
Monge solutions for discontinuous Hamiltonians

Ariela Briani
Dipartimento di Matematica

Università di Pisa
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Abstract

We consider an Hamilton-Jacobi equation of the form

H(x,Du) = 0 x ∈ Ω ⊂ RN , (1)

where H(x, p) is assumed Borel measurable and quasi-convex in p. The notion
of Monge solution, introduced by Newcomb and Su, is adapted to this setting
making use of suitable metric devices. We establish the comparison principle for
Monge sub and supersolution, existence and uniqueness for equation (1) coupled
with Dirichlet boundary conditions, and a stability result. The relation among
Monge and Lipschitz subsolutions is also discussed.

1 Introduction

We consider the Hamilton-Jacobi equation

H(x,Du) = 0 x ∈ Ω ⊂ RN , (2)

where Du is the gradient of the unknown function u : Ω → R and H : Ω × RN →
R is the Hamiltonian. We are concerned with the study of equation (2) in the
framework of discontinuous Hamiltonians: indeed, H will be assumed to be only
Borel measurable, and quasi-convex in the p-variable for every x ∈ Ω. The interest
of this issue is easily motivated by the applications: Hamilton-Jacobi equations
with discontinuous ingredients arise naturally in several models, as, for example,
propagation of fronts in non-homogeneous media, geometric optics in presence of
layers, shape-from-shading problems.

One of the main theory concerning Hamilton-Jacobi equations is that of viscosity
solutions, developed in the last twenty years. The literature on this subject is wide,
as main reference we recall the books [2], [3] and [20], and the references therein.

With regard to the discontinuous case, measurable fully nonlinear equations of
second order have been studied in [8], however the techniques exploited there are
based on the strong maximum principle so they do not apply to first order equations.

The first order case has been less studied; we recall, among others (see e.g. [4]
and [19]), [9] and [22]. In the first one Camilli and Siconolfi study equation (2)
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and give a notion of viscosity solution making use of suitable measure-theoretic
devices. They prove a comparison result, and consequently, when equation (2) is
coupled with a boundary datum, they get unicity of the solution and an integral
representation formula, generalizing the one valid for the continuous case. Moreover,
such a solution is proven to be the maximal among Lipschitz subsolutions, in analogy
with the classical setting.

In [22], Soravia studies the following Hamilton-Jacobi equation related to optimal
control problems

λu(x) + sup
a∈A

{−f(x, a)Du(x)− h(x, a)} = g(x)

where g is only Borel measurable. The viscosity solutions are defined by taking
the lower and upper semicontinuous envelopes of g following [18]. Uniqueness and
stability results are given.

Both the recalled works start by comparing their definitions with a slightly dif-
ferent one, given by Newcomb and Su in [21]. The authors studied the equation of
eikonal type

H(Du) = n(x) (3)

where the discontinuity is in n only, which is assumed to be lower semicontinuous.
They introduce the definition of Monge solution, which is shown to be consistent
with the viscosity notion when n is continuous. In this framework they establish the
comparison principle for sub and supersolutions, existence and uniqueness results
for (3) with Dirichlet boundary conditions, and a stability result.

In this paper we want to extend this definition to equations of the more general
form (2) and to generalize to this case the above-mentioned results. In order to be
more precise about the type of discontinuities we admit, let us specify that we will
deal with Borel-measurable Hamiltonians H such that Z(x) := {p ∈ RN |H(x, p) ≤
0} is closed and convex and ∂Z(x) = {p ∈ RN |H(x, p) = 0 } for every x ∈ Ω.
Moreover, we assume that there exist two positive constants α and β such that
Bα(0) ⊂ Z(x) ⊂ Bβ(0) for every x ∈ Ω.
In analogy with [21], we need to recall that the optical length function relative to
the Hamiltonian H is the map S : Ω× Ω → R defined as follows:

S(x, y) := inf
{∫ 1

0
σ(γ(t), γ̇(t)) dt | γ ∈ Lip

(
[0, 1],Ω

)
, γ(0) = x, γ(1) = y

}
(4)

for every x, y ∈ Ω, where σ is the support function of the section Z(x), namely
σ(x, ξ) := sup {〈−ξ, p〉 | p ∈ Z(x) }. Given u ∈ C(Ω), we say that u is a Monge
solution (resp. subsolution, supersolution) of (2) in Ω if for each x0 ∈ Ω there holds

lim inf
x→x0

u(x)− u(x0) + S(x0, x)
|x− x0|

= 0 (resp. ≥, ≤).

As it should be clear by the above definition, the properties of Monge sub and
supersolutions strictly depend on those enjoyed by the optical length function S. As
we will see, the function S is a geodesic, non-symmetric distance, which corresponds,
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with the notations of Section 2, to dσ (defined by (10)). Therefore, as a preliminary
step, we collect and prove some results about non-symmetric distances (see Section 2
and Section 3). Those results are then specialized to S to carry on the study of Monge
solutions. With this regard, we underline that the semicontinuity of the function
n in (3) is mainly used in [21] to obtain semicontinuity of the length functional Lσ
(defined by (11) in Section 2), and therefore the existence of an optimal path for
S(x, y), namely a path of minimal Lσ-length. This technical difficulty is overcome
here by introducing the metric length of a curve with respect to the non-symmetric
distance S (cf. formula (8) in Section 2), which is the relaxed functional of Lσ. The
existence of a minimal path (with respect to the metric S-length) for S(x, y) for
all x, y ∈ Ω is then an easy consequence of the results of Section 2. Consequently,
under the above-stated conditions for the Hamiltonian, we obtain a comparison
result among Monge sub and supersolutions of equation (2) (Theorem 5.1). This
implies moreover that, under certain compatibility conditions for the boundary data,
the Dirichlet problem {

H(x,Du) = 0 in Ω
u = g on ∂Ω

(5)

has a unique Monge solution u, given by Lax formula

u(x) := inf
y∈∂Ω

{S(x, y) + g(y)} for all x ∈ Ω, (6)

thus recovering a well known result in the case of a continuous Hamiltonian.
In the continuous case, moreover, the function defined by (6) is also the maximal

element in the class of Lipschitz subsolutions of (5). As already remarked in [21, 22],
this is no longer true in general when dealing with Monge solutions of discontinuous
Hamilton-Jacobi equations. However, when the Hamiltonian is mildly discontinu-
ous, the previous maximality property still holds. This issue will be investigated in
a more detailed way in Section 7 (cf. Theorem 7.3). As a matter of fact, this will
be done by comparing the definition of Monge solution adopted here with that of
viscosity solution introduced by Camilli and Siconolfi in [9]. The main difference
between the two approaches relies upon the definition of optical length function:
while here S is defined by (4) through an infimum, the corresponding function LΩ

in [9] is defined through a sup-inf process (cf. Section 7 for the definition). The lat-
ter has the effect of rendering the function LΩ independent of modifications of the
Hamiltonian H (and consequently of the support function σ) on negligible subset of
Ω with respect to the x-variable, a property which is necessary if one is interested in
keeping the equivalence (holding in the continuous setting, see [2]) between Lipschitz
and viscosity subsolutions of (2). This in particular gives the maximality of the vis-
cosity solution of (5) among Lipschitz subsolutions (cf. [9, Proposition 3.6]). Some
problems arise instead when one deals with sequences of solutions: in [9, Example
7.2], the authors consider a sequence of continuous Hamilton-Jacobi equations con-
verging to a limit equation for which it is easy to exhibit a corresponding sequence of
viscosity solutions (in the classical sense) uniformly converging to a function which
is not the viscosity solution, in the sense there considered, of the limit equation
(actually, it turns out to be a Monge solution, see Example 6.5). The main reason
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of this behavior is that the family of distances that can be obtained through such a
sup-inf process is not closed for the uniform convergence (cf. Proposition 3.7).

On the other hand, the definition of optical length function given here strictly
depends on the pointwise behavior of the Hamiltonian and changing it in the x-
variable over negligible sets does count. Moreover, the class of distances obtained
through (4) is closed for the uniform convergence (in fact, it is compact, cf. Section
2 and Theorem 2.6). In particular, with this approach one can treat optimization
problems such as

min
{∫

Ω
|ua − f |2 dx

∣∣∣ a : Ω → [α, β] Borel measurable,
∫

Ω
a(x) dx ≤ m

}
,

where α, β and m are suitable positive constants, f : Ω → R is a given function and
ua is the Monge solution of the following equation, depending on the control a:{

|Du| = a(x) in Ω
u = 0 on ∂Ω.

(7)

Indeed, the problem can be attacked using the direct method of the Calculus of
Variations: chosen a minimizing sequence (an)n, it is easy to see, using the repre-
sentation formula (6) and the recalled compactness result (Theorem 2.6), that the
corresponding solutions uan converge uniformly to a function u. To show that u is
the Monge solution of problem (7) for an admissible control a one can refer to the
results proved in [12] (specifically, Theorem 4.3 and Theorem 4.7, cf. also Example
8.2).

Our paper is organized as follows. In Section 2 we recall the main results con-
cerning non-symmetric distances. The study of the properties of distances is carried
on in Section 3. In particular, we compare two different ways of deriving a distance
from a function ϕ ∈ M, namely (10) and (17), and we will examine under which
conditions they are equivalent. The properties derived in the general framework of
geodesic distances are applied in Section 4 to the optical length function S, and
some properties of Monge sub and supersolutions are deduced. In particular, we
show that the definition of Monge solution reduces to the viscosity one when the
Hamiltonian is continuous. Section 5 contains the proofs of the comparison principle
(Theorem 5.1) and the solvability of the Dirichlet problem (5) (Theorem 5.3). In
Section 6 a stability result is proven under a suitable convergence of Hamiltonians,
which includes, as special cases, the ones more classically considered, such as uniform
convergence. In Section 7 we discuss the pointwise behavior of Monge solutions of
problem (5) and the relation among Monge and Lipschitz subsolutions. The paper
is ended with some examples. In particular, we will show how Monge solutions of
certain eikonal equations arise naturally as asymptotic limit of viscosity solutions of
evolutive Hamilton-Jacobi equations with continuous ingredients.
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Notation. We write here a list of symbols used throughout this paper.

