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Riassunto

In questo articolo proviamo la locale limitatezza delle soluzioni di sistemi alle derivate parziali
in forma di divergenza. I sistemi considerati comprendono le variazioni prime di funzionali
dipendenti dalla variabile spaziale e con crescita non standard rispetto al gradiente, quali ad
esempio il modello con crescita dipendente dal punto, cioè

F(u) =
∫
Ω

g(|∇u|)α(x) dx ,

dove g è una N-funzione di classe ∆2.

Abstract

We prove the local boundedness of solutions of partial differential systems in divergence form.
The systems under consideration include the first variations of functionals depending on the
space variable and having nonstandard growth with respect to the gradient, like for instance
the model with growth depending on the point, that is,

F(u) =
∫
Ω

g(|∇u|)α(x) dx ,

where g is an N-function of class ∆2.

1 Introduction

In this paper we study the boundedness properties for local minimizers of the integral
functional of the Calculus of Variations

F(u) =
∫
Ω
F (x,∇u) dx , (1)

where Ω is an open set of Rn (n ≥ 2) and ∇u denotes the gradient of a vector-valued
function u : Ω → RN . Such minimizers are also weak solutions of an elliptic system of
the type

n∑
i=1

∂

∂xi

aα
i (x,∇u) = 0 , α = 1, . . . , N,
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where the vector field a = (aα
i ) : Ω × RnN → RnN is the gradient with respect to ξ of

the function F (x, ξ).
We recall that u ∈ W 1,1

loc (Ω;RN) is a local minimizer of F if

∫
Ω0

F (x,∇u) dx < +∞ for all Ω0 ⊂⊂ Ω

and ∫
supp ϕ

F (x,∇u) dx ≤
∫
supp ϕ

F (x,∇u + ∇ϕ) dx

for every ϕ ∈ W 1,1
0 (Ω;RN) with suppϕ ⊂⊂ Ω.

The regularity of minimizers of integral functionals has been widely studied in the
scalar case (N = 1) under the so called natural growth conditions, i.e., in the case where
the integrand function F grows like a power of the modulus of the gradient, and under
nonstandard growth conditions, i.e., in the case where F (x, ξ) is controlled from below
and from above by two different powers |ξ|p, |ξ|q, with p and q not too far from each
other (these are the so-called p, q-growth conditions), or by general convex functions.

In the vector case (N > 1), there are some well known counterexamples to the
continuity of the minimizers (see De Giorgi [7], Giusti and Miranda [11], Necas [21]).
However, in the case where F (x, |ξ|) = |ξ|p, p ≥ 2, Uhlenbeck proved in [23] that
the minimizers are in C1,α

loc (Ω;RN), a result which was later extended to more general
integrands which grow like |ξ|p by Giaquinta and Modica [9] when p ≥ 2 and by Acerbi
and Fusco [1] in the case 1 < p < 2. More recently Choe studied in [4] the regularity for
minimizers of integral functionals not depending on x and with p, q-growth conditions.
Marcellini [16] proved C1,α regularity for minimizers of (1) in the case where F (x, ξ) =
g(|ξ|) and g satisfies a nonoscillating condition at infinity, and may also have exponential
growth.

In this paper we consider the case

F (x, ξ) = g(x, |ξ|) ,

where, for almost every x ∈ Ω, g(x, ·) is a N-function of class ∆2 (see Definition 2.2)
We recall that N-functions are convex functions which have been widely studied in
connection with Orlicz spaces (see Krasnosel’skii and Rutickii [12], Adams [2], Rao and
Ren [22]). We give some conditions on g which imply that every local minimizer of F
is bounded on compact subsets of Ω, and we give an estimate of the supremum. Our
results include the case of functionals with variable growth exponent, i.e.,

F (x, ξ) = h(|ξ|)α(x) , (2)

where h is an N-function and α ∈ L∞(Ω) satisfies some regularity assumptions. In the
scalar case, the regularity of minimizers of functionals of this kind has been considered
by Marcellini [14], [15], by Mascolo and Papi [19] and by Dall’Aglio, Mascolo and Papi
[6]. The particular case F (x, ξ) = |ξ|α(x) has been studied in detail by Chiadò Piat and
Coscia [3] and, in the vector case, by Migliorini [20] and by Coscia and Mingione [5].
The last three papers, however, are obtained in the framework of p, q-growth conditions.
Our result is a first step in the study of the regularity of vector-valued functionals of type
(2) which cannot be treated by estimating the integrand with powers of the gradient,
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and seems to be new also in the case where F does not depend on x, i.e., in the case
where F (x, ξ) = g(|ξ|), and g is an N -function.

