed bya on the boundary of 
. In partiular, we remark that in general Æa(x; y) � da(x; y) for(x; y) 2 
 � 
, and this inequality may be strit due to the fat that a is not ontinuous.For instane, take 
 := (�1; 1) � (�1; 1) and a(x) := �
(x) + �
(x). One an easily seethat points near the boundary of 
 are loser with respet to Æa sine also the boundary of
 an be used to onnet points in de�nition (28).Let us now set S := QN \ 
 and write S � S = f(xi; yi) j i 2 Ng. By the lowersemiontinuity of Ld, we have that for every i 2 N there exists a urve i : I ! 
 suhthat Ld(i) = d(xi; yi) (just take for i an aumulation point of a d-minimizing sequeneof urves in 
 whih onnet x and y). Let Nn := [i�ni(I) and �n be an H1-negligibleBorel set whih ontains the non-di�erentiability points of Nn. Then de�ne an : 
! [�; �℄by an(x) :=8>>>><>>>>: � if x 2 �nmdd(i)(t)j _i(t)j if x = i(t) 2 Nn n�n for some i � n and some t 2 I� elsewhere. (29)It is easy to show that an is Borel measurable. Moreover, arguing as in the proof of Propo-sition 4.6, one an show that Æan(xi; yi) = d(xi; yi) for every i � n. Notie that Nn � Nn+115



and, up to replaing �n+1 with �n+1 [�n, we an always suppose that �n � �n+1. There-fore (an)n2N is a dereasing sequene of metris. Let a(x) := infn2N an(x). Then, arguingas in Lemma 3.8, we get thatÆa(xi; yi) = limn!+1 Æan(xi; yi) = d(xi; yi)for every i 2 N. This means that Æa = d on a dense subset of 
� 
 and hene Æa oinideswith d by ontinuity, whih is the laim.Referenes[1℄ Aerbi, E.; Buttazzo, G., On the limits of periodi Riemannian metris, J. AnalyseMath. 43 (1983/84), 183{201.[2℄ Ambrosio L. and Tilli P., Seleted topis on \Analysis on Metri spaes", Suola Nor-male Superiore di Pisa (2000).[3℄ Braides A.; Buttazzo G.; Fragal�a I., Riemannian approximation of Finsler metris, toappear in Asymptoti Anal.[4℄ Buttazzo, G. Semiontinuity, relaxation and integral representation in the alulus ofvariations. Pitman Researh Notes in Mathematis Series, 207. Longman Sienti�,Harlow (1989).[5℄ Buttazzo, G.; Davini, A.; Fragal�a; Mai�a, F., Optimal Riemannian distanes preventingmass transfer. Preprint Dipartimento di Matematia, Universit�a di Pisa (2002).[6℄ Buttazzo, G.; De Pasale, L.; Fragal�a, I., Topologial equivalene of some variationalproblems involving distanes, Disrete Contin. Dynam. Systems 7(2) (2001), 247{258.[7℄ Dal Maso G., An introdution to �-onvergene. Birk�auser, Boston, 1993.[8℄ De Ceo, G.; Palmieri, G., LIP manifolds: from metri to Finslerian struture, Math.Z. 218(2) (1995), 223{237.[9℄ Evans, L. C.; Gariepy, R. F., Measure Theory and Fine Properties of Funtions, CRCPress, New York, 1992.[10℄ Faloner, K.J., The geometry of fratal sets, Cambridge University Press, 1985.
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