SN−1 (N − 1)−dimensional unitary sphere of RN

Br(x) open ball in RN of radius r centred in x
I closed interval [0, 1]
Lk k-dimensional Lebesgue measure
Hk k-dimensional Hausdorff measure
|x| Euclidean norm of the vector x ∈ RN

R+ non-negative real numbers
χE the characteristic function of the set E

In this paper N will denote an integer number, α and β two positive constants with
β > α, and Ω a bounded domain (i.e. an open connected set) of RN with Lipschitz
boundary. A subset of RN is said to be negligible if its N -dimensional Lebesgue mea-
sure is null. With the word curve or path we will always indicate a Lipschitz function
from the interval I := [0, 1] to Ω. Any curve γ is always supposed to be parametrized
by constant speed, i.e. in such a way that |γ̇(t)| is constant for L1-a.e. t ∈ I. We will
say that a sequence of curves (γn)n (uniformly) converges to a curve γ to mean that
supt∈I |γn(t)− γ(t)| tends to zero as n goes to infinity. We will denote by Lipx,y the
family of curves γ which join x and y, i.e. such that γ(0) = x and γ(1) = y. Last,

for a measurable function f : I → RN , ‖f‖∞ stands for
√∑N

i=0 ‖fi‖2
L∞(I), where

fi and ‖fi‖L∞(I) denotes the i-th component of f and the L∞-norm of fi respectively.

2 Preliminaries on geodesic distances

In this section we will describe the main definitions and properties of Finsler dis-
tances that will be useful to study the optical length functions S and consequently
the properties of Monge solutions. In the sequel, a distance d on Ω will be called
non-symmetric if the identity d(x, y) = d(y, x) may fail to hold on Ω× Ω.

We stress that definitions and results stated in this section are essentially known,
but usually given in literature considering symmetric distances. Proofs can be easily
adapted to our setting by minor changes, and will therefore omitted (cf. [13]).

First, let us define the classical d-length of γ, obtained as the supremum of the
d-lengths of inscribed polygonal curves:

Ld(γ) := sup
{m−1∑

i=0

d
(
γ(ti), γ(ti+1)

)
| 0 = t0 < t1 < .. < tm = 1, m ∈ N

}
. (8)

We will say that d is a geodesic distance if it satisfies the following identity:

d(x, y) = inf
{
Ld(γ) | γ ∈ Lipx,y

}
for every (x, y) ∈ Ω× Ω. (9)

All distances considered in this paper will fulfill the following hypotheses:

(d1) d is non-symmetric;
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(d2) d is geodesic;

(d3) there exist two positive constants α and β, such that

α|x− y| ≤ d(x, y) ≤ β|x− y| locally in Ω

(i.e. for every x0 ∈ Ω there exists an open ball Br(x0) ⊂ Ω such that the above
inequality holds for every x, y ∈ Br(x0)).

Any distance d which satisfies the hypotheses (d1)-(d3) induces on Ω a topology
which is equivalent to the Euclidean one. In particular, by applying to our framework
a classical theorem due to Busemann (cf. [1, Theorem 4.3.1]), we obtain what follows.

Proposition 2.1. The length functional Ld is lower semicontinuous with respect
to the uniform convergence of paths, namely if (γn)n converges to γ then Ld(γ) ≤
lim infn Ld(γn). In particular, for every couple of points x, y in Ω there exists a curve
γ ∈ Lipx,y which is a path of minimal d-length, i.e. such that Ld(γ) = d(x, y).

A Borel-measurable function ϕ : Ω×RN → R+ will be said to be a (weak) Finsler
metric on Ω if ϕ(x, ·) is 1-homogeneus for every x ∈ Ω and convex for LN -a.e. x ∈ Ω.

We now fix two positive constants α and β and we consider the following family
of functions:

M :=
{
ϕ Finsler metrics on Ω : α|ξ| ≤ ϕ(x, ξ) ≤ β|ξ| on Ω× RN

}
.

For each ϕ ∈M, we can define a function dϕ on Ω× Ω through the formula

dϕ (x, y) := inf
{
Lϕ (γ) | γ ∈ Lipx,y

}
, (10)

where the length functional Lϕ is defined by

Lϕ(γ) :=
∫ 1

0
ϕ(γ(t), γ̇(t))dt. (11)

The main properties of dϕ are summarized below.

Proposition 2.2. The function dϕ(x, y) given by (10) is well defined on Ω×Ω and
satisfies the following properties:

(i) 0 ≤ dϕ(x, y) ≤ dϕ(x, z) + dϕ(z, y) for all x, y, z ∈ Ω;
(ii) α|x− y| ≤ dϕ(x, y) ≤ β|x− y| locally in Ω;
(iii) dϕ is Lipschitz on Ω× Ω, with Lipschitz constant equal to 2β C,

where C ≥ 1 is the Lipschitz constant of ∂Ω.

In particular, dϕ is a non-symmetric distance, locally equivalent to the Euclidean
one.

Proof. Let γ be a curve. Since the map t 7→
(
γ(t), γ̇(t)

)
is Lebesgue measurable on

I, and ϕ is Borel measurable on Ω×RN , their composition ϕ(γ(t), γ̇(t)) is Lebesgue
measurable on I. Therefore the integral in (11) is well defined and so is dϕ. The
remainder of the claim is a simple consequence of the definitions.
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Remark 2.3. With regard to item (ii) in the statement of Proposition 2.2, it is worth
noticing that the inequality dϕ(x, y) ≥ α|x − y| actually holds for every x, y ∈ Ω,
while dϕ(x, y) ≤ β|x− y| holds true whenever the euclidean segment joining x to y
lies in Ω.

Next proposition clarifies the relation between the functional (11) and the (intrinsic)
metric length functional (8) (cf. [14, Theorem 4.3]).

Proposition 2.4. Let d := dϕ with ϕ ∈M. Then for any γ ∈ Lip(I,Ω) we have:

Ld(γ) = inf
{

lim inf
n→+∞

Lϕ(γn) : (γn)n converges to γ in Lip(I,Ω)
}
, (12)

namely Ld is the relaxed functional of Lϕ on Lip(I,Ω). In particular, d is a distance
of geodesic type according to definition (9).

Remark 2.5. By Proposition 2.4, Lϕ will coincide with Ld whenever Lϕ is lower
semicontinuous on Lip(I,Ω). This happens, for instance, when ϕ is lower semicon-
tinuous on Ω × RN and ϕ(x, ·) is convex on RN for every x ∈ Ω (cf. [5, Theorem
4.1.1]).

Let us denote by D the family of distances on Ω generated by the metrics M,
namely D := {dϕ | ϕ ∈ M}. We endow D with the metric given by the uniform
convergence on Ω × Ω. This convergence is equivalent to the Γ-convergence of the
relative length functionals Ldn to Ld with respect to the uniform convergence of
paths, as proved in [7, Theorem 3.1]. Moreover, we have the following (cf. [7,
Theorem 3.1]):

Theorem 2.6. The set D is endowed with the metric given by the uniform conver-
gence of distances on Ω× Ω is a metrizable compact space.

Next proposition describes the convergence of elements of D in terms of the conver-
gence of the generating metrics. A proof is given in [13].

Proposition 2.7. Let ϕ, ϕn ∈ M and d and dn be the distances associated re-
spectively to ϕ and ϕn through (10). Then (dn)n converges uniformly to d in the
following cases:

(i) (ϕn)n converges uniformly to ϕ on compact subset of Ω× RN ;

(ii) ϕn are lower semicontinuous in x, convex in ξ and converge increasingly to ϕ
pointwise on Ω× RN ;

(iii) (ϕn)n converges decreasingly to ϕ pointwise on Ω× RN .

An integral representation of the d-length of a curve γ can be given in terms
of its metric derivative, as known by classical results on metric spaces [1], and this
result can be easily extended to the non-symmetric setting (see [13]). In particular,
when the curve γ lies in Ω (i.e. γ(I) ⊂ Ω), the following holds:

Ld(γ) =
∫ 1

0
ϕd(γ(t), γ̇(t)) dt, (13)
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i.e. Ld(γ) = Lϕd
(γ) (cf. [17, Theorem 2.5], [13]), where ϕd is the Finsler metric on

Ω associated to d by derivation, given by

ϕd (x, ξ) := lim sup
t→0+

d (x, x+ tξ)
t

(x, ξ) ∈ Ω× RN . (14)

Definition (14) might be suitably extended to the boundary of Ω (cf. [13]). This
generalization is not needed here and will be not detailed any further. We summarize
in the next proposition the main properties of ϕd. For the proof, we refer to [15, 17].

Proposition 2.8. The function ϕd : Ω×RN → R+ given in (14) is Borel-measurable.
Moreover we have:

(i) ϕd(x, ·) is positively 1-homogeneous for every x ∈ Ω;
(ii) |ϕd(x, ξ)− ϕd(x, ν)| ≤ β|ξ − ν| for every x ∈ Ω and every ξ, ν ∈ RN ;
(iii) ϕd(x, ·) is convex for LN -a.e. x ∈ Ω.

To sum up, any function ϕ ∈ M gives rise to a distance d := dϕ in D through
(10). To such a distance d, one can associate by derivation the Finsler metric ϕd
given by (14). Even if ϕd need not be equal to ϕ, some relations between them can
be deduced.

Proposition 2.9. Let ϕ ∈M and d := dϕ be the non-symmetric distance associated
to ϕ according to (10). Then there exists a negligible set N ⊂ Ω such that

ϕd(x, ξ) ≤ ϕ(x, ξ) for every (x, ξ) ∈ Ω \N × RN ,

where ϕd is defined in (14). Moreover we have:

(i) if ϕ(x, ·) is convex on RN for every x ∈ Ω and ϕ(·, ξ) is lower semicontinuous
for every ξ ∈ RN , we have

ϕd(x, ξ) ≥ lim inf
t→0+

d(x, x+ tξ)
t

≥ ϕ(x, ξ) for every (x, ξ) ∈ Ω× RN .