The plan of the paper is the following. In Section 2 we state the boundedness
theorem and give some examples of its applications. Section 3 is devoted to the proof
of the result, which is based on a suitable version of Sobolev’s embedding theorem and
an iteration method.

2 Main result and applications

Let Ω be an open set of Rn .

Definition 2.1 We will say that a function g : Ω× [0,+∞) → [0,+∞) is a generalised
N-function in Ω if

(a) g(·, t) is a measurable function on Ω, for all t ≥ 0;

(b) for almost every x ∈ Ω, g(x, ·) is a convex function on [0,+∞) such that g(x, t) = 0
if and only if t = 0, and

lim
t→0+

g(x, t)

t
= 0 , lim

t→+∞
g(x, t)

t
= +∞ .

(c) there exist two constants Λ1, Λ2 such that

0 < Λ1 ≤ g(x, 1) ≤ Λ2 for almost every x ∈ Ω.

In the case where g(x, t) = g(t), then the Definition above corresponds to the usual
definition of N-functions (see [12], [22]).

Let ϕ(x, t) : Ω × (0,+∞) → (0,+∞) be the left derivative of g with respect to t.
Then ϕ(x, ·) is positive, nondecreasing and left-continuous in (0,+∞) for almost every
x ∈ Ω. Moreover

lim
t→0+

ϕ(x, t) = 0 , lim
t→+∞

ϕ(x, t) = +∞ .

Definition 2.2 We will say that a generalised N-function satisfies the ∆2 condition,
and we will write g ∈ ∆2(Ω), if there exists a constant k > 1 such that

g(x, 2t) ≤ k g(x, t) for every t ≥ 0, for almost every x ∈ Ω.

By proceeding as in the proofs of Theorem 3, ch. 2, of [22], and Proposition 2.1 of
[6], one can prove the following result:

Proposition 2.3 Let g be a generalised N-function on Ω, and let ϕ be its left derivative
with respect to t. Then the following properties are equivalent:

• g ∈ ∆2(Ω);

• there exists m > 1 such that

ϕ(x, t)t ≤ mg(x, t) for every t > 0, for almost every x ∈ Ω; (3)
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• there exists m > 1 such that

g(x, λt) ≤ λmg(x, t) for every t > 0 and λ > 1, for almost every x ∈ Ω. (4)

Moreover (3) implies (4) and viceversa with the same m.

For m > 1, we will say that g belongs to the class ∆
(m)
2 (Ω) if it satisfies (3) or (4).

Assume that g ∈ ∆
(m)
2 (Ω). Then, for all t1, t2 > 0, since ϕ(x, ·) is nondecreasing, we

have:
ϕ(x, t1)t2 ≤ ϕ(x, t1)t1 + ϕ(x, t2)t2 . (5)

Moreover, by the convexity of g with respect to t, we have:

g(x, t1 + t2) ≤ 2m−1[g(x, t1) + g(x, t2)] . (6)

Examples of generalised N-functions. The function

g1(x, t) = a(x)h(t) ,

where a(x) is a measurable function in Ω, with 0 < λ ≤ a(x) ≤ Λ, and h is an N-function,
is a generalised N-function. Another example of generalised N-function is given by

g2(x, t) = tα(x) ,

where α(x) is a measurable bounded function with α(x) > 1 for almost every x ∈ Ω.
More generally one can consider

g3(x, t) = h(t)α(x) , g4(x, t) = h(t)α(x) logδ(e + t) ,

where α(x) ≥ 1, δ is a positive constant and h is an N-function. Functions g3 and g4

are in ∆2(Ω) if and only if and only if h ∈ ∆2.

In the following we will consider the integral functional of the Calculus of Variations

F(u) =
∫
Ω
F (x,∇u) dx ,

where F (x, ξ) = g(x, |ξ|) and g(x, t) : Ω × [0,+∞) → [0,+∞) satisfies the following
assumptions:

(i) g is a generalised N-function such that g ∈ ∆
(m)
2 (Ω) for some m > 1;

(ii) for a.e. x ∈ Ω, g(x, ·) is differentiable in [0,+∞), and its derivative gt(x, t) is a
Caratheodory function in Ω × [0,+∞);

(iii) for every t ≥ 0 and for every i = 1, . . . , n, g(·, t) has weak derivatives gxi
(·, t)

