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Abstract

In this paper problem

8>><
>>:

ut � div(jxj�p jrujp�2ru) = �
up�2u

jxjp(+1)
; in 
� (0;1); 0 2 


u(x; t) = 0; on @
� (0;1)
u(x; 0) =  (x) � 0;

(1)

is studied when 1 < p < N , �1 < ( + 1) < N
p

and under hypotheses on the initial
data.

1 Introduction

The results by Baras and Goldstein in [7] concerning a blow-up for the solution to heat
equation with a critical potential of the type8><

>:
ut ��u = �

u

jxj2
; in 
� (0;1); 0 2 


u(x; t) = 0; on @
� (0;1)
u(x; 0) =  (x) � 0;

(2)
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have attracted in the last years the interest of research on some related problems. Roughly
speaking, apparently, the main ingredient of the problem studied by Baras and Goldstein
is a classical Hardy inequality,Z

Rn

juj2

jxj2
dx � CN

Z
Rn

jruj2 dx ; (3)

where CN =
� 2

N � 2

�2
is the optimal constant that is not achieved in the Sobolev space

D1;2(Rn). For problem (2) Baras and Goldstein have proved that if � � C�1
N then there

exists a global solution if the initial datum is in a convenient class, while if � > C�1
N

there is no solution, in the sense that, if we consider the solutions un of the problems with
truncated potential Wn(x) = minfn; jxj�2g, then

lim
n!1

un(x; t) = +1; for all (x; t) 2 
� R
+ :

We will call this behaviour as spectral instantaneous complete blow-up. On the other we
have the following extension of Hardy's inequality:Z

Rn

jujp

jxj(+1)p
dx � Cn;p;

Z
Rn

jrujp

jxjp
dx ; �1 <  <

N � p

p
(4)

that is a particular limit case of the following Ca�arelli-Kohn-Nirenberg inequalities which
are proven in [13] (see also [14]).

Proposition 1 Assume that 1 < p < N . Then there exists a positive constant CN;p;;q
such that, for every u 2 C1

0 (RN ),

0
@Z
Rn

jujq

jxjÆq
dx

1
A
p=q

� CN;p;;q

Z
Rn

jrujp

jxjp
dx ; (5)

where p; q; ; Æ are related by

1

q
�

Æ

N
=

1

p
�
 + 1

N
;  � Æ �  + 1 ; (6)

and Æq < N , p < N .
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Remark 1

i) Inequality (4) holds a fortiori in every open set 
.

ii) One can take

Cn;p; =

�
p

N � p( + 1)

�p
(7)

in (4). This choice of Cn;p; is optimal in every open set 
 containing 0. (The
arguments are similar to those in [19] for  = 0).

iii) If 0 2 
, the optimal constant is never attained in (4).

Remark 2 The other limit case for inequality (5) is for Æ = , and then one obtains a
weighted Sobolev inequality:0

@ Z
Rn

jujp
�

jxjp�
dx

1
A
p=p�

� Sn;p;

Z
Rn

jrujp

jxjp
dx ; (8)

where p� =
pN

N � p
.

It is quite natural to study the parabolic equations associated to inequality (4), namely,
for the same values of p and  we consider the problem8>>>>>>><

>>>>>>>:

ut � div

�
jrujp�2ru

jxjp

�
= �

jujp�2u

jxj(+1)p
; (x; t) 2 
� (0; T );

u(x; t) = 0 (x; t) 2 @
� (0; T );

u(x; 0) =  (x); x 2 
;

(P)

where we assume that 
 is a bounded domain in R
n such that 0 2 
 and @
 is C1

submanifold.
It is clear that the constant (7) will play an essential role in what follows, since the

behaviour of the problem (P) will deeply depends on whether the parameter � is smaller
or greater than the value

�n;p; =
1

Cn;p;
=

�
N � p( + 1)

p

�p
: (9)
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It could be expected that the behaviour for problem (P) should be similar to the
one obtained by Baras-Goldstein for the equation (2). This conjecture is not completely
true. Actually, there is another property which plays an important role in the spectral
instantaneous and complete blow-up: a Harnack inequality for the homogeneous parabolic
equation. This property is veri�ed if p � 2 and (1 + ) > 0. The case p = 2 was proved
by Chiarenza and Serapioni in [15], while the case p > 2 was proved by Abdellaoui and
Peral in [1].

The main contribution of this paper is to show that in the complementary range of the
parameters p and  we �nd solutions, even for large values of �. The case p = 2,  = 0
has been studied in [7] and recently in [26]. The case p 6= 2,  = 0 has been studied in
[19] and [5].

The plan of the work is as follows. We begin with Section 2, where some notation
is provided and appropriate function spaces are de�ned. Section 3 is devoted to the
existence results. In the subsection 3.1 we obtain the existence of a global solution in the
case � < �N;p; for all 1 < p < N . This is the content of Theorem 1. In this case the

solution belongs to the space Lp(0; T ;D1;p
0;(
)), which is naturally related to the equation

in (P) (see Section 2 for the de�nition). For this reason we will refer to this function u
as an energy solution. In the proof of Theorem 1 we give the details of some convergence
results that will be used thereafter. Subsection 3.2 deals with the case � > �N;p; and
1 < p � 2. The existence of solutions according to the values of  and p is investigated,
and the main results are stated in Theorems 2, 3 and 4. Roughly speaking, as  and p
become larger, we �nd solutions which are less and less regular.

γ

A B

C

D E

p

p=1

p=2

p=N

γ=−1 γ=0

Figure 1: Summary of the existence and non-existence results for � > �N;p; .
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More precisely:

1. If 1 < p � 2 and  + 1 < N(2�p)
2p (see region A in Fig. 1 below), then we show the

existence of energy solutions (see Theorem 2).

2. If 1 < p � 2 and N(2�p)
2p � +1 < N(2�p)

p (see region B), we show the existence of a
solution of (P) in the sense of distributions; however this solution does not belong to
the energy space (see Theorem 3). We will show that this is an entropy solution in
the sense introduced in [8], [22] and [23] for equations with L1 data (see De�nition
1 below).

3. If 1 < p � 2 and N(2� p)=(p) <  + 1 < N=p (see region C), we show the existence
of solutions of (P) in a very weak sense (see Theorem 4). We would like to point out
that in this case we solve a problem where the right hand side is not bounded in L1.

In subsection 3.3 we give some results on local existence for p � 2 and  � �1 (see region
D in Fig. 1 below). This is the result of Theorem 5.

In section 4 we study the blow-up when p > 2, 0 < 1 +  < N
p and � > �N;p; (see

region E in Fig. 1), extending and improving the result of [19] for  = 0.
The case p = 2 is obtained in [3] by di�erent kind of techniques. The main result is

Theorem 7. We point out that for p > 2 the blow-up is stronger than the one obtained for
p = 2, because even the solutions un of the problems with truncated potential, Wn(x) =
minfn; jxj�p(+1)g, blow-up in �nite time, and the blow-up time tends to zero as n!1.

Finally in Section 5 we study the extinction in �nite time of the solution in the case
1 < p < 2, according to the relation between � and �N;p; . Roughly speaking the role that
�N;p; plays in the case p > 2 for the blow-up is changed to be a threshold for the �nite
time extinction property in the case 1 < p < 2.

