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Abstract. In this paper we study the problem8>><>>:
ut −∆u = β(u)|∇u|2 + f(x, t) in Q ≡ Ω× (0,+∞)

u(x, t) = 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x) in Ω,

where Ω is a bounded regular domain, β is a positive nondecreasing function and f , u0 are
positive functions satisfying some hypotheses of summability. Among others contribution

the main one is to prove a wild non-uniqueness result.

1. Introduction

In this paper we will consider the following viscous Hamilton-Jacobi equation

(1)


ut −∆u = β(u)|∇u|2 + f(x, t) in Q ≡ Ω× (0,+∞)

u(x, t) = 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x) in Ω,

where Ω is a bounded regular domain, β is a positive nondecreasing function and f , u0 are
positive functions satisfying some hypotheses that we will specify later. In the case where β ≡ 1,
this parabolic equation appears in the physical theory of growth and roughening of surfaces,
where it is known as the Kardar-Parisi-Zhang equation (see [28]). A modification of the problem
above is studied by Berestycki, Kamin, and Sivashinsky as a model in flame propagation (see
[8]). For constant β, existence results for problem (1) in the whole RN , with a regular data u0

and f ≡ 0 is well known, we refer to [26], where the Cauchy problem for the equation

(2) ut −∆u = |∇u|q, q ≥ 1

is studied. We refer also to the paper [6] where problem (2) is studied in the case q < 2, some
quantitative properties of the solutions are obtained in that case.
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It is not difficult to obtain an existence result for problem (1) in the case where the data
are bounded: it suffices to use a change of unknown of the form v(x, t) = Ψ(u(x, t)), also known
as Cole-Hopf transformation, to transform the equation into a semilinear problem (or a linear
one if the function β is constant), which can then be solved by super/sub-solution methods. In
the case where the operator is more general (or in the case where the data are unbounded) this
change of variable cannot be done, but it can be replaced with the use of exponential-type test
function, whose role is again to get rid of the quadratic term in (1) (see [14], [20]). The case
where the Laplace operator is replaced by a nonlinear operator like the p-Laplacian has been
studied in [27], [34], [25], [19], [21] and references therein.

In this paper we shall consider the problem of regularity, uniqueness and non uniqueness
of solutions to problem (1). For the sake of simplicity, the first part of the article is devoted to
the case where the function β(u) which appears in the equation is constant. In this case we will
prove that all weak solutions of problem (1) satisfy an exponential integrability (see Theorem
3.2). More precisely, we will show that

eδu − 1 ∈ L2(0, T ;W 1,2
0 (Ω)) ∩ C0([0,∞);L2(Ω)) for all δ < 1/2, for all T > 0,(3) ∫

Ω

eu(x,t) dx <∞ for all t ≥ 0.(4)

The result (3) resembles the corresponding one for elliptic equations with quadratic gradient
term, proven by the authors in [2], and has in common with it the fact that the elliptic part of
the equation is never used for the regularity, more precisely that the main estimate come from
the quadratic term on the right-hand side. Moreover, as in the elliptic case, no regularity on the
datum f is assumed (only f ∈ L1

loc(Q) is required). However the proof of the parabolic result
is more complicated, since one has to estimate the term with the time derivative of u.

Then we proceed in performing a precise analysis in what happens in the Cole-Hopf change
of variable, particularly if one does not assume that the transformed function v = Ψ(u) belongs
to the “energy space”, that is, L2(0, T ;W 1,2

0 (Ω))∩C0([0,∞);L2(Ω)), for all T > 0. We will show
a striking nonuniqueness result1, and a direct correspondence between solutions of problem (1)
and solutions of semilinear problems with measure data, that is, we consider the following linear
problem

(5)


vt −∆v = f(x, t)(v + 1) + µs in D′(Q)

v(x, t) = 0 on ∂Ω× (0,+∞),

v(x, 0) = v0(x) in Ω,

where µs is a singular positive Radon measure. Here “singular” means that it is concentrated
on a set with zero capacity, where by “capacity” we mean the parabolic capacity introduced by
Pierre in [38] and studied by Droniou, Porretta and Prignet in [23].

More precisely, under appropriate integrability assumptions on the data f and v0, we show
(Theorem 4.3) that problem (5) admits exactly one solution, and that if we apply the change
of variable u = Ψ−1(v) = log(1 + v), then u is a solution of problem (1), with β ≡ 1. We could
summarize this nonuniqueness result by saying that there exists a one to one correspondence

1However, we remark that in the Kardar-Parisi-Zhang model, problem (1) with β ≡ 1 appears by approxi-

mating
p

1 + |∇u|2 ≈ 1 + 1
2
|∇u|2. That is, in that model only small, regular solutions are considered.
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between solutions to problem (1) and singular measures concentrated in zero parabolic capacity
sets in the cylinder Q = Ω × [0,∞). Therefore problem (1) admits infinitely many solutions,
whose singularities can be prescribed.

The idea behind the result is very simple: if one makes formally the change of variable,
then u = log(1 + v) solves the equation

ut −∆u = |∇u|2 + f +
µs

1 + u
,

but if µs is a singular measure (for instance, if µs = µs(x) = δx0(x) in space dimension N ≥ 2),
then v is infinite on the set where µs is concentrated, therefore the last term in equation (1)
vanishes. Of course this is just a formal calculation, but the result will be justified rigorously.

An inverse result can also be proved (see Theorem 4.6): every solution u of problem (1)
with β ≡ 1 corresponds, via the change of variable v = Ψ(u) = eu − 1, to the solution v of
an equation of the form (5), for a singular measure µs which is determined by u. Among these
infinitely many functions there is only one, which we call the “regular” one, which corresponds
to µs = 0. This function is such that v = Ψ(u) = eu − 1 ∈ L2(0, T ;W 1,2

0 (Ω)), and is unique in
the larger class of functions such that eu/2− 1 ∈ L2(0, T ;W 1,2

0 (Ω)). All the other solutions only
satisfy eδu − 1 ∈ L2(0, T ;W 1,2

0 (Ω)) for every δ < 1/2.

It is interesting to point out that we also get infinitely many solutions by singular pertur-
bation of the initial data in the transformed problem. More precisely if v is the renormalized
solution to problem 

vt −∆v = 0 in D′(Q)

v(x, t) = 0 on ∂Ω× (0,+∞),

v(x, 0) = νs in Ω,
where νs is a singular positive measure with respect to the classical Lebesgue measure, then
u = log(v + 1) solves problem (11) with f ≡ 0 and u0(x) ≡ 0. We refer to subsection 4.4 for
more details.

The elliptic case was recently studied by the authors in [2], where a similar connection
between the stationary solutions of problem (1) and solutions of linear and semilinear problems
with measure data is proven. Therefore, the main result of this paper is to prove that the same
phenomena occur when one deals with the parabolic problem.

Another interesting result is contained in subsection 4.2, where we prove that the regularity
assumptions on f to ensure the existence of positive solutions of (1) are optimal: an explicit
example is given when considering f(x, t) ≡ λ

|x|2 , with large λ.
The case of general β is considered in Section 5 where we assume that β is a non decreasing
function such that lim

s→∞
β(s) = +∞. Under this condition we prove the exponential regularity

of a general solution in subsection (5.1). The existence of a regular solution can be obtained in
the same way as in the case β ≡ 1 with some change of variable which leads to a semilinear
parabolic problem with a slightly superlinear term. Existence of infinitely many positive solution
in connection with a singular measure is proven in Subsection 5.2 where the inverse problem is
also considered. It is worth to point out that the nonuniqueness result opens a large quantity
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of questions about the global dynamic of the problem. In Remark 5.8 we give some comments
on the uniqueness in the case where β ∈ C0([0,∞)) ∩ L1(0,∞) or β ∈ C0([0,∞)) ∩ L1(0,∞) ∩
L∞(0,∞). The elliptic case was considered by Korkut, Pašić and Žubrinić in [29].

2. Notations, definitions and useful results

Let Ω be a bounded domain in RN , N ≥ 1. We will denote by Q the cylinder Ω× (0,∞);
moreover, for 0 < t1 < t2, we will denote by Qt1 , Qt1,t2 the cylinders Ω × (0, t1), Ω × (t1, t2),
respectively.

In this paper, we will consider problem (1), where u0(x) and f(x, t) are positive functions
defined in Ω, Q, respectively, such that u0 ∈ L1(Ω) and f ∈ L1(QT ), for every T > 0.

The symbols Lq(Ω), Lr(0, T ;Lq(Ω)), and so forth, denote the usual Lebesgue spaces, see
for instance [24]. We will denote by W 1,q

0 (Ω) the usual Sobolev space, of measurable functions
having weak derivative in Lq(Ω) and zero trace on ∂Ω. If T > 0, the spaces Lr(0, T ;Lq(Ω)) and
Lr(0, T ;W 1,q

0 (Ω)) have obvious meanings, see again [24].
Moreover, we will denote by W−1,q′(Ω) the dual space of W 1,q

0 (Ω). Here q′ is Hölder’s
conjugate exponent of q > 1, i.e., 1

q + 1
q′ = 1. Finally, if 1 ≤ q < N , we will denote by

q∗ = Nq/(N − q) its Sobolev conjugate exponent.
For the sake of brevity, instead of writing “u(x, t) ∈ Lr(0, τ ;W 1,q

0 (Ω)) for every τ > 0”,
we shall write u(x, t) ∈ Lrloc([0,∞);W 1,q

0 (Ω)). Similarly, we shall write u ∈ Lqloc(Q) instead of
u ∈ Lq(Qτ ) for every τ > 0.

Definition 2.1. We say that u(x, t) is a distributional solution to problem (1) if u ∈ C([0,∞);L1(Ω))∩
L2

loc([0,∞);W 1,2
0 (Ω)), β(u)|∇u|2 ∈ L1

loc(Q), and if for all φ(x, t) ∈ C∞0 (Q) one has

−
∫∫

Q

uφt dx dt+
∫∫

Q

∇u · ∇φdx dt =
∫∫

Q

β(u) |∇u|2 φdx dt+
∫∫

Q

fφ dx dt

and

u(·, 0) = u0(·) in L1(Ω).