In particular, ϕd(x, ξ) = ϕ(x, ξ) on Ω \N × RN ;

(ii) if ϕ(·, ξ) is upper semicontinuous for every ξ ∈ RN , we have ϕd(x, ξ) ≤ ϕ(x, ξ)
for every (x, ξ) ∈ Ω× RN .

Proof. Let us fix a vector ξ ∈ SN−1 and, for every x0 ∈ Ω, let us define the curve
γx0(s) := x0 +sξ. Let t be a Lebesgue point for the map s 7→ ϕ(γx0(s), ξ). For h > 0
small enough we have

1
h

∫ t+h

t
ϕ(γx0(s), ξ) ds =

1
h

∫ 1

0
ϕ(γx0(t+ hτ), hξ) dτ ≥ d(γx0(t), γx0(t) + hξ)

h
,

so, by taking the limsup as h→ 0+, we get ϕd(γx0(t), ξ) ≤ ϕ(γx0(t), ξ). Since L1-a.e.
t ∈ R is a Lebegue point for ϕ(γx0(·), ξ) and x0 was arbitrarily chosen in Ω, Fubini’s
Theorem implies that ϕd(x, ξ) ≤ ϕ(x, ξ) for LN -a.e. x ∈ Ω. Then we can take a
dense sequence (ξn)n in SN−1 and repeat the above argument for each ξn. Recalling
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that the functions ϕd(x, ·) and ϕ(x, ·) are continuous (and 1-homogeneous) for LN -
a.e. x ∈ Ω, we get, by the density of (ξn)n, that ϕd(x, ξ) ≤ ϕ(x, ξ) for LN -a.e. x ∈ Ω
and for every ξ ∈ RN .

(i) Let us assume ϕ lower semicontinuous in x and convex in ξ and fix (x, ξ) ∈
Ω × SN−1. By lower semicontinuity, for every ε > 0 there exists r = r(ε, x) > 0
such that Br(x) ⊂ Ω and ϕ(y, ξ) > ϕ(x, ξ) − ε for every y ∈ Br(x). Moreover, by
the Lipschitz continuity of ϕ in ξ and by possibly choosing a smaller r, the previous
inequality holds in Br(x)×Br(ξ). Hence, as SN−1 is compact, there exists a suitable
r > 0 such that

ϕ(y, ξ) ≥ ϕ(x, ξ)− ε for every (y, ξ) ∈ Br(x)× SN−1.

Choose a d-minimizing sequence of paths (γn)n ⊂ Lipx,x+tξ. For t small enough, the
curves γn lie within Br(x). Then, for n big enough, we have

Lϕ(γn) =
∫ 1

0
ϕ(γn(s), γ̇n(s)) ds ≥

∫ 1

0
(ϕ(x, γ̇n(s))− ε|γ̇n(s)|) ds ≥ t

(
ϕ(x, ξ)− 2

β

α
ε

)
,

where for the last estimate we have used Jensen’s inequality applied to the convex
function ϕ(x, ·) and the fact that α

∫ 1
0 |γ̇n|ds ≤ Lϕ(γn) ≤ 2d(x, x+ tξ) ≤ 2βt if n is

large enough. Letting n go to +∞ in the above inequality we obtain

d(x, x+ tξ)
t

≥ ϕ(x, ξ)− 2
β

α
ε. (15)

By taking the liminf of (15) as t → 0+ and since ε > 0, x ∈ Ω and ξ ∈ SN−1 were
arbitrary we obtain

ϕd(x, ξ) ≥ lim inf
t→0+

d(x, x+ tξ)
t

≥ ϕ(x, ξ) for every (x, ξ) ∈ Ω× SN−1,

and the claim follows by 1-homogeneity in ξ.
(ii) Fix (x, ξ) ∈ Ω×SN−1. By the upper-semicontinuity assumption, there exists

an r > 0 such that Br(x) ⊂ Ω and ϕ(y, ξ) < ϕ(x, ξ) + ε for every y ∈ Br(x). For t
small enough the curve γt(s) := x+ s(tξ) lies within Br(x), so we have

d(x, x+ tξ) ≤
∫ 1

0
ϕ(x+ s(tξ), tξ) ds ≤

∫ 1

0
(ϕ(x, tξ) + εt) ds = t(ϕ(x, ξ) + ε),

and hence
d(x, x+ tξ)

t
≤ ϕ(x, ξ) + ε. (16)

By taking the limsup in (16) as t → 0+ and since ε > 0, x ∈ Ω and ξ ∈ SN−1 were
arbitrary, we obtain the claim.

From the previous proposition we deduce the following result.

Corollary 2.10. Let ϕ ∈M and d := dϕ be the non-symmetric distance associated
to ϕ according to (10). If ϕ(·, ξ) is continuous on Ω for every ξ ∈ RN and ϕ(x, ·) is
convex on RN for every x ∈ Ω, then ϕd(x, ξ) = ϕ(x, ξ) for every (x, ξ) ∈ Ω× RN .
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3 Fine properties of distances

For later use, we need to introduce a different way to derive a distance from an
element of M. Following [17], we introduce the notion of transversality: we say that
a curve γ is transversal to the negligible set E if H1(γ(I) ∩ E) = 0. Then, for each
ϕ ∈M, we define a function d̃ϕ on Ω× Ω through the following formula:

d̃ϕ(x, y) := sup
LN (E)=0

{
inf

{
Lϕ(γ)

∣∣ γ ∈ Lipx,y, γ transversal to E
} }

. (17)

Let us denote by D̃ the space of distances generated by the elements of M through
(17), namely D̃ := {d̃ϕ : ϕ ∈M} . Its main properties are summarized in the next
theorem.

Theorem 3.1. Let ϕ ∈ M and let d̃ϕ be the distance defined by (17). Then there
exists a negligible set F ⊂ Ω such that

d̃ϕ(x, y) = inf
{
Lϕ(γ)

∣∣ γ ∈ Lipx,y, γ transversal to F
}
. (18)

Moreover, if we set ϕ̃(x, ξ) := ϕ(x, ξ)χΩ\F (x) + β|ξ|χF (x), we have that d̃ϕ = dϕ̃,
where dϕ̃ is the distance associated to ϕ̃ through (10). In particular, we have that
D̃ ⊂ D.

In order to prove Theorem 3.1, we need a preliminary lemma.

Lemma 3.2. Let γ ∈ Lipx,y with x, y ∈ Ω and let E be a negligible subset of Ω.
Then for every ε > 0 there exists a curve γε ∈ Lipx,y transversal to E and such that
‖γε − γ‖W 1,∞ := ‖γε − γ‖∞ + ‖γ̇ε − γ̇‖∞ < ε.

Proof. Let γ ∈ Lipx,y and let g(t) ∈ C1(I) be a non negative function such that
g(t) = 0 for t = 0 and t = 1 only (take for example g(t) := sin(πt)). First, let us prove
that for LN -a.e. v ∈ RN the curve γv(t) := γ(t)+vg(t) is transversal to the set E. Set
F (t, v) := γ(t)+vg(t) and let A be the set of points (t, v) ∈ I×RN such that F (t, v)
belongs to E. For every fixed t ∈ (0, 1), the section At := {v ∈ RN | (t, v) ∈ A } has
zero Lebesgue measure in RN , therefore A has zero Lebesgue measure in I × RN .
This implies that for every v ∈ RN \N0 the section Av := {t ∈ I | (t, v) ∈ A } is L1-
negligible in I, where N0 is a negligible set in RN . Therefore, since γv(t) is Lipschitz,
for every v ∈ RN \N0 the set γv(Av) is H1-negligible in RN , hence the curve γv is
transversal to E, as γv(Av) = γv(I) ∩ E. Remark that ‖γv − γ‖W 1,∞ = |v|‖g‖W 1,∞ .

If γ lies inside Ω, then for |v| small enough the curves γv lie inside Ω. The claim
follows by setting γε := γv with v ∈ RN \N0 and |v| < ε/‖g‖W 1,∞ .

Otherwise, let us assume that the curve γ touches the boundary in a point x0.
By possibly subdividing γ(I) into small subarcs, we may suppose that the curve γ
lies in Ω∩B, where B is a ball centred in x0. This ball can be chosen small enough
in such a way that there exists a cone C := {v ∈ Bδ(0) | 〈v, ξ〉 > δ|v| }, with δ > 0
and ξ ∈ SN−1 suitably chosen, such that z + C ⊂ Ω for every z ∈ ∂Ω ∩B. Remark
that, if v ∈ C, the curve γv lies inside Ω. Therefore, by arguing as above, the claim
is achieved by setting γε := γv with v ∈ C \N0 and |v| < ε/‖g‖W 1,∞ .
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Proof of Theorem 3.1. The existence of a negligible set F which satisfies the first
assertion of the claim follows by Proposition 3.5 of [9]. Up to enlarging this set if
necessary, we may as well suppose that F is Borel-measurable.

Set ϕ̃(x, ξ) := ϕ(x, ξ)χΩ\F (x) + β|ξ|χF (x) and let dϕ̃ be the associated distance
defined according to (10). Since Lϕ̃(γ) = Lϕ(γ) if γ is transversal to F , we obviously
have that dϕ̃ ≤ d̃ϕ. We want to prove the reverse inequality. It will be enough to
show that for every γ ∈ Lipx,y and every ε > 0 there exists a curve γε ∈ Lipx,y
transversal to F such that ε + Lϕ̃(γ) > Lϕ(γε), with x and y arbitrarily chosen in
Ω. Then, let γ ∈ Lipx,y and let A := {t ∈ (0, 1) | γ(t) ∈ F }. Fix ε > 0 and assume
0 < L1(A) < 1, being the other cases trivial. Choose an open set J ⊃ A in (0, 1)
such that L1(J \A) < ε. The open set J is a countable disjoint union of intervals of
the form Jk := (ak, bk) with k ∈ N. Applying Lemma 3.2, we choose, for each k ∈ N,
a curve σk : [ak, bk] → Ω transversal to F such that σk(ak) = γ(ak), σk(bk) = γ(bk)
and ‖σk − γ‖W 1,∞(Jk,Ω) < ε/2k. For each n ∈ N let us set:

γn(t) :=
{
σk(t) if t ∈ [ak, bk] for each k ≤ n
γ(t) otherwise.