(i = 1, . . . , n) in L1
loc(Ω). These derivatives gxi

(x, t) are Caratheodory functions in
Ω × [0,+∞), and there exists a function γ ∈ Ls

loc(Ω), with s > mn such that

|gx(x, t)| ≤ γ(x)g(x, t) log(e + t) for every t ≥ 0, for a.e. x ∈ Ω (7)

where gx denotes the weak gradient of g with respect to x. Of course it is not a
restriction to assume that γ(x) ≥ 1 almost everywhere.
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Remark 2.4 Inequality (7) in assumption (iii) might look somewhat restrictive, al-
though it is satisfied by the model function g(x, t) = h(t)α(x). Actually hypothesis (7)
could be replaced by

|gx(x, t)| ≤ γ(x)g(x, t)(1 + tδ) for every t ≥ 0, for a.e. x ∈ Ω , (8)

where δ <
s−mn

ms(n− 1)
. It is not difficult to check that Theorem 2.7 below can be proved

under this weaker hypothesis.

Remark 2.5 The functions g1–g4 considered above satisfy hypotheses (i)–(iii) if h is

a C1 N-function of class ∆
(m)
2 for some m > 1, while a(x) and α(x) are in W 1,s

loc (Ω) for
s > nm.

Remark 2.6 Observe that assumptions (i)–(iii) ensure (see for instance [17]) that for
every v ∈ W 1,1

loc (Ω;RN), g(x, |v(x)|) belongs to W 1,1
loc (Ω) and the chain rule holds, i.e.,

Dxi
g(x, |v(x)|) = gxi

(x, |v(x)|) +
gt(x, |v(x)|)

|v(x)|
N∑

α=1

vα(x)vα
xi

(x) , (9)

provided both g(x, |v(x)|) and the right-hand side of (9) are locally integrable (the last
term is defined to be zero in the set where v = 0).

We now state the main result of this paper, which is a local estimate of the supremum
of |u| in terms of the integral which defines functional F .

Theorem 2.7 Let F be as in (1), with F (x, ξ) = g(x, |ξ|), where g is a generalised
N-function satisfying (i), (ii) and (iii). Let u ∈ W 1,1

loc (Ω;RN) be a local minimizer of
F . Then u is locally bounded. Moreover, if Ω0 is an open set compactly contained in Ω,
then there exists R0 (depending on n, m, s, Λ1, ‖γ‖Ls(Ω0)

and ‖∇u‖
L1(Ω0)

) such that, for

every x0 ∈ Ω0, for every ρ, R, with 0 < ρ < R ≤ min{dist(x0, ∂Ω0), R0} and for every
α > 1, the following inequality holds

sup
x∈Bρ

g(x, |u(x) − uR|) ≤ C

{
1

(R− ρ)q

∫
BR

(
1 + g(x, |∇u(x)|)

)
dx

}α

, (10)

where q = ms(n−1)
s−mn

, Bρ and BR are the balls with center x0 and radii ρ and R respectively,
uR = −∫BR

u(x) dx, and C depends on α, n, m, s, Λ1 and ‖γ‖
Ls(Ω0)

.

In the case where g does not depend directly on x, the proof of the boundedness of
u is heavily simplified, and it is possible to take α = 1 (and of course s = ∞) in (10), as
stated in the following theorem, which also provides a simple “global” estimate for |u|
on any Ω0 ⊂⊂ Ω.

Theorem 2.8 Assume that g(t) is a C1 generalised N-function in ∆
(m)
2 for some m > 1.

Let u be a local minimizer of F . Then there exists R0 = R0(n) > 0 such that, for every
x0 ∈ Ω and for every 0 < ρ < R < min{R0, dist(x0, ∂Ω)},

sup
x∈Bρ

g(|u(x) − uR|) ≤
C1

(R− ρ)m(n−1)

∫
BR

g(|∇u(x)|) dx , (11)
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where C1 depends on m and n. Moreover, if Ω0 and Ω1 are open sets such that Ω0 ⊂⊂
Ω1 ⊂⊂ Ω, then the following estimate holds for the supremum of |u| on the whole of Ω0:

sup
x∈Ω0

g(|u(x)|) ≤ C2

[∫
Ω1

g(|∇u(x)|) dx +
∫
Ω1

g(|u(x)|) dx
]
, (12)

where C2 depends only on m, n and on dist(Ω0, ∂Ω1).

3 Proof of results

The core of the proof of Theorem 2.7 is given by the following result, whose proof will
be obtained by a suitable iteration technique.