Remark 2.2. Note that the previous definition implies that, for every bounded, Lipschitz
continuous function h(s) such that h(0) = 0, and for every τ > 0, one has

∫
Ω

H(u(x, τ)) dx−
∫

Ω

H(u0(x)) dx+
∫∫

Qτ

|∇u|2 h′(u) dx dt

=
∫∫

Qτ

β(u) |∇u|2 h(u) dx dt+
∫∫

Qτ

f h(u) dx dt ,

where H(s) =
∫ s
0
h(σ) dσ.
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Similarly, if h(s) is Lipschitz continuous and bounded, if φ(x, t) ∈ L2(0, τ ;W 1,2
0 (Ω)) ∩

L∞(Qτ ) and φt ∈ L2(0, τ ;W−1,2(Ω)), then one has∫
Ω

H(u(x, τ))φ(x, τ) dx−
∫

Ω

H(u0(x))φ(x, 0) dx

−
∫∫

Qτ

φtH(u) dx dt+
∫∫

Qτ

|∇u|2 h′(u)φdx dt+
∫∫

Qτ

∇u · ∇φh(u) dx dt

=
∫∫

Qτ

β(u) |∇u|2 h(u)φdx dt+
∫∫

Qτ

f h(u)φdx dt .

We will consider, for k > 0, the usual truncation at level k, i.e.

Tks =


s if |s| ≤ k

k s
|s| if |s| > k.

In order to present some of the results, we need to keep in mind a few regularity and
convergence results about parabolic equations with L1 or measure data (see for instance [13],
[12]).

Assume that v0,n(x) and fn(x, t) are two sequences of nonnegative, bounded functions
which have uniformly bounded norms in L1(Ω) and L1(QT ) (for every T > 0), respectively.
Then, if one considers the solutions vn of problems

(vn)t −∆vn = fn(x, t) in Q

vn(x, t) = 0 on ∂Ω× (0,∞),

vn(x, 0) = v0,n(x) in Ω ,

the following estimates hold:

(6) ‖vn‖Lr1 (0,τ ;W 1,q1 (Ω)) ≤ C(τ) , for every (r1, q1) such that

1 ≤ q1 <
N

N − 1
, 1 ≤ r1 ≤ 2 and

N

q1
+

2
r1
> N + 1 ;

(7) ‖vn‖C0(0,τ ;L1(Ω)) ≤ C(τ) ;

(8) ‖Tkvn‖L2(0,τ ;W 1,2
0 (Ω)) ≤ C(τ)k , for every k > 0;

(9)
∫∫

Qτ

|∇vn|2

(vn + 1)α
≤ C(τ, α) , for every α > 1.

Moreover, if fn converges to some µ in the weak sense of measures in Qτ , for every τ > 0, and
v0,n converges to v0 in L1(Ω), then for every τ > 0

(10) vn → v in Lr1(0, τ ;W 1,q1
0 (Ω)), for every (r1, q1) as in (6) ,
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where v is the unique solution of
(v)t −∆v = µ in Q

v(x, t) = 0 on ∂Ω× (0,∞),

v(x, 0) = v0(x) in Ω ,

in the sense that ∫∫
Q

(−v φt +∇v · ∇φ) dx dt−
∫

Ω

v0(x)φ(x, 0) dx = 〈µ , φ〉

for every φ(x, t) ∈ C1(Q) with compact support in Ω × [0,∞). Moreover, if µ = µ(x, t) is a
function in L1

loc(Q), then

v ∈ C0([0,∞);L1(Ω)) .

Finally, if fn → µ strongly in L1(QT ), for T > 0, then

Tkvn → Tkv strongly in L2(0, T ;W 1,2
0 (Ω)), for every k.

The same convergence holds if fn ⇀ µ in the weak-∗ convergence of measures, if µ is concen-
trated on a set of null parabolic capacity, see Section 4 below. See a detailed proof in [37] where
a more general framework is also considered.

3. Regularity of general solutions in the case β ≡ 1

In this section we deal with the problem

(11)


ut −∆u = |∇u|2 + f(x, t) in Q

u(x, t) = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x) in Ω ,

where u0 and f are positive functions such that u0 ∈ L1(Ω) and f ∈ L1
loc(Q). Our first result

on the regularity is the following.

Proposition 3.1. Assume that u ∈ C([0,∞);L1(Ω)) ∩ L2
loc([0,∞);W 1,2

0 (Ω)) is a solution of
problem (11), where f ∈ L1

loc(Q) is such that f(x, t) ≥ 0 a.e. in Q. Then

(12)
∫
Ω

eu(x,τ)d(x) dx <∞ for every τ > 0,

where d(x) = dist(x, ∂Ω).

Proof. Let ε > 0, we consider vε = Hε(u), where Hε(s) = e
s

1+εs − 1, then vε ∈ L∞(Q) ∩
L2

loc([0,∞);W 1,2
0 (Ω)). We claim that vε satisfies the inequality

(vε)t −∆vε ≥ 0
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in the sense of distributions. Indeed, we consider positive and smooth approximations in L1,
φn, fn and u0,n of |∇u|2, f and u0, respectively, and we consider the approximate problems,

(un)t −∆un = φn + fn in Q

un(x, t) = 0 on ∂Ω× (0,∞),

un(x, 0) = u0,n(x) in Ω ,

and we consider vn,ε = Hε(un). Then it is clear that for every positive ξ(x, t) ∈ C∞0 (Q)

(13) −
∫∫

Q

vn,ε ξt dx dt+
∫∫

Q

∇vn,ε · ∇ξ dx dt

=
∫∫

Q

(φn + fn)H ′
ε(un) ξ dx dt−

∫∫
Q

|∇un|2H ′′
ε (un) ξ dx dt .

We now wish to pass to the limit in n for fixed ε. By the theory for parabolic equations with
data in L1, the sequence {un} satisfies the properties stated in the previous Section, and in
particular, using convergence (10), we can pass to the limit in n in every term of (13). As far
as the last integral is concerned, one has∫∫

Q

|∇un|2H ′′
ε (un) ξ dx dt =

∫∫
Q

|∇Tkun|2H ′′
ε (un) ξ dx dt+

∫∫
{un>k}

|∇un|2H ′′
ε (un) ξ dx dt .

The first integral of the r.h.s. passes to the limit by convergence (2), while the second one is
small if k is large, uniformly in n, since

|H ′′
ε (s)| ≤ c(ε)

(1 + εs)3
for all positive s ,

and thus, using estimate (9),∫∫
{un>k}

|∇un|2 |H ′′
ε (un)| ξ dx dt ≤

c

(1 + εk)

∫∫
Q∩suppξ

|∇un|2

(1 + εun)2
dx dt ≤ c

(1 + εk)
.

Therefore one has

−
∫∫

Q

vε ξt+
∫∫

Q

∇vε ·∇ξ dx dt =
∫∫

Q

(H ′
ε(u)−H ′′

ε (u)) |∇u|2 ξ dx dt+
∫∫

Q

f H ′
ε(u) ξ dx dt ≥ 0 ,

since H ′
ε(u) − H ′′

ε (u) ≥ 0. Moreover u ∈ C([0,∞);L1(Ω)), therefore vε ∈ C([0,∞);Lp(Ω)) for
every p <∞.

Since u ∈ L1(Ω), in particular eu(x,t) < ∞ a.e. in Q. For t0 > 0, let w be the solution of
problem

(14)


wt −∆w = 0 in Ω× (t0,∞)

w(x, t) = 0 on ∂Ω× (t0,∞),

w(x, t0) = vε(x, t0).

Using a result by Martel (see [31] Lemma 2), we obtain that

c1(t)||vε(·, t0)d(·)||L1d(x) ≤ w(x, t) ≤ c2(t)||vε(·, t0)d(·)||L1d(x) for all t > t0,
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for some positive functions c1(t), c2(t). Since vε is a supersolution to problem (14), we conclude
that w ≤ vε in Ω× (t0,∞). Therefore

c1(t)||vε(·, t0)d(·)||L1d(x) ≤ vε(x, t) ≤ eu(x,t) <∞ for a.e. (x, t) ∈ Ω× (t0,∞) .

We fix (x, t) ∈ Ω× (t0,∞), such that u(x, t) <∞. Then using Fatou’s lemma we obtain∫
Ω

eu(x,t0) d(x) dx <∞.

Using the fact that t0 > 0 is arbitrary, we conclude that (12) holds.

As a consequence we obtain the following result.

Theorem 3.2. Under the same hypotheses as in the previous propositions, for all τ > 0 we
have

(15)
∫∫

Qτ

|∇u|2 eδu dx dt <∞, for all δ < 1 ,

(16)
∫∫

Qτ

f eu dx dt <∞ ,

(17)
∫∫

Qτ

e
u

1+εu |∇u|2
(
1− 1

(1 + εu)2
)
dx dt ≤ C(τ) uniformly in ε ,

(18)
∫
Ω

eu0(x) dx <∞ .

and finally

(19) eu ∈ L∞(0, τ ;L1(Ω)) ,

Proof. Let us consider an open set Ω̃ ⊃⊃ Ω. For τ > 0, consider the solution φ(x, t) of
problem

(20)


−φt −∆φ = 0 in Ω̃× (0, τ + 1)

φ(x, t) = 0 on ∂Ω̃× (0, τ + 1),

φ(x, τ + 1) = d̃(x) ,

where

d̃(x) =

{
dist(x, ∂Ω) if x ∈ Ω,
0 if x ∈ Ω̃ \ Ω.

Then it is well known that

(21) φ(x, t) ≥ c(τ) > 0 , for a.e. (x, t) ∈ Ω× (0, τ) .