2 Notation and function spaces

For 1 < p <1 and  <
N � p

p
, we de�ne the weighted space

Lp(
) =

�
u : 
! R measurable, such that

u(x)

jxj
2 Lp(
)

�
;

equipped with the norm

kuk
Lp (
)

=

�Z



ju(x)jp

jxjp
dx

�1=p

:
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It is easy to check that the dual space (Lp(
))0 of L
p
(
) is the space L

p0

�(
), where p
0 is

de�ned by
1

p
+

1

p0
= 1. Moreover we de�ne D1;p

0;(
) as the closure of C
1
0 (
) in the norm

kuk
D1;p
0; (
)

= kruk
Lp(
)

=

�Z



jru(x)jp

jxjp
dx

�1=p

:

As 1 < p <1, D1;p
0;(
) is reexive and we can de�ne the dual space of D1;p

0;(
), which we

will denote by D�1;p0

� (
), as

D�1;p0

� (
) =
n
G 2 D0(
) : G = divF ; F 2 Lp

0

�(
;R
N )
o
:

Let us point out that functions in Lp(
) do not need to be distributions since they do

not belong necessarily to L1(
). If  + 1 � � (p�1)N
p , D1;p

0; 6� L1(
). The meaning of the

gradient in this case is understood as follows. If u 2 D1;p
0; and f�ngn2N � C10 (
) is an

approximating sequence then we obtain

r�n ! V in Lp(
;R
N );

in fact by density and duality we can justify the integration by parts, namelyZ


hV;  idx = lim

n!1

Z


hr�n;  idx = �

Z


udiv( )dx for all  2 D1;p0

0;�(+1):

As a consequence we de�ne grad(u) := V. On the other hand Theorems 1:18 in [20] shows
that if u 2 D1;p

0; then the truncature Tk(u) 2 D
1;p
0;(
), where Tk(u) is de�ned by Tk(u) = u

if juj < k and Tk(u) = k
u

juj
if juj � k. Since Tk(u) 2 L1(
), then we can de�ne rTk(u)

as a distribution and by Theorem 1:20 in [20] we have

rTk(u) = grad(u)�fjuj<kg (10)

Hereafter we will denote ru = grad(u). Notice the relation of this concept of gradient
with the one in Lemma 2.1 in [8].

Therefore inequality (5) implies the continuous imbedding

D1;p
0;(
) � LqÆ(
) for p; q; ; Æ satisfying (6). (11)

This implies, by duality,

Lq
0

�Æ(
) � D�1;p0

� (
) for p; q; ; Æ satisfying (6). (12)
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We now de�ne the following \evolution" spaces which will be useful in the sequel.

Lp(0; T ;D1;p
0;(
)) =

n
u(x; t) : 
� (0; T )! R measurable :

u(�; t) 2 D1;p
0;(
) for a.e. t 2 (0; T ); ku(�; t)k

D1;p
0; (
)

2 Lp(0; T )
o
;

endowed with the norm

kuk
Lp(0;T ;D1;p

0;(
))
=

�Z T

0
ku(�; t)kp

D1;p
0; (
)

dt

�1=p

=

0
B@ZZ

QT

jrujp

jxjp
dx

1
CA

1=p

:

The dual space of Lp(0; T ;D1;p
0;(
)) is L

p0(0; T ;D�1;p0

� (
)). Let us point out that

D1;p
0;(
) � LqÆ(
) compactly

for every p; q; ; Æ satisfying 1
q �

Æ
N > 1

p �
+1
N with  � Æ �  + 1 , and Æq < N , p < N .

Indeed a sequence fung which is bounded in D
1;p
0;(
) has a subsequence, again denoted

by fung, which converges almost everywhere in 
 to a function u 2 LqÆ(
). Moreover by
H�older's inequality and (8), for every measurable subset E � 
,

Z
E

jun � ujq

jxjÆq
dx �

�Z



jun � ujp
�

jxjp�
dx

�q=p�  Z
E

1

jxj(Æ�)
qp�

p��q

dx

!(p��q)=p�

� c

 Z
E

1

jxj
(Æ�) qp�

p��q

dx

!(p��q)=p�

:

Since the function in the last integral is an L1 function, we get the compactness result by
Vitali's theorem.

It is easy to see that the operator de�ned by

��p;u = �div

�
jrujp�2ru

jxjp

�

maps D1;p
0;(
) into its dual D�1;p0

� (
), and is hemicontinuous, coercive, monotone. (See
[21]).

In the sequel, we will often use the following result, which is an easy application of
Theorem 1.2bis of [21] and the reference [24] for the continuity with respect to the time
of the L2-norm.
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Proposition 2 If f 2 Lp
0
(0; T ;D�1;p0

� (
)),  2 L2(
), then there exists a unique solution

in distribution sense, u 2 Lp(0; T ;D1;p
0;(
)) \ C

0(0; T ;L2(
)) of the following problem

8<
:

ut ��p;u = f; in 
� (0; T ) ;
u(x; t) = 0; in @
� (0; T ) ;
u(x; 0) =  (x); in 
:

We have the following result about the boundedness of the solutions.

Lemma 1 Let u 2 Lp(0; T ;D1;p
0;(
)) \ C

0(0; T ;L2(
)) be a distributional solution of (F)
(see Section 2), with  2 L1(
) and assume that there exist two constants q and �0 such

that

q >
N

p
; �0 < p ; ess sup

t

Z


jf(x; t)jqjxj�0q dx < +1 : (13)

Then u 2 L1(QT ).

The proof is a slight modi�cation of the classical arguments and is omitted.

3 Existence results

We start by the simpler case � < �N;p;, where �N;p; is de�ned by (9).

3.1 The case � < �N;p;: global existence

As usual we denote by Tn(s) the truncature function, i.e. Tn(s) = s if jsj < n, Tn(s) =

n signs if jsj > n. Let us observe that in this range for � the operator ��p; � �
jujp�2u

jxjp(+1)

is coercive in the space D1;p
0;(
). This essentially justi�es the following

Theorem 1 If 1 < p < N ,  <
N � p

p
, � < �N;p; ,  (x) 2 L2(
), there exists one

distributional solution u for problem (P). Moreover u 2 Lp(0; T ;D1;p
0;(
))\C

0(0; T ;L2(
)).

Proof: De�ne

wn(x) =

(
jxj�p ; if  � 0

jxj�p +
1

n
; if  < 0

8



fn(x; u) =

8>><
>>:

Tn(juj
p�2u)

jxjp(+1) + 1
n

if  � 0;

Tn(juj
p�2u)

jxjp(jxjp + 1
n)

if  < 0:

Let us �rst consider the following approximate problems8>>>>>><
>>>>>>:

(un)t � div
�
wn(x)jrunj

p�2run
�
= �fn(x; un); (x; t) 2 
� (0; T );

un(x; t) = 0 (x; t) 2 @
� (0; T );

un(x; 0) = Tn( (x)); x 2 
;

(Pn)

By Proposition 2 of Section 2 and Schauder's �xed point theorem , it is quite easy to get
existence of a solution un 2W

1;p
0 (
)) \ L1(QT ). Let us multiply (Pn) by un(x; t). Using

inequality (5) one obtainsZZ
QT

@un
@t

un +

ZZ
QT

wn(x)jrunj
p � �

ZZ
QT

fn(x; un)un � �

ZZ
QT

junj
p

jxjp(+1)
�

�

�N;p;

ZZ
QT

jrunj
p

jxjp

where the �rst integral is understood as a duality product. Since � < �N;p;, we get the
following estimates:

kunkL1(0;T ;L2(
))
� c1 ; (14)

ZZ
QT

jrunj
p

jxjp
dx dt � c2 ; (15)

that is,

kunkLp(0;T ;D1;p
0;(
))

� c3 : (16)

