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Abstract

We prove an existence result for a class of parabolic problems whose principal part is

the p-Laplace operator or a more general Leray-Lions type operator, and featuring an

additional first order term which grows like |∇u|p. Here the spatial domain can have

infinite measure, and the data may be not regular enough to ensure the boundedness

of solutions. As a consequence, solutions are obtained in a class of functions with

exponential integrability. An existence result of bounded solutions is also given under

additional hypotheses.

Sunto

In questo articolo si dimostra un risultato di esistenza per una classe di problemi

parabolici la cui parte principale è l’operatore p-Laplaciano, oppure un operatore più

generale del tipo di Leray-Lions, e in cui compare un termine aggiuntivo del primo

ordine che cresce come |∇u|p. Il dominio spaziale in cui si risolve il problema può

avere misura infinita, e i dati possono non avere la regolarità necessaria per garantire

la limitatezza delle soluzioni. Di conseguenza, si ottengono soluzioni in una classe di

funzioni con integrabilità esponenziale. Sotto ipotesi più forti, si prova l’esistenza di

soluzioni limitate.
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1 Introduction

In this paper we deal with existence results for nonlinear parabolic problems
with first order terms having natural growth with respect to the gradient. More
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precisely, the model problem we refer to is



ut − ∆pu = d|∇u|p + f(x, t) in QT = Ω × (0, T ),

u(x, t) = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x) in Ω,

(1)

where 1 < p < N , ∆pu is the p-Laplace operator and

f(x, t) ∈ Lr(0, T ;Lq(Ω)) , (2)

where q, r > 1 are such that

q
r − 1
r

≥ N

p
. (3)

We point out that Ω is a general open set in RNwhich may have infinite measure.
No regularity requirement is assumed on ∂Ω. Assuming for simplicity that the
initial datum u0 satisfies

∫
Ω

(
eλ|u0| − 1

)2

dx < +∞ , for every λ ∈ R, (4)

we are able to prove the existence of at least one solution u to problem (1), such
that |u|α(eλ|u|−1) ∈ Lp(0, T ;D1,p

0 (Ω)) for every positive number λ, and for suffi-
ciently large α. We also prove that such a solution belongs to Lp(0, T ;W 1,p(Ω0))
for every bounded open set Ω0 ⊂ Ω. In fact the assumption on the initial datum
can be weaker than (4) (see hypotheses (I1) and (I2) in the next section for the
precise statement). For instance, one can assume that hypothesis (4) only holds
for some fixed λ (which has to be large enough), but in this case one obtains a
correspondingly weaker integrability of the solution (see Theorem 1 below).

Moreover, if a strict inequality holds in (3) and u0 is supposed to belong to
L∞(Ω)∩L2(Ω), we can prove that these solutions are also bounded in QT . We
recall that, in the case where Ω is bounded and d = 0 (that is, if there is no
first-order term in the right-hand side of (1)), Aronson and Serrin proved in [1]
that the solutions are bounded if q(r − 1)/r > N/p, and the result is sharp.

We use here a different technique to prove the same result in our more general
framework.

If Ω is bounded, the previous solutions have finite energy, i.e., they belong to
Lp(0, T ;W 1,p

0 (Ω)). If Ω is a general domain and f(x, t) only satisfies hypothesis
(2), we cannot say that the distributional solutions found by our method have
finite energy, since we cannot obtain Lp-estimates on the gradient of u outside
a bounded domain and where u is “small”.

If one is interested in solutions having finite energy, one needs an additional
hypothesis on f(x, t), i.e., f(x, t) ∈ Lρ(0, T ;Lσ(Ω)), where ρ and σ are the
Hölder conjugate exponents of those given by the classical Gagliardo-Nirenberg
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interpolation inequality (see Remark 4 below). In this case, under hypothesis
(4), we can prove the existence of solutions which satisfy

eλ|u| − 1 ∈ Lp(0, T ;D1,p
0 (Ω)) ∩ L∞(0, T ;L2(Ω)) , for every λ > 0. (5)

As before, the solutions we find are also bounded if the inequality in (3) is strict
and the initial datum u0 is bounded.

Let us recall some known results in the case where Ω is a bounded open
set. Existence of weak bounded solution for a Cauchy problem like (1), whose
principal part is a quasilinear parabolic operator, was proved by Boccardo,
Murat and Puel in [4], if p = 2 (see also Orsina and Porzio [21], and Grenon
[16] for more general principal part, and growth of order p �= 2). In Landes,
Mustonen [18] and Dall’Aglio, Orsina [9] the existence of unbounded solutions
was proved under a sign assumption on the first-order term. In the present
paper there is no such assumption. However, once this work was completed,
we learned that a similar problem has been studied by Ferone, Posteraro and
Rakotoson [14] and [15] in the case of unbounded solutions on a domain with
finite measure. If we restrict our attention to bounded domains, the results
concerning existence of unbounded solutions are analogous in our paper and
theirs.

As far as the corresponding stationary problem is concerned, existence of
bounded solutions satisfying Dirichlet boundary conditions was proved in several
papers by Boccardo, Murat and Puel ([3], [6], see also Ferone, Posteraro and
Rakotoson [13] and references therein). Unbounded solutions are found in [2],
where a sign condition on the first order term is assumed, and in Ferone, Murat
[12] with no sign assumption. For the stationary problem in domains having
infinite measure, as far as we know the only references are Donato and Giachetti
[11] and Dall’Aglio, Giachetti and Puel [8]. In all the mentioned papers the use
of test functions of exponential type allows to get rid of the term |∇u|p and
therefore is an essential tool in the proof. Here we make use of the same kind
of test functions.

To obtain the existence result, since Ω can have infinite measure, we proceed
by solving some approximate problems in bounded sets Ωn.

It is worth noticing that we have to prove uniform estimates on the solu-
tions un, avoiding arguments which involve either the measure of Ωn or any
embedding result between Lebesgue spaces.

The plan of this article is the following. In Section 2 we state the hypotheses
on problem (1), the approximation method and the main theorems. Section 3 is
devoted to prove estimates on un, solution of the approximate problems, under
various hypotheses on the source term f(x, t). In Section 4, we prove local
strong convergence of ∇un, while Section 5 is devoted to the proof of the main
theorems.
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2 Assumptions and main result

Let T be a positive number and Ω an open subset of RN , possibly of infinite
measure. We denote by Γ its boundary, by QT the cilinder

QT = Ω × (0, T )

and by ΣT its lateral boundary

ΣT = Γ × (0, T ) .

We are interested in proving the existence of solutions u = u(x, t) for the fol-
lowing Cauchy problem



ut − div a(x, t, u,∇u) = H(x, t, u,∇u) + f(x, t) in QT ,

u = 0 on ΣT ,

u(·, 0) = u0 in Ω.

(P̃)

The model problem we refer to is the following:


ut − ∆pu = d|∇u|p + f in QT ,

u = 0 on ΣT ,

u(·, 0) = u0 in Ω,

where ∆p is the p-Laplace operator (i.e., ∆pu = div (|∇u|p−2∇u)), with 1 <
p < N , and d is a constant.

More generally we will assume the following hypotheses on the terms which
appear in (P̃).

Assumptions on the data:
f(x, t) : Ω × (0, T ) → R is a measurable function such that:

(F1) f(x, t) ∈ Lr(0, T ;Lq(Ω)) , with 1 < r, q < ∞ ,
q

r′
≥ N

p
.

u0(x) : Ω → R is a measurable function satisfying

(I1)
∫

{|u0|>1}

eλ̄|u0| dx < +∞ , for some λ̄ >
p′d

Λ2
,

(I2)
∫

{|u0|≤1}

|u0|ᾱ+2 dx < +∞ , for some ᾱ ≥ 0 .
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Remark 1 Assumption (I2) is obviously satisfied for every α ≥ 0 if Ω has finite
measure.