Let us define

kδ,ε(s) = e
δs

1+εs , Ψδ,ε(s) =
∫ s

0

kδ,ε(σ)dσ ≤ 1
δ
eδs .
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We use φ(x, t) (kδ,ε(u(x, t))− 1) as test function in (11), and we integrate in Qτ+1, obtaining

(22)
∫

Ω

Ψδ,ε(u(x, τ + 1)) d(x) dx−
∫

Ω

u(x, τ + 1) d(x) dx

−
∫

Ω

Ψδ,ε(u(x, 0))φ(x, 0) dx+
∫

Ω

u(x, 0)φ(x, 0) dx+
∫∫

Qτ+1

k′δ,ε(u) |∇u|2 φdx dt

=
∫∫

Qτ+1

kδ,ε(u) |∇u|2 φdx dt−
∫∫

Qτ+1

|∇u|2 φdx dt+
∫∫

Qτ+1

f kδ,ε(u)φdx dt−
∫∫

Qτ+1

f φ dx dt .

The first integral in (22) is bounded by (12), therefore, using (21), it follows that∫∫
Qτ

e
δ u

1+ε u
(
1− δ

(1 + ε u)2
)
|∇u|2 dx dt+

∫∫
Qτ

e
δ u

1+ε u f dx dt+
∫

Ω

Ψδ,ε(u0(x)) dx

=
∫∫

Qτ

(
kδ,ε(u)− k′δ,ε(u)

)
|∇u|2 dx dt+

∫∫
Qτ

f kδ,ε(u) dx dt+
∫

Ω

Ψδ,ε(u0(x)) dx ≤ c(τ) .

Then, taking δ < 1 and passing to the limit as ε → 0, we obtain (15). Similarly, taking δ = 1,
we obtain (16), (17) and (18). Finally, let ω(x, t) be the solution of

−ωt −∆ω = 0 in Qτ

ω(x, t) = 0 on ∂Ω× (0, τ),

ω(x, τ) ≡ 1 .

Then 0 ≤ ω(x, t) ≤ 1 for every (x, t) ∈ Qτ . Multiplying equation (11) by k1,ε(u)ω gives, with
calculations similar to the previous ones,

(23)
∫

Ω

Ψ1,ε(u(x, τ)) dx

≤
∫∫

Qτ

(
k1,ε(u)− k′1,ε(u)

)
|∇u|2 dx dt+

∫∫
Qτ

f k1,ε(u) dx dt+
∫

Ω

Ψ1,ε(u0(x)) dx .

Since the right-hand side of (23) is bounded by the previous estimates, (19) follows easily.

Remark 3.3. If we consider the following approximating problem
(un)t −∆un =

|∇u|2

1 + 1
n |∇u|2

+ Tn(f(x, t)) in Q

un(x, t) = 0 on ∂Ω× (0,∞),

un(x, 0) = Tn(u0(x)),

then we can prove using the previous regularity results that un ↑ u and un → u strongly in
L2(0, τ ;W 1,2

0 (Ω)) for all τ > 0.
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4. Existence and nonuniqueness.

4.1. Existence of solutions with higher integrability.
Assume that f is a positive function such that

f(x, t) ∈ Lrloc([0,∞);Lq(Ω)) , with q, r > 1 ,
N

q
+

2
r
< 2 .

We perform the change of variable v = eu − 1; then problem (1) becomes

(24)


vt −∆v = f(x, t)(v + 1) in Q

v(x, t) = 0 on ∂Ω× (0,∞)

v(x, 0) = v0(x) = eu0 − 1 .

If we assume that v0(x) = eu0 − 1 ∈ L2(Ω), then existence of a solution v ∈ C([0,∞);L2(Ω)) ∩
L2

loc([0,∞);W 1,2
0 (Ω)) can be proved using the same argument as in [30]. Using the linearity

of the problem the result can be easily adapted to the case where v0 only belongs to L1(Ω),
obtaining v ∈ C([0,∞);L1(Ω))∩L2

loc([0,∞);W 1,2
0 (Ω)). Actually v and∇v are Hölder continuous

(see the classical theory, again in [30]). We set u = log(v + 1), then u ∈ L2(0, T ;W 1,2
0 (Ω)) and

u satisfies problem (11). The inverse is also true in the sense that if u is a solution to problem
(11) with eu0(x) − 1 ∈ L2(Ω) and eu − 1 ∈ L2((0, T ),W 1,2

0 (Ω)), then if we set v = eu − 1 we
obtain that v solves problem (24).

4.2. Optimality of the hypotheses on f : nonexistence result.
To see that the condition on f is optimal in some sense we will assume that 0 ∈ Ω and that

f(x, t) = f(x) =
λ

|x|2
. Note that f(x) ∈ Lq(Ω) for every q < N/2, therefore we are in a limit

case of (4.1). Hence we have the following nonexistence result (not even for small times).

Theorem 4.1. Assume that N ≥ 3, and that λ > ΛN = (N−2
2 )2, the optimal Hardy constant

defined by

ΛN ≡ inf
{φ∈W 1,2

0 (Ω);φ6=0}

∫
Ω

|∇φ|2dx

∫
Ω

φ2 |x|−2 dx

.

Then, for any initial datum u0 ≥ 0 and for any T > 0, problem

(25)


ut −∆u = |∇u|2 +

λ

|x|2
in QT

u(x, t) = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω ,

has no solution.

Proof. The proof uses the same arguments as in [15] and [1] (see also [36]); for the sake of
completeness we include here the proof. We argue by contradiction. Assume that u is a solution



PARABOLIC PROBLEMS WITH NATURAL GROWTH IN THE GRADIENT 11

to problem (25) with f(x, t) =
λ

|x|2
, λ > ΛN . Let φ ∈ C∞0 (Ω), by taking φ2 as a test function

in (1) we obtain that∫
Ω

u(x, t2)φ2 dx−
∫
Ω

u(x, t1)φ2dx + 2
∫∫

Qt1,t2

φ∇φ · ∇u dx dt

=
∫∫

Qt1,t2

φ2 |∇u|2 dx dt + λ

∫∫
Qt1,t2

φ2

|x|2
dx dt ,

where we have set Qt1,t2 = Ω× (t1, t2). Hence

−
∫
Ω

u(x, t2)φ2 dx ≤ 2
∫∫

Qt1,t2

φ∇φ · ∇u dx dt−
∫∫

Qt1,t2

φ2 |∇u|2 dx dt− λ

∫∫
Qt1,t2

φ2

|x|2
dx dt

= −
∫∫

Qt1,t2

|∇φ− φ∇u|2 dx dt+
∫∫

Qt1,t2

|∇φ|2 dx dt− λ

∫∫
Qt1,t2

φ2

|x|2
dx dt

≤ (t2 − t1)
[ ∫

Ω

|∇φ|2 dx− λ

∫
Ω

φ2

|x|2
dx

]
.

By the regularity result of Theorem 3.2, we know that u(·, t) ∈ La(Ω) for all t ∈ (0, T ) and for
all a <∞; therefore we obtain that∫

Ω

|∇φ|2 dx− λ

∫
Ω

φ2

|x|2
dx ≥ − 1

t2 − t1

( ∫
Ω

u
N
2 (x, t2) dx

) 2
N

( ∫
Ω

|φ|2
∗
dx

) 2
2∗
.

By density, this implies that

I(Ω) ≡ inf
φ∈W 1,2

0 (Ω)\{0}

∫
Ω

|∇φ|2 dx− λ

∫
Ω

φ2

|x|2
dx( ∫

Ω

|φ|2
∗
dx

) 2
2∗

≥ − 1
t2 − t1

( ∫
Ω

u
N
2 (x, t2) dx

) 2
N

> −∞ .

On the other hand taking the sequence φn(x) = Tn(|x|−
N−2

2 )η(x), where η(x) is a cut-off
function with compact support in Ω which is 1 in a neighborhood of the origin, since λ >(
N−2

2

)2, one can check that I(Ω) = −∞. Hence we reach a contradiction.

Corollary 4.2.

1) If f(x, t) ≥ C(t)
|x|2+ε

in a neighborhood of the origin, where C(t) is a positive function such

that C(t) ≥ a > 0 in (t1, t2) ⊂ (0, T ), then problem (25) has no solution.

2) Since the argument used in the proof is local, then under the same hypothesis on f we can
prove that problem (25) has no local positive solution.

Proof. It suffices to observe that in this case, for any λ > ΛN , one has f(x, t) ≥ λ

|x|2
in a

small ball centered at the origin.
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4.3. Nonuniqueness: Existence of weaker solutions.
In this subsection we will show a strong connection between solutions of problem (11) and
solutions of a linear problem with measure datum. This will give, as a consequence, a surprising
non-uniqueness result for problem (11).
The theory of elliptic and parabolic equations in divergence form with measure data has been
strongly developed in the last forty years, starting from the pioneering paper [42] by Guido
Stampacchia (see also [13], [9], [12], [22], [10], [7] and references therein). Various definitions
of solution have been introduced in order to obtain uniqueness results. Uniqueness is still an
open problem for general nonlinear operators. However in the case of problem (27) below,
the situation is easier, as far as uniqueness is concerned, because we are considering the heat
operator.

The first result we will prove, therefore, is an existence and uniqueness theorem for problem
(24) with an additional term which is a finite Radon measure:

Theorem 4.3. Let f be a function in Lrloc([0,∞);Lq(Ω)) with

(26) r, q > 1 ,
N

2q
+

1
r
< 1.

Let µ be a Radon measure on Q, which is finite on QT for every T > 0. Then problem

(27)


vt −∆v = f(x, t) v + µ in Q

v = 0 on ∂Ω× (0,∞),

v(x, 0) = φ(x) ∈ L1(Ω),

has a unique distributional solution such that

(28)


i) v ∈ Lr1loc([0,∞);W 1,q1

0 (Ω)) for every r1, q1 ≥ 1 such that
N

q1
+

2
r1
> N + 1 ;

ii) v ∈ L∞loc([0,∞);L1(Ω)) , for every k > 0;

iii) Tkv ∈ L2
loc([0,∞);W 1,2

0 (Ω)) , for every k > 0;

iv) f v ∈ L1
loc(Q) .