Proposition 3.1 Under the same hypotheses of Theorem 2.7, let u ∈ W 1,1
loc (Ω;RN) be

a local minimizer of F . Then u is locally bounded. Moreover, for all Ω0 ⊂⊂ Ω, x0 ∈ Ω0,
for all ρ, R such that 0 < ρ < R ≤ min{1, dist(x0, ∂Ω0)} and for every α > 1, one has

sup
x∈Bρ

g(x, |u(x)|) ≤ C


 1

(R− ρ)
ms(n−1)

s−mn

[∫
BR

(
1 + g

n
n−1 (x, |u(x)|)

)
dx

]n−1
n




α

, (13)

where C depends on α, m, s, Λ1 and ‖γ‖
Ls(Ω0)

.

Before proving Proposition 3.1, let us observe that the right hand side of (13) is
finite, since the following version of the Sobolev-Poincaré embedding holds.

Proposition 3.2 Assume that g satisfies (i)–(iii), and let u be a function in W 1,1
loc (Ω;RN)

such that g(x, |∇u|) ∈ L1
loc(Ω). Then for all open sets Ω0 ⊂⊂ Ω there exist R0 > 0, de-

pending on n, m, s, ‖γ‖
Ls(Ω0)

and ‖∇u‖
L1(Ω0)

, and C = C(n,m) > 0 such that for every

x0 ∈ Ω0, for every R such that 0 < R ≤ min{dist(x0, ∂Ω0), R0}, the following inequality
holds: [∫

BR

g
n

n−1 (x, |u− uR|) dx
]n−1

n ≤ C
∫

BR

g(x, |∇u|) dx . (14)

Proof of Proposition 3.2. For k > 0, let Tk(s) = min{s, k} be the truncation function
at height k. For x0 ∈ Ω0 let 0 < R ≤ min{1, dist(x0, ∂Ω0)}. By Remark 2.6 the function

g
(
x, Tk(|u(x)−uR|)

)
belongs to W 1,1(BR) for all k > 0, and the chain rule (9) holds for

this function. By Sobolev’s embedding, g(x, Tk(|u− uR|)) belongs to Ln/(n−1)(BR), and
one has

[∫
BR

g
n

n−1

(
x, Tk(|u− uR|)

)
dx

]n−1
n

≤ c1(n)
{∫

BR

∣∣∣∇(
g
(
x, Tk(|u− uR|)

))∣∣∣ dx +
∫

BR

g
(
x, Tk(|u− uR|)

)
dx

}

≤ c1(n)
{∫

BR

gt

(
x, Tk(|u− uR|)

) ∣∣∣∇Tk(|u− uR|)
∣∣∣ dx

+
∫

BR

∣∣∣gx

(
x, Tk(|u− uR|)

)∣∣∣ dx +
∫

BR

g
(
x, Tk(|u− uR|)

)
dx

}
= c1(n) {I1 + I2 + I3} .
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On the other hand from (5), (3) and Hölder’s inequality one obtains

I1 ≤ m
[∫

BR

g
(
x, Tk(|u− uR|)

)
dx +

∫
BR

g
(
x, |∇Tk(|u− uR|)|

)
dx

]

≤ m

[
|BR|1/n

(∫
BR

g
n

n−1

(
x, Tk(|u− uR|)

)
dx

)n−1
n

+
∫

BR

g(x, |∇u|) dx
]
,

where |BR| denotes the n-dimensional Lebesgue measure of BR. Similarly

I3 ≤ |BR|1/n
(∫

BR

g
n

n−1

(
x, Tk(|u− uR|)

)
dx

)n−1
n

.

Finally, from hypothesis (iii) one obtains, for every δ > 0,

|gx(x, t)| ≤ c(δ)γ(x)g(x, t)(1 + t)δ for every t ≥ 0, for a.e. x ∈ Ω (15)

so that Hölder’s inequality yields

I2 ≤ c(δ)
∫

BR

γ(x)g
(
x, Tk(|u− uR|)

)(
1 + Tk(|u− uR|)

)δ
dx

≤ c(δ)
[∫

Ω0

γs(x) dx
] 1

s
[∫

BR

g
n

n−1

(
x, Tk(|u− uR|)

)
dx

]n−1
n ×

×
[∫

BR

(1 + |u− uR|)
δns
s−n dx

] s−n
ns

.