Assumptions on a(x, t, s, ξ):
a(x, t, s, ξ) : Ω × (0, T ) × R × RN → RN is a Carathéodory vector-valued
function (i.e., it is measurable with respect to (x, t) for every (s, ξ) ∈ R×RN ,
and continuous with respect to (s, ξ) for almost every (x, t) ∈ QT ) such that

(A1) there exist constants Λ1, γ > 0 such that

|a(x, t, s, ξ)| ≤ Λ1

(
k1(x, t) + |s|γ + |ξ|p−1

)
for almost every (x, t) ∈ QT and for every (s, ξ) ∈ R×RN , where k1(x, t)
is a positive function such that

kp
′

1 ∈ Lr1(0, T ;Lq1(Ω)) , with 1 < r1, q1 < ∞ ,
q1
r′1

≥ N

p
, (6)

(here p′ denotes Hölder’s conjugate exponent of p, defined by 1
p + 1

p′ = 1),
and γ is any positive number;

(A2) there exists a constant Λ2 > 0 such that

a(x, t, s, ξ) · ξ ≥ Λ2|ξ|p

for almost every (x, t) ∈ QT and for every (s, ξ) ∈ R × RN ;

(A3) [a(x, t, s, ξ) − a(x, t, s, η)] · (ξ − η) > 0

for almost every (x, t) ∈ QT , for every s ∈ R and ξ, η ∈ RN , with ξ �= η.

Assumptions on H(x, t, s, ξ):
H(x, t, s, ξ) : Ω × (0, T ) ×R×RN → R is a Carathéodory function such that:

(H) there exists a constant d > 0 such that for almost every (x, t) ∈ QT and
for every (s, ξ) ∈ R × RN

|H(x, t, s, ξ)| ≤ d|ξ|p .

Remark 2 It is obvious from the proofs of the results that the last assumption
might be replaced by

|H(x, t, s, ξ)| ≤ d|ξ|p + f1(x, t) ,

with f1 satisfying the same hypotheses as f .
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Let us point out that one can always suppose that a lower order term µu, with
µ > 0, appears in the left-hand side of the equation of problem (P̃). Indeed, if
we consider the function v(x, t) = e−µtu(x, t), it is easy to verify that it satisfies



vt − div ã(x, t, v,∇v) + µv = H̃(x, t, v,∇v) + f̃(x, t) in QT ,

v = 0 on ΣT ,

v(·, 0) = u0 in Ω,

where ã(x, t, s, ξ) = e−µta(x, t, eµts, eµtξ), H̃(x, t, s, ξ) = e−µtH(x, t, eµts, eµtξ),
f̃(x, t) = e−µtf(x, t) satisfy the same kind of hypotheses as a, H and f , respec-
tively. For this reason in the sequel we will refer to the following problem



ut − div a(x, t, u,∇u) + µu = H(x, t, u,∇u) + f(x, t) in QT ,

u = 0 on ΣT ,

u(·, 0) = u0 in Ω.

(P)

with µ > 0.
We denote by D1,p

0 (Ω) the Banach space defined as the closure of C∞
0 (Ω)

with respect to the norm ‖∇u‖
Lp(Ω)

. The first result we are going to prove is
the following.

Theorem 1 Assume that (F1), (I1), (I2), (A1)–(A3), (H) are satisfied. Then
there exists at least one solution u of (P) in the sense of distributions such that,
for every bounded open set Ω0 ⊂ Ω,

u ∈ Lp(0, T ;W 1,p(Ω0)) , (7)

e
λ̄
p |u| − 1 ∈ Lp(0, T ;W 1,p(Ω0)) ∩ L∞(0, T ;Lp(Ω0)) . (8)

Moreover u satisfies:
1) (estimates for large values of u)∫ ∫

QT ∩{|u|>1}

eλ̄|u||∇u|p dx dt < ∞ , (9)

sup
t∈[0,T ]

∫
Ω∩{|u|>1}

eλ̄|u(x,t)| dx < ∞ . (10)

2) (estimates for small values of u). There exists α ≥ 0 such that∫∫
QT

|u|α|∇u|p dx dt < ∞ , (11)
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sup
t∈[0,T ]

∫
Ω

|u(x, t)|α+2 dx < ∞ . (12)

Remark 3 If Ω is a bounded set, we can take Ω0 = Ω in (7), (8) and therefore

e
λ̄
p |u| − 1 ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(0, T ;Lp(Ω)) .

If one assumes a slightly stronger hypothesis on f(x, t) and u0, i.e., (F1) is
replaced by

(F1′) f(x, t) ∈ Lr(0, T ;Lq(Ω)) , with 1 < r, q < ∞ ,
q

r′
>
N

p
.

and (I1) is replaced by

(I1′) u0 ∈ L∞(Ω) ,

then one can prove the boundedness of the solutions found by Theorem 1. More
precisely we have:

Theorem 2 Assume that (F1′), (I1′), (I2), (A1)–(A3), (H) are satisfied. Then
the solution found by Theorem 1 satisfies

u ∈ L∞(Q) . (13)

We point out that in Theorems 1 and 2, for unbounded domains, we do not
know that the solutions we find have finite energy, that is, u ∈ Lp(0, T ;W 1,p

0 (Ω)).
Indeed we cannot obtain estimates outside a bounded domain and where u is
“small”. If we assume some additional hypotheses on the data f and u0, namely

(F2)




f(x, t) ∈ Lρ(0, T ;Lσ(Ω)) , with ρ, σ such that

1 ≤ ρ ≤ p′ =
p

p− 1
,

2N
σ

+
Np− 2N + 2p

ρ
= Np−N + 2p

(I3)
∫
Ω

u2
0 dx < ∞ ,

then we can prove existence of solutions having finite energy. More precisely:

Theorem 3 Assume that (A1)–(A3), (H) are satisfied.

i) If f(x, t) satisfies (F1), (F2), and u0 satisfies (I1), (I3), then the solution
provided by Theorem 1 satisfies in addition

u ∈ Lp(0, T ;D1,p
0 (Ω)) ∩ L∞(0, T ;L2(Ω)) , (14)
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ii) If f(x, t) satisfies (F1′), (F2), and u0 satisfies (I1′), (I3), then the solution
provided by Theorem 1 satisfies in addition

u ∈ L∞(Q) ∩ L∞(0, T ;L2(Ω)) ∩ Lp(0, T ;D1,p
0 (Ω)) . (15)

Remark 4 Let us comment hypotheses (F1) (or (F1′)) and (F2) on the source
term f(x, t). As far as the hypotheses (F1) and (F1′) are concerned, we recall
that, in the case where Ω is bounded and d = 0, the curve (in the variables
p, q) defined by q(r − 1)/r = N/p is the threshold above which (i.e., if (F1′)
holds) the solution of the parabolic problem (P) is bounded, as proved in [1].
As far as (F2) is concerned, we remark that the numbers ρ, σ given by (F2) are
the Hölder conjugate exponents of those given (for m = 2, see below) by the
classical Gagliardo-Nirenberg embedding theorem which we now recall (see for
instance DiBenedetto [10]).