Therefore there exists a function u 2 Lp(0; T ;D1;p
0;(
)) \ L

1(0; T ;L2(
)) and a subse-

quence (still denoted by un) such that un * u weakly in Lp(0; T ;D1;p
0;(
)) and �-weakly

in L1(0; T ;L2(
)).
Moreover, if B" is the sphere centered in the origin with radius ", we also have

kunkLp(0;T ;W 1;p(
nB"))
� c4(") (17)
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for every " > 0. By the equation in (Pn) we also deduce

k
@un
@t

k
Lp

0
(0;T ;W�1;p0(
nB"))

� c5(") : (18)

Using a compactness Aubin's type result (see for instance [24]), by (17) and (18) we can
assume that un ! u strongly in Lp((
")� (0; T )), for every " > 0, and therefore, up to a
subsequence,

un ! u a.e. and in measure in QT . (19)

Let us now prove that, for every " > 0, if we de�ne

Q
(")
T = (
 nB")� (0; T ) ;

then

run !ru in measure on Q
(")
T . (20)

To do this, we follow a technique similar to the one introduced by Boccardo and Murat
in [10]. Let us de�ne, for h > 0, the set

Hh = Hh;m;n =
n
(x; t) 2 Q

(")
T : jrun �rumj > h

o
:

We are going to prove that, for every Æ > 0, one has meas Hh < Æ for m and n large
enough. Then, if we set, for positive A, k,

�(n;A) =
n
(x; t) 2 Q

(")
T : jrunj > A

o
;

�(k) =
n
(x; t) 2 Q

(")
T : jun � umj > k

o
;

D(A; k; h) = f(x; t) 2 Q
(")
T : jrun �rumj > h ;

jrunj � A ; jrumj � A ; jun � umj � kg ;

then
Hh � �(n;A) [ �(m;A) [ �(k) [D(A; k; h) :

For every n 2 N, meas �(n;A) is small for A large enough, uniformly in n, since jrunj
q is

bounded in L1(QT ) for every q < Np=(N � p). Indeed

ZZ
QT

jrunj
q =

ZZ
QT

jrunj
q

jxjq
jxjq �

0
B@ZZ

QT

jrunj
p

jxjp
jxjq

1
CA

q
p
0
B@ZZ

QT

jxj
pq
p�q

1
CA

p�q
p

; (21)
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and the last integral is �nite. Moreover, by (19), for every �xed k, meas �(k) is small if n;m
are large enough. We now consider the set D(A; k; h). By multiplying by '(x)Tk(un�um)
the equations satis�ed by un and um, respectively, where '(x) 2 C1

0 (
), '(x) � 0 for
jxj � "=2, '(x) � 1 for jxj � ", one obtains, since the integral involving the time-derivative
is positive,ZZ

Q
("=2)
T

jrunj
p�2run � jrumj

p�2rum
jxjp

rTk(un � um)'(x) (22)

� �k

ZZ
Q

("=2)
T

junj
p�1 + jumj

p�1

jxjp(+1)
+ k

ZZ
Q

("=2)
T

jjDunj
p�1 + jrumj

p�1

jxjp
jr'j :

Using H�older's inequality, (5) and (16), one checks that the right-hand side of (22) is
bounded by c6k, where c6 is a constant which only depends on �; "; p;N . Since the left-
hand side is greater than

"�p
ZZ

Q
(")
T \fjun�umj�kg

�
jrunj

p�2run � jrumj
p�2rum

�
� r(un � um) ;

we have proved that this last integral is small (uniformly in n and m) if k is suÆciently
small. Observe now that by the monotonicity and continuity of j�jp�2�, for every h > 0,
there exists � > 0 such that

D(A; k; h) � G(A; k; �) =
n
(x; t) 2 Q

(")
T : jrunj � A ; jrumj � A ;

jun � umj � k ;
�
jrunj

p�2run � jrumj
p�2rum

�
� r(un � um) > �

	
:

It follows that

measD(A; k; h) �
1

�

ZZ
Q

(")
T \fjun�umj�kg

�
jrunj

p�2run � jrumj
p�2rum

�
� r(un � um) ;

so that measD(A; k; h) is small (uniformly in n and m) if k is suÆciently small. This
proves (20). We can now pass to the limit in (Pn) in the sense of distributions. Indeed, if
we multiply (Pn) by '(x; t) 2 C

1
0 (QT ), we obtain

�

ZZ
QT

un
@'

@t
+

ZZ
QT

jrunj
p�2run
jxjp

r' = �

ZZ
QT

Tn

�
junj

p�2un
jxjp(+1)

�
' : (23)
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One can easily pass to the limit in each term using the convergences (19) and (20), the
estimates (14) and (16), the inequality (5) and Vitali's theorem.

3.2 The case � > �N;p; , p � 2 : global existence.

In this section we will suppose � > �N;p; and p � 2. We will show the existence of
solutions with di�erent behaviours (see Theorems 2, 3, 4 in subsection 3.2.1, 3.2.2, 3.2.3
below), depending on the range for the parameters  and p.

More precisely we will �nd solutions which become weaker and weaker (from the point
of view of regularity) as  and p increase (see Figure 1).

First of all let us prove the following lemma which will be useful in the sequel. It gives
the existence of selfsimilar solutions S(x; t) of the equation in problem (P) for this range
of the parameters.

Lemma 2 If � > �N;p; and p < 2, the function

S(x; t) = A �

�
t

jxjp(+1)

� 1
2�p

; (24)

where A = A(�; ) > 0 is such that

Ap�2 =
1

(2� p) [(p� 1)Æp � (N � p( + 1))Æp�1 + �]
; and Æ =

p( + 1)

2� p
; (25)

satis�es:

1. If  + 1 <
N(2� p)

2p
, then S(�; t) 2 D1;p

 (
) and veri�es the equation (P) in the

sense of distributions.

2. If
N(2� p)

2p
�  + 1 <

N(2� p)

p
, then

i) S(�; t) 2 Lq(
) for every q such that 1 < q <
N(2� p)

p( + 1)
;

ii) rS(�; t) 2 Lq1(
) for every q such that 0 < q1 <
N(2� p)

2 + p
;

iii) rS(�; t) 2 Lq(
) for every q such that 0 < q <
N(2� p)

2( + 1)
;

12



iv)
jrS(�; t)jp�1

jxjp
;
S(�; t)p�1

jxjp(+1)
2 L1(
) ;

v) S solves the equation in (P) in the sense of distributions.

3. If N
(2� p)

p
� (+1) <

N

p
, then S solves the equation in (P) in D0(Rn nf0g�(0;1)

(and in some weighted Sobolev spaces that will be precised later).

Proof. We start by looking for solutions of the equation in (P) of the form

S(x; t) = t�f(r); with r = jxj :

Choosing the exponent � = 1=(2 � p), one can cancel the variable t from the equation,
getting the following ordinary di�erential equation for f(r):

�f = (p� 1)r�p jf 0jp�2f 00 + r�(p+1)(N � (p + 1))jf 0jp�2f 0 + �r�p(+1)jf jp�2f (26)

Next we look for solutions f(r) of the form

f(r) = Ar�Æ ; A > 0 :

It is easy to check that if we choose Æ as in (25) we can cancel the terms involving powers
of r in (26), getting solutions of the form (24), provided the constant A is de�ned as in
(25), and is positive. This last assertion is true if

� >

�
p( + 1)

2� p

�p
(s� 1) = �p; ;

where

s =
N(2� p)

p( + 1)
:

Let us observe that the critical value �N;p; can be rewritten as

�N;p; =

�
p� 2 + s

2� p
( + 1)

�p

Moreover, if we regard the constants �N;p; and �N;p; as functions of the variable s,

�N;p;(2) = �N;p;(2) ; �0N;p;(2) = �0N;p;(2) ; �00N;p;(s) > 0 for s � 2� p,

which implies �N;p; � �N;p;, since s > 2 � p. Therefore for � � �N;p; we have A > 0,
and we obtain the existence of a positive solution S(x; t). The regularity of S stated in

13



the Lemma is an easy calculation from the explicit expression of S. It is also easy to see
that, if  + 1 < N(2 � p)=p, then S(x; t) is a solution of the equation in (P) in the sense
of distributions.