Proof. Notice that if v satisfies (28) i) and ii), then, using the Gagliardo-Nirenberg inequality,
v ∈ Lρloc([0,∞);Lσ(Ω)), for all ρ and σ satisfying

(29) ρ, σ ≥ 1 ,
N

σ
+

2
ρ
> N .

Consider gn ∈ L∞(Q), such that {gn} is bounded in L1(QT ) for every T > 0 and moreover, as
n→∞,

gn ⇀ µ weakly in the measures sense in QT , for every T > 0.
Consider φn ∈ L∞(Ω), φn → φ in L1(Ω). We solve

(vn)t −∆vn = f vn + gn in Q

vn = 0 on ∂Ω× (0,∞),

vn(x, 0) = φn(x).
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Claim.- For every T > 0 there exists a constant C(T ) > 0 such that

||vn||Lr′ (0,T ;Lq′ (Ω)) ≤ C(T ) .

(r′, q′ Hölder conjugates of r, q in (26)). If the claim holds then f vn is uniformly bounded in
L1(QT ) for every T > 0 and we can conclude in a standard way (see for instance [13] and [12]).
Hence it is sufficient to prove the claim above. We argue by contradiction; assume that, up to
a subsequence,

||vn||Lr′ (0,T ;Lq′ (Ω)) →∞.

Normalizing the sequence, i.e., putting wn =
vn

||vn||Lr′ (0,T ;Lq′ (Ω))

, then ||wn||Lr′ (0,T ;Lq′ (Ω)) = 1

and for each n ∈ N, wn satisfies problem
(wn)t −∆wn = f(x, t)wn +

gn
||vn||Lr′ (0,T ;Lq′ (Ω))

in QT

wn = 0 on ∂Ω× (0, T ),

wn(x, 0) =
φn(x)

||vn||Lr′ (0,T ;Lq′ (Ω))

.

The right-hand side in equation (4.3) is uniformly bounded in L1(QT ), hence by using the results
(6)–(9) in Section 2 we find that {wn} is bounded in L∞(0, T ;L1(Ω)) and in Lr1(0, T ;W 1,q1

0 (Ω)),
for all (r1, q1) as in (28) i). Therefore by Sobolev’s embedding, {wn} is bounded in Lρ(0, T ;Lσ(Ω)),
for all (ρ, σ) as in (29). Hence there exists w such that wn ⇀ w weakly in Lr1(0, T ;W 1,q1

0 (Ω))
for all (r1, q1) as in (28) i). Moreover, w verifies

(30)


wt −∆w = f(x, t)w in QT

w ∈ L∞(0, T ;L1(Ω)) ∩ Lr1(0, T ;W 1,q1
0 (Ω)) for all (r1, q1) as in (28),

w(x, 0) = 0,

because
gn

||vn||Lr′ (0,T ;Lq′ (Ω))

→ 0 in L1(QT ) and
φn(x)

||vn||Lr′ (0,T ;Lq′ (Ω))

→ 0 in L1(Ω), as n → ∞.

We will show that
1) wn → w strongly in Lr

′
(0, T ;Lq

′
(Ω)), therefore ||w||Lr′ (0,T ;Lq′ (Ω)) = 1.

2) Problem (30) admits only the trivial solution.
Notice that 1) and 2) give a contradiction, and then we have proved the claim.
Proof of 1). By using the compact embedding W 1,q1

0 (Ω) ↪→ Ls(Ω) if s < q∗1 , the continuous
embedding Ls(Ω) ⊂W−1,q′1(Ω) + L1(Ω) and the fact that

||wn||Lr1 (0,T ;W
1,q1
0 (Ω))

≤ C and ||(wn)t||Lr′1 (0,T ;W−1,q′1 (Ω))+L1(QT )
≤ C,

using Aubin’s compactness results (see for instance [41]), we conclude that {wn} is rela-
tively compact in Lr1(0, T ;Ls(Ω)) for all s < q∗1 . Therefore, {wn} is relatively compact in
Lρ(0, T ;Lσ(Ω)) for all (ρ, σ) as in (29). Therefore we only have to show that one can take
(ρ, σ) = (r′, q′) in (29). Indeed, the condition

N

q′
+

2
r′
> N
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is equivalent to the assumption (26). This completes the proof of 1).
Proof of 2). Since uniqueness is trivial in the space L2(0, T ;W 1,2

0 (Ω)), we only have to show
that every solution w of (30) belongs to this space. This is done by a bootstrap method. Indeed,
using Hölder’s inequality and the regularity of f we find that f wm1 ∈ L1(QT ), for every m1

such that
N

m1q′
+

2
m1r′

> N,

and since
1
q′

+
2
Nr′

> 1, we can chose 1 < m1 <
1
q′

+
2
Nr′

. Therefore, using
wm1−1

1 + εwm1−1
as a

test function in (30) and passing to the limit as ε→ 0, we obtain, for every τ ∈ (0, T ),

1
m 1

∫
Ω

wm1(x, τ) dx+ (m1 − 1)
∫∫

Qτ

wm1−2 |∇w|2 dx dt =
∫∫

Qτ

f wm1 dx dt

≤
∫∫

Qτ

f wm1 dx dt = C(T ), ∀τ ∈ [0, T ] ,

Hence, setting
v = w

m1
2

the last estimate implies

v ∈ L2((0, T );W 1,2
0 (Ω)) ∩ L∞((0, T );L2(Ω)) ,

which by Gagliardo-Nirenberg inequality gives

v ∈ Lδ((0, T );Lγ(Ω)) with 2 ≤ γ ≤ 2∗, δ ≤ 2 and
2
δ

+
N

γ
=
N

2
.

Hence it follows that w ∈ Lβ((0, T );Lα(Ω)) where

(31) α =
m1γ

2
, β =

δm1

2
, m1 ≤ α ≤ 2∗

2
m1, m1 ≤ β and

m1

β
+
Nm1

2α
=
N

2
.

This implies that ∫∫
QT

fwm2 dx dt <∞ , where m2 = m1 (
1
q′

+
2
Nr′

) .

Iterating the process, if we consider the sequence defined by

mk+1 = ρmk , with ρ =
1
q′

+
2
Nr′

> 1 ,

then ∫∫
QT

f wmk dx dt <∞ .

Thus ∫∫
QT

wmk−2 |∇w|2 dx dt < C(k) and sup
τ∈(0,T )

∫
Ω

wmk(x, t)dx < C(k).
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As mk →∞ and since Tk(w) ∈ L2(0, T ;W 1,2
0 (Ω)), then for k > 1, it follows that∫∫

QT

|∇w|2 dx dt ≤
∫∫

QT

|∇Tk(w)|2 dx dt+
∫∫

QT

wmk−2 |∇w|2 dx dt < C(k).

Thus w ∈ L2(0, T ;W 1,2
0 (Ω)) ∩ L∞(0, T ;L2(Ω)) and then the uniqueness result follows.

The previous problem (27) with measure datum appears in a natural way when we perform
the change of unknown function as before. Theorems 4.6 and 4.8 below will show that there
exists a one-to-one correspondence between the solutions of problem (11) and (27), where µ is
an arbitrary “singular” measure. To clarify the meaning of “singular” measure we have to use a
notion of parabolic capacity introduced by Pierre in [38] and by Droniou, Porretta and Prignet
in [23].
For T > 0, we define the Hilbert space W by setting

W = WT = {u ∈ L2(0, T ;W 1,2
0 (Ω)), ut ∈ L2(0, T ;W−1,2(Ω))},

equipped with the norm defined by

||u||2WT
=

∫∫
QT

|∇u|2 dx dt+
∫ T

0

||ut||2W−1,2dt .

Definition 4.4. If U ⊂ QT is an open set, we define

cap1,2(U) = inf {‖u‖W : u ∈ W, u ≥ χU almost everywhere in QT }

(we will use the convention that inf ∅ = +∞), then for any borelian subset B ⊂ QT the definition
is extended by setting:

cap1,2(B) = inf
{
cap1,2(U), U open subset of QT , B ⊂ U

}
.

We refer to [23] for the main properties of this capacity. We observe that, if B ⊂ QT ⊂ QT̃ ,
then the capacity of B is the same in QT and in QT̃ , therefore we will not specify the value of
T when speaking of a Borel set compactly contained in Q.
We recall that, given a Radon measure µ on Q and a Borel set E ⊂ Q, then µ is said to be
concentrated on E if µ(B) = µ(B ∩ E) for every Borel set B.

Definition 4.5. Let the space dimension N be at least 2. Let µ be a positive Radon measure
in Q. We will say that µ is singular if it is concentrated on a subset E ⊂ Q such that

cap1,2(E ∩Qτ ) = 0, for every τ > 0.

As examples of singular measures, one can consider:
i) a space-time Dirac delta µ = δ(x0,t0) defined by 〈µ, ϕ〉 = ϕ(x0, t0) for every ϕ(x, t) ∈
Cc(Q);

ii) a Dirac delta in space µ = µ(x) = δx0 defined by 〈µ, ϕ〉 =
∫∞
0
ϕ(x0, t) dt;

iii) more generally, a measure µ concentrated on the set E × (0,+∞), where E ⊂ Ω has
zero “elliptic” 2-capacity;

iv) a measure µ concentrated on a set of the form E×{t0}, where E ⊂ Ω has zero Lebesgue
measure.