Lemma 1 Let Ω be a bounded open set of RN and T be a real positive number.
Let v(x, t) be a function such that

v ∈ L∞(0, T ;Lm(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)) ,

with 1 < p < N . Then v ∈ Lρ1(0, T ;Lσ1(Ω)), where

m ≤ σ1 ≤ Np

N − p
if m ≤ Np

N − p
,

Np

N − p
≤ σ1 ≤ m if

Np

N − p
≤ m,

p ≤ ρ1 ≤ ∞
and

mN

σ1
+
Np−m(N − p)

ρ1
= N , (16)

and the following estimate holds

T∫
0

‖v(t)‖ρ1

Lσ1 (Ω)
dt ≤ C(N, p,m) ‖v‖ρ1−p

L∞(0,T ;Lm(Ω))

T∫
0

‖∇v(t)‖p
Lp(Ω;RN )

dt . (17)

The proof of Theorems 1–3 will be obtained by approximation using the
following problems on bounded domains Qn,T = Ωn × (0, T ), where Ωn = Ω ∩
B(0, n) and B(0, n) is the ball of center 0 and radius n (we omit the dependence
on x and t for the sake of brevity):

(Pn)




∂un
∂t

− div a(un,∇un) + µun = Hn(un,∇un) + fn in Qn,T ,

un = 0 on ∂Ωn × (0, T ),

un(0) = u0,n in Ωn,
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with
Hn(x, t, s, ξ) = Tn(H(x, t, s, ξ)) , fn(x, t) = Tn(f(x, t)) , (18)

and Tn(s) is the truncation defined by

Tn(s) =
{
s if |s| < n ,
n sign(s) if |s| ≥ n . (19)

Moreover u0,n is a sequence such that

u0,n ∈ L∞(Ωn) ∩W 1,p
0 (Ωn) , u0,n → u0 a.e. in Ω, (20)

and such that u0,n is bounded in the same spaces as the initial datum u0, that
is, ∫

Ωn∩{|u0,n|>1}

eλ̄|u0,n| dx ≤ c if (I1) holds, (21)

∫
Ωn∩{|u0,n|≤1}

|u0,n|ᾱ+2 dx ≤ c if (I2) holds, (22)

‖u0,n‖
L∞(Ωn)

≤ c if (I1′) holds, (23)
∫
Ωn

u2
0,n dx ≤ c if (I3) holds (24)

(of course one could require more, for instance strong convergence in the respec-
tive spaces, but this will suffice). Such a regularization of the initial datum can
be obtained by a standard technique of truncation and convolution. Moreover
one can always assume that

lim
n→∞

1
n
‖u0,n‖

W 1,p
0 (Ωn)

= 0 . (25)

This condition will be used in the proof of the strong convergence of the gradients
∇un (see Section 4 below). It is well known (see [20]) that problems (Pn) admit
at least one distributional solution un ∈ L∞(Qn,T )∩Lp(0, T ;W 1,p

0 (Ωn)). In the
following Section 3, we will find a priori estimates for the solutions un.

3 Estimates

3.1 Estimates under hypotheses (F1), (I1), (I2):
unbounded solutions with infinite energy

This subsection is devoted to prove estimates on solutions un of problem (Pn),
when f(x, t) and u0(x) only satisfy (F1), (I1), (I2).
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Proposition 1 Assume (F1), (I1), (I2), (A2), (H) are satisfied, and let un be
a solution of (Pn). Then there exists a constant C, depending on the data, such
that:

1) (estimates for large values of un)
∫∫

Qn,T ∩{|un|>1}

eλ̄|un||∇un|p dx dt ≤ C , (26)

sup
t∈[0,T ]

∫
Ωn∩{|un|>1}

eλ̄|un(x,t)| dx ≤ C . (27)

2) (estimates for small values of un). There exists α ≥ 0 such that
∫∫
Qn,T

|un|α|∇un|p dx dt ≤ C , (28)

sup
t∈[0,T ]

∫
Ωn

|un(x, t)|α+2 dx ≤ C . (29)

Moreover for every bounded open set Ω0 ⊂ Ω,
∫∫
Q0

|∇un|p ≤ C(Ω0) , (30)

where Q0
T = Ω0 × (0, T ).

Proof. Let α be a nonnegative number, and let η(s) : R → [−1, 1] be a
smooth, increasing, odd function, such that

η(s) = |s|αs for |s| ≤ 1
2

, η(s) = sign s for |s| ≥ 1 . (31)

Moreover we define the function

ϕ(s) = η(s) eλ̄|s| , (32)

and its primitive

Φ(s) =

s∫
0

ϕ(σ) dσ . (33)

We take ϕ(un) as test function in (Pn). Integrating on Qn,τ = Ωn × (0, τ), we
obtain (for simplicity of notation we omit the index n from here on)

∫
Ω

Φ(u(τ)) dx−
∫
Ω

Φ(u0) dx+ Λ2

∫∫
Qτ

|∇u|pϕ′(u)
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≤ d

∫∫
Qτ

|∇u|p|ϕ(u)| +
∫∫
Qτ

|f ||ϕ(u)| (34)

= d

∫∫
Qτ

|∇u|p|ϕ(u)| +
∫∫

Qτ∩{|u|>1}

|f ||ϕ(u)| +
∫∫

Qτ∩{|u|≤1}

|f ||ϕ(u)|

= A+B + C .

Using hypotheses (I1) and (I2), if α ≥ α0 one has
∫
Ω

Φ(u0) dx ≤ c1 (35)

It is immediate to check that (32) implies

ϕ′(s) ≥ λ̄|ϕ(s)| for every s ∈ R, (36)

therefore
A ≤ d

λ̄

∫∫
Qτ

|∇u|pϕ′(u). (37)

Before estimating the terms B and C, let us observe that, using Sobolev’s
inequality,

∫
Ω

|∇u(t)|pϕ′(u(t)) dx =
∫
Ω

|∇(Ψ(u(t)))|p dx ≥ c2(N, p)


∫

Ω

|Ψ(u(t))|p∗
dx




p
p∗

,

(38)
where

Ψ(s) =

|s|∫
0

ϕ′(σ)1/p dσ , (39)

while p∗ = Np/(N −p) denotes the Sobolev exponent of p. Let us observe that,
for every s such that |s| ≥ 1,

Ψ(s)p ≥ c3(λ̄, p)|ϕ(s)| , Φ(s) ≥ c4(λ̄)|ϕ(s)| , (40)

where c3 and c4 are positive constants. Since, by assumption (F1) 1 < q′ < p∗

p ,
one has

1
q′

=
1 − θ

1
+
θp

p∗
, with θ =

N

pq
∈ (0, 1) .

Therefore, using interpolation and (40), we can estimate the term B as follows:

B ≤
τ∫

0

‖f(t)‖
Lq‖ϕ(u(t))‖

Lq′ ({|u|>1})
dt
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≤
τ∫

0

‖f(t)‖
Lq‖ϕ(u(t))‖1−θ

L1({|u|>1})
‖ϕ(u(t))‖θ

Lp∗/p({|u|>1})
dt

≤ c5

τ∫
0

‖f(t)‖
Lq




∫
{|u|>1}

Φ(u(t)) dx




1−θ

‖Ψ(u(t))‖θp
Lp∗

({|u|>1})
dt (41)

≤ c2
4

(
Λ2 −

d

λ̄

) τ∫
0


∫

Ω

Ψ(u(t))p
∗
dx




p
p∗

dt

+c6

τ∫
0

‖f(t)‖ 1
1−θ

Lq


∫

Ω

Φ(u(t)) dx


 dt ,

where the constants depend only on the data. It is easy to check that

1
1 − θ

≤ r . (42)

As far as the term C is concerned, we observe that

|ϕ(s)| ≤ c7|s|α+1 , for every s such that |s| ≤ 1, (43)

Ψ(s) ≥ c8|s|
α+p

p , Φ(s) ≥ c9|s|α+2 , for every s ∈ R, (44)

where c7, c8, c9 depend on η and λ̄. Therefore

C ≤ c10

τ∫
0

‖f(t)‖
Lq




∫
{|u|≤1}

|u(t)|(α+1)q′ dx




1
q′

dt .