(19)

Let γε be the curve defined by (19) with n = +∞. It is easily seen that (γn)n is
a Cauchy sequence in W 1,∞(I,Ω) and converges to γε, which is therefore Lipschitz
too. We claim that γε is the desired curve. Indeed, it connects x and y in Ω and is
transversal to F by construction. Moreover we have:∫
Jk

(
ϕ(σk, σ̇k)− ϕ̃(γ, γ̇)

)
dt ≤ β‖σ̇k‖∞L1(Jk \A) +

∫
Jk∩A

β
(
|σ̇k(t)| − |γ̇(t)|

)
dt

< CL1(Jk \A) + β
ε

2k
,

where C is a constant depending only on β and ‖γ̇‖∞. Therefore

Lϕ(γε)− Lϕ̃(γ) =
+∞∑
k=1

∫
Jk

(
ϕ(σk, σ̇k)− ϕ̃(γ, γ̇)

)
dt < CL1(J \A) + βε < (C + β)ε,

and the claim follows.

Remark 3.3. Let us remark that formula (17) is invariant with respect to modifica-
tions of the function ϕ on negligible subsets of Ω. Therefore, since ϕ̃(x, ξ) = ϕ(x, ξ)
for LN -a.e. x ∈ Ω and every ξ ∈ RN , we also have that d̃ϕ̃ = d̃ϕ = dϕ̃.

Corollary 3.4. D̃ is a proper subset of D.

Proof. Let ϕ(x, ξ) be equal to α|ξ| on a segment Γ contained in Ω and β|ξ| elsewhere,
and let d := dϕ be the distance associated to ϕ through (10). If d belonged to D̃, by
taking into account Theorem 3.1 and Remark 3.3, we would have d = dψ = d̃ψ for
a function ψ ∈ M. Proposition 2.9 and the definition of ϕd would imply ψ(x, ξ) ≥
ϕd(x, ξ) = β|ξ| for LN -a.e. x ∈ Ω and every ξ ∈ RN , hence ψ(x, ξ) = β|ξ| LN -a.e.
on Ω. Then, by Remark 3.3, we would have d = d̃ψ = βdΩ, which is obviously
impossible since d(x, y) = α|x− y| if x and y belong to the segment Γ.
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Definitions (10) and (17) individuate two different ways to derive a distance
from a given ϕ ∈ M. In general, we have that dϕ ≤ d̃ϕ, and the inequality may be
strict, as shown by the function ϕ defined in the proof of Corollary 3.4. It seems a
difficult task to characterize the functions ϕ for which equality holds. We therefore
restrict to look for sufficient conditions which entail equivalence between the two
definitions. The next two propositions show that the upper semicontinuity property
of the length functional Lϕ plays a role in this issue. These results are essentially
known [15, 16, 17]; they have been restated here for the reader’s convenience.

Proposition 3.5. Let ϕ ∈ M be such that the length functional Lϕ is upper semi-
continuous on W 1,∞(I,Ω) with respect to the strong topology. Then dϕ = d̃ϕ.

Proof. Let F be a Borel negligible subset of Ω satisfying (18), according to Theorem
3.1. Fix x and y in Ω and let γ ∈ Lipx,y. By applying Lemma 3.2, we find a sequence
of curves (γn)n ⊂ Lipx,y transversal to F which converges to γ in W 1,∞(I,Ω). By
the upper semicontinuity of Lϕ we get

Lϕ(γ) ≥ lim sup
n→+∞

Lϕ(γn) ≥ d̃ϕ(x, y).

By taking the infimum over all possible curves in Lipx,y we obtain dϕ(x, y) ≥ d̃ϕ(x, y)
and hence the claim.

Proposition 3.6. Let ϕ ∈M be upper semicontinuous in Ω×RN . Then the length
functional Lϕ is upper semicontinuous on W 1,∞(I,Ω) with respect to the strong
topology. In particular, dϕ = d̃ϕ.

Proof. Let (γn)n be a sequence in W 1,∞(I,Ω) which strongly converges to γ. Using
Fatou’s Lemma and the upper semicontinuity of ϕ we get∫ 1

0
ϕ(γ, γ̇) dt ≥

∫ 1

0
lim sup
n→+∞

ϕ(γn, γ̇n) dt ≥ lim sup
n→+∞

∫ 1

0
ϕ(γn, γ̇n) dt

and so the claim.

In view of the results obtained in [13] and of what seen so far, we can prove what
follows.

Proposition 3.7. D̃ is a proper and dense subset of D. In particular, it is not
closed.

Proof. Proposition 3.6 implies that D̃ contains the distances dϕ with ϕ ∈ M
continuous, so the density follows by Theorem 4.1 in [13].

In conclusion, the upper semicontinuity of ϕ is a sufficient condition to entail
equivalence of (10) and (17). In fact, in the counterexample given in Remark 3.3
the function ϕ we defined was lower semicontinuous. On the other hand, it is clear
that the condition we have found is far from being optimal: if the set where ϕ fails
to be upper semicontinuous is not too bad, equivalence between (10) and (17) still
holds. A naive example of this situation is given by a function ϕ(x, ξ) of the form
a(x)|ξ| with a equal to 2 on R× (0,+∞) and to 1 on R× (−∞, 0]. The proposition
that follows generalizes this idea.
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Proposition 3.8. Assume that Ω := ∪mi=1Ωi, where the sets Ωi are bounded domains
with Lipschitz boundaries such that Ωi ∩ Ωj = ∂Ωi ∩ ∂Ωj if i 6= j, and every x ∈ Ω
belongs to at most two subdomains Ωi. Let ϕ ∈ M and suppose that ϕ is upper
semicontinuous in each Ωi. Moreover, let us assume that for every x ∈ ∪mi=1∂Ωi

there exist an index i0 and a real number ρ > 0 such that x ∈ ∂Ωi0 and ϕ is upper
semicontinuous in Ωi0 ∩Bρ(x). Then dϕ(x, y) = d̃ϕ(x, y) on Ω× Ω.

Proof. First remark that by compactness the number ρ > 0 in the above assumption
can be chosen independent on x.
Let F be a Borel negligible subset of Ω satisfying (18) in Theorem 3.1. It will be
enough to show that for every γ ∈ Lipx,y and every ε > 0 there exists a curve
γε ∈ Lipx,y transversal to F such that Lϕ(γ) + ε > Lϕ(γε), with x, y ∈ Ω.

Let us then take a curve γ ∈ Lipx,y and fix ε > 0. If γ(I) is contained in Ωi for
some index i, one can apply Lemma 3.2 with Ω := Ωi and conclude by remarking
that Lϕ is upper semicontinuous in W 1,∞(I,Ωi).

Otherwise, there exists a point x ∈ γ(I)∩
⋃m
i=1 ∂Ωi. Up to subdividing γ(I) into

a finite number of small subarcs, we can assume that γ lies in Br(x)∩Ω, where r < ρ
is a sufficiently small radius. The case of x belonging to ∂Ωi for just one index i is
easy to deal: for r small enough Br(x) ∩ Ω = Br(x) ∩ Ωi for some index i and ϕ is
upper semicontinuous in Br(x) ∩ Ωi by hypothesis, so Lϕ is upper semicontinuous
in W 1,∞(I,Br(x) ∩ Ω) and the claim follows by applying Lemma 3.2 again.

Let us then suppose that x belongs to γ(I) ∩ ∂Ωi for two distinct i. Up to
reordering the indexes and to choosing a smaller r, we may suppose x ∈ ∂Ω1 ∩ ∂Ω2,
Br(x) ⊂ Ω, Br(x)∩Ωi = ∅ for each i ≥ 3 and ϕ upper semicontinuous in Ω1∩Br(x).
Assume also that r has been chosen so small that there exists a cone C := {v ∈
Bδ(0) | 〈v, ξ〉 > δ|v| } (for suitable δ > 0 and ξ ∈ SN−1) such that z + C ⊂ Ω1

for every z ∈ ∂Ω1 ∩ Br(x). Arguing as in the proof of Lemma 3.2, we can take a
sequence (vn)n ⊂ C converging to 0 such that the curves γn(t) := γ(t)+vn sin(πt) are
transversal to F and ‖γ − γn‖W 1,∞(I,Ω) ≤ 2|vn|. Let us set I1 := {t ∈ I | γ(t) ∈ Ω1 }
and I2 := {t ∈ I | γ(t) ∈ Ω2 }. Notice that, if γ(t) ∈ Ω1, then γn(t) := γ(t) +
vn sin(πt) ∈ Ω1 for every n ∈ N, since the translation by the vector sin(πt)vn has
the effect of moving points on ∂Ω1 inside Ω1. On the other hand, it is clear that
if γ(t) ∈ Ω2 then γn(t) ∈ Ω2 for n big enough. Therefore, by Fatou’s Lemma and
taking into account the upper semicontinuity properties enjoyed by ϕ, we get∫ 1

0
ϕ(γ, γ̇) dt =

∫
I1

ϕ(γ, γ̇) dt+
∫
I2

ϕ(γ, γ̇) dt ≥
∫
I1

lim sup
n→+∞

ϕ(γn, γ̇n) dt

+
∫
I2

lim sup
n→+∞

ϕ(γn, γ̇n) dt ≥ lim sup
n→+∞

∫ 1

0
ϕ(γn, γ̇n) dt.

The claim follows by setting γε := γn for n big enough.