The main result of this paper is the following multiplicity result.
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Theorem 4.6. Let µs be a positive, singular Radon measure such that µs
∣∣
QT

is bounded for
every T > 0. Assume that f(x, t) is a positive function such that f ∈ Lrloc([0,∞);Lq(Ω)),
where r and q satisfy the Aronson-Serrin hypothesis (26), and that the initial datum u0 satisfies
v0 = eu0 − 1 ∈ L1(Ω). Consider v, the unique solution of problem

(32)


vt −∆v = f(x, t) (v + 1) + µs in D′(Q)

v ∈ L∞loc([0,∞);L1(Ω)) ∩ Lρloc([0,∞);W 1,σ
0 (Ω))

where σ, ρ > 1 verify
N

σ
+

2
ρ
> N + 1

v(x, 0) = v0(x) , f v ∈ L1
loc(Q).

We set u = log(v+1), then u ∈ L2
loc([0,∞);W 1,2

0 (Ω))∩C([0,∞);L1(Ω)) and is a weak solution
of

(33)

{
ut −∆u = |∇u|2 + f(x, t) in D′(Q)

u(x, 0) = u0(x) ≡ log(v0(x) + 1) .

Proof. Let hn(x, t) ∈ L∞(Q) be a sequence of bounded nonnegative functions such that
‖hn‖L1(QT ) ≤ C(T ) for every T > 0, and

hn ⇀ µs weakly in the measures sense in QT , for every T > 0.

Consider now the unique solution vn to problem

(34)


(vn)t −∆vn = Tn(f (v + 1)) + hn in Q

vn ∈ L2
loc([0,∞);W 1,2

0 (Ω))

vn(x, 0) = Tn(v0(x)) .

Notice that (vn)t ∈ L2
loc(Q) (see for instance [24]), and that, for every T > 0, vn → v in

Lρ(0, T ;W 1,σ
0 (Ω)) for all ρ and σ as in (32). We set un = log(vn + 1), then by a direct compu-

tation one can check that

(un)t −∆un = |∇un|2 +
Tn(f (v + 1))

vn + 1
+

hn
vn + 1

in D′(Q).

Notice that by using the definition of vn we conclude easily that, for every T > 0,

(35)
Tn(f(v + 1))

vn + 1
→ f(x, t) in L1(QT ) and un → u in L1(QT ).

We claim that

(36)
hn

vn + 1
→ 0 in D′(Q).

To prove the claim let φ(x, t) be a function in C∞0 (Q); we want to prove that

lim
n→∞

∫∫
QT

φ
hn

vn + 1
dx = 0 .

We assume that supp φ ⊂ QT , and we use the assumption on µs: let A ⊂ QT be such that
cap1,2(A) = 0 and µsxQT is concentrated on A. Then for all ε > 0 there exists an open set
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Uε ⊂ QT such that A ⊂ Uε and cap1,2(Uε) ≤ ε/2. Then, we can find a function ψε ∈ WT such
that ψε ≥ χUε and ||ψε||WT

≤ ε. Let us define the real function

m(s) =
2|s|
|s|+ 1

.

Then one has

m(ψε) ≤ 2, m(ψε) ≥ χUε
and∫∫

QT

|∇m(ψε)|2 dx dt =
∫∫

QT

|m′(ψε)|2|∇ψε|2 dx dt ≤ 4 ε2.

Using a Picone-type inequality (see [3]), we obtain that

4 ε2 ≥
∫
Ω

|∇m(ψε)|2 dx ≥
∫
Ω

−∆(vn + 1)
vn + 1

m2(ψε) dx ≥
∫
Ω

hn
vn + 1

m2(ψε) dx−
∫
Ω

(vn)t
vn + 1

m2(ψε) dx.

By integration in t, we get

(37)

∫∫
Uε

hn
vn + 1

dx dt ≤ 4 ε2 T +
∫
Ω

log(vn(x, T ) + 1)m2(ψε(x, T )) dx

+ 2
∫∫

QT

log(vn + 1)m(ψε)m′(ψε) (ψε)t dx dt

= 4 ε2 T + I1 + I2 .

We begin by estimating the integral I1. Since |m(s)| ≤ 2, then using Hölder’s inequality we
obtain that

I1 ≤ C
( ∫

Ω

log2(vn(x, T ) + 1) dx
) 1

2
( ∫

Ω

m4(ψε(x, T )) dx
) 1

2 ≤ C
( ∫

Ω

m2(ψε(x, T )) dx
) 1

2

where in the last estimate we have used the inequality log(s+ 1) ≤ s
1
2 + c and the bound

max
t∈[0,T ]

∫
Ω

vn(x, t) dx ≤ C(T ) .

Since m(s) ≤ 2 |s|, it follows that

(38) I1 ≤ C
( ∫

Ω

|ψε(x, T )|2 dx
) 1

2 ≤ max
t∈[0,T ]

( ∫
Ω

ψ2
ε(x, t) dx

) 1
2 ≤ C ||ψε||WT

≤ C ε,

by the fact that WT ⊂ C([0, T ];L2(Ω)) with a continuous inclusion.
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We now estimate I2. Using
m2(ψε)
vn + 1

as a test function in (34), by a direct computation we obtain

∫
Ω

log(vn(x, T ) + 1)m2(ψε(x, T )) dx−
∫
Ω

log(Tn(v0) + 1)m2(ψε(x, 0)) dx

− 2
∫∫

QT

log(vn + 1)m(ψε)m′(ψε) (ψε)t dx dt+ 2
∫∫

QT

m(ψε)m′(ψε)∇ψε
∇vn
vn + 1

dx dt

−
∫∫

QT

m2(ψε)
|∇vn|2

(vn + 1)2
dx dt =

∫∫
QT

m2(ψε)
vn + 1

(
Tn(f(v + 1)) + hn(x, t)

)
dx dt ≥ 0 .

Thus, recalling (38) and (9) which holds for vn, we get

(39) 2
∫∫

QT

log(vn + 1)m(ψε)m′(ψε) (ψε)t dx dt

≤ I1 + 2
∫∫

QT

m(ψε)m′(ψε)∇ψε
∇vn
vn + 1

dx dt ≤ C ε+ 8
∫∫

QT

|∇ψε|
|∇vn|
vn + 1

dx dt

≤ C ε+ 8
( ∫∫

QT

|∇ψε|2 dx dt
) 1

2
( ∫∫

QT

|∇vn|2

(vn + 1)2
dx dt

) 1
2 ≤ C ε .

Hence by (37) we conclude that

(40)
∫∫

Uε

hn
vn + 1

dx dt ≤ C(ε+ ε2) .

Now, by (39),∣∣∣ ∫∫
QT

φ
hn

vn + 1
dx dt

∣∣∣
≤ ||φ||∞

∫∫
Uε

hn
vn + 1

dx dt+
∫∫

QT \Uε

|φ|hn dx dt ≤ C||φ||∞ (ε+ ε2) +
∫∫

QT \Uε

|φ|hn dx dt .

Since hn → µs in M0(QT ) and µs is concentrated on A ⊂ Uε, we conclude that∫∫
Ω\Uε

|φ|hn dx dt→ 0 as n→∞.

Since ε is arbitrary we get the desired result, hence the claim (36) follows.
Let φ ∈ C∞0 (QT ), then we have∫∫

QT

((un)t −∆un) φdx dt

=
∫∫

QT

Tn(f(v + 1))
vn + 1

φdx dt+
∫∫

QT

|∇un|2φdx dt+
∫∫

QT

hnφ

vn + 1
dx dt.

Hence using (35) and (36) we just have to prove that

|∇un|2 → |∇u|2 in L1(QT )
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which means that
|∇vn|2

(vn + 1)2
→ |∇v|2

(v + 1)2
in L1(QT ).

Since the sequence
{ |∇vn|2

(vn + 1)2
}

converges a.e. in QT to
|∇v|2

(v + 1)2
, then by Vitali’s theorem we

only have to prove that it is equi-integrable. Let E ⊂ QT be a measurable set. Then, for every
δ ∈ (0, 1) and k > 0,∫∫

E

|∇vn|2

(vn + 1)2
dx dt =

∫∫
E∩{vn≤k}

|∇vn|2

(vn + 1)2
dx dt+

∫∫
E∩{vn>k}

|∇vn|2

(vn + 1)2
dx dt

≤
∫∫

E

|∇Tk(vn)|2 dx dt+
1

(k + 1)1−δ

∫∫
QT

|∇vn|2

(vn + 1)1+δ
dx dt .

By (9), the last integral is uniformly bounded with respect to n, therefore the corresponding term
can be made small by choosing k large enough. Moreover, since µs is singular and Tn(f(v+1)) →
f(v + 1) in L1(QT ), one has (see Petitta [37]) Tk(vn) → Tk(v) strongly on L2(0, T ;W 1,2

0 (Ω))
for any k > 0, therefore the integral

∫
E
|∇Tk(vn)|2 dx dt is uniformly small if meas (E) is small

enough. The equi-integrability of |∇un|2 follows immediately, and the proof is completed. Hence
we conclude that

ut −∆u = |∇u|2 + f(x, t) in D′(Q).
Since |∇u|2 +f ∈ L1(Ω×(0, T )), then using classical result about the regularity and uniqueness
of entropy solution we obtain that u ∈ C([0,∞);L1(Ω)) and the result follows.

Remark 4.7.
(1) An interesting point is the following. If we consider x0 ∈ Ω and 0 < t0 < T and the

problem

vt −∆u = δx0,t0 , v(x, t) = 0 on ∂Ω× (0, T ), v(x, 0) = 0,

then it is easy to check that t → ||v(t)||1, has a jump in t = t0. However, defining
u = log(1 + v), u belongs to C([0, T ];L1(Ω)). The mechanism of this behavior is as
follows: 1) u solves the equation ut −∆u = |∇u|2 in the sense of distributions; 2) the
regularity theory for L1 data provides the continuity.

(2) In general we can prove that if v is a solution to problem

vt −∆v = µ in QT , v(x, 0) = v0(x) ∈ L1(Ω),

where µ is a positive Radon measure, then sup
t∈[0,T ]

∫
Ω

v(x, t) dx ≤ C(µ(QT ), T ). Indeed,

consider ω, the solution to problem (3), it is clear that ω ≤ 1, hence ω is globally defined
and therefore using ω as a test function in (2), it follows that∫

Ω

v(x, τ) dx ≤
∫
Ω

v0(x)ω(x, 0) dx+ c(T )µ(QT ).