It is easy to check that, if one chooses α large enough, one has

α+ 2 < (α+ 1)q′ <
(α+ p)p∗

p
(45)

(in fact the second inequality holds for every nonnegative α by hypothesis (F1)).
Therefore, using interpolation and inequalities (44),

C ≤ c11

τ∫
0

‖f(t)‖
Lq




∫
{|u|≤1}

Φ(u(t)) dx




(α+1)θ̃
α+2

×




∫
{|u|≤1}

Ψ(u(t))p
∗
dx




(α+1)(1−θ̃)p
(α+p)p∗

dt

12



≤ c2
4

(
Λ2 −

d

λ̄

) τ∫
0


∫

Ω

Ψ(u(t))p
∗
dx




p
p∗

dt (46)

+ c12

τ∫
0

‖f(t)‖
α+p

α+p−(α+1)(1−θ̃)

Lq


∫

Ω

Φ(u(t)) dx




(α+1)(α+p)θ̃

(α+2)[α+p−(α+1)(1−θ̃)]

dt ,

where c11 and c12 depend only on the data of the problem, while θ̃ ∈ (0, 1) is
such that

1
(α+ 1)q′

=
θ̃

α+ 2
+

(1 − θ̃)p
(α+ p)p∗

.

It is easy to check that

α+ p

α+ p− (α+ 1)(1 − θ̃)
≤ r (47)

and that
(α+ 1)(α+ p)θ̃

(α+ 2)[α+ p− (α+ 1)(1 − θ̃)]
< 1 . (48)

Therefore, putting (34), (35), (37), (41), (46) together, taking (42), (47), (48)
into account, and setting

h(τ) =
∫
Ω

Φ(u(τ)) dx ,

one can write

h(τ)+
1
2

(
Λ2 −

d

λ̄

) ∫∫
Qτ

|∇u|pϕ′(u) ≤ c6

τ∫
0

g1(τ)h(τ) dt+c12

τ∫
0

g2(τ)h(τ)ν dt+c1 ,

where the functions

g1(t) = ‖f(t)‖ 1
1−θ

Lq(Ω)
, g2(t) = ‖f(t)‖

α+p

α+p−(α+1)(1−θ̃)

Lq(Ω)

belong to L1(0, T ), while ν < 1. An application of Gronwall’s lemma yields
that h(τ) is a bounded function, and that

∫∫
Qτ

|∇u|pϕ′(u) is also bounded. This

implies (26)–(29), for every α such that (45) holds. Finally, we have to prove
the “local” estimate (30). In view of (26), we only have to prove that

∫∫
Q0

T

|T1(un)|p ≤ C(Ω0) . (49)

In order to do this, let us consider a cut-off function χ(x) ∈ C1
0 (RN ) such that

0 ≤ χ(x) ≤ 1, χ(x) ≡ 1 on Ω0.

13



We use the test function χ(x)pϕ(T1(un)), where ϕ(s) =
(
eλ̄|s| − 1

)
sign s.

Note that (36) holds with this choice of ϕ. Defining

Φ1(s) =

s∫
0

ϕ(T1(σ)) dσ , (50)

we obtain, after integration on QT (as before we omit the index n):
∫∫
QT

|∇T 1(u)|pϕ′(T1(u))χp ≤ p

∫∫
QT

|a(x, t, u,∇u)| |ϕ(T1(u))| |∇χ|χp−1

+ d

∫∫
QT

|∇T 1(u)|p|ϕ(T1(u))|χp + d

∫∫
QT

|∇G1(u)|p|ϕ(T1(u))|χp (51)

+
∫∫
QT

|f | |ϕ(T1(u))|χp +
∫
Ω

Φ1(u0) dx = I1 + I2 + I3 + I4 + I5 .

The integrals I4 and I5 are bounded, and the same is true for I3, by the estimate
(26). Using (36), integral I2 can be absorbed by the left-hand side. Finally, as
far as I1 is concerned, for every ε > 0 we have, by Young’s inequality and (36):

I1 ≤ pΛ1

∫∫
QT

(
|k1(x, t)| + |u|γ + |∇T 1(u)|p−1 + |∇G1(u)|p−1

)
|ϕ(T1(u))| |∇χ|χp−1

≤ ε

∫∫
QT

|∇T 1(u)|pϕ′(T1(u))χp + c13(ε)
∫∫
QT

|ϕ(T1(u))| |∇χ|p

+ c14

∫∫
QT

(
|k1| + |u|γ + |∇G1(u)|p−1

)
.

By choosing ε small enough, the first integral in the right-hand side can be
absorbed by the left-hand side, while the two remaining integrals are bounded
by (26) and (27). Therefore (49) is proved.

3.2 Estimates under hypotheses (F1), (F2), (I1), (I3):
unbounded solutions with finite energy

In this subsection we look for an estimate on un in the case where hypotheses
(F1), (F2), (I1) and (I3) are assumed. The additional hypotheses (F2) and (I3)
will allow us to obtain a better estimate in the region where un is small, (i.e.,
un = T1(un)), which in general has infinite measure. This improvement consists
in taking α = 0 in estimates (28) and (29) of Proposition 1.

Proposition 2 Assume that (F1), (F2), (I1), (I3), (A2), (H) are satisfied.
Then the statement of Proposition 1 is true for α = 0.
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Proof. We choose ϕ(T1(un)) as test function, where ϕ(s) = (eλ̄|s| − 1) sign s.
We obtain, after integration on Qτ = Ω × (0, τ) (we again omit the index n)∫

Ω

Φ1(u(τ)) dx−
∫
Ω

Φ1(u0) dx+ Λ2

∫∫
Qτ

|∇T 1(u)|pϕ′(T1(u)) (52)

≤ d

∫∫
Qτ

|∇T 1(u)|p|ϕ(T1(u))| + d

∫∫
Qτ

|∇G1(u)|pϕ(1) +
∫∫
Qτ

|f | |ϕ(T1(u))| ,

where, as in Proposition 1, Φ1(s) is defined by (50). Using (52), (36) (which
also holds for this choice of ϕ), (26), we obtain∫

Ω

Φ1(u(τ)) dx+ c1

∫∫
Qτ

|∇T 1(u)|p ≤
∫∫
Qτ

|f | |ϕ(T1(u))| +
∫
Ω

Φ1(u0) dx+ c2 ,

where c1, c2 depend on the data. Taking the supremum on τ , and observing
that

Φ1(s) ≥ c3(λ̄)|T1(s)|2 for every s ∈ R,

|ϕ(s)| ≤ c4(λ̄)|s| for every s such that |s| ≤ 1,

one obtains

c3‖T1(u)‖2

L∞(0,T ;L2(Ω))
+ c1

∫∫
QT

|∇T 1(u)|p

≤ 2c4‖f‖
Lρ(0,T ;Lσ(Ω))

‖T1(u)‖
Lρ′

(0,T ;Lσ′
(Ω))

+ 2
∫
Ω

Φ1(u0) dx+ 2c2

≤ c5‖f‖
Lρ(0,T ;Lσ(Ω))

‖T1(u)‖
1− p

ρ′

L∞(0,T ;L2(Ω))


∫∫

QT

|∇T 1(u)|p



1
ρ′

(53)

+ 2
∫
Ω

Φ1(u0) dx+ 2c2

≤ c1
2

∫∫
Q

|∇T 1(u)|p + c6‖f‖ρ
Lρ(0,T ;Lσ(Ω))

‖T1(u)‖
(
1− p

ρ′
)
ρ

L∞(0,T ;L2(Ω))

+ 2
∫
Ω

Φ1(u0) dx+ 2c2 .

Here we have used hypothesis (F2) on f(x, t), the Gagliardo-Nirenberg inequal-
ity (17) (with m = 2) and Young’s inequality. Since the exponent

(
1 − p

ρ′

)
ρ is

less than 2, one obtains, again by Young’s inequality,

c3‖T1(u)‖2

L∞(0,T ;L2(Ω))
+
c1
2

∫∫
QT

|∇T 1(u)|p
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≤ c3
2
‖T1(u)‖2

L∞(0,T ;L2(Ω))
+ c7‖f‖

2ρ
2−ρ+p(ρ−1)

Lρ(0,T ;Lσ(Ω))
+ 2

∫
Ω

Φ1(u0) dx+ 2c2 .

The previous inequality implies (28), (29) with α = 0.