We can summarize the results about S, for 1 < p < 2, as follows.

a) If +1 <
N(2� p)

2p
, S(x; t) is an energy solution , i.e. S(x; t) 2 Lp(0; T ;D1;p

0;(
))\

C0(0; T ;L2(
)):

b) If
N(2� p)

2p
�  + 1 <

N(2� p)

p
, S(x; t) is an entropy solution (see De�nition 1 in

the next subsection)

c) If
N(2� p)

p
�  + 1 <

N

p
, S(x; t) is a very weak solution (see Theorem 4, below).

We will prove that the regularity of the self-similar solution gives the behaviour of the
solutions for the initial value problem in each interval of the parameters. Notice that

behaviour means that, if 1 < p < 2, then, for all  2 (�1;
N � p

p
), the spectral instan-

taneous and complete blow-up as in Baras-Goldstein does not occur. Namely, there exist
solutions with di�erent meanings, for all �.

Let us point out that, if p = 2, all the previous critical values collapse to 1 +  = 0
and we will �nd that for 1 +  � 0 there exist solution in the energy sense. Note that
in this case, by linearity, we obtain global solution. Hence, also in this case, the spectral
instantaneous and complete blow-up does not occur.

Moreover, if p > 2 and 1 +  � 0 an argument of comparison allows to conclude that
there exist at least a local (in time) solution.

The remaining question about the behaviour in the case p � 2,
N

p
> 1+  > 0 will be

discussed in section 4.

3.2.1 The case � > �N;p; , p � 2 ,  + 1 < N(2 � p)=(2p): Global existence of

solutions with �nite energy

Theorem 2 If � > �N;p; , 1 < p � 2 ,  + 1 <
N(2� p)

2p
,  (x) 2 L2(
), then there

exists a distributional solution u of problem (P) such that

u 2 Lp(0; T ;D1;p
0;(
)) \ L

1(0; T ;L2(
)) :

14



Proof. Let us consider the approximate problems (Pn) de�ned in the proof of Theorem
1. Using un(x; t) as test function in (Pn), we get

1

2

Z


u2n(x; �) dx +

ZZ
Q�

jrunj
p

jxjp
� �

ZZ
Q�

junj
p

jxjp(+1)
�
1

2

Z


 2(x) dx :

If p < 2, one has ZZ
Q�

junj
p

jxjp(+1)
�

ZZ
Q�

u2n + c1T

Z



dx

jxj2p(+1)=(2�p)
;

where c1 = c1(p). The last integral is �nite by the hypotheses on . If p = 2, then
necessarily  + 1 < 0, and thereforeZZ

Q�

junj
p

jxjp(+1)
� c2

ZZ
Q�

u2n ;

with c2 = c2(
; ). In both cases, by Gronwall's lemma, we obtain the estimates (14){(16),
and we can conclude the proof exactly as for Theorem 1

Remark 3 Note that actually, in the proof of this theorem, � can be any real number,
since the principal part of the operator is never used to obtain estimates.

3.2.2 The case � > �N;p; , p � 2 , N(2 � p)=(2p) <  + 1 < N(2 � p)=p: Global

existence of entropy solutions

We will precise the sense in which we consider solutions in this case.

De�nition 1 Assume that  2 L1(
). We say that u 2 C([0; T ];L1(
)) is an entropy

solution to problem (P)

if
juj(p�1)

jxjp(+1)
2 L1(QT ) , Tk(u) 2 L

p(0; T ;D1;p
0;(
)) for all k > 0 and

Z


�k(u(T )� v(T )) dx +

Z T

0
hvt; Tk(u� v)i dt+

ZZ
QT

jrujp�2

jxjp
ru � r(Tk(u� v))

�

Z


�k( � v(0)) dx + �

ZZ
QT

jujp�2u

jxjp(+1)
Tk(u� v);

(27)
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for all k > 0 and v 2 Lp((0; T );D1;p
0;(
)) \ L

1(QT ) \ C([0; T ];L1(
)) such that vt 2

Lp
0
((0; T );D�1;p0

� (
)) where �k is given by

�k(s) =

Z s

0
Tk(t)dt: (28)

For a general de�nition and basic properties of entropy solutions see for instance the
references [9], [23] and [22] .

Theorem 3 If � � �N;p; , 1 < p < 2 ,
N(2� p)

2p
�  + 1 <

N(2� p)

p
, while the initial

datum  (x) satis�es

 2 Lq(
) for every q such that 1 < q <
N(2� p)

p( + 1)
.

Then there exists a distributional solution u of problem (P) such that:

u 2 L1(0; T ;Lq(
)) for every q such that 1 < q <
N(2� p)

p( + 1)
; (29)

jrujq1

jxjq1
2 L1(QT ) for every q1 such that 0 < q1 <

N(2� p)

2( + 1)
; (30)

jrujp�1

jxjp
;

up�1

jxjp(+1)
2 L1(QT ) : (31)

Moreover u is an entropy solution to problem (P),

Proof. Once again, we consider the approximate problems (Pn), and we multiply them
by the test function �(un) =

�
(1 + junj)

1�� � 1
�
signun, with � 2 (0; 1) to be chosen

hereafter. If we de�ne

	(s) =

Z s

0
�(�) d� =

(1 + jsj)2�� � 1

2� �
� jsj ;

we have

	(s) � c1(�)jsj
2�� � c2(�) : (32)
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Therefore Z


	(u(x; �)) dx + (1� �)

ZZ
Q�

jrunj
p

jxjp
1

(1 + junj)�

�

Z


	( (x)) dx + �

ZZ
Q�

junj
p�1

jxjp(+1)
(1 + junj)

1�� (33)

�

Z


	( (x)) dx + c3

ZZ
Q�

junj
p�� + 1

jxjp(+1)
;

where c3 depends on �, �, p. Note that 	( ) is integrable by the hypothesis on the initial
datum. Since p < 2, we can estimate the last integral as followsZZ

Q�

junj
p�� + 1

jxjp(+1)
� c4

ZZ
Q�

junj
2�� + c5

ZZ
Q�

1

jxjp(+1)(2��)=(2�p)
; (34)

where c4 and c5 depend on � and p. Now we choose � in such a way that

2�
(2� p)N

p( + 1)
< � < 1 : (35)

This implies that the last integral in (34) converges. Using (32){(35) and Gronwall's
lemma, we obtain the following estimates

kunkL1(0;T ;Lq(
))
� c6 ; for every q such that 1 < q <

(2� p)N

p( + 1)
, (36)

ZZ
QT

jrunj
p

jxjp
1

(1 + junj)�
� c7 ; for every � such that (35) holds (37)

ZZ
QT

jrunj
q1

jxjq1
� c8 ; for every q1 such that 0 < q1 <

(2� p)N

2( + 1)
. (38)

ZZ
QT

junj
p��

jxjp(+1)
� c9 for every � such that (35) holds (39)

17



Indeed

ZZ
QT

jrunj
q1

jxjq1
�

0
B@ZZ

QT

jrunj
p

jxjp
1

(1 + junj)�

1
CA
q1=p0B@ZZ

QT

(1 + junj)
�q1=(p�q1)

1
CA

(p�q1)=p

:

The estimate (38) follows from (37) and (35).
We now show that the sequence fung satis�esZZ

QT

junj
(p�1)r

jxjp(+1)
� c10 for all r such that 1 � r <

2� p

p� 1

�
N

p( + 1)
� 1

�
, (40)

ZZ
QT

jrunj
(p�1)s

jxjp
� c11 for all s such that 1 � s <

(N � p)(2� p)

(p� 1)(2 + p)
. (41)

Inequality (40) follows from (39) and (5), while (41) follows easily from (38). We can now
pass to the limit in the distributional formulation, as we have done in the proof of Theorem
1, using the estimate in Lq1(0; T ;W 1;q1(
 nB")) which follows from (30), for every " > 0.