4 Monge solutions: definitions and main properties

In this section we study the main properties of Monge sub and supersolutions for
the equation

H(x,Du) = 0 x ∈ Ω ⊂ RN . (20)
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We will deal with Hamiltonians H satisfying the following set of assumptions (H):

(H1) H : Ω× RN → R is Borel-measurable;

(H2) For every x ∈ Ω the 0-sublevel set

Z(x) := {p ∈ RN |H(x, p) ≤ 0} (21)

is closed and convex. Moreover ∂Z(x) = {p ∈ RN |H(x, p) = 0 } for all x ∈ Ω;

(H3) there exist α, β > 0 such that Bα(0) ⊂ Z(x) ⊂ Bβ(0) for every x ∈ Ω.

We recall the definition of optical length function relative to the Hamiltonian H,
that is the map S : Ω× Ω → R defined by:

S(x, y) := inf
{∫ 1

0
σ(γ(t), γ̇(t)) dt | γ ∈ Lipx,y

}
(22)

for every x, y ∈ Ω, where σ is the support function of the 0-sublevel set Z(x), namely

σ(x, ξ) := sup {〈−ξ, p〉 | p ∈ Z(x) } . (23)

Note that, when it will be needed, given an Hamiltonian H, we will respectively
denote by ZH(x), SH(x, y), σH(x, ξ) the corresponding 0-sublevel set (21), optical
length function (22) and support function (23). The definition of Monge solution is
given as follows.

Definition 4.1. Let u ∈ C(Ω). We say that u is a Monge solution (resp. subsolution,
supersolution) of (20) in Ω, if for each x0 ∈ Ω there holds

lim inf
x→x0

u(x)− u(x0) + S(x0, x)
|x− x0|

= 0 (resp. ≥, ≤). (24)

The general results obtained in Section 2 will be now specialized to derive the
main properties of the optical length function S defined in (22). Note that S is
indeed the non-symmetric distance dϕ defined in (10) with ϕ := σ. We start by
studying the regularity of σ in the following lemma.

Lemma 4.2. If H is an Hamiltonian satisfying (H), then the function σ : Ω×RN →
R+ belongs to M and σ(x, ·) is convex on RN for every x ∈ Ω.
Moreover

(i) if H(·, p) is upper semicontinuous on Ω for every p ∈ RN , then σ(·, ξ) is lower
semicontinuous on Ω for every ξ ∈ RN ;

(ii) if H(·, p) is lower semicontinuous on Ω for every p ∈ RN , then σ(·, ξ) is upper
semicontinuous on Ω, for every ξ ∈ RN .

Proof. In order to prove that σ ∈M, it will be enough to show σ is Borel measur-
able, since all the other properties immediately follow from the definition of σ and
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assumptions (H). Let (pi)i be a countable dense subset of RN . By (H2) and (H3),
it is easily seen that

σ(x, ξ) = sup
i∈N

{〈−ξ, pi〉 | pi ∈ Z(x) } = sup
i∈N

{〈−ξ, pi〉χEi
(x)} (25)

where Ei := {x ∈ Ω | H(x, pi) < 0 }. Notice that, by assumption (H1), Ei is
a Borel set, hence each function (x, ξ) 7→ 〈−ξ, pi〉χEi

(x) is Borel-measurable and
the claim follows. In order to prove (i), we remark that, by assumption (H3),
one can replace the functions 〈−ξ, pi〉χEi

(x) with (〈−ξ, pi〉 ∨ α|ξ|)χEi
(x) in (25)

without affecting the equality. Then, as Ei is open for every i ∈ N, each function
x 7→ (〈−ξ, pi〉 ∨ α|ξ|)χEi

(x) is lower semicontinuous for every fixed ξ ∈ RN , and
so is σ(·, ξ). The remainder of the claim easily follows by assumptions (H) and the
definition of support function σ.

Remark 4.3. Comparing the above Lemma with Proposition 2.2, we obtain that
the function S is well-defined. Moreover (see also Remark 2.3), it is a non-symmetric
geodesic distance such that:

(i) α|x− y| ≤ S(x, y) for every x, y ∈ Ω;

(ii) S(x, y) ≤ β|x− y| locally in Ω;

(iii) S is Lipschitz on Ω × Ω, with Lipschitz constant equal to 2β C, where C ≥ 1
is the Lipschitz constant of ∂Ω.

In particular, by Proposition 2.1, for every x, y ∈ Ω, there exists a curve γ ∈ Lipx,y
such that S(x, y) = LS(γ), where LS(γ) is the length of the curve γ defined according
to (8) for the non-symmetric distance S.

We want to show now that the definitions of Monge sub and supersolution are
consistent with those given in the viscosity sense in the classical setting of a contin-
uous Hamiltonian.

Definition 4.4. A function u ∈ C(Ω) is a viscosity subsolution of (20) in Ω if

H(x0, q) ≤ 0 for every x0 ∈ Ω and every q ∈ D+u(x0).

Similarly, u ∈ C(Ω) is a viscosity supersolution of (20) in Ω if

H(x0, q) ≥ 0 for every x0 ∈ Ω and every q ∈ D−u(x0).

We say that u ∈ C(Ω) is a viscosity solution of (20) in Ω if it is both a subsolution
and a supersolution in the viscosity sense. Here we have denoted by D+u(x0) and
D−u(x0) the classical superdifferential and subdifferential of u at x0.

Proposition 4.5. Let H be a continuous Hamiltonian satisfying (H). Then v ∈
C(Ω) is a Monge supersolution (resp. subsolution) of (20) if and only if it is a
viscosity supersolution (resp. subsolution) of (20).
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Proof. To prove that any viscosity supersolution (resp. subsolution) in C(Ω) is a
Monge supersolution (resp. subsolution), one can argue as in [21].

Conversely, let v ∈ C(Ω) be a Monge supersolution. Let x0 ∈ Ω and q ∈
D−v(x0). By definition we have

0 ≥ lim inf
x→x0

v(x)− v(x0) + S(x0, x)
|x− x0|

≥ lim inf
x→x0

(
〈q, x− x0

|x− x0|
〉+

S(x0, x)
|x− x0|

)
. (26)

Let (xn)n be a minimizing sequence for the most right-hand side of (26). We set

ξn :=
xn − x0

|xn − x0|
, tn := |xn − x0|.

Up to subsequences, we have that ξn → ξ ∈ SN−1. Moreover

lim inf
n→+∞

S(x0, x0 + tnξn)
tn

= lim inf
n→+∞

S(x0, x0 + tnξ)
tn

≥ σ(x0, ξ).

Indeed, the first equality comes from∣∣∣∣S(x0, x0 + tnξn)− S(x0, x0 + tnξ)
tn

∣∣∣∣ ≤ β|ξn − ξ|,

while the second follows by the continuity of H (and therefore of σ by Lemma 4.2)
and Proposition 2.9 (i). Therefore by (26) we obtain

0 ≥ lim
n→+∞

(
〈q, ξn〉+

S(x0, x0 + tnξn)
tn

)
≥ 〈q, ξ〉+ σ(x0, ξ), (27)

that is 〈−ξ, q〉 ≥ σ(x0, ξ) = sup { 〈−ξ, p〉| p ∈ Z(x0) }. In view of assumptions (H2),
(H3) that easily implies H(x0, q) ≥ 0.

Let v ∈ C(Ω) be a Monge subsolution. Let x0 ∈ Ω and q ∈ D+v(x0). We have

0 ≤ lim inf
x→x0

v(x)− v(x0) + S(x0, x)
|x− x0|

≤ lim sup
x→x0

(
〈q, x− x0

|x− x0|
〉+

S(x0, x)
|x− x0|

)
. (28)

If it wereH(x0, q) > 0, by Hahn-Banach theorem there would exist a vector ξ ∈ SN−1

such that 〈−ξ, q〉 > sup { 〈−ξ, p〉| p ∈ Z(x0) } = σ(x0, ξ). But that is impossible,
since, by taking the sequence xn = x0 + tnξ with tn = 1/n, from inequality (28) and
Proposition 2.9 (ii) we get

0 ≤ 〈q, ξ〉+ lim sup
n→+∞

S(x0, x0 + tnξ)
tn

≤ 〈q, ξ〉+ σ(x0, ξ). (29)

In the measurable setting, the following pointwise description of the behavior of
Monge sub and supersolutions holds.

Proposition 4.6. Let v be a Lipschitz function in Ω and H satisfy (H).
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(i) If v is a Monge subsolution of (20), then it is a Lipschitz subsolution, i.e.

H(x,Dv(x)) ≤ 0 for LN -a.e. x ∈ Ω.

(ii) If σ(·, ξ) is lower semicontinuous for every ξ ∈ RN and v is a Monge superso-
lution of (20), then it is a Lipschitz supersolution, i.e.

H(x,Dv(x)) ≥ 0 for LN -a.e. x ∈ Ω.

In particular, a Monge solution is a Lipschitz solution, i.e. it solves (20)
almost everywhere in Ω.

For the proof, the reader may follow word by word that of Proposition 4.5, using
Proposition 2.9 (i) instead of the continuity of the support function σ.

The next proposition says that any Monge subsolution is locally 1-Lipschitz
continuous with respect to the non-symmetric distance S (cf. [21, Lemma 3.1]).

Proposition 4.7. Let H be an Hamiltonian satisfying (H) and u ∈ C(Ω) be a Monge
subsolution of (20). Then u is Lipschitz in Ω and |Du| ≤ β a.e. in Ω. Moreover,
for every x0 ∈ Ω there exists an r > 0, depending only on dist(x0, ∂Ω), α, β, such
that

u(x)− u(y) ≤ S(x, y) for every x, y ∈ Br(x0). (30)

Proof. First remark that the function u is Lipschitz continuous on Ω with |Du| ≤ β
a.e. in Ω. Indeed, by the fact that u is a Monge subsolution and Remark 4.3, we have
that u is a Monge subsolution of |Dv| = β, hence a (classical) viscosity subsolution.
This remark, together with the Lipschitz character of ∂Ω, proves the assertion.