If we choose (for instance) δ =
s− n

sn(n− 1)
, it follows that

δns

s− n
=

1

n− 1
, and therefore,

using the usual Sobolev-Poincaré inequality, one has, for R < 1,

[∫
BR

(1 + |u− uR|)
δns
s−n dx

] s−n
ns ≤ |BR|

s−n
ns +

[∫
BR

|u− uR|
n

n−1 dx
] s−n

n2s |BR|
(s−n)(n−1)

n2s

≤ |BR|
s−n
ns + c2(n, s)

[∫
Ω0

|∇u| dx
] s−n

sn(n−1) |BR|
(s−n)(n−1)

n2s

≤ c3

(
n, s, ‖∇u‖

L1(Ω0)

)
|BR|

(s−n)(n−1)

n2s ,

so that

I2 ≤ c4

[∫
Ω0

γs(x) dx
] 1

s
[∫

BR

g
n

n−1

(
x, Tk(|u− uR|)

)
dx

]n−1
n |BR|

(s−n)(n−1)

n2s ,

where c4 depends on n, s and ‖∇u‖
L1(Ω0)

Therefore we have proved that

[∫
BR

g
n

n−1

(
x, Tk(|u− uR|)

)
dx

]n−1
n

≤ c1(n)

{
(m + 1)|BR|1/n + c4

[∫
Ω0

γs(x) dx
] 1

s |BR|
(s−n)(n−1)

n2s

}
×

×
[∫

BR

g
n

n−1

(
x, Tk(|u− uR|)

)
dx

]n−1
n

+ c1(n)m
∫

BR

g(x, |∇u|) dx .
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It is now possible to choose R0 small enough (depending on n, m, s, ‖∇u‖
L1(Ω0)

and

‖γ‖
Ls(Ω0)

) so that for R ≤ R0 the quantity enclosed in brackets is smaller than 1/2c1(n).

Therefore for every R ≤ min{dist(x0, ∂Ω0), R0} one has

[∫
BR

g
n

n−1 (x, Tk(|u− uR|)) dx
]n−1

n ≤ 2c1(n)m
∫

BR

g(x, |∇u|) dx .

Letting k tend to infinity, one obtains (14).

Remark 3.3 We point out that in the proof of Proposition 3.2 we have only used the
assumption s > n. We also observe that, in the case where g does not depend on x, the
term I2 does not appear, and therefore the radius R0 only depends on m and n.

Proof of Proposition 3.1 Since, for almost every x ∈ Ω, g(x, ·) is differentiable, convex

and of class ∆
(m)
2 , it is possible to prove, proceeding as in Theorem 1.2 of [18], that every

local minimizer u of functional (1) satisfies the weak form of the Euler system, that is,

∫
Ω

n∑
i=1

Fξα
i
(x,∇u) Φα

xi
dx = 0 , α = 1, . . . , N (16)

for every Φ = (Φα)α=1,...,N ∈ W 1,1(Ω;RN) with compact support in Ω and such that
F (x,∇Φ) belongs to L1(Ω). Observe that, by Proposition 3.2, if u is a local min-
imizer, then g(x, |∇u|) and g

n
n−1 (x, |u|) are locally integrable. For 0 < ρ < R ≤

min{1, dist(x0, ∂Ω0)}, we take

Φα = ηmΨ(x, |u|)uα

as test function in (16), where η is a function such that

η ∈ C1
0(BR) , 0 ≤ η ≤ 1 in BR , η ≡ 1 in Bρ , and |∇η| ≤ 2

R− ρ
,

while Ψ(x, t) satisfies:

(Ψ1) Ψ : Ω × [0,+∞) → [0,+∞) is a bounded Caratheodory function;

(Ψ2) the derivative Ψt(x, t) with respect to t is a nonnegative bounded Caratheodory
function such that Ψt(x, t)t is bounded;

(Ψ3) for all t ≥ 0, Ψ(·, t) has weak derivatives in L1
loc(Ω), which are Caratheodory

function on Ω× [0,+∞), and are such that there exists z ∈ Ls
loc(Ω), with s > nm,

such that
|Ψx(x, t)| ≤ z(x) for every t ≥ 0, for a.e. x ∈ Ω.

By Remark 2.6, Φ ∈ W 1,1
0 (Ω;RN) and the chain rule of differentiation gives

Φα
xi

= mηm−1ηxi
Ψ(x, |u|)uα + ηmΨ(x, |u|)uα

xi
(17)

+ ηmuαΨxi
(x, |u|) + ηmuα Ψt(x, |u|)

|u|
N∑

β=1

uβuβ
xi
.
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We claim that g(x, |∇Φ|) ∈ L1(Ω). Indeed, using inequality (6),

g(x, |∇Φ|) ≤ 22(m−1)
{
g
(
x,mηm−1|∇η|Ψ(x, |u|) |u|

)
+ g

(
x, ηmΨ(x, |u|)|∇u|

)
+ g

(
x, ηm|u||Ψx(x, |u|)|

)
+ g

(
x, ηmΨt(x, |u|)|u||∇u|

)}
.