3.3 Bounded solutions

In this subsection we will prove that, if we replace (F1) by (F1′) (i.e., if the
exponents r and q satisfy a strict inequality) and (I1) by (I1′), the solutions
un are uniformly bounded in L∞(Qn,T ). To this aim we will adapt a technique
introduced by Stampacchia, which is based on the following lemma (see [24]):

Lemma 2 Let g be a nonnegative, nonincreasing function defined on the half
line [k0,∞). Suppose that there exist positive constants A, γ, β, with β > 1,
such that

g(h) ≤ A

(h− k)γ
g(k)β

for every h > k ≥ k0. Then g(k) = 0 for every k ≥ k1, where

k1 = k0 +A1/γ2β/(β−1)g(k0)(β−1)/γ .

It will be useful, moreover, to define the real function

Gk(s) = s− Tk(s) = (|s| − k)+ sign s , k > 0 , (54)

where Tk(s) is defined in (19), and the sets

An,k(t) = {x : |un(x, t)| > k} , An,k = {(x, t) : |un(x, t)| > k} .

Proposition 3 We assume (F1′), (I1′), (A2), (H). Then there exists a constant
C depending on the data such that

‖un‖
L∞(Qn,T )

≤ C . (55)

Proof.
We take ϕ(Gk(un)) χ(0,τ)(t) as test function in (Pn), where ϕ is defined by

(31), (32), k is greater than some positive k0 to be chosen hereafter, and the
exponent α in (31) is given by

α = r(p− 1) − p > −1 . (56)

In the case −1 < α < 0 we cannot use this function directly, since ϕ is not
smooth near zero, and we will have to take approximations. We will examine
this point below. For every H > 0, choosing (see (23))

k ≥ k0 = max
{

sup
n

‖u0,n‖
L∞(Ωn)

,
H

µ

}
,
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and using (36), we obtain (once again, we omit the dependence on n)
∫
Ω

Φ (Gk(u(τ))) dx+
(

Λ2 −
d

λ̄

) ∫∫
Qτ

|∇Gk(u)|pϕ′(Gk(u)) dx

+ µ

∫∫
Qτ

|u| |ϕ(Gk(u))|

≤
∫∫

{|f(t)|≤H}

|f | |ϕ(Gk(u))| +
∫∫

{|f(t)|>H}

|f | |ϕ(Gk(u))| ,

where the function Φ(s) is defined by (33). Since µk0 ≥ H, the first integral
in the right-hand side is smaller than the last integral of the left-hand side.
Therefore

sup
τ∈[0,T ]

∫
Ω

Φ (Gk(u(τ))) dx+ c1

T∫
0


∫

Ω

Ψ(u(t))p
∗
dx




p
p∗

dt

≤ 2
( ∫∫

Ak+1∩{|f(t)|>H}

|f | |ϕ(Gk(u))| +
∫∫

Ak\Ak+1

|f | |ϕ(Gk(u))|
)
, (57)

= 2(I + J) ,

where Ψ is defined as in (39). If α < 0, then the function ϕ is not Lipschitz
continuous near zero. For this reason we take, instead of η(s) defined in (31),
its smooth approximation

ηδ(s) =
(
η(|s| + δ) − η(δ)

)
sign s ,

where δ > 0. We also define

ϕδ(s) = ηδ(s)eλ̄|s| , Ψδ(s) =

|s|∫
0

(ϕ′
δ(σ))1/p dσ , Φδ(s) =

s∫
0

ϕδ(σ) dσ .

Since we have again

|ϕδ(s)| ≤
1
λ̄
ϕ′
δ(s) for every s ∈ R,

we obtain (57) for the approximate functions, and we can now pass to the limit
for δ → 0. Therefore (57) is proved in any case. By Hölder’s inequality,

I ≤ ‖f χ{|f |>H}‖
Lr(0,T ;Lq(Ω))

‖ϕ(Gk(u))χAk+1‖Lr′ (0,T ;Lq′ (Ω))
.

As in the proof of Proposition 1, using (40) one shows that

‖ϕ(Gk(u))χAk+1‖Lr′ (0,T ;Lq′ (Ω))
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≤ c2


 sup
τ∈[0,T ]

∫
Ω

Φ (Gk(u(τ))) dx+

T∫
0


∫

Ω

Ψ(u(t))p
∗
dx




p
p∗

dt


 ,

where c2 depends only on λ̄, α and the data. Therefore, by choosing H large
enough, one can assume that ‖f χ{|f |>H}‖

Lr(0,T ;Lq(Ω))
is very small, so that the

term I can be absorbed by the left-hand side. As far as the term J is concerned,
using (43) and Hölder’s inequality, one obtains

J ≤ c3

∫∫
QT

|Gk(u)|α+1|f | ≤ c4 ‖|Gk(u)|α+1‖
Lr′ (0,T ;Lq′ (Ω))

With the choice (56) of α, using Hölder’s inequality and the assumption (F1′),
and recalling (44), we can write, for every ε > 0,

J ≤ c5




T∫
0


∫

Ω

Ψ(u(t))p
∗
dx




p
p∗

dt




1
r′

sup
τ∈[0,T ]

(meas Ak(τ))
1
q′ −

p

p∗r′

≤ ε

T∫
0


∫

Ω

Ψ(u(t))p
∗
dx




p
p∗

dt+ c6(ε) sup
τ∈[0,T ]

(meas Ak(τ))
r
q′ −

p(r−1)
p∗ .

Therefore, choosing ε small enough, we obtain

sup
τ∈[0,T ]

∫
Ω

Φ(Gk(u(τ))) dx ≤ c7 sup
τ∈[0,T ]

(measAk(τ))
r
q′ −

p(r−1)
p∗ .

On the other hand, using the last inequality of (44), one has, for h > k ≥ k0,
∫
Ω

Φ(Gk(u(τ))) dx ≥ 1
α+ 2

∫
Ω

|Gk(u(τ))|α+2 dx ≥ (h− k)α+2

α+ 2
measAh(τ) .

Therefore we have proved the following inequality

sup
τ∈[0,T ]

measAk(τ) ≤
c8

(h− k)α+2
sup

τ∈[0,T ]

(measAk(τ))
r
q′ −

p(r−1)
p∗ .

It is easy to check that, under hypothesis (F1′), the last exponent is greater
than 1, therefore one can apply Lemma 2 with

g(k) = sup
τ∈[0,T ]

measAk(τ) .

Let us remark that, by (29), the function g(k) is bounded for every k ≥ k0.
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4 Strong convergence of ∇un

This section will be essentially devoted to the strong convergence of the approx-
imate solutions un on bounded sets. We first extend un to zero in Ω \ Ωn. By
Proposition 1 there exist a subsequence (which we will still denote by un) and
a function u such that

un ⇀ u weakly in Lp(0, T ;W 1,p(Ω0)) and ∗-weakly in L∞(0, T ;Lq(Ω0)),
(58)

e
λ̄
p un ⇀ e

λ̄
p u weakly in Lp(0, T ;W 1,p(Ω0)), (59)

for every bounded open subset Ω0 of Ω and for every q < ∞. We will first prove
that, still extracting a subsequence,

un → u a.e. in Q0
T and strongly in Lq(Q0

T ), for every q < ∞, (60)

where Q0
T = Ω0 × (0, T ). Indeed, let us consider a function η(x) such that

η ∈ C∞
0 (BR) , 0 ≤ η ≤ 1 , η ≡ 1 in Ω0, (61)

where BR is a ball containing Ω0. For simplicity we denote BR ∩ Ω again by
BR. By (30) and the equation satisfied by un, the sequence

{
∂
∂t (ηun)

}
n∈N

is
bounded in Lp′

(0, T ;W−1,p′
(BR)) + L1((0, T ) × BR). Then, by a well-known

compactness result (see for instance [23]), the sequence ηun is relatively compact
in Lp((0, T )×BR). Since, by Proposition 1, un is bounded in Lq(Q0

T ), for every
q < ∞, (60) holds.