Now, fix a point x0 ∈ Ω. We can choose an r > 0 small enough so that every
optimal path for S(x, y) with x, y ∈ Br(x0) lies inside Ω. Observe that r is only
dependent on dist(x0, ∂Ω), α, β (cf. Remark 4.3). Fix x, y ∈ Br(x0) and take an
optimal path γ ∈ Lipx,y for S(x, y). By Remark 4.3 the function f(t) := S(x, γ(t))
is Lipschitz continuous. Therefore the function u◦γ(t)+ f(t) is Lipschitz continuous
and we can compute its derivative for L1-a.e. t ∈ I. We have then

d
dt

(
u◦γ + f

)
(t) = lim

s→t+

u(γ(s))− u(γ(t)) + S(x, γ(s))− S(x, γ(t))
s− t

= |γ̇(t)| lim
s→t+

u(γ(s))− u(γ(t)) + S(γ(t), γ(s))
|γ(s)− γ(t)|

≥ 0

for L1-a.e. t ∈ I, where we have used the optimality of γ and the definition of Monge
subsolution. By integrating the above inequality we get (30), that is the claim.

5 The comparison result and solvability of the Dirichlet
problem

Our comparison result is stated as follows.
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Theorem 5.1 (Comparison Theorem). Let H be an Hamiltonian satisfying (H)
and let u, v ∈ C(Ω) be, respectively, a Monge subsolution and a Monge supersolution
of (20) in Ω. If u ≤ v on ∂Ω then u ≤ v in Ω.

Proof. By contradiction, assume that the assertion is false. Then the function
εu − v attains its maximum on Ω at some point x0 ∈ Ω, for ε ∈ (0, 1) close to 1.
Therefore

lim inf
x→x0

v(x)− v(x0) + S(x0, x)
|x− x0|

≥ lim inf
x→x0

εu(x)− εu(x0) + εS(x0, x) + (1− ε)α|x− x0|
|x− x0|

> 0,

in contradiction with v being a Monge supersolution.

We address now our attention to the Dirichlet problem{
H(x,Du) = 0 in Ω
u = g on ∂Ω.

(31)

More precisely, we will prove that the function u given by the Lax formula

u(x) := inf
y∈∂Ω

{S(x, y) + g(y)} for x ∈ Ω, (32)

is a Monge solution of the Dirichlet problem (31) according to the following defini-
tion.

Definition 5.2. We will say that a function u ∈ C(Ω) is a Monge solution of the
Dirichlet problem (31) if it is a Monge solution of equation H(x,Du) = 0 in Ω and
u(x) = g(x) for each x ∈ ∂Ω.

Our result is the following.

Theorem 5.3 (Solvability of the Dirichlet Problem). Let H be an Hamilto-
nian satisfying (H) and assume that the boundary datum g : ∂Ω → R satisfies the
compatibility condition

g(x)− g(y) ≤ S(x, y) for every x, y ∈ ∂Ω. (33)

The function u given by the Lax formula (32) is the unique Monge solution of the
Dirichlet problem (31). Moreover, u is the maximal element of the set

SM := {v ∈ C(Ω) | v Monge subsolution of (20) in Ω, v ≤ g on ∂Ω }. (34)

The effect of the compatibility condition (33) is that of guaranteeing that the
function u defined by (32) attains the boundary datum g on ∂Ω, while the other
properties enjoyed by u are actually independent of (33). This fact is underlined by
the following
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Proposition 5.4. Let H be an Hamiltonian satisfying (H) and g : ∂Ω → R be a
function bounded from below. The function u defined by (32) is Lipschitz continuous
on Ω. Moreover, u is a Monge solution of (20) in Ω.

Proof. As g is bounded from below, u is well defined on Ω by formula (32). One can
check that, by definition, |u(x)− u(y)| ≤ max{S(x, y), S(y, x)} on Ω× Ω, therefore
u is Lipschitz continuous on Ω (cf. Remark 4.3), in particular it is of class C(Ω).
To show that u is a Monge subsolution, fix x0 ∈ Ω and an arbitrary sequence (xn)n
in Ω which converges to x0. For every n ∈ N choose a point yn ∈ ∂Ω such that
u(xn) ≥ S(xn, yn) + g(yn)− o(|x0 − xn|). Then

u(xn) + S(x0, xn) ≥ S(x0, yn) + g(yn)− o(|x− xn|) ≥ u(x0)− o(|x− xn|)

and, by taking the liminf as n goes to +∞ in the above expression, we conclude that
u is a Monge subsolution of (20) by the arbitrariness of (xn)n.
Let us prove that u is a Monge supersolution. Fix x0 ∈ Ω and, for n ∈ N big
enough, consider the ball B1/n(x0) ⊂ Ω. Choose an yn ∈ ∂Ω such that u(x0) ≥
S(x0, yn)+g(yn)−1/n2. Let γn ∈ Lipx0,yn

be an optimal path for S(x0, yn) and take
a point zn ∈ γn(I)∩∂B1/n(x0). By definition we have that u(zn) ≤ S(zn, yn)+g(yn).
Hence, using also the optimality of γn, we have

u(zn)− u(x0) ≤ S(zn, yn)− S(x0, yn) + 1/n2 = −S(x0, zn) + 1/n2.

This implies

lim inf
n→+∞

u(zn)− u(x0) + S(x0, zn)
|zn − x0|

≤ lim inf
n→+∞

1
n

= 0,

which obviously implies that u is a Monge supersolution.

Proof of Theorem 5.3. Uniqueness in the class C(Ω) is a consequence of the
Comparison Theorem. By Proposition 5.4 we have that the function u defined by
(32) is Lipschitz continuous on Ω, in particular of class C(Ω), and is a Monge solution
of (20) in Ω. We have, by definition, that u(x) ≤ g(x) for every x ∈ ∂Ω (just choose
y = x in formula (32)), while the opposite inequality holds by the compatibility
condition (33). Hence u = g on ∂Ω, therefore u is the unique solution of class C(Ω)
of the Dirichlet problem (31). Last, the maximality of u in the set SM trivially
follows by the Comparison Theorem.

6 The stability result

We start this section by introducing a suitable convergence on Hamiltonians under
which we will prove a stability result for Monge solutions.

Definition 6.1. Let (Hn)n, H be Hamiltonians satisfying assumptions (H) and
(Sn)n and S be the relative optical length functions defined according to (22). We
say that Hn τ -converges to H and write Hn

τ−→H if (Sn)n converges uniformly to
S on Ω× Ω.
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Remark 6.2. Note that the convergence of the Hamiltonians above defined is equiv-
alent, by Theorem 3.1 in [7], to the Γ-convergence of the length functionals (LSn)n
to the length functional LS with respect to the uniform convergence of paths. This,
in fact, mainly motivates our definition.

Since our definition does not give a condition one can check on the sequence
(Hn)n, we will see, in the next proposition, which conditions on the Hamiltonians
imply Hn

τ−→H.

Proposition 6.3. Let the Hamiltonians H, (Hn)n satisfy (H). Then Hn
τ−→H if

one of the following conditions holds:

(i) (Hn)n converges uniformly to H on Ω×Bβ(0).

(ii) For each n ∈ N and p ∈ Bβ(0) the function Hn(·, p) is upper semicontinuous
on Ω and (Hn)n converge decreasingly to H on Ω×Bβ(0).

(iii) (Hn)n converges increasingly to H on Ω×Bβ(0).

Proof. By Definition 6.1 the claim will be proved if we show that (Sn)n uniformly
converges to S in Ω×Ω. This easily follows by applying Proposition 2.7 with ϕ := σ
and ϕn := σn for each n ∈ N. Indeed hypothesis (i), (ii), and (iii) implies (i), (ii),
and (iii) respectively in Proposition 2.7 (to obtain (ii) we also use Lemma 4.2), and
then we can conclude that the distances associated to σn, i.e. Sn, converge uniformly
to the distance associated to σ, i.e. S.

We are now ready to show our stability result.

Theorem 6.4 (Stability Theorem). Let the Hamiltonians H, (Hn)n satisfy the
same set of assumptions (H) for two fixed positive constants α, β (independent of
n ∈ N). Suppose that:

1. Hn
τ−→H as n→∞,

2. un ∈ C(Ω) is a Monge solution of Hn(x,Dun) = 0 in Ω for each n ∈ N;

3. the sequence (un)n converges uniformly to u ∈ C(Ω) on compact subsets of Ω.

Then u is a Monge solution of H(x,Du) = 0 in Ω.

Proof. Fix a point x0 ∈ Ω. By Proposition 4.7, there exists an r > 0 independent
of n such that (30) holds for each Sn. Therefore we have

un(x) = inf
y∈∂Br(x0)

{Sn(x, y) + un(y)} for every x ∈ Br(x0). (35)

By Definition 6.1 (Sn)n converge uniformly to S on Ω×Ω and, by hypothesis 3, un
converge uniformly to u in Br(x0), thus, letting n→∞ in (35) we obtain

u(x) = inf
y∈∂Br(x0)

{S(x, y) + u(y)} for every x ∈ Br(x0).

So, by Theorem 5.3, u is a Monge solution of H(x,Du) = 0 in Br(x0). The claim
then follows since (24) is a local property and x0 ∈ Ω was arbitrary.
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We end this section describing an example already studied in [9, Example 7.2].
We observe that, with our definitions, a stability result holds, while this is not ob-
tained in [9], as stressed by the authors. Note that the difference is in the definition
of the optical length function: indeed, we both consider the same discontinuous
Hamiltonian H which is the pointwise limit of a sequence of continuous ones (Hn)n,
but while, using our definition, the corresponding optical length functions Sn con-
verge uniformly to the optical length function S corresponding to H, with their
definition (cf. also Section 7) the sequence (LΩ

n )n do not converge to LΩ (notice that
Sn = LΩ

n for each n ∈ N as Hn are continuous, cf. Theorem 7.3).

Example 6.5. Let Ω := (0, 1) × (−2, 2) and consider a sequence of continuous
functions an : Ω → R defined by

an(x1, x2) :=
{

1 if |x2| ≥ 1/n
1/2 + |x2|n/2 otherwise.