Since Ψ(x, |u|) and Ψt(x, |u|)|u| are bounded, one obtains

g(x, |∇Φ|) ≤ c
(
g(x, |u|) + g(x, |∇u|) + g(x, z(x)|u|)

)

for some constant c. Since

g(x, z(x)|u|) ≤ [1 + z(x)]mg(x, |u|) ,

recalling that g(x, |u|) ∈ L
n

n−1

loc (Ω) and that [1 + z(x)]m ∈ L
s/m
loc (Ω), one obtains that

g(x, |∇Φ|) ∈ L1(Ω), and therefore we can use Φ as test function in (16). Since

Fξα
i
(x, ξ) =

gt(x, |ξ|)
|ξ| ξα

i ,

summing the Euler system (16) with respect to α gives

0 =
∫ ∑

i,α

gt(x, |∇u|)
|∇u| mηm−1Ψ(x, |u|)uα

xi
ηxi

uα dx

+
∫ ∑

i,α

gt(x, |∇u|)
|∇u| ηmΨ(x, |u|)uα

xi
uα

xi
dx

+
∫ ∑

i,α

gt(x, |∇u|)
|∇u| ηmuα

xi
uαΨxi

(x, |u|) dx (18)

+
∫ ∑

i,α,β

gt(x, |∇u|)
|∇u| ηm Ψt(x, |u|)

|u| uαuβuα
xi
uβ

xi
dx

= I1 + I2 + I3 + I4 .

We estimate I2 and I4.

I2 =
∫

ηmgt(x, |∇u|)|∇u|Ψ(x, |u|) dx ;

I4 =
∫

ηm gt(x, |∇u|)
|∇u|

Ψt(x, |u|)
|u|

∑
i

(∑
α

uα
xi
uα

)2
dx ≥ 0 .

Therefore we get:

∫
ηmgt(x, |∇u|)|∇u|Ψ(x, |u|) dx (19)

≤ m
∫

ηm−1gt(x, |∇u|)Ψ(x, |u|)|u| |∇η| dx +
∫

ηmgt(x, |∇u|) |Ψx(x, |u|)| |u| dx .

Let now q be a positive constant, and let hk(t) : [0,+∞) → [0,+∞) be a sequence of
bounded, smooth, increasing functions such that hk is constant for large t, hk(t), h

′
k(t)

are increasing with respect to k and tend to tq, qtq−1 respectively, for every t ≥ 0. Then,

9



for every k, Ψ(x, t) = hk(g(x, t)) satisfies assumptions (Ψ1)–(Ψ3), and can therefore be
used in (19). We obtain∫

ηmgt(x, |∇u|)|∇u|hk(g(x, |u|)) dx

≤ m
∫

ηm−1gt(x, |∇u|)hk(g(x, |u|))|u| |∇η| dx

+
∫

ηmgt(x, |∇u|)h′
k(g(x, |u|)) |gx(x, |u|)| |u| dx ,

and therefore it is possible to pass to the limit for k → ∞ by monotone convergence,
obtaining, by inequality (15),∫

ηmgt(x, |∇u|)|∇u|gq(x, |u|) dx

≤ m
∫

ηm−1gt(x, |∇u|)gq(x, |u|)|u||∇η| dx (20)

+ c1(δ)q
∫

ηmgt(x, |∇u|)gq(x, |u|)γ(x)|u|(1 + |u|)δ dx

= A + B .

By (5) and (3), with t1 = |∇u| and t2 = 4m|u||∇η|/η, for a.e. x ∈ Ω one has

gt(x, |∇u|)m|u||∇η|
η

≤ 1

4
gt(x, |∇u|)|∇u| + 23m−2mm+1

ηm(R− ρ)m
g(x, |u|) .

Therefore

A ≤ 1

4

∫
gt(x, |∇u|)|∇u|ηmgq(x, |u|) dx +

c2

(R− ρ)m

∫
BR

gq+1(x, |u|) dx , (21)

where c2 = 23m−2mm+1. Moreover, using again (5) and (3), and recalling that γ(x) ≥ 1
for a.e. x ∈ Ω, we obtain

c1qγ(x)gt(x, |∇u|)|u|(1 + |u|)δ

≤ 1

4
gt(x, |∇u|)|∇u| + m

4
g
(
x, 4c1qγ(x)|u|(1 + |u|)δ

)

≤ 1

4
gt(x, |∇u|)|∇u| + m4m−1cm

1 (q + 1)mγm(x)(1 + |u|)δmg(x, |u|) .