Hence the result follows by taking the maximum for τ ∈ [0, T ].
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Theorem 4.8. Let u ∈ C([0,∞);L1(Ω))∩L2
loc([0,∞);W 1,2

0 (Ω)) be a solution to problem (11),
where f(x, t) is a positive function such that f ∈ Lrloc([0,∞);Lq(Ω)), where r and q satisfy the
Aronson-Serrin hypothesis (26). Consider v = eu − 1, then v ∈ L1

loc(Q), and there exists a
bounded positive measure µ in QT for every T > 0, such that

(1) v is a distributional solution of

(41) vt −∆v = f(x, t) (v + 1) + µ in Q .

(2) µ is concentrated on the set A ≡ {(x, t) : u(x, t) = ∞} and cap1,2(A ∩QT ) = 0 for all
T > 0, that is µ is a singular measure with respect to cap1,2-capacity.

Moreover µ can be characterized as a weak limit in the space of bounded Radon measures, as
follows:

(42) µ = lim
ε→0

|∇u|2e
u

1+εu

(
1− 1

(1 + εu)2

)
in QT , for every T > 0.

Proof. We set v = eu − 1, then by the regularity results of Theorem 3.2, we obtain that
v ∈ L1

loc(Q) and

(43)
∫∫

Qτ

f(x, t) (v + 1) dx dt+
∫∫

Qτ

|∇u|2 e
u

1+εu

(
1− 1

(1 + εu)2

)
dx dt ≤ C(τ) .

Therefore, there exists a positive Radon measure µ in Q such that for all τ > 0

|∇u|2e
u

1+εu

(
1− 1

(1 + εu)2

)
⇀ µ in the weak measure sense in Qτ .

Notice that µ is concentrated in the set A ≡ {(x, t) ∈ Q : u(x, t) = ∞}. This follows from the
fact that ∫∫

Qτ∩{u≤k}
|∇u|2 e

u
1+εu

(
1− 1

(1 + εu)2

)
dx dt→ 0 as ε→ 0.

We now define

vε(x, t) =
∫ u(x,t)

0

e
s

1+εs ds ∈ L2
loc([0,∞);W 1,2

0 (Ω)).

By making an approximation as in the first part of the proof of Proposition 3.1, it is easy to
check that vε solves

(44) (vε)t −∆vε = e
u

1+εu |∇u|2(1− 1
(1 + εu)2

) + f(x, t)e
u

1+εu

in the sense of distributions.
By (43) and the monotone convergence theorem we get easily that the last term converges in
L1(Qτ ) for all τ > 0, while the remaining one converges to µ. Since vε → v in L1(Qτ ) for all
τ > 0, we obtain that v solves the equation (41) in the sense of distributions, therefore µ is
uniquely determined.
Finally to prove that cap1,2(A ∩ QT ) = 0 and then µ is a singular measure in the sense of
Definition 4.5 we use a remark by A. Porretta, [39], that we detail below.
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Consider AT = A∩QT , it is clear that u ∈ C([0, T ];L1(Ω))∩L2([0, T ];W 1,2
0 (Ω)) solves problem

ut −∆u = g(x, t) ≡ |∇u|2 + f(x, t) in QT

u(x, t) = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

Let τ ≤ T , using Tk(u) as a test function in the above problem it follows that∫
Ω

Θk(u(x, τ)) dx +
∫∫

Qτ

|∇Tk(u)|2 dx dt =
∫∫

Qτ

g(x, t)Tk(u) dx dt +
∫

Ω

Θk(u0(x)) dx

where

Θk(s) =
∫ s

0

Tk(σ)dσ =

{
1
2s

2 if |s| ≤ k,

ks− 1
2k

2 if |s| ≥ k.

Thus ∫
Ω

Θk(u(x, τ)) dx+
∫∫

Qτ

|∇Tk(u)|2 dx dt ≤ k(||g||L1(QT ) + ||u0||L1(Ω)).

Since Θk(s) ≥ 1
2T

2
k (s), we conclude that

||Tk(u)||2L∞((0,T );L2(Ω)) + ||Tk(u)||2L2((0,T );W 1,2
0 (Ω))

≤ C(T )k.

Consider wk =
Tk(u)
k

, it is clear that wk ∈ X ≡ L∞((0, T );L2(Ω)) ∩ L2((0, T );W 1,2
0 (Ω)) and

||wk||2X ≤ C(T )
k

. Hence ||wk||2X → 0 as k →∞. Using an approximation argument and by Kato

type inequality, see for instance [35], there results that

(wk)t −∆wk ≥ 0.

Therefore by using Proposition 3 in [37], we obtain zk ∈ W such that zk ≥ wk and ||zk||W ≤
||wk||X. It is clear that zk ≥ 1 on AT . Hence

cap1,2(AT ) ≤ ||zk||W ≤ ||wk||X ≤ (
C(T )
k

)
1
2 .

Letting k →∞ it follows that cap1,2(AT ) = 0 and then the result follows.

Corollary 4.9. There exist a unique solution to problem (11) in the class

X = {u ∈ L1
loc(Q) : e

u
2 − 1 ∈ L2

loc([0,∞);W 1,2
0 (Ω))} .

Proof. It is sufficient to observe that, setting v = eu− 1, then by Theorem 4.8, v solves (41).
Using (42) we get µ = 0. We claim that∫

Ω

v(x, τ)φdx→
∫
Ω

(eu0(x) − 1)φdx as τ → 0 for all φ ∈ C1(Ω), φ|∂Ω = 0.
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From the regularity result of Theorem (3.2) we know that eu ∈ L∞(0, τ ;L1(Ω)). Let φ ∈ C1(Ω)
be such that φ|∂Ω = 0, since e

u
2 − 1 ∈ L2

loc([0,∞);W 1,2
0 (Ω)), then using Theorem (3.2), and by

an approximation argument, we can use eu φ as a test function in (11). Hence it follows that∫
Ω

eu(x,τ)φdx+
∫ τ

0

∫
Ω

eu∇u∇φdx dt =
∫ τ

0

∫
Ω

eu f φ dx dt+
∫
Ω

eu0(x)φdx.

Since f eu ∈ L1(Qτ1) where τ1 > 0, then

lim
τ→0

∫ τ

0

∫
Ω

eu f φdx dt = 0.

Moreover we have∫ τ

0

∫
Ω

eu|∇u||∇φ|dx dt ≤ 1
2

∫ τ

0

∫
Ω

eu|∇u|2 dx dt+
∫ τ

0

∫
Ω

eu|φ|2 dx dt→ 0 as τ → 0.

Putting together the previous estimates we conclude that∫
Ω

v(x, τ)φdx =
∫
Ω

(eu(x,τ) − 1)φdx→
∫
Ω

(eu0(x) − 1)φdx as τ → 0

and then the claim follows. Hence v ∈ L2
loc([0,∞);W 1,2

0 (Ω)) solves

vt −∆v = f(x, t) (v + 1) in Q .

with ∫
Ω

v(x, τ)φdx→
∫
Ω

(eu0(x) − 1)φdx as τ → 0.

The linear classical theory gives the uniqueness.

Remark 4.10. A direct computations show that if u is a solution to problem (11), then
ut, |∇u|2 ∈ W′

T , the dual of WT defined in (4.3), for every T > 0.

In the same way we have
vt

v + 1
,
|∇v|2

(1 + v)2
∈ W′

T where v is the solution to problem (32). We

refer to [23] for a complete characterization of W′
T .

4.4. Nonuniqueness induced by singular perturbations of the initial data.
We prove in this subsection nonuniqueness for problem (11) by perturbing the initial data in
the associated linear problem with a suitable singular measure. For sake of simplicity, we limit
ourselves to the case where f(x, t) ≡ 0. In what follows, we will denote by |E| the usual Lebesgue
measure RN . The main result in this direction is the following.

Theorem 4.11. Let νs be a bounded positive singular measure in Ω, concentrated on a subset
E ⊂⊂ Ω such that |E| = 0 . Let v be the unique solution of problem

(45)


vt −∆v = 0 in D′(Q)

v(x, t) = 0 on ∂Ω× (0,∞)

v(x, 0) = νs .
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We set u = log(v + 1), then u ∈ L2
loc([0,∞);W 1,2

0 (Ω)) and verifies

(46)

{
ut −∆u = |∇u|2 in D′(Q)

u(x, 0) = 0.

Proof. Let hn ∈ L∞(Ω) be a sequence of nonnegative functions such that ||hn||L1(Ω) ≤ C
and hn ⇀ νs weakly in the measure sense, namely

lim
n→∞

∫
Ω

hn(x)φ(x)dx→ 〈νs, φ〉 for all φ ∈ Cc(Ω).

Consider now vn the unique solution to problem

(47)


(vn)t −∆vn = 0 in Q

vn ∈ L2
loc([0,∞);W 1,2

0 (Ω))

vn(x, 0) = hn(x) .

Notice that vn → v strongly in Lr(0, T ;W 1,q
0 (Ω)) for all r and q satisfying

N

q
+

2
r
> N + 1 and∫

Ω

vn(x, t)φ(x)dx→
∫
Ω

hn(x)φ(x)dx as t→ 0, for all φ ∈ C(Ω).