The functions an converge increasingly to the function a(x) := χΩ(x) − 1/2χΓ(x)
pointwise on Ω×RN , where Γ is the x1-axis R×{0}. Let us define the Hamiltonians
Hn(x, p) := |p| − an(x) and H(x, p) := |p| − a(x). Obviously, (Hn)n and H satisfy
assumptions (H) with, for instance, α := 1/2 and β := 1. By Proposition 6.3 (ii),
we immediately have that Hn

τ−→H, therefore the Stability Theorem holds. In
particular, if g is a continuous function on ∂Ω satisfying the compatibility condition
(33) for H and Hn for each n ∈ N (take, for instance g(x) := 2|x| for x ∈ ∂Ω), then
the Monge solutions un of the Dirichlet problems{

|Dv| = an(x) in Ω
v = g on ∂Ω

are classical viscosity solutions (as the Hamiltonians Hn are continuous) and con-
verge uniformly on Ω× Ω to a function u which is the unique Monge solution of{

|Dv| = a(x) in Ω
v = g on ∂Ω.

7 Pointwise behavior of Monge subsolutions

In this section we will study the pointwise properties enjoyed by the Monge subso-
lutions of problem (31) and the relation between Monge and Lipschitz subsolutions,
in particular we are interested in investigating maximality properties of the function
u defined by the Lax formula (32).

We recall that a function v : Ω → R is said to be a Lipschitz subsolution of
the Dirichlet problem (31) if v ∈ W 1,∞(Ω), H(x,Dv(x)) ≤ 0 for LN -a.e. x ∈ Ω
and v ≤ g on ∂Ω. It is well known that in the classical context of a continuous
Hamiltonian H the function u defined in (32) is the maximum element of the set

SP := { v ∈W 1,∞(Ω) |H(x,Dv(x)) ≤ 0 LN -a.e. x ∈ Ω, v ≤ g on ∂Ω }

of Lipschitz subsolutions of (31). We wonder if this maximality property is main-
tained when the Hamiltonian H satisfies the more general hypotheses (H). Indeed,
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by Proposition 5.4, the function u is a Lipschitz continuous Monge solution of (20),
therefore is a Lipschitz subsolution of (31), by Proposition 4.6. But in general it
is not the maximum element of SP , not even in the case of a boundary datum g
satisfying the compatibility condition (33), as the following example shows.

Example 7.1. Let Ω := (0, 1) × (−1, 1) and let H(x, p) := |p| − a(x), where
a(x) := 2χΩ(x) − χΓ(x) and Γ denotes the x1-axis R × {0}. Let v(x1, x2) :=
1/2|x2| + 3/2|x1|. Then the inequality H(x,Dv) < 0 holds true for every dif-
ferentiability point of v in Ω. Let u be the function given by formula (32) with
g := v|∂Ω. Observe that g satisfy the compatibility condition (33). Nevertheless, we
have u(x1, 0) = S

(
(x1, 0), (0, 0)

)
= |x1| < 3/2|x1| = v(x1, 0). Hence, u is not the

maximum element of SP .

Therefore we are led to seek for sufficient conditions which guarantee the maxi-
mality of the function u among all Lipschitz subsolution of (31).
Let H be an Hamiltonian fulfilling assumptions (H). Following the approach of
Camilli and Siconolfi in [9], we define a slightly different optical length function:

LΩ(x, y) := sup
LN (E)=0

{
inf

{∫ 1

0
σ(γ(t), γ̇(t)) dt

∣∣ γ ∈ Lipx,y, γ transversal to E
}}

for every x, y ∈ Ω. We remark that LΩ is nothing else that the distance d̃σ defined
according to (17). The following result holds [9].

Theorem 7.2. Let H be an Hamiltonian satisfying (H). Assume that g : ∂Ω → R is
a function bounded from below and that S(x, y) = LΩ(x, y) for every x, y ∈ Ω. Then
any Lipschitz subsolution of (31) is a Monge subsolution. Moreover, the function u
defined by Lax formula (32) is maximal in SP .

The previous theorem gives a first answer to the question raised before. Un-
fortunately, the above condition, stated in terms of equality of the optical length
functions S and LΩ, is quite indirect. In order to derive conditions on the Hamilto-
nian, we now use the results obtained in Section 3. The next theorem will indeed
follow quite easily from Proposition 3.8. We remark that our result is more general
than those obtained by Newcomb and Su [21, Theorem 5.4] and by Soravia [22,
Theorem 4.7]: indeed, the Hamiltonian H is not assumed to be piecewise constant
in the x-variable near the interface of two contiguous subdomains.

Theorem 7.3. Assume that Ω := ∪mi=1Ωi, where the sets Ωi are bounded domains
with Lipschitz boundaries such that Ωi ∩ Ωj = ∂Ωi ∩ ∂Ωj if i 6= j, and every x ∈ Ω
belongs to at most two subdomains Ωi.
Let H be an Hamiltonian satisfying (H) and lower semicontinuous in Ωi × RN for
each i. Moreover, assume that for every x ∈ ∪mi=1∂Ωi there exist an index i0 and a
real number ρ > 0 such that x ∈ ∂Ωi0 and H is lower semicontinuous in Ωi0∩Bρ(x).
Then S(x, y) = LΩ(x, y) for every x, y ∈ Ω. In particular, the claim of Theorem 7.2
holds.
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Proof. The claim directly follows by applying Proposition 3.8 with ϕ := σ (as
S = dσ and LΩ = d̃σ). Since the hypotheses on Ω are the same, we only have to
check those on σ. Since σ(x, ·) is convex on RN for every x ∈ Ω, when checking the
upper semicontinuity properties of σ, we can reduce to consider the function σ(·, ξ)
for every fixed ξ ∈ RN . Now, it is easy to prove that σ(·, ξ) is upper semicontinuous
on X if H is lower semicontinuous on X × RN , being X a subspace of RN and ξ
a fixed vector in RN . This argument, applied with X := Ωi and X := Ωi0 ∩ Bρ(x)
with x, io and ρ as in the statement of the theorem, shows that the assumptions of
Proposition 3.8 are fulfilled.

Another question that could be raised is whether the last part of the claim of
Theorem 5.3 is still true even when the g does not satisfy the compatibility condition
(33), that is we wonder if the function u defined by (32) is the maximum element of
the set SM for a generic boundary datum. The following example shows that such
a maximality property can not be expected in general.

Example 7.4. Let Ω := (0, 1) × (0, 1) and let H(x, p) := |p| − a(x), K(x, p) :=
|p|−b(x), where a(x) := χΩ(x)+χΩ(x) and b(x) := 2χΩ(x). Notice that SK(x, y) =
2|x − y| and that SH = SK in a suitable neighborhood of every point of Ω. Let
g(x) := 2|x| and set, for every x ∈ Ω,

u(x) := inf
y∈∂Ω

{SH(x, y) + g(y)}, v(x) := inf
y∈∂Ω

{SK(x, y) + g(y)}.

Notice that g satisfies the compatibility condition (33) with respect to the Hamilto-
nian K (but not with respect to H). In particular, that implies v = g on ∂Ω. By
Proposition 5.4, u and v are a Monge solutions (in particular, Monge subsolutions)
of equation (20) with Hamiltonian H and K respectively. Moreover, since SH = SK
locally in Ω and (24) is a local property, we have that v is a Monge subsolution with
respect to H too. Let us show now that u is less than v, i.e. that there exists a
point x0 ∈ Ω such that u(x0) < v(x0). To this aim, take x0 := (1/2, 0). Indeed,
v(x0) = g(x0) = 1, while u(x0) ≤ SH(x0, 0) + g(0) = 1/2.

We look for conditions sufficient to guarantee the maximality in SM of the func-
tion u defined in (32). A sufficient condition we found is that the optical length
function S defined in (22) can be obtained by taking the infimum only over those
curves in Lipx,y which lie in the interior of Ω, possibly except for their endpoints.
Note the this condition is not true in general, as can be easily seen by considering
SH in Example 7.4.

Theorem 7.5. Let H be an Hamiltonian satisfying (H). If, for every x, y ∈ Ω,

S(x, y) = inf
{ ∫ 1

0
σ(γ(t), γ̇(t)) dt | γ ∈ Lipx,y, γ(t) ∈ Ω for all t ∈ (0, 1)

}
, (36)

then u defined by (32) is maximal in SM .

Proof. Let γ be a curve in Lipx,y such that γ(t) ∈ Ω for all t ∈ (0, 1) and let
v ∈ SM . For a fixed positive δ < 1/2, let Γδ := γ ([δ, 1− δ]). The set Γδ is compact
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and contained in Ω, therefore, by Proposition 4.7, we may find a finite partition
δ = t0 < t1 < .. < tm = 1− δ such that v(γ(ti))− v(γ(ti+1)) ≤ S(γ(ti), γ(ti+1)) for
each i. Therefore

v(γ(δ))− v(γ(1− δ)) ≤
m−1∑
i=0

S(γ(ti), γ(ti+1)) ≤
m−1∑
i=0

∫ ti+1

ti

σ(γ, γ̇) dt. (37)

By letting δ go to 0 and by taking the infimum of (37) over all curves γ ∈ Lipx,y with
γ(t) ∈ Ω for all t ∈ (0, 1), we obtain, in view of assumption (36) and the continuity
of v, that

v(x)− v(y) ≤ S(x, y).

In particular the above inequality is true for every y ∈ ∂Ω, therefore, recalling also
that v ≤ g on ∂Ω, we have

v(x) ≤ inf
y∈∂Ω

{S(x, y) + g(y)},

which gives the claim.

8 Examples

We conclude this paper by discussing some examples. Before going on, we introduce
some preliminary notation. Given a closed subset C of RN , we will denote by
dist#(x,C) the signed distance from the set C, namely the function defined as
follows

dist#(x,C) := dist(x,C)− dist(x,RN \ C) for every x ∈ RN .