As usually happens in nonlinear problems, the crucial point is the strong
convergence of the gradients ∇un in Q0

T . The remaining part of this section
will be devoted to this aim. We refer to [4], [9] for similar results. We confine
ourselves to the case of unbounded solutions (i.e., if (F1) and (I) hold). Indeed,
since we only need convergence on bounded sets, we can refer to [21] in case the
stronger assumptions (F1′), (I′) are satisfied. In that paper the authors prove
strong convergence of ∇un under a uniform L∞-estimate on un, in the case
where Ω is a bounded set.

Proposition 4 If (A1), (A2), (A3), (H), (F1), (I1), (I2) hold true, then there
exist a subsequence (still denoted by un) and a function u such that, for every
bounded open set Ω0 ⊂ Ω,

∇(e
λ
p |un|) → ∇(e

λ
p |u|) strongly in Lp(Q0

T ), for every λ < λ̄, (62)

(and of course weakly for λ = λ̄) where Q0
T = Ω0 × (0, T ).

Note that (62) implies

∇un → ∇u strongly in Lp(Q0
T ) . (63)

The most delicate part in proving this result is the strong convergence of the
truncated functions ∇T k(un). In order to prove this convergence, we need a
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technical result to deal with the derivative with respect to time. We start by
introducing a suitable regularization with respect to time (see [18]).

Let {un}n∈N be a sequence of solutions of (Pn) and u0,ν defined as in (20)–
(25). For every k > 0 and ν > 0, we define Tk(u)ν as the solution of the Cauchy
problem 


1
ν

[Tk(u)ν ]
′ + Tk(u)ν = Tk(u)

Tk(u)ν(0) = Tk(u0,ν) .
(64)

This means that the following representation formula holds:

Tk(u)ν(t) = e−νtTk(u0,ν) + ν

t∫
0

e−ν(t−s)Tk(u)(s) ds .

We observe that, by (Pn),

∂un
∂t

= ρn ∈ Lp′
(0, T ;W−1,p′

(Ω))

in the sense of distributions, where

ρn = div a(x, t, un,∇un) − µun +Hn(x, t, un,∇un) + fn(x, t) .

In the sequel we will denote by ωγ(h) a quantity which goes to zero as h goes
to infinity, for every γ fixed. Let η(x) be a function in C∞

0 (RN ) and, as before,
ϕ(s) =

(
eλ|s| − 1

)
sign s, s ∈ R.

Lemma 3 The following inequality holds for every δ such that 0 < δ < λ̄:

〈〈ρn, η(x)ϕ(Tk(un) − Tk(u)ν)eδ|Gk(un)|〉〉 ≥ ων (n) + ω (ν) .

where 〈〈· , ·〉〉 denotes the duality between Lp′
(0, T ;W−1,p′

(Ωn)) and Lp(0, T ;W 1,p
0 (Ωn)).

Remark 5 Note that if n is large enough, one has supp η∩Ω ⊂ Ωn, and there-
fore the test function η(x)ϕ(Tk(un)−Tk(u)ν)eδ|Gk(un)| belongs to Lp(0, T ;W 1,p

0 (Ωn)).

Proof of Lemma 3. For σ > 0, we define, as before, un,σ as the solution of



1
σ
u′n,σ + un,σ = un

un,σ(0) = u0,n .

We have

un,σ ∈ Lp(0, T ;W 1,p
0 (Ωn)) , u′n,σ ∈ Lp(0, T ;W 1,p

0 (Ωn)) ,

‖un,σ‖
L∞(Ωn×(0,T ))

≤ ‖un‖
L∞(Ωn×(0,T ))

,
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un,σ
σ−→ un strongly in Lp(0, T ;W 1,p

0 (Ωn)) , (65)

and
u′n,σ

σ−→ ρn strongly in Lp′
(0, T ;W−1,p′

(Ωn)) .

(see [4], [16]). Let us call, for simplicity

w(x, t) = η(x)ϕ(Tk(un) − Tk(u)ν)eδ|Gk(un)| ,

wσ(x, t) = η(x)ϕ(Tk(un,σ) − Tk(u)ν)eδ|Gk(un,σ)| .

Then

〈〈ρn, w〉〉 = lim
σ→∞

∫∫
QT

∂un,σ
∂t

wσ = lim
σ→∞

∫∫
QT

∂

∂t
[Tk(un,σ) +Gk(un,σ)] wσ

= lim
σ→∞

(∫∫
QT

∂

∂t
[Tk(un,σ)] η(x)ϕ(Tk(un,σ) − Tk(u)ν)

+
∫∫
QT

∂

∂t
[Gk(un,σ)] wσ

)

= lim
σ→∞

(∫∫
QT

∂

∂t
[Tk(un,σ) − Tk(u)ν ] η(x)ϕ(Tk(un,σ) − Tk(u)ν)

+
∫∫
QT

∂

∂t
[Tk(u)ν ] η(x)ϕ(Tk(un,σ) − Tk(u)ν)

+
∫∫
QT

∂

∂t
[Gk(un,σ)] wσ

)

= lim
σ→∞

(I(1)
σ + I(2)

σ + I(3)
σ )

(here we have used the fact that the term ∂
∂tTk(un,σ) is zero a.e. on the set

where Gk(un,σ) is different from zero). If we set Φ(s) =
∫ s

0
ϕ(σ) dσ, we get

I(1)
σ =

∫
Ω

Φ(Tk(un,σ(T )) − Tk(u)ν(T )) η(x) dx−
∫
Ω

Φ(Tk(u0,n) − Tk(u0,ν)) η(x) dx

≥ −
∫
Ω

Φ(Tk(u0,n) − Tk(u0,ν)) η(x) dx = ων (n) + ω (ν)

(using (20)).

I(2)
σ = ν

∫∫
QT

[Tk(u) − Tk(u)ν ] η(x)ϕ(Tk(un,σ) − Tk(u)ν)

= ν

∫∫
QT

[Tk(u) − Tk(u)ν ] η(x)ϕ(Tk(un) − Tk(u)ν) + ων,n (σ)
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= ν

∫∫
QT

[Tk(u) − Tk(u)ν ] η(x)ϕ(Tk(u) − Tk(u)ν) + ων,n (σ) + ων (n)

≥ ων,n (σ) + ων (n) .

Here we have used (64) and the convergences (65) and 36a.

I(3)
σ =

∫∫
QT

∂

∂t

[
eδ|Gk(un,σ)| − 1

δ
signun,σ

]
η(x)ϕ(Tk(un,σ) − Tk(u)ν)

=
∫
Ω

eδ|Gk(un,σ(T ))| − 1
δ

signun,σ(T ) η(x)ϕ(Tk(un,σ(T )) − Tk(u)ν(T )) dx

−
∫
Ω

eδ|Gk(u0,n)| − 1
δ

signu0,n η(x)ϕ(Tk(u0,n) − Tk(u0,ν)) dx

−
∫∫
QT

QT
eδ|Gk(un,σ)| − 1

δ
signun,σ η(x)ϕ′(Tk(un,σ) − Tk(u)ν)

∂

∂t
[Tk(un,σ) − Tk(u)ν ]

= I3,1 + I3,2 + I3,3 .

As far as I3,1 is concerned, we observe that I3,1 ≥ 0, since, on the set where
the term Gk(un,σ(T )) is different from zero, that is, where |un,σ(T )| > k, the
function ϕ(Tk(un,σ)(T ) − Tk(u)ν(T )) has the same sign as un,σ(T ) (note that
|Tk(u)ν | ≤ k). Moreover, by(20), (21), since δ < λ̄,

I3,2 = −
∫
Ω

eδ|Gk(u0)| − 1
δ

signu0 η(x)ϕ(Tk(u0) − Tk(u0,ν)) dx+ ων (n)

= ων (n) + ω (ν) .