The function u is an entropy solution. Indeed it is easy to prove (taking Tk(un) as test
function in (Pn)) that Tk(un) is bounded in L

p(0; T ;D1;p
0;(
)) and, (using Vitali's theorem

and (41)) that fn(x; un) converges to
up�1

jxjp(+1)
strongly in L1(QT ) .

Then, if we take Tk(un � v) as test function in (Pn), with v as in De�nition 1, we can
easily pass to the limit and get the result with the same techniques as in [22].

Remark 4 As far as the sharpness of the regularity of the solutions found in Theorem 3,
let us observe that any function of the form St0(x; t) = S(x; t+ t0), where S is de�ned by
(24), is a solution in distribution sense of problem (P), with initial data  (x) = S(x; t0)
and its regularity is exactly the one we quoted in Theorem 3.

3.2.3 The case � > �N;p; , p � 2 , N(2� p)=(p) <  + 1 < N=p: Global existence
of very weak solutions

We point out that for every t > 0 the singular solution S(x; t) is continuous with respect
to t with values in L2

��p=2(
) for every � such that

� >
2( + 1)

2� p
�
N

p
: (42)
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This, together with the previous estimates on S, suggests the de�nition of the following
space:

Y� =
n
u 2 Lp(0; T ;D1;p

0;��(
)) \ C
0([0; T ];L2

��p
2
(
)) : u0 2 Lp

0

(0; T ;D�1;p0

�� (
))
o
;

(43)

where

� =  + �(p� 1) (44)

The following theorem precises the meaning of very weak solution.

Theorem 4 Assume that � > �N;p; , 1 < p < 2 ,
N(2� p)

p
�  + 1 <

N

p
, and that

the initial data  (x) belongs to L2
��p

2
(
), for some � satifying (42). Then there exists a

function u 2 Y� which is a distributional solution of (P) away from the origin (that is, in

D0((
 n f0g) � (0; T ))). Moreover u is a solution of (P) in the following sense:

�

Z �

0
hv0; jxj�pui dt+

Z


u(�)v(�)jxj�p dx�

Z


 v(0)jxj�p dx (45)

+

ZZ
Q�

jrujp�2ru � r(vjxj�p)

jxjp
dx dt =

ZZ
Q�

jujp�2uvjxj�p)

jxj(+1)p
dx dt

for every � 2 [0; T ] and for every v 2 Y�.

Proof. Step 1: a priori estimate. Let un be a solution of problem (Pn). We use
jxj�pun(x; t) as test function in (Pn). Then, by Young's inequality,Z


u2n(x; T )jxj

�p dx+

ZZ
QT

jrunj
pjxj(��)p

� c1

ZZ
QT

jrunj
p�1jxj(��)p�1 + �

ZZ
QT

junj
p

jxjp(+1��)
+
1

2

Z


 2(x)jxj�p dx

�
1

2

ZZ
QT

jrunj
pjxj(��)p + c3

ZZ
QT

junj
2jxj�p + c3

Z


jxj

p
�
��

2(+1)
2�p

�
+
1

2

Z


 2(x)jxj�p dx :

Under the hypotheses on � and on the initial datum, the last two integrals are �nite.
Therefore we can use Gronwall's lemma to conclude that

un is bounded in Lp(0; T ;D1;p
0;��(
)) \C

0([0; T ];L2
��p

2
(
)) .
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By the equation in (Pn), one can easily check that

u0n is bounded in Lp
0
(0; T ;D�1;p0

�� (
)) .

Step 2: passage to the limit. By weak convergence, and following the same argument
as in the proof of Theorem 1 for the pointwise convergence of the gradients, we obtain

a function u 2 Lp(0; T ;D1;p
0;��(
)) \ L

1(0; T ;L2
��p

2
(
)), with u0 2 Lp

0
(0; T ;D�1;p0

�� (
)),

such that
un * u weakly in Lp(0; T ;D1;p

0;��(
)) ;

un * u �-weakly in L1(0; T ;L2
��p

2
(
)) ;

run !ru almost everywhere in QT ;

un(�; �)! u(�; �) a.e. in 
 and weakly in L2
��p

2
(
), for every � 2 [0; T ];

Using these convergences, one can take jxj�pv as test function in (Pn) and pass to the limit
as n ! 1, obtaining the weak formulation (45). Since the functions of the form jxj�pv
include smooth test functions in D(QT ) which are zero in a neighbourhood of the origin,
we have also proved that u is a solution in distributional sense far from the origin.

We now prove that u 2 C0([0; T ];L2
��p

2
(
)). According to the uniform estimates for the

approximate solutions, we �nd that un(�; t) is an equi-continuous sequence in L2
��p

2
(
)).

By the Ascoli-Arzel�a Lemma, we conclude.

Remark 5 i) The previous result, in the case where  = 0, improves the result
contained in [19] and speci�es the meaning of the solution given in that paper;
more precisely, it gives us that the solution is in Lp(0; T ;D1;p

��(
)), for some � >
2=(2 � p)�N=p.

ii) If we de�ne the operator �v = jxj�pv, then � is an isomorphism from D1;p
0;��(
) to

D1;p
0;�(
), where � = (p � 1)� + . Therefore the weak formulation (45) could be

rewritten as

�

Z �

0
hw0; ui dt +

Z


u(�)w(�) dx �

Z


 w(0) dx

+

ZZ
Q�

jrujp�2ru � rw

jxjp
dx dt =

ZZ
Q�

jujp�2uw

jxj(+1)p
dx dt
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for every � 2 [0; T ] and for every w 2 Lp(0; T ;D1;p
0;�(
)) \ C

0([0; T ];L2
�p
2
(
)) such

that w0 2 Lp
0
(0; T ;D�1;p0

�� (
)).

iii) In the case where the initial data  (x) is non-negative and it satis�es

 (x) � S(x; t+ t0) for some positive t0;

it is possible to obtain an alternative (constructive) proof by a monotone iteration ar-
gument, using S(x; t+t0) as a supersolution, and solving, by induction, the following
sequence of problems8>>>>>>><

>>>>>>>:

@un
@t

��p;un = �Tn

�
1

jxjp(+1)

�
up�1n�1 ; (x; t) 2 
� (0; T );

un(x; t) = 0 (x; t) 2 @
� (0; T );

un(x; 0) =  (x); x 2 
 ;

( ~Pn)

with u0 � 0.

iv) The solution found in Theorem 5 satis�es the equation in a very weak sense because
the right-hand side of the equation does not even belong to L1.

3.3 The case � > �N;p; , p � 2 ,  � �1 : existence for small times

This subsection deals with existence for small values of t in the case � > �N;p;, p > 2,
 � �1. The result of this subsection can be compared with the ones of the next Section
4: an istantaneous blow up will occur for the solutions of the approximate problems for
the same values of � and p, when  > �1.