Since
1 + t ≤ c3(1 + g(x, t)) (22)

for every t ≥ 0 and almost every x ∈ Ω, with c3 = c3(Λ1), we can conclude that

B ≤ 1

4

∫
ηmgt(x, |∇u|)|∇u|gq(x, |u|) dx (23)

+ c4(q + 1)m
∫

BR

γm(x)
(
1 + gq+1+δm(x, |u|)

)
dx ,

where c4 depends on m, Λ1 and δ. Then, putting (20), (21) and (23) together, we obtain

∫
gt(x, |∇u|)|∇u|gq(x, |u|)ηm dx ≤ c5(q + 1)m

(R− ρ)m

∫
BR

γm(x)
(
1 + gq+1+δm(x, |u|)

)
dx ,

(24)
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where c5 = 4 max{c2, c4}. If we now define

w = ηm
(
1 + gq+1(x, |u|)

)
,

by Remark 2.6 this function belongs to W 1,1
0 (Ω), with

wxi
= mηm−1ηxi

(1 + gq+1(x, |u|)) + (q + 1)ηmgq(x, |u|)gxi
(x, |u|)

+ (q + 1)ηmgq(x, |u|)gt(x, |u|)
|u|

∑
α

uαuα
xi
, (25)

as soon as the right hand side of (25) belongs to L1(Ω). Since (5) and (3) imply that

gt(x, |u|)|∇u| ≤ gt(x, |∇u|)|∇u| + mg(x, |u|) ,

taking (25), (15), (22) and (24) into account, since R− ρ < 1, we deduce that∫
|∇w| dx ≤ 2m

R− ρ

∫
BR

(
1 + gq+1(x, |u|)

)
dx

+ c(δ,Λ1)(q + 1)
∫

BR

γ(x)
(
1 + gq+1+δ(x, |u|)

)
dx

+
c5(q + 1)m+1

(R− ρ)m

∫
BR

γm(x)
(
1 + gq+1+δm(x, |u|)

)
dx

+ m(q + 1)
∫

BR

gq+1(x, |u|) dx

≤ c6θ
m+1

(R− ρ)m

∫
BR

γm(x)
(
1 + gθ+δm(x, |u|)

)
dx ,

where θ = q + 1, and c6 depends on m, Λ1, δ and R0. By Sobolev’s embedding theorem
applied to w, we get

[∫
Bρ

(
1 + gθ(x, |u|)

)1∗

dx

] 1
1∗

≤ c6θ
m+1

(R− ρ)m

∫
BR

γm(x)
(
1 + gθ+δm(x, |u|)

)
dx , (26)

where, following the standard notation, we have set 1∗ =
n

n− 1
. We now estimate the

right-hand side of (26). Using Hölder’s inequality with exponents
s

m
and

s

s−m
, we

obtain ∫
BR

γm(x)
(
1 + gθ+δm(x, |u|)

)
dx

≤
[∫

BR

γs(x) dx
]m

s
[∫

BR

(
1 + gθ+δm(x, |u|)

) s
s−m dx

] s−m
s

.

Let σ be a number such that
s

s−m
< σ < 1∗; again by Hölder’s inequality, since

1 + gθ+δm(x, |u|) ≤
(
1 + gθ(x, |u|)

) (
1 + gδm(x, |u|)

)
,

we obtain∫
BR

(
1 + gθ+δm(x, |u|)

) s
s−m dx

≤
[∫

BR

(
1 + gθ(x, |u|)

)σ
dx

] s
σ(s−m)

[∫
BR

(
1 + gδm(x, |u|)

) sσ
σ(s−m)−s dx

]1− s
σ(s−m)

,
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so that, choosing δ such that
δmsσ

σ(s−m) − s
= 1∗ , (27)

we get

∫
BR

γm(x)
(
1 + gθ+δm(x, |u|)

)
dx

≤ c7

[∫
Ω0

γs(x) dx
]m

s
[∫

BR

(
1 + g1∗(x, |u|)

)
dx

] s−m
s

− 1
σ

[∫
BR

(
1 + gθ(x, |u|)

)σ
dx

] 1
σ

,

where c7 = c7(m, s, σ). Since 1+ t1
∗ ≤ (1+ t)1∗ and (1+ t)σ ≤ 2σ−1(1+ tσ), (26) becomes

[∫
Bρ

(
1 + gθ1∗(x, |u|)

)
dx

] 1
1∗

(28)

≤ c8θ
m+1

(R− ρ)m

[∫
BR

(
1 + g1∗(x, |u|)

)
dx

] s−m
s

− 1
σ

[∫
BR

(
1 + gθσ(x, |u|)

)
dx

] 1
σ

,

where c8 depends on m, s, σ, Λ1 and ‖γ‖
Ls(Ω0)

. This holds under the only requirement

that g(x, |u|) ∈ Lθσ(BR). We now fix R̄, ρ̄ such that 0 < ρ̄ < R̄ ≤ min{1, dist(x0, ∂Ω0)}.
For all j = 1, 2, . . ., we set

ρj = ρ̄ +
R̄− ρ̄

2j−1
, θj =

(
1∗

σ

)j

, Aj =

[∫
Bρj

(
1 + gθjσ(x, |u|)

)
dx

] 1
θjσ

.