I3,3 =
∫∫
QT

eδ|Gk(un,σ)| − 1
δ

signun,σ η(x)ϕ′(Tk(un,σ) − Tk(u)ν)
∂

∂t
[Tk(u)ν ]

(since ∂
∂t [Tk(un,σ)] = 0 on the set where Gk(un,σ) �= 0). Therefore, by (64),

I3,3 = ν

∫∫
QT

eδ|Gk(un,σ)| − 1
δ

signun,σ η(x)ϕ′(Tk(un,σ) − Tk(u)ν) [Tk(u) − Tk(u)ν ]

= ν

∫∫
QT

eδ|Gk(un)| − 1
δ

signun η(x)ϕ′(Tk(un) − Tk(u)ν) [Tk(u) − Tk(u)ν ]

+ ων,n (σ)

= ν

∫∫
QT

eδ|Gk(u)| − 1
δ

signu η(x)ϕ′(Tk(u) − Tk(u)ν) [Tk(u) − Tk(u)ν ]

+ ων,n (σ) + ων (n)
≥ ων,n (σ) + ων (n) .
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Putting all these estimates together, we obtain the desired result.

Proof of Proposition 4. By estimate (30), we can say that, up to a subse-
quence,

∇un ⇀ ∇u weakly in Lp(Q0
T ;RN ).

Step 1. We begin by proving that

∇T k(un) → ∇T k(u) strongly in Lp(Q0
T ;RN ), for every k > 0. (66)

It will be enough to prove that (from now on we omit the explicit dependence
on x and t of the functions)

lim
n→∞

∫∫
QT

[a(Tk(un),∇T k(un)) − a(Tk(un),∇T k(u))]·(∇T k(un)−∇T k(u)) η = 0 .

(67)
where η(x) is a cut-off function satisfying (61). Indeed this implies the result
by standard arguments (see [19], [20]).

We take
w(x, t) = η(x)ϕ(Tk(un) − Tk(u)ν)eδ|Gk(un)|

as test function in (Pn), where

δ =
d

Λ2
,

Tk(u)ν is defined by (64), ϕ(s) = (eλ|s| − 1) sign s, with d/Λ2 < λ < λ̄, and
n is large enough to ensure that w ∈ Lp(0, T ;W 1,p

0 (Ωn)). Using Lemma 3 one
obtains

A+B =
∫∫
QT

a(un,∇un) · ∇(Tk(un) − Tk(u)ν)ϕ′(Tk(un) − Tk(u)ν) eδ|Gk(un)| η

+ µ

∫∫
QT

unϕ(Tk(un) − Tk(u)ν) eδ|Gk(un)| η

≤
∫∫
QT

fnϕ(Tk(un) − Tk(u)ν) eδ|Gk(un)| η

+ d

∫∫
QT

|∇un|pϕ(Tk(un) − Tk(u)ν) eδ|Gk(un)| η

− δ

∫∫
QT

a(un,∇un) · ∇Gk(un) signun eδ|Gk(un)| ϕ(Tk(un) − Tk(u)ν) η

−
∫∫
QT

a(un,∇un) · ∇η eδ|Gk(un)| ϕ(Tk(un) − Tk(u)ν) + ω(ν, n)

= C +D + E + F + ω(ν, n) ,
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where, using the notation introduced at the beginning of this section,

ω(ν, n) = ων (n) + ω (ν) .

As far as the term C is concerned,

C =
∫∫
QT

fnϕ(Tk(un) − Tk(u)ν) eδ|Gk(un)| η

=
∫∫
QT

fϕ(Tk(u) − Tk(u)ν) eδ|Gk(u)| η + ων (n)

= ω(ν, n) .

Indeed, by (F1) and (18), fn converges strongly to f in Lr(0, T ;Lq(Ω)), ϕ(Tk(un)−
Tk(u)ν) is bounded and converges almost everywhere. Moreover, by Proposi-
tion 1, e

δ
p |Gk(un)| η is bounded in L∞(0, T ;Lp(BR))∩Lp(0, T ;W 1,p

0 (BR)), since
δ ≤ λ̄; therefore by Lemma 1 (applied with m = p),

e
δ
p |Gk(un)|η is bounded in Lρ1(0, T ;Lσ1(Ω)), (68)

for every ρ1, σ1 satisfying (16) with m = p, hence eδ|Gk(un)|η converges weakly
in Lr′(0, T ;Lq′(Ω)).

We next deal with the term F . Using the growth assumption (A1) on a, one
has

F ≤ Λ1

∫∫
QT

(k1(x, t) + |un|γ) |∇η| eδ|Gk(un)| |ϕ(Tk(un) − Tk(u)ν)|

+Λ1

∫∫
QT

|∇un|p−1 |∇η| eδ|Gk(un)| |ϕ(Tk(un) − Tk(u)ν)| = F1 + F2 .

For the integral F1, we observe that the term (k1(x, t) + |un|γ) is bounded in
Lr1(0, T ;Lq1(BR)) (in fact in Lp′r1(0, T ;Lp′q1(BR))), with r1, q1 satisfying (6),
so using (68) (with η replaced by ∇η) one obtains

F1 ≤ ω(ν, n) .

Moreover, by Hölder’s inequality,

F2 ≤




∫∫
BR×(0,T )

|∇un|p eδ|Gk(un)|




1/p′ 
∫∫

QT

|ϕ(Tk(un) − Tk(u)ν)|p|∇η|p eδ|Gk(un)|




1/p

.

The first integral is bounded by (26) and (30), since δ ≤ λ̄, and the second one
converges to zero as n and ν go to infinity. Therefore we have proved that

F ≤ ω(ν, n) .
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Similarly, one easily shows that

B = µ

∫∫
QT

unϕ(Tk(un) − Tk(u)ν) eδ|Gk(un)| η = ω(ν, n) .

Let us examine the term A.

A =
∫∫

{|un|≤k}

[a(Tk(un),∇T k(un)) − a(Tk(un),∇T k(u))]

· ∇(Tk(un) − Tk(u))ϕ′(Tk(un) − Tk(u)ν) η

+
∫∫

{|un|≤k}

[a(Tk(un),∇T k(un)) − a(Tk(un),∇T k(u))]

· ∇(Tk(u) − Tk(u)ν)ϕ′(Tk(un) − Tk(u)ν) η

+
∫∫

{|un|≤k}

a(Tk(un),∇T k(u)) · ∇(Tk(un) − Tk(u)ν)ϕ′(Tk(un) − Tk(u)ν) η

−
∫∫

{|un|>k}

a(un,∇un) · ∇T k(u)νϕ′(Tk(un) − Tk(u)ν) eδ|Gk(un)| η

= A1 +A2 +A3 +A4 .

Now,

|A2| ≤ ϕ′(2k) ‖ [a(Tk(un),∇T k(un)) − a(Tk(un),∇T k(u))] η‖
Lp′

(QT ;RN )

×‖∇(Tk(u) − Tk(u)ν)‖
Lp(QT ;RN )

.

Since the first norm is bounded by the assumption (A1) and (30), while the
second goes to zero as ν → ∞, we conclude that

A2 = ω(ν, n) .

It is easy to check that the same holds for the term A3. As far as the term A4

is concerned, one can use assumption (A1) to obtain

A4 ≤ c1ϕ
′(2k)




∫∫
BR×(0,T )

(
k1(x, t)p

′
+ |un|γp

′
+ |∇un|p

)
eδp

′|Gk(un)|




1/p′

×




∫∫
BR×(0,T )

|∇T k(u)ν |p χ{|un|>k}




1/p

.

The function |∇T k(u)ν |p χ{|un|>k} converges strongly in L1 (as n and then ν go
to ∞) to χ{|u|>k}∇T k(u) ≡ 0. On the other hand the first integral of the last
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formula is bounded by the hypothesis in (A1) on k1, and by the estimates (26),
(27) and (30), which by Lemma 1 imply easily, since δp′ < λ̄, that

e
δ

p−1 |Gk(un)| is bounded in Lρ1(0, T ;Lσ1(BR)), (69)

for every ρ1, σ1 satisfying (16) with m = p. Note that this is the point where
the full assumptions on k1 and on λ̄ are used. Therefore we have shown that

A = A1 + ω(ν, n) .