Theorem 5 If � > �N;p; , p � 2 ,  � �1 , while the initial data  (x) satis�es  (x) 2
L1(QT ) and  (x) � 0, then there exists T � = T �(N; p; ; �; k k

L1(
)
) > 0 and a distri-

butional solution u in QT � of our problem with u 2 Lp(0; T ;D1;p
0;(
)) \ L

1(0; T ;L2(
))
for every T < T �. Moreover if p = 2, T � is any positive value.

Proof. Let us de�ne the problems ( ~Pn) as in the previous subsection and let y(t) be the
solution of the following ordinary di�erential equation8>><

>>:
y0(t) = d yp�1 ;

y(0) = k k
L1(
)

;
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where

d � � sup
x2


jxj�p(+1) : (46)

An immediate calculation shows that

�) If p > 2 the solution is

y(t) =
k k

L1(
)

(1� (p� 2)dk kp�2
L1(
)

t)1=(p� 2)
;

which blows up in t = T � =
1

(p� 2)dk kp�2
L1(
)

.

�) If p = 2 then the global solution is

y(t) = k k
L1(
)

edt

Since y(t) is a supersolution of (P), by comparison principle we have

u1 � u2 � � � � � un � � � � � y :

If we multiply problem ( ~Pn) by un�(0;�), we obtain

1

2

Z


u2n(x; �) dx +

ZZ
QT

jrujp

jxjp
� �

ZZ
QT

jyjp�1jxj�p(+1) +
1

2

Z


 2(x) dx :

By condition (46),

�

ZZ
QT

jyjp�1jxj�p(+1) � meas
(y(�)� k k
L1(
)

) :

Therefore we get the estimates

kunkL1(0;� ;L2(
))
� c1 ; kunkLp(0;� ;D1;p

0;(
))
� c2 ; for every � < T � .

In the case p = 2 we can �x any T � > 0 to get the same estimates. Now the conclusion
follows exactly as in the proof of Theorem 1.
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4 Blow-up: p > 2, N=p > (1 + ) > 0 and � > �n;p;

We consider in this section the spectral, instantaneous and complete blow-up in the case
p > 2 and (1 + ) > 0. The case p = 2 has been obtained in [3] and requires a di�erent
method. We would like to point out that in the case p > 2 a stronger result than in
the linear case is obtained. This behaviour is given because even the problem with the
truncated potential blow-up in �nite time. We will assume that the initial data veri�es
that  2 L2(
) and there exists Æ > 0 such that  > 0 in BÆ(0). Notice that for the
equation

ut ��p;u = 0 (47)

and by direct calculations we can �nd Barenblatt type solutions, precisely,

B(x; t) = t�N�(N;p;)
h
M �

(p� 2)�(N; p; )
1

p�1

p( + 1)
�
p(+1)
p�1

�i (p�2)
(p�1)

+
(48)

where M is a positive arbitrary constant,

�(N; p; ) =
1

N(p� 2) + p( + 1)
and � =

jxj

t�(N;p;)
:

This property could be understood as some kind of �nite speed of propagation for the
equation with zero right hand side. It is necessary to point out that if  6= 0 the equation
is not invariant by translation and then the corresponding translated Barenblatt functions
are not solutions to the equation.

The lack of homogeneity in the equation (47) provides the following weak Harnack
inequality.

Lemma 3 Let u be a non-negative weak solution to (47)and assume that u(x0; t0) > 0, for
some (x0; t0) 2 
T , then there exists B(N; p; ) > 1 such that, for all �; � > 0 satisfying

B4�(x0)� (t0 � 4�; t0 + 4�) � 
T , we have

1

jB�(x0)j

Z
B�(x0)

u(x; t0)dx �

B
h��p(+1)

�

� 1
p�2

+
� �

�p(+1)

� N
p(+1)

�
inf

B�(x0)
u(:; t0 + �)

� �
p(+1)

i (49)

where � = N(p� 2) + p( + 1) =
1

�(N; p; )
.

23



The proof is similar to the one by DiBenedetto in [17] for the case  = 0. The details can
be found in [1] in the case (1+) > 0, where some counterexamples to Harnack inequality
if (1 + ) � 0 are shown.

We consider problem (P), and we make the following assumptions:

(H1) p > 2, 0 < 1 +  < N=p and � > �n;p;.

(H2)  2 L1(
), (x) � 0 and moreover there exists �, Æ > 0 such that  (x) > Æ, for
every x 2 B�(0).

We will prove that problem (P) has no solution. We start by studying, for n 2 N, the
following approximate problems8<

:
(un)t ��p;un = �Wn(x) junj

p�2un in QT ,
u(x; t) = 0; on @
� (0; T ),
u(x; 0) =  (x) in 
,

(50)

where Wn(x) = Tn

�
1

jxjp(+1)

�
. Note that for every �xed n, problem (50) has a solution

at least for small times (depending on n and �), as one can easily see using a convenient
supersolution independent of x.

By separation of variables we look for solutions of the equation in (50) of the form
�(x; t) = �(t)X(x), to use as a subsolution. The equation becomes

�0X ��p�1�p;X = �Wn(x)�
p�1Xp�1

We take �(t) solution of �
�0(t) = ��p�1(t);
�(0) = A;

(51)

that is,

�(t) =
A

[1� (p� 2)�Ap�2t]1=(p�2)

with �;A > 0 to be chosen. Note that lim
t!�

�(t) =1 for � =
1

�(p� 2)Ap�2
.

On the other hand, X(x) must solve the elliptic problem�
��p;X = �Wn(x)X

p�1 � �X in 

X(x) = 0 on @


(52)
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De�ning �X = Y with ��p�2 = � the problem above becomes�
��p;Y = �(Wn(x)Y

p�1 � Y ) in 
,
Y (x) = 0 in @
.

(53)

Problem (53) falls in the hypotheses for bifurcation from in�nity as in [6], see details in
[16].

Let �1(n) be the �rst eigenvalue for the problem�
��p;' = �Wn(x)j'j

p�2' in 
,
'(x) = 0 in @
.

Then i) �1(n) > 0; ii) �1(n) is isolated and simple; iii) the �rst eigenfunction does not
change sign; iv) �1(n) is decreasing in n, and �1(n) & �N;p;. The properties i), ii)
and iii) are similar to the p-laplacian case and are detailed in [16], iv) is easily checked
following the proof for the p-laplacian in [19].

Theorem 6 If � > �N;p;, then there exists n0 such that, for every n > n0, there exists

a bounded positive solution Y (x) to (53).

Proof. As � > �N;p; there exists n0 such that, for n > n0, � > �1(n) . Now �1(n) is the
unique bifurcation point of positive solutions from in�nity for problem (53). Moreover, as
(1 + ) > 0, the solutions in the branch are bounded, see [16] and [6]. Moreover, if Y > 0
is a solution to (53) then jjY jj1 � Rn > 0, for some constant Rn because if a positive
solution Y is such that jjY jj1 < ", then we have ��p;Y � �Y (n"p�2 � 1) < 0 and for "
small we reach a contradiction with the maximum principle .

As a consequence we can �nd a subsolution to problem (50) that shows the �nite time
blow-up. Precisely we have the following result.

Lemma 4 Let u be a solution to problem (50) where � > �1(n) and  (x) > 0 in every

x 2 
. Then there exists T > 0 depending on the data and there exists a subsolution �
such that u(x; t) � �(x; t) and lim

t!T
�(x; t) =1 for every x 2 
.