For ρ = ρj+1, R = ρj and θ = θj, (28) gives

Aj+1 ≤
(

c8M

(R̄− ρ̄)m

) 1
θj

θ
m+1

θj

j 2
jm
θj Aj , with M =

[∫
BR̄

(
1 + g1∗(x, |u|)

)
dx

] s−m
s

− 1
σ

. (29)

By iterating (29), we obtain

Aj+1 ≤
(

c8M

(R̄− ρ̄)m

)∑j

k=1
1

θk


 j∏

k=1

θ
1

θk
k




m+1

2
m

∑j

k=1
k

θk A1

(note that, by Proposition 3.2, M , the term A1, and therefore every Aj, are finite). Since

+∞∑
k=1

1

θk

=
σ

1∗ − σ
,

+∞∑
k=1

k

θk

=
+∞∑
k=1

k
(
σ

1∗

)k

< +∞ ,
+∞∏
k=1

θ
1

θk
k = exp

(
+∞∑
k=1

ln θk

θk

)
< +∞ ,

we conclude that, for every j ∈ N,

Aj ≤ c9

(
c8M

(R̄− ρ̄)m

) σ
1∗−σ

[∫
BR̄

(
1 + g1∗(x, |u|)

)
dx

] 1
1∗

,

with c9 = c9(n, σ); recalling the meaning of M , the last inequality can be rewritten as

Aj ≤ C


 1

(R̄− ρ̄)
ms(n−1)

s−mn

[∫
BR̄

(
1 + g

n
n−1 (x, |u(x)|)

)
dx

]n−1
n




α

, (30)
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where α = α(σ) =
σ(s−mn)

s(n− σ(n− 1))
, and C depends on α (or, which is equivalent, on

σ), n, m, s, Λ1 and ‖γ‖
Ls(Ω0)

. Note that, depending on the choice of σ, the exponent α

can assume any value greater than 1. Finally

sup
Bρ̄

g(x, |u|) = lim
j→+∞

[∫
Bρ̄

gθjσ(x, |u|) dx
] 1

θjσ

≤ lim sup
j→+∞

Aj . (31)

Replacing R̄ and ρ̄ with R and ρ respectively, (13) follows from (30) and (31).

Remark 3.4 If one assumes hypothesis (8) instead of (7), then one should use equality
(27) to define σ, and then observe that (8) is equivalent to σ < 1∗.

Proof of Theorem 2.7. The proof follows easily by putting Propositions 3.1 and 3.2
together, and observing that, if u is a local minimum, then so is u− uR.

Proof of Theorem 2.8. By proceeding as in the previous proof, it is not difficult to
check that in this case inequality (26) can be replaced by

[∫
Bρ

gθ1∗(|u|) dx
] 1

1∗

≤ c7θ

(R− ρ)m

∫
BR

gθ(|u|) dx ,

where c7 depends on m and n. Therefore, by adapting the iteration to this case, es-
timate (11) follows easily. To prove the “global” estimate (12), let us choose R <
min{R0, dist(Ω0, ∂Ω1)}. Let {BR/2(xk)}, k = 1, 2, . . . ,M , be a covering of Ω0 with balls
of radius R/2. then, if we set uk

R = −∫BR(xk) u(x) dx, we can write

sup
x∈Ω0

g(|u(x)|) ≤ 2m−1
[
max

k
sup

x∈B R
2

(xk)
g(|u(x) − uk

R|) + max
k

g(|uk
R|)

]
.

By the estimate (11) we obtain

sup
x∈B R

2
(xk)

g(|u(x) − uk
R|) ≤ c(m,n,R)

∫
BR(xk)

g(|∇u|) dx ≤ c(m,n,R)
∫
Ω1

g(|∇u|) dx .

On the other hand, by Jensen’s inequality, one has

g(|uk
R|) = g

(∣∣∣∣∣−
∫

BR(xk)
u dx

∣∣∣∣∣
)
≤ −

∫
BR(xk)

g(|u|) dx ≤ 1

Rn

∫
Ω1

g(|u|) dx .

Putting the last three estimates together, one obtains (12).
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