We now deal with the terms D and E, which will be estimated together. Using
assumption (A2), one has

D + E ≤ d

Λ2

∫∫
QT

a(un,∇un) · ∇un |ϕ(Tk(un) − Tk(u)ν)| eδ|Gk(un)| η

− δ

∫∫
{|un|>k}

a(un,∇un) · ∇un |ϕ(Tk(un) − Tk(u)ν)| eδ|Gk(un)| η

(since signun ϕ(Tk(un) − Tk(u)ν) = |ϕ(Tk(un) − Tk(u)ν)| where |un| > k), and
therefore, since δ = d/Λ2,

D + E ≤ d

Λ2

∫∫
{|un|≤k}

a(Tk(un),∇T k(un)) · ∇T k(un)|ϕ(Tk(un) − Tk(u)ν)| η

=
d

Λ2

∫∫
{|un|≤k}

[a(Tk(un),∇T k(un)) − a(Tk(un),∇T k(u))]

· [∇T k(un) −∇T k(u)]|ϕ(Tk(un) − Tk(u)ν)| η

+
d

Λ2

∫∫
{|un|≤k}

a(Tk(un),∇T k(u))

· [∇T k(un) −∇T k(u)]|ϕ(Tk(un) − Tk(u)ν)| η

+
d

Λ2

∫∫
{|un|≤k}

a(Tk(un),∇T k(un)) · ∇T k(u) |ϕ(Tk(un) − Tk(u)ν)| η .

It is easy to check that the two last integrals go to zero as n and ν go to infinity.
Therefore we have proved that

D + E ≤ d

Λ2

∫∫
{|un|≤k}

[a(Tk(un),∇T k(un)) − a(Tk(un),∇T k(u))]

· [∇T k(un) −∇T k(u)]|ϕ(Tk(un) − Tk(u)ν)| η + ω(ν, n) .

Since λ ≥ d/Λ2, the last integral is less than a fraction of the term A1, and can
be cancelled. This shows that A1 ≤ ω(ν, n), which implies also (since ϕ′(s) ≥ λ)
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that∫∫
{|un|≤k}

[a(Tk(un),∇T k(un)) − a(Tk(un),∇T k(u))]·∇(Tk(un)−Tk(u)) η ≤ ω(ν, n) .

Therefore∫∫
QT

[a(Tk(un),∇T k(un)) − a(Tk(un),∇T k(u))] · ∇(Tk(un) − Tk(u)) η

≤
∫∫

{|un|>k}

a(Tk(un),∇T k(u)) · ∇T k(u) η + ω(ν, n) = ω(ν, n) ,

which proves (67) and therefore (66).

Step 2. We will now prove convergence (62). From (66), since k is arbitrary, it
follows that (passing to a subsequence)

∇un → ∇u a.e. in Q0
T ,

Therefore, using (26), (30) and (60), we deduce that, for every λ ≤ λ̄,

∇(e
λ
p |un|) ⇀ ∇(e

λ
p |u|) weakly in Lp(Q0

T ;RN ).

In order to prove (62), we only have to show that

lim
n→∞

∫∫
Q0

T

eλ|un||∇un|p =
∫∫
Q0

T

eλ|u||∇u|p ,

for every λ < λ̄. For these values of λ̄, one has
∫∫
Q0

T

eλ|un||∇un|p =
∫∫

Q0
T
∩{|un|<k}

eλ|un||∇un|p+
∫∫

Q0
T
∩{|un|>k}

eλ|un||∇un|p = I1+I2 .

By (66), it is easy to verify that, for every positive k,

I1 →
∫∫

Q0
T
∩{|u|<k}

eλ|u||∇u|p as n → ∞.

Moreover, by (26),

I2 ≤ e(λ−λ̄)k

∫∫
{|un|>k}

eλ̄|un||∇un|p ≤ C(λ)e(λ−λ̄)k .

Since λ < λ̄, taking k → ∞ we obtain the result.
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5 Proof of the main theorems

As a consequence of the results of the previous section, we can give the proof of
the main theorems in a very short way.

By Proposition 4, (A1), (H) and (60), we get (for a subsequence)

a(un,∇un) → a(u,∇u) strongly in Lp′
(Q0

T ;RN ),

Hn(un,∇un) → H(u,∇u) strongly in L1(Q0
T ;RN ).

In particular, for every bounded open set Ω0 ⊂ Ω,

∂un
∂t

→ ∂u

∂t
strongly in L1(0, T ;H−m(Ω0)),

for m sufficiently large. This implies that

un → u strongly in C([0, T ];H−m(Ω0)),

and therefore, since, by the assumptions on the sequence u0,n, the initial con-
dition is satisfied by u. We can now pass to the limit in (Pn), obtaining that u
is a distributional solution of (P). The regularity stated in Theorem 1 for the
solution u follows from Proposition 1.

The regularity stated in Theorem 2 follows from Proposition 3, while, if we
use Propositions 1 and 2, we get i) of Theorem 3. As far as ii) is concerned, it
is sufficient to use again Proposition 3.

Remark 6 In the previous theorems we have proved existence of solutions in
the sense of distributions. In fact it is easy to verify, by approximation argu-
ments, that one can also take test functions φ ∈ C∞(Q0

T ) such that φ = 0 on
ΣT = ∂Ω×]0, T [.

Moreover, we can also use in problem (P) test functions of the form ψ(x, t) =
ϕ(u)η(x), where ϕ(s) : R → R is any locally Lipschitz function satisfying ϕ(0) =
0, |ϕ′(s)| ≤ ceλ|s| for some c, λ > 0, with λ < λ̄, and η(x) is a cut-off function
in C∞

0 (Ω). For example, one can take ϕ(s) = s or ϕ(s) = (eλ|s| − 1)sign s.
Indeed, let us take ϕ(un)η(x) as test function in (Pn). For t ∈ (0, T ] we

obtain:∫
Ω

Φ(un(t))η dx =
∫
Ω

Φ(u0,n)η dx−
∫∫
Qt

a(un,∇un) · ∇(ϕ(un)η)

− µ

∫∫
Qt

unϕ(un)η +
∫∫
Qt

Hn(un,∇un)ϕ(un)η +
∫∫
Qt

fn ϕ(un)η .

Here, as usual, Φ(s) =
∫ s

0
ϕ(σ) dσ. Using convergences (60)–(63), the hypothe-

ses on u0,n and the assumptions on the terms of the equation, and using the
same techniques as in the proof of Proposition 4, one can easily pass to the limit
in all the terms in the right-hand side. Let us now study the term

zn(t) =
∫
Ω

Φ(un(t))η dx .
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We are going to prove that zn(t) converges in C([0, T ]) to z(t) =
∫
Ω

Φ(u(t))η dx,
using the Ascoli-Arzelà theorem. Indeed, for every pair 0 ≤ t1 < t2 ≤ T ,

|zn(t2) − zn(t1)| ≤
∫∫

Ω×(t1,t2)

|a(un,∇un)| |∇(ϕ(un)η)| + µ

∫∫
Ω×(t1,t2)

|unϕ(un)η|

+
∫∫

Ω×(t1,t2)

|Hn(un,∇un)ϕ(un)η| +
∫∫

Ω×(t1,t2)

|fn ϕ(un)η| .

the integrals in the right-hand side are small (uniformly with respect to n) if
t2 − t1 is sufficiently small. This is due to the strong convergence in L1(QT ) of
each of the integrand functions.

Since zn(0) converges to z(0), the Ascoli-Arzelà theorem implies that, up to
subsequences, zn(t) converges in C([0, T ]) to some function, which is necessarily
z because zn converges to z strongly in L1(0, T ). Therefore we have proved our
assertion.
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