Proof. The solution u is positive and, by regularity (see [1]), is bounded for small
times. Therefore we �x a small time � > 0, and we look for a subsolution of the form
�(x; t) = X(x)�(t), with X(x) solution of (52), and

�(t) = �(1� (p� 2)"p�2(t� �))�1=(p�2);

with " > 0 such that "X(x) � u(x; �). By the weak comparison principle we conclude.
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In order to show the instantaneous complete blow-up, we need to rescale the problem,
using the following property. De�ne

Zn(x) =
�n0
n

� 1
p�2

X

��
n

n0

� 1
p(+1)

x

�
: (54)

Then Zn solves8><
>:

��p;Zn = �Wn(x)Z
p�1
n � �Zn; if jxj <

�n0
n

� 1
p(+1)

Zn(x) = 0; if jxj =
�n0
n

� 1
p(+1)

:

since

�
n

n0

�
Wn0

 �
n

n0

� 1
p(+1)

x

!
= Wn(x). Moreover the radius of the ball goes to

zero and kZnk1
! 0 as n!1. Therefore for prescribed R; � > 0 we can choose n such

that �n0
n

� 1
p(+1)

< R ; Zn(x) � � on BR (55)

Lemma 5 Assume that (H1), (H2) hold. Then for every " > 0 there exist r(") > 0 and

n" such that un minimal solution to (50) 8n > n"

un(x; t) � +1 for t > " and jxj < r("):

Proof. Take n0 such that � > �1(n0). We prescribe the blow-up time T = " and choose
� = [(p � 2)"]�1. For such � and n > n0 such that the scaled solution (54) to (50), Xn,
satis�es (55) with R = � and � = Æ. Consider �(t) solution to (51) with � as above and
A=1 . Then �n(x; t) = �(t)Xn(x) blows up in T = ". By weak comparison in the ball

jxj <
�n0
n

� 1
p(+1)

the minimal solution to (50), blows up in T0 < ".

We point out that in order to obtain blow-up in a prescribed small time we have to
take the index n large enough. We will use the concept of entropy solution introduced in
De�nition 1 and a straightforward modi�cation of the comparison arguments for entropy
solutions (see [23]).

Theorem 7 Assume that (H1), (H2) hold. Then problem (P) has no entropy solution,

even for small times and moreover if un(x; t) is the minimal solution to (50), we have that
lim
n!1

un(x; t) = +1; for all (x; t) 2 
� (0;1)

26



Proof. By contradiction, assume that there exists an entropy solution u(x; t) > 0 of
problem (P). Then u is a supersolution to problem (50) for all n. As a consequence the
minimal solution to (50) satis�es un(x; t) � u(x; t), hence u(x; t) blows up at least in the
time where un blows up, so we conclude.
By using Lemma 5 we obtain a region E1 such that

E1 � fjxj < r(t)g � (0;1);

such that
lim
n!1

un(x; t) = +1; for all (x; t) 2 E1:

Next we use the Harnack inequality (49), assume that there exist a point (x0; t0) 2 
 �
(0;1) such that 0 � un(x0; t0) �M <1 and call

�(x0; t0) = distfx0; @
g > 0:

Then, if Br(x0)�ft = t1g\E1 has N -dimensional positive measure for some r < �(x0; t0)
and t1 < t0, we consider problem8<

:
(vn)t ��p;vn = 0 in Br(x0)� (t1; t0),
vn(x; t) = 0 on @Br(x0)� (t1; t0),
vn(x; t1) = un(x; t1) in Br(x0),

(56)

then vn(x; t) � un(x; t) and this is a contradiction with Harnack inequality (49). If for all
r < �(x0) and all t1 < t0, jBr(x0)� ft = t1g \ E1j = 0, then for all Æ > 0 we can �nd in
a �nite number of steps a point (x1; t0 � Æ) 2 
� (0; t0) such that

jBr(x0)� ft = t1g \E1j > 0

and then we reach a contradiction as above.

Notice that this result is stronger, in some sense, than the result by Baras and Goldstein
(see [7]) for the heat equation; if p > 2, even the solution to the equation with truncated
potential blows up in �nite time. Next we will prove that even if we truncate the whole
nonlinearity, we �nd spectral instantaneous complete blow-up. More precisely we have the
following result.

Theorem 8 Consider the truncated problem8<
:

(vn)t ��p;vn = �Wn(x)Tn(v
p�1
n ) in 
� R

+ ,

v(x; t) = 0 on @
� R
+ ,

v(x; 0) =  (x) in 
,

(57)
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where (H1) and (H2) hold. Then

lim
n!1

vn(x; t) = +1 for every (x; t) 2 
� R
+ .

Proof. Using the same argument as in [2], we �nd that if B4r(0) � 
, then

lim
n!1

Z
Br(0)

vn(x; t) dx = +1 for every t > 0.

Then by Harnack inequality and a strategy which is similar to the one in Theorem 7, we
obtain the complete blow-up.

Remark 6 i) An alternative method to the one described above can be seen in [1].
The separation of variables gives a more transparent view of the behaviour but use
in a strong way the presence of exactly two homogeneities. In the linear case (see
[3]) or if the second member is not eigenvalues-like (see [2]), di�erent arguments are
needed.

ii) If instantaneous and complete blow-up happens without hypothesis (H2), seems to
be an open problem. If  = 0 we can take as subsolution a convenient scaled and
translated Barenblatt function that allow us to conclude that there exists a T � > 0
such that for t > T � the same result as in Theorem 8 holds.

5 Behaviour of solutions in the case 1 < p < 2 and � < �N;p;

In this section we will try to explain how the optimal constant in the Hardy inequality
becomes the threshold for extinction in �nite time of the solution.

5.1 Finite time extinction

Theorem 9 Assume that

max

�
2N

N + 2
;

2N

N + 2( + 1)

�
< p < 2 ;

� < �N;p;, and  2 L
2(
). Then there exists a constant

T � = T �(N; p; ; �;
) � c1(N; p; ; �;
)k k
2�p
L2(
)

such that any solution of problem (P) satis�es

u(�; t) � 0 for t � T � . (58)
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Proof. Taking u as test function in (P), and using inequalities (4) and (8), we get

1

2

d

dt

Z


u2(t) dx+

1

SN;p;

�
1�

�

�N;p;

��Z



ju(t)jp
�

jxjp�
dx

� p
p�

� 0 :

Using the assumptions on p and , by H�older's inequality we obtain

Z


u2(t) dx �

�Z



ju(t)jp
�

jxjp�
dx

� 2
p�
�Z



jxj

2p�

p��2 dx

� p��2
p�

� c1

�Z



ju(t)jp
�

jxjp�
dx

� 2
p�

;

where c1 = c1(N; p; ;
) is a positive constant. Therefore, setting

�(t) =

Z


u2(t) dx ;

one has
�0(t) + c2[�(t)]

p
2 � 0 ;

with c2 > 0. Since p < 2, this implies

�(t) �
�
[�(0)]

2�p
2 � c3t

� 2
2�p

+
;

from which the statement follows.