As in the proof of Theorem 4.6, we can prove that |∇un|2 → |∇u|2 strongly in L1(QT ) for all
T > 0, the only difference being that in this case the strong convergence of the truncates is
proved in [11].
Moreover to finish we have just to show that log(1 + vn(., t)) → 0 strongly in L1(Ω) as t → 0
and n→∞.
To prove this last affirmation, take H(vn), where H(s) = 1 − 1

(1 + s)α
, 0 < α << 1, as a test

function in (47), then∫
Ω

H(vn(x, τ)) dx+ α

∫∫
Qτ

|∇vn|2

(1 + vn)1+α
dx dt =

∫
Ω

H(hn(x)) dx

where H(s) =
∫ s
0
H(σ)dσ = s − 1

1−α ((1 + s)1−α − 1). Hence
∫
Ω
vn(x, t) dx ≤ C where C is

positive constant independent of n and t. As a consequence we obtain that log(1 + vn(., t)) is
bounded in Lp(Ω) for all p <∞ uniformly in n and t.
By the strong convergence of Tk vn, then for small ε > 0 we get the existence of n(ε) and
τ(ε) > 0 such that for n ≥ n(ε) and t ≤ τ(ε), we have

(48)
∫∫

Qt

|∇vn|2

(1 + vn)2
dx ds ≤ ε.

Since νs is concentrated on a set E ⊂⊂ Ω with |E| = 0, then for ε ∈ (0, 1) [[I have added ε < 1]]

there exists an open set Uε such that E ⊂ Uε ⊂ Ω and |Uε| ≤ ε/2.
Without loss of generality we can assume that supphn ⊂ Uε for n ≥ n(ε).
Let φε ∈ C∞0 (RN ) be such that 0 ≤ φε ≤ 1, φε = 1 in Uε, suppφε ⊂ Oε and |Oε| ≤ 2ε.
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Consider wε, the solution to problem
wεt −∆wε = 0 in Q,

wε(x, t) = 0 on ∂Ω× (0,∞),

wε(x, 0) = φε(x).

It is clear that 0 ≤ wε ≤ 1,

wε → 0 strongly in L2(0,∞);W 1,2
0 (Ω)),

wε → 0 strongly in C([0,∞);L2(Ω)),

( and
dwε
dt

→ 0 strongly in L2(0,∞);W−1,2(Ω))).

For t ≤ τ ≡ τ(ε), we set w̃ε(x, t) = w(x, τ − t), using
w̃ε

1 + vn
as a test function in (47), it

follows that∫
Ω

log(1 + vn(x, τ)) w̃ε(x, τ) dx−
∫∫

Qτ

|∇vn|2

(1 + vn)2
w̃ε dx ds =

∫
Ω

log(1 + hn)w̃ε(x, 0) dx.

Using (48) and the properties of w̃ε, we get∫
Uε

log(1 + vn(x, τ)) dx ≤ ε+
∫
Ω

log(1 + hn) w̃ε(x, 0) dx ≤ ε+
∫
Ω

log(1 + hn) dx

It is clear that we can obtain the same estimate for any t ≤ τ(ε). Since supphn ⊂ Uε, then∫
Ω

log(1 + hn) dx =
∫
Uε

log(1 + hn) dx ≤ C
(
ε+

∫
Uε

h1/2
n dx

)
≤ C(ε+ ε1/2) ≤ C ε1/2,

Hence we conclude that

(49)
∫
Uε

log(1 + vn(x, t)) dx ≤ C ε1/2 for n ≥ n(ε) and t ≤ τ(ε).

We now deal with the complement integral
∫
Ω\Uε

log(1 + vn(x, t)) dx.
Let ψε ∈ C∞(RN ) be such that 0 ≤ ψε ≤ 1, ψε = 0 in N where N is an open set such that
E ⊂⊂ N ⊂⊂ Uε and ψε ≡ 1 in Ω\Uε. [[ψe, not ψ]]

As above, let zε, the solution to problem
(zε)t −∆zε = 0 in Q,

zε(x, t) = 0 on ∂Ω× (0,∞),

zε(x, 0) = ψε(x).

It is not difficult to see that 0 ≤ zε ≤ 1. For t ≤ τ ≡ τ(ε), we consider z̃ε(x, t) = z(x, τ − t),

using
z̃ε

1 + vn
as a test function in (47), and proceeding as above, we get the existence of τ(ε)

and n(ε) such that for n ≥ n(ε) and t ≤ τ(ε), we have∫
Ω

log(1 + vn(x, t)) dx ≤ C ε1/2
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and then we get the desired result.
Hence, as a conclusion we obtain that u solves (46).

Remarks 4.12. The previous theorem can also be shown to be true under the presence of an
additional initial data v0 ∈ L1(Ω) and a term f(x, t) in the right-hand side. Therefore, putting
together this and the result of Theorem 4.6, the following general multiplicity result can be
proved.
Assume that µs is a positive Radon measure inQ, singular with respect to the parabolic capacity
cap1,2, and νs ∈M(Ω) is a positive Radon measure in Ω, singular with respect to the classical
Lebesgue measure, and let v be the unique positive solution to problem

vt −∆v = f(x, t) (v + 1) + µs in D′(Q)

v(x, 0) = v0(x) + νs ,

where where f ∈ Lrloc([0,∞);Lq(Ω)), with r and q satisfy the Aronson-Serrin hypothesis (26),
and v0 ∈ L1(Ω). If we set u = log(1 + v), then u solves

ut −∆u = |∇u|2 + f(x, t) in D′(Q),

u(x, 0) = log(1 + v0(x)).

5. The case of increasing β

We will now consider problem (1), where f is a nonnegative function in L∞loc(Q) and

β : [0,∞) −→ [0,∞)

is a continuous nondecreasing function, not identically zero. We set

(50) γ(t) =
∫ t

0

β(s)ds, Ψ(t) =
∫ t

0

eγ(s)ds,

and we define

v(x, t) = Ψ(u(x, t)).

Then problem (1) becomes

(51)


vt −∆v = f(x, t) g(v) in Q

v = 0 on ∂Ω× (0,∞)

v(x, 0) = Ψ(u0) in Ω,

where

(52) g(t) = eγ(Ψ
−1(t)) = 1 +

∫ t

0

β(Ψ−1(s)) ds .
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The main properties of the continuously differentiable function g : [0,∞) −→ [0,∞) are:

(53)



(1) g(0) = 1, and g is increasing and convex

(2) lim
s→0

g(s)− 1
s

= g′(0) = β(0)

(3) lim
s→∞

g(s)
s

= lim
s→∞

β(s) ∈ (0,∞]

(4)
∫ ∞

0

ds

g(s)
= +∞; indeed

∫ ∞

0

ds

g(s)
=

∫ ∞

0

ds

eγ(ψ−1(s))

∫ ∞

0

eγ(t)

eγ(t)
dt = ∞

Proposition 5.1. Assume that g verifies the assumptions above and that f is a bounded
function. Let v0 be a bounded positive function, then there exists a unique positive solution
v ∈ L∞loc(Q) to problem

(54)


vt −∆v = f(x, t) g(v) in Q

v = 0 on ∂Ω× (0,∞)

v(x, 0) = v0(x) in Ω.

Therefore problem (1) has at least one positive solution u such that Ψ(u) ∈ L∞loc(Q)∩L2
loc([0,∞);W 1,2

0 (Ω))
and u(x, 0) = Ψ−1(v0).

Proof. The proof is trivial, using a sub/super-solution argument, considering a super-solution
of the form w = w(t). By (4) in (53) all solutions of (54) with bounded data are bounded in
QT . Since g is locally Lipschitz, the uniqueness follows directly by using Gronwall’s inequality.

In order to obtain a global solution for unbounded initial data and a measure source term,
we will assume the following structural hypotheses on g, which is satisfied by all elementary
functions β(u):

(55) g(s) ≤ c(1 + sA(log∗ s)) , for every s > 0 ,

where log∗ s = max{log s, 1}, and A(t) : [0,+∞) → [0,+∞) is a continuous, increasing function
such that

(1) A satisfies the so-called ∆2 condition, that is,

(56) A(2t) ≤ kA(t) for all t ≥ t0

for some positive constants k and t0;
(2) A is at most slightly superlinear, in the sense that

(57)
∫ +∞ ds

A(s)
= +∞ .
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The following existence result is proved in [18].

Proposition 5.2. Assume that g verifies (55), (56) and the (57) condition. If v0 ∈ L1(Ω), and
µ is a positive measure in Q which is bounded in QT for every positive T , then there exists a
function

v ∈ L∞loc([0,∞);L1(Ω)) ∩ Lqloc([0,∞);W 1,q
0 (Ω)) ∩ Lσloc(Ω× [0,∞))

for every q < 1 + 1
N+1 and for every σ < 1 + 2

N , such that

a) For every δ < 1
2 , |v|δ ∈ L2

loc([0,∞);H1
0 (Ω)) ;

b) For all k > 0, Tkv ∈ L2
loc([0,∞);H1

0 (Ω)),
which is a weak solution to

(58)


vt −∆v = f(x, t) g(v) + µ in Q

v = 0 on ∂Ω× (0,+∞)

v(x, 0) = v0(x) in Ω,

Moreover, if µ = 0 and v0 ∈ L2(Ω), then

v ∈ C0([0,∞);L2(Ω)) ∩ L2
loc([0,∞);W 1,2

0 (Ω)).

Finally, if g satisfies

(59) |g(s1)− g(s2)| ≤ C (1 + |s1|b + |s2|b) |s1 − s2| , 0 < b <
2
N
,

for every s1, s2 ∈ R, then the weak solution of (58) is unique.

Remark 5.3. The assumptions (55), (56), (57) and (59) are satisfied in all the model cases (for
instance in the case where β(s) is a power, an exponential, or a finite iteration of exponentials,
however we do not know whether they hold for every choice of β.

5.1. Regularity and existence of weaker solutions. Assume that f ∈ L1
loc(Q) is a non-

negative function. Let us consider a distributional solution u of problem (1) in the sense of
definition 2.1. We start with the following regularity result.

Proposition 5.4. Assume that u(x, t) is a distributional solution of problem (1), where f ∈
L1

loc(Q) is such that f(x, t) ≥ 0 a.e. in Q. Then

(60)
∫
Ω

Ψ(u(x, t)) d(x) dx <∞, a.e for every t > 0,

where Ψ is defined as in (50).