The dual metric of a Finsler metric ϕ ∈M is the function ϕ∗ defined by

ϕ∗(x, p) := sup
{
〈p, ξ〉

∣∣∣ϕ(x, ξ) ≤ 1
}

for every (x, p) ∈ Ω× RN .

When the metric ϕ is convex, i.e. ϕ(x, ·) is convex for every x ∈ Ω, the following
holds (see [10]):

sup
{
〈ξ, p〉

∣∣ϕ∗(x, p) ≤ 1
}

= ϕ(x, ξ) for every (x, ξ) ∈ Ω× RN . (38)

Example 8.1. Let us consider the Hamilton-Jacobi equation

H(x,Du) = 0 in Ω, (39)

where H satisfies assumptions (H), and let S be the associated length function. As
S is a Finsler distance, it is actually the uniform limit of a sequence of distances
(dϕn)n, where ϕn is a continuous Finsler metric belonging M for each n ∈ N (by
Theorem 4.1 in [13]). For each n ∈ N, let us set

Zn(x) := {p ∈ RN |ϕ∗n(x,−p) ≤ 1} for every x ∈ Ω,
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and Hn(x, p) := dist#(p, Zn(x)) for every (x, p) ∈ Ω × RN . For each n ∈ N, Hn is
continuous, and it is convex since Zn(x) is a convex set for every x. Moreover, if
Sn is the associated optical length function for each n ∈ N, then Sn = dϕn in view
of (38) and by definition of optical length function. Therefore, if g is a boundary
datum satisfying the compatibility condition (33) with respect to the length function
S, the Monge solution u of{

H(x,Dv) = 0 in Ω
v = g on ∂Ω,

is the uniform limit of the unique maximal viscosity solutions un of the problems{
Hn(x,Dv) = 0 in Ω
v ≤ g on ∂Ω.

Indeed, by the standard theory of viscosity solutions for continuous Hamiltonians,
we know that un(x) = infy∈∂Ω{Sn(x, y) + g(y)} in Ω, so the claim easily follows in
view of Theorem 5.3 and by the uniform convergence of Sn to S.

Example 8.2. In equation (39), assume in addition that the Hamiltonian H is such
that the associated optical length function S is symmetric, i.e. S(x, y) = S(y, x) for
all x, y ∈ Ω (this happens, for instance, when H(x, p) is even in p). Then, by [12,
Theorem 4.6], there exists a Borel function a : Ω → [α, β] such that

S(x, y) = inf
{∫ 1

0
a(γ(t))|γ̇(t)|dt

∣∣∣ γ ∈ Lipx,y
}

for all x, y ∈ Ω.

Therefore, with regard to Monge sub and supersolutions, equation (39) is equivalent
to the eikonal equation

|Du| = a(x) in Ω, (40)

that is, equations (39) and (40) have the same Monge subsolutions and the same
Monge supersolutions, since they have the same optical length functions. Moreover,
by the density result proven in [12, Theorem 4.3], the continuous Hamiltonians Hn

of Example 8.1 can be chosen in such a way that Hn(x, p) := |p| − an(x), for a
suitable sequence of Borel measurable functions an : Ω → [α, β].

Inspired by Example 6.5, we use the same idea to construct an evolutive Hamilton-
Jacobi equation with continuous coefficients, for which standard results of the theory
of Hamilton-Jacobi equations apply. The Cauchy problem obtained by coupling this
equation with a null boundary datum has therefore a unique viscosity solution, which
is shown to tend asymptotically to the Monge solution of a stationary Hamilton-
Jacobi equation.

Example 8.3. Let Ω := (0, 1)× (−2, 2) and, for each t > 0, consider the continuous
function at : Ω → R defined by

at(x1, x2) :=
{

1 if |x2| ≥ 1/t
1/2 + |x2|t/2 otherwise.
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Let us define on Ω× (0,+∞) a function a by setting a(x, t) := at(x) for each t > 0
and x ∈ Ω. We consider the following evolutive Cauchy problem:{

∂tv(x, t) + |Dv|(x, t) = a(x, t) in Q := Ω× (0,+∞)
v(x, t) = 0 on ∂Q.

(41)

Since a(x, t) is continuous, we know, by the standard theory of Hamilton-Jacobi
equations [20], that the above Cauchy problem admits a unique viscosity solution,
given by the following formula:

u(x, t) := inf
(y,s)∈∂Q

S((x, t), (y, s)) for all (x, t) ∈ Q, (42)

where S is the function defined on Q×Q as follows:

S((x, t), (y, s)) := inf
{∫ t

s
a(γ(τ), τ) +H∗(γ̇(τ)) dτ

∣∣ γ ∈ Lipy,x([s, t],Ω)
}
, (43)

where Lipy,x([s, t],Ω) denotes the space of curves γ ∈ Lip([s, t],Ω) such that γ(s) =
y, γ(t) = x. When s > t or s = t and x 6= y this family is empty: in that case we
agree that S((x, t), (y, s)) = +∞. In the above formula we have denoted by H∗ the
Fenchel transform of H(p) := |p|, namely H∗(ξ) := supp∈RN 〈ξ, p〉 − H(p). Notice
that, in this case, H∗ coincides with the indicator function of the closed ball B1(0),
i.e. H∗(ξ) is equal to 0 if |ξ| ≤ 1 and to +∞ otherwise. In particular, S degenerates
outside a cone of vertex (x, t), i.e. S((x, t), (y, s)) = +∞ if t− s < |x− y|.

We want to study the asymptotic behavior of the solution u(x, t) of (41). Since
the functions at converge pointwise and increasingly on Ω, as t tends to +∞, to the
discontinuous function a∞(x) := χΩ(x) − 1/2χΓ(x) (where we have denoted by Γ
the x1-axis R×{0}), we expect the asymptotic limit of u(x, t) to solve the stationary
Hamilton-Jacobi equation

|Dv| = a∞(x) in Ω.

In fact, we will show that u(x, t) tends asymptotically, uniformly in t, to the Monge
solution of the following Dirichlet problem:{

|Dv| = a∞(x) in Ω
v = 0 on ∂Ω.

(44)

To this goal, we first recall (see for instance [20, Theorem 5.2]) that, if in (43)
the function a is replaced by a function b : Ω → [α, β], 0 < α < β that does not
depend on t, then, for fixed (x, t) and (y, s) in Q, we have:

S((x, t), (y, s)) ≥ inf
{∫ T

0
b(γ(t))|γ̇(t)|dt

∣∣∣ γ ∈ Lipy,x([0, T ],Ω), T > 0
}

= db(y, x),

with equality holding if t − s ≥ |y − x|β/α. In particular, by taking into account
this remark and using in (43) the fact that a(x, t) ≤ a∞(x) for all (x, t) ∈ Q , one
easily obtains that S((x, t), (y, s)) ≤ 2 diam(Ω)∨ da∞(x, y) ≤ 2 diam(Ω) for all (x, t)
and (y, s) in Q such that S((x, t), (y, s)) < +∞ (we have denoted by diam(Ω) the
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diameter of the set Ω). Let us now fix (x, t) ∈ Q and let γ ∈ Lip([s, t],Ω), 0 ≤ s < t,
be a minimizing path of (42). Then we have

1
2
(t− s) ≤

∫ t

s
a(γ(τ), τ) +H∗(γ̇(τ)) dτ = u(x, t) ≤ 2 diam(Ω),

that is 0 ≤ t−s ≤ r := 4 diam(Ω). Then, for t > r, any path γ ∈ Lip([s, t],Ω), which
is minimal for (42), is such that s ≥ t − r > 0, in particular γ(s) ∈ ∂Ω. Therefore,
for t > r, it is not restrictive to assume that the infimum in (42) is taken letting
(y, s) vary over the set ∂Ω× [t−r, t] only. In particular, as at−r(z) ≤ a(τ, z) ≤ a∞(z)
for every z ∈ Ω and s ≤ τ ≤ t, we obtain that∫ t

s
at−r(γ) +H∗(γ̇) dτ ≤

∫ t

s
a(γ, τ) +H∗(γ̇) dτ ≤

∫ t

s
a∞(γ) +H∗(γ̇) dτ. (45)

Taking the infimum over all possible curves γ joining (y, s) ∈ ∂Ω× [t− r, t] to (x, t)
and letting (y, s) vary in ∂Ω× [t− r, t], by what previously remarked we eventually
get

inf
y∈∂Ω

dat−r(x, y) ≤ u(x, t) ≤ inf
y∈∂Ω

da∞(x, y).

The claim now follows as at is an increasing sequence of isotropic Riemannian metrics
converging pointwise to a∞ on Ω and therefore, by Proposition 2.7, the distance dat

uniformly converges to da∞ on Ω × Ω as t goes to +∞. In particular, this easily
implies that u(x, t) asymptotically converges, uniformly in t, to infy∈∂Ω da∞(x, y),
which is the Monge solution of (44) (remark that da∞ is the optical length function
associated to the Hamiltonian H(x, p) = |p| − a∞(x)).

The result of the previous example was obtained in a very special case. Never-
theless, with the same idea, one can obtain an analogous result for Monge solutions
of eikonal equations of the following form:{

|Dv| = a∞(x) in Ω
v = 0 on ∂Ω,

(46)

where a∞ : Ω → [α, β] is lower or upper semicontinuous and α and β are, as usual,
fixed positive constants. Indeed, let us assume, for instance, a∞ lower semicon-
tinuous, being the other case analogous. As well known, it is possible to find an
increasing sequence of continuous functions an : Ω → [α, β], n ∈ N, such that
a∞(x) = supn an(x) for all x ∈ Ω. Let us define on Ω× (0,+∞) a continuous func-
tion a by setting a(x, t) := (n+1−t)an(x)+(t−n)an+1(x) for all x ∈ Ω, t ∈ (n, n+1]
and n ∈ N. Arguing as above, one immediately gets that the viscosity solution of{

∂tv(x, t) + |Dv|(x, t) = a(x, t) in Q := Ω× (0,+∞)
v(x, t) = 0 on ∂Q.

tends asymptotically to the Monge solution of (46).
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