Theorem 10 Assume that

 � 0 ; 1 < p <
2N

N + 2
;

� < �N;p; =

�
N(2� p)

p
� 1

��
[N � p( + 1)]p

(2� p)(N � p)

�p
and Z



j j

N(2�p)
p dx <1 :

Then there exists a constant

T � = T �(N; p; ; �;
) � c1(N; p; ; �;
)k k
2�p

L
N
p (2�p)

(
)

such that any solution of problem (P) found by approximation as in Theorem 1 satis�es

u(�; t) � 0 for t � T � . (59)

29



Proof. We take vn = junj
��2un as test function in (Pn), with � � 2 to be chosen

hereafter. We obtain

1

�

d

dt

Z


u�n(t) dx+ (�� 1)

Z



jrun(t)j
pjun(t)j

��2

jxjp
dx = �

Z



jun(t)j
��(2�p)

jxj(+1)p
dx :

Since

Z



jrun(t)j
pjun(t)j

��2

jxjp
dx =

�
p

�� (2� p)

�p Z



��r(jun(t)j��(2�p)
p )

��p
jxjp

dx

and, by Hardy's inequality,

Z



jun(t)j
��(2�p)

jxj(+1)p
dx � ��1N;p;

Z



��r(jun(t)j��(2�p)
p

��p
jxjp

dx ;

we obtain

1

�

d

dt

Z


u�n(t) dx + c1

Z



��r(jun(t)j��(2�p)
p

��p
jxjp

dx � 0 ;

where

c1 = (�� 1)

�
p

�� (2� p)

�p
� �

�
p

N � p( + 1)

�p
> 0 :

Therefore, by (8),

1

�

d

dt

Z


u�n(t) dx+ c1SN;p;

2
4Z




jun(t)j
[��(2�p)]p�

p

jxjp�
dx

3
5

p
p�

� 0 : (60)

Choosing

� =
N(2� p)

p
;

the two powers of un become equal. Since  � 0, if we de�ne

�(t) =

Z


u�n(t) dx ;

we obtain
�0(t) + c2[�(t)]

p
p� � 0 ;

where c2 = c2(N; p; ;
) > 0, and we obtain the result for the approximate solutions un
as in the previous theorem. The result on u follows by taking the limit on n.
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Remark 7 Note that �N;p; = �N;p; , for p =
2N
N+2 :

Theorem 11 Assume that

0 <  + 1 <
N(2� p)

2p
;

� < �N;p; =

�
N(2� p)

p( + 1)
� 1

��
p( + 1)

2� p

�p
; (61)

and that there exists

�� >
(2� p)N

p( + 1)

such that  2 L��(
) Then there exists a constant

T � = T �(N; p; ; �;
; ��; ) � c1(N; p; ; �;
; ��)k k
2�p
L�(
)

such that any solution of problem (P) found by approximation as in Theorem 1 satis�es

u(�; t) � 0 for t � T � . (62)

Proof. We use junj
��2un as test function in (Pn), where � is such that

(2� p)N

p( + 1)
< � � �� (63)

and

� < (�� 1)

�
p( + 1)

�� (2� p)

�p
: (64)

Note that this is always possible, since assumption (61) implies that (64) is true for

� = (2�p)N
p(+1) . As in the previous proof we obtain inequality (60), where the constant c1 is

positive by (64). Now observe that condition (63) implies

� >
(N(2� p)

p

and
�pp�

p�[�� (2� p)]� �p
> �N ;
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therefore, by H�older's inequality,

Z


u�n(t) dx �

�Z


jxj

�pp�

p�[��(2�p)]��p dx

� p�[��(2�p)]��p
p�[��(2�p)]

2
4Z




jun(t)j
[��(2�p)]p�

p

jxjp�
dx

3
5

�p
p�[��(2�p)]

� c2(N; p; ; �;
)

2
4Z




jun(t)j
[��(2�p)]p�

p

jxjp
� dx

3
5

�p
p�[��(2�p)]

:

Hence one has

d

dt

Z


u�n(t) dx+ c3

�Z


u�n(t) dx

���(2�p)
�

� 0 ;

with c3 > 0. Since ��(2�p)
� < 1, we conclude as before.

Remark 8 Note that condition 0 <  + 1 < N(2�p)
2p in Theorem 11 means that 1 < p <

2N
N+2(+1) , which implies, for  � 0, that p satis�es also 1 < p < 2N

N+2 . Therefore, we can

compare the results of Theorem 10 and Theorem 11 in the region where 1 < p < 2N
N+2 and

 � 0. An easy calculation shows that in that region we have �N;p; < �N;p; where �N;p;
and �N;p; are given in the statements of Theorem 10, Theorem 11, respectively. Since
N(2�p)

p > N(2�p)
p(+1) , Theorem 11 gives a better result than Theorem 10 in the above region.

Let us also point out that the value �N;p; is the same value we �nd in Lemma 2, which
gives the esistence of selfsimilar solutions of the equation in problem (P)

5.2 Non-extinction results

If p > 2, and  veri�es the hypothesis (H2), by using the Barenblatt type functions one
can easily prove that there is no extinction in �nite time. Indeed, for any �xed time
T > 0, consider the function B(x; t + 1), where B is the function de�ned in (48). One
can easily check that, if the constant M in (48) is suÆciently small, then this function is
a subsolution of problem (P). Since T is arbitrary, the result follows.

In this section we will prove that solutions to problem (P) with 1 < p < 2,  + 1 � 0
and � > �n;p; are nonnegative for all time. The key of the proof is the construction of a
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nonnegative subsolution to problem8>>>>>>><
>>>>>>>:

ut ��p;(u) = �
jujp�2u

jxj(+1)p
; (x; t) 2 
� (0; T );

u(x; t) = 0 (x; t) 2 @
� (0; T );

u(x; 0) = 0; x 2 
;

(65)

following the ideas in [18]. See also [19]. Consider the eigenvalue problem�
��p;(�1) = �1(n)Wn(x)�

p�1
1 ; x 2 


u(x) = 0; x 2 @
:
(66)

whereWn(x) = minfn; jxj�(+1)pg. The principal eigenvalue is isolated and simple. More-
over it is easy to check that the sequence of principal eigenvalues, f�1(n)g, is decreasing,
that lim

n!1
�1(n) = �n;p; and that the corresponding eigenfunction �1 has constant sign

(see for instance [16]). In this way if � > �n;p; there exists n0 such that for n > n0,
one has � > �1(n). Hence, for n > n0, let �(t) be the positive solution to problem
�0(t) = �p�1(t), �(0) = 0

De�ne
v(x; t) = �("t)�1(x);

where " > 0 will be chosen later, and �1 is a positive eigenfunction of (66) such that
jj�1jj1 = 1. We have that

vt ��p;(v)

�v(x; t)p�1
<
"�2�p1

�
+
�1(n)

�
Wn(x);

hence, as 2� p > 0,  + 1 � 0 and
�1(n)

�
< 1, for a suitable " > 0 we obtain that

vt ��p;(v)

�v(x; t)p�1
< Wn(x):

Then v(x; t) is a subsolution to the truncated problem obtained from (65) and therefore
to problem (65) with 1 < p < 2,  (x) � 0, (1 + ) > 0 and � > �n;p;. For the truncated
equation we obtain at supersolution by solving the ordinary di�erential equation y0(t) =

�[y(t)]p�1, 1 < p < 2, with data y(0) = a which solution is y(t) =
�
a2�p+�(2�p)t

�1=(2�p)
.

Given a T > 0 we �nd a value of a for which v(x; t) < y(t) in 
� (0; T ) and y(0) �  (x).
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Iterating from v we obtain as a conclusion that in these hypotheses the minimal solution
to the truncated equation of (65) has no �nite time extinction. And therefore the same
result holds for (65)

Remark 9 If (1 + ) < 0 the weights are at at the origin. If we use the eigenvalue
analysis as in [16], i.e., for �n = (1 + )� 1

n we de�ne, for instance,

�n(x) =

(
jxj�p�n if x 2 
 \B1(0);

jxj�p(+1) if x 2 
 n B1(0):

In this way �n(x) � jxj�p(+1) for all x 2 
 and moreover the eigenvalue problems8<
: �div

�
jr 1j

p�2r 1
jxjp

�
= �1(n)�n(x) 

p�1
1 x 2 


u(x) = 0 x 2 @
:
(67)

verify:

1. The principal eigenvalue is isolated and simple.

2. We can choose the corresponding eigenfunction  1 positive.

3. The sequence of principal eigenvalues satis�es �1(n)& �N;p; as n!1.

However the �nal construction does not work.
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