Proof. It suffices to consider the function

vε = Hε(s) =
∫ s

1+εs

0

eγ(σ) dσ ,

and to follow the lines of Proposition 3.1, using the inequalities

β(s)H ′
ε(s)−H ′′

ε (s) ≥ 0 , |H ′′(s)| ≤ c(ε)
(1 + εs)3

.
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As a consequence and using the same type of computation as in the proof of Theorem 3.2 we
get the following main regularity result.

Theorem 5.5. Under the same hypotheses as in the previous Propositions, for all τ > 0 we
have

(61)
∫∫

Qτ

β(u) |∇u|2 eδγ(u) dx dt <∞, for all δ < 1 ,

(62)
∫∫

Qτ

f eγ(u) dx dt <∞ ,

(63)
∫∫

Qτ

β(u) e
γ(u)

1+εγ(u) |∇u|2
(
1− 1

(1 + εγ(u))2
)
dx dt ≤ C(τ) uniformly in ε ,

(64)
∫
Ω

Ψ(u0(x)) dx <∞ ,

and finally

(65) Ψ(u(x, t)) ∈ L∞loc([0,∞) ; L1(Ω)) .

Proof. It suffices to follow the lines of the proof of Theorem 3.2: first one takes φ(x, t)
(
kδ,ε(u(x, t))−

1
)

as test function in (1), where φ(x, t) is the solution of problem (20), and

kδ,ε(s) = e
δ γ(s)

1+ε γ(s) , δ ≤ 1 .

Using the inequality (60) and passing to the limit as ε → 0, one obtains (61)– (64). Then one
multiplies by k1,ε(u(x, t))ω(x, t), with ω(x, t) satisfying (3), to obtain (65).

5.2. Existence and multiplicity result. The main result of this subsection is the following.

Theorem 5.6. Let µs be a bounded, positive, singular measure on Q such that µs(QT ) is
bounded for every T > 0. Let v be a solution to problem

(66)


vt −∆v = f(x, t) g(v) + µs in D′(Q)

v ∈ L∞loc([0,∞);L1(Ω)) ∩ Lrloc([0,∞);W 1,q
0 (Ω))

f(x, t) g(v) ∈ L1
loc(Q)

v(x, 0) = v0(x) ∈ L1(Ω) ,

for all (r, q) such that

q, r ≥ 1 ,
N

q
+

2
r
> N + 1 .
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If we define u = Ψ−1(v), where Ψ is given by (50), then u solves

(67)


ut −∆u = β(u)|∇u|2 + f(x, t) in D′(Q)

u ∈ L2
loc([0,∞);W 1,2

0 (Ω))

β(u)|∇u|2 ∈ L1
loc(Q)

u(x, 0) = u0(x) := Ψ−1(u0(x)) .

Proof. We begin by proving that β(u)|∇u|2 ∈ L1
loc(Q). Let {hn} be a sequence of a bounded

positive function such that hn → µs in M0(QT ) for every T > 0. Let vn be the unique solution
to problem

(68)


(vn)t −∆vn = Tn(f g(v)) + hn(x, t) in Q

vn ∈ L2
loc([0,∞);W 1,2

0 (Ω))

vn(x, 0) = Tn(v0(x)) .

Notice that vn → v in Lr(0, T ;W 1,q
0 (Ω)) and ||Tkvn||L2(0,T ;W 1,2

0 (Ω)) ≤ Ak for all T > 0 and

k > 0. Fix T > 0. By taking
g(vn)− 1
g(vn)

as a test function in (68), we obtain that

∫
Ω

h(vn(x, T )) dx−
∫
Ω

h(v0(x)) dx+
∫∫

QT

g′(vn)|∇vn|2

(g(vn))2
dx dt ≤ C(T ) ,

where h(s) =
∫ s

0

g(σ)− 1
g(σ)

dσ ≤ s. Hence using Fatou’s lemma we get

∫∫
QT

β(u) |∇u|2 dx dt =
∫∫

QT

g′(v) |∇v|2

(g(v))2
dx dt ≤ C(T ) .

Notice that by taking wn ≡ 1 − 1
(g(vn))δ

as test function in (68), we obtain that, for every

δ > 0, ∫∫
QT

g′(vn) |∇vn|2

(g(vn))1+δ
dx dt ≤ C(T, δ) and then

∫∫
QT

g′(v) |∇v|2

(g(v))1+δ
dx dt ≤ C(T, δ) .

Since g′(s) = β(Ψ−1(s)), the hypothesis on β implies g′(s) ≥ C1 > 0 for s large enough; recalling
that Tkvn is bounded in L2(0, T ;W 1,2

0 (Ω)) for every fixed k, we conclude that, for every δ > 0,∫∫
QT

|∇vn|2

(g(vn))1+δ
dx dt ≤ C(T, δ) and then

∫∫
QT

|∇v|2

(g(v))1+δ
dx dt ≤ C(T, δ) .

We set un = Ψ−1(vn), then by a direct computation one can check that

(un)t −∆un = β(un)|∇un|2 +
Tn(f g(v))
g(vn)

+
hn
g(vn)

in D′(Q).
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Notice that
Tn(f g(v))
g(vn)

→ f in L1(QT ) and un → u in L1(QT ). (The last estimate follows by

the fact that |∇un| =
|∇vn|
g(vn)

is bounded in L2(QT ), hence un → u in L2(QT )).

We claim that
hn
g(vn)

→ 0 in D′(QT ) .

We prove the claim, assume that A is a set of zero capacity such that µs
∣∣
QT

is concentrated on
A, and find an open set Uε ⊃ A and a function ψε ∈ WT such that ψε ≥ χUε

and ||ψε||W ≤ ε.
Let m(s) be the function defined in (4.3). Integrating in time and using a Picone-type inequality
(see [3]), we obtain

4 ε2 ≥
∫
Ω

|∇m(ψε)|2 dx ≥
∫
Ω

−∆(vn + 1)
vn + 1

m2(ψε) dx

≥
∫
Ω

hn
vn + 1

m2(ψε) dx−
∫
Ω

(vn)t
vn + 1

m2(ψε) dx

≥ c

∫
Ω

hn
g(vn)

m2(ψε)dx−
∫
Ω

(vn)t
vn + 1

m2(ψε) dx .

Hence, after integrating in time,

(69) c

∫∫
Uε

hn
g(vn)

dx dt ≤ 4ε2 +
∫
Ω

log(1 + vn(x, T ))m2(ψε(x, T )) dx

+ 2
∫∫

QT

log(1 + vn)m′(ψε)m(ψε)ψ′ε dx dt .

The last two integrals in (69) can be estimated exactly as in the proof of Theorem (4.6), and
the claim (5.2) follows easily. Finally, by a direct adaptation of the argument used in proof of
Theorem 4.6 we can prove that

β(un) |∇un|2 =
g′(vn) |∇vn|2

(g(vn))2
→ β(u) |∇u|2 =

g′(v) |∇v|2

(g(v))2
strongly in L1(QT ).

Hence we conclude that u is a solution to problem (67), moreover u ∈ C([0, T ];L1(Ω)), which
shows that the initial datum is Ψ−1(v0).

Let consider now the inverse problem, namely we have the next result.

Theorem 5.7. Let u ∈ C([0,∞);L1(Ω)) ∩ L2
loc([0,∞);W 1,2

0 (Ω)) be a solution to problem
(1), with β(u)|∇u|2 ∈ L1

loc(Q) and f ∈ L∞loc(Q), is a positive function. Let v = Ψ(u), then
v ∈ L1

loc(Q) and there exists a bounded positive Radon measure µs, singular with respect to
cap1,2−capacity, such that v solves

vt −∆v = f(x, t) g(v) + µs in D′(Q) .



PARABOLIC PROBLEMS WITH NATURAL GROWTH IN THE GRADIENT 31

Moreover µs can be characterized as a weak limit in the space of bounded Radon measures, as
follows:

µs = lim
ε→0

e
γ(u)

1+εγ(u) β(u) |∇u|2
(

1− 1
(1 + εγ(u))2

)
in Qτ for every τ > 0.

Proof. We set v = Ψ(u), then by the regularity result of Theorem 5.4 we obtain that v ∈
L1

loc(Q). Using the estimate (63), we can extract a sequence of vanishing values of ε such that

e
γ(u)

1+εγ(u) β(u) |∇u|2
(
1− 1

(1 + εγ(u))2
)
dx dt→ µs ,

where µs is a positive Radon measure defined in QT for all T > 0. Since∫∫
u≤k

e
γ(u)

1+εγ(u) β(u) |∇u|2
(
1− 1

(1 + εγ(u))2
)
dx dt→ 0 as ε→ 0,

then µs is supported in the set A ≡ {x ∈ Ω : u(x) = ∞}. The rest of the proof consists in
taking

vε(x, t) =
∫ u(x,t)

0

e
γ(s)

1+εγ(s) ds ∈ L2(0, T ;W 1,2
0 (Ω)),

and in following the same arguments as in the proof of Theorem 4.8.

Remark 5.8. Notice that if β ∈ L1[0,∞), then necessarily the measure µs defined in (5.7) is
equivalent to 0. This result follows using the fact that γ(s) ≤

∫∞
0
β(σ)dσ and that

lim
ε→0

∫∫
QT

β(u)|∇u|2e
γ(u)

1+εγ(u)

(
1− 1

(1 + εγ(u))2

)
φdx dt = 0 for all φ ∈ C∞0 (QT ).

Moreover if β ∈ L1[0,∞) ∩ L∞[0,∞), then g is a Lipschitz function, hence problem (5.7) with
µs = 0 has a unique positive local solution, thus problem (1) has a unique local solution. In the
elliptic case, the uniqueness result under this condition on β was obtained in [29].
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Departamento de Matemáticas, U. Autonoma de Madrid,
28049 Madrid, Spain.

E-mail address: ireneo.peral@uam.es.


