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Abstract

In this work we analyze existence, nonexistence, multiplicity and regularity of solution to
problem 

−∆u = β(u)|∇u|2 + λf(x) in Ω
u = 0 on ∂Ω,

(1)

where β is a continuous nondecreasing positive function and f belongs to some suitable
Lebesgue spaces.

1 Introduction and preliminaries

This paper is devoted to some results concerning nonlinear elliptic equations of the form{
−∆u = β(u)|∇u|2 + λf(x) in Ω

u = 0 on ∂Ω,
(2)

where Ω is a bounded open set in IRN , β(s) is a positive continuous function, λ is a positive
constant and f(x) is a positive measurable function. We will assume that Ω has a smooth enough
boundary, as an example, the interior sphere condition is sufficient to do all the arguments below.
Equations of the form (2) have been widely studied in the literature. For instance, in the case where
β ≡ constant and f ≡ 0, this equation may be reckoned as the stationary part of the equation

ut − ε∆u = |∇u|2,

which may be viewed as the viscosity approximation as ε → 0+ of Hamilton-Jacobi type equations
from stochastic control theory (see [36]). The same parabolic equation appears in the physical
theory of growth and roughening of surfaces, where it is known as the Kardar-Parisi-Zhang equation
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(see [31]). Existence results for problem (2) start from the classic references [35] and [34]. Later
on, many authors have been considering elliptic equations with first order terms having quadratic
growth with respect to the gradients (see for instance [14], [15], [16], [17], [18], [19], [21], [22], [25],
[26], [29], [32], [31], [40], [42], [43], [46], [50] and references therein). We will start from the study
of the simpler case of equation (2), that is, the case where β(s) ≡ constant. By rescaling, there is
no loss in generality in assuming that β(s) ≡ 1. Therefore, let us consider problem{

−∆u = |∇u|2 + λf(x) in Ω
u = 0 on ∂Ω,

(3)

It is well known that in this case (see [32] and [25]) the change of variable v = eu − 1 leads to the
linear equation {

−∆v = λf(x)(v + 1) in Ω
v = 0 on ∂Ω,

(4)

which admits a unique solution in W 1,2
0 (Ω) provided f ∈ LN/2 and λ is small enough. It is also

known that the smallness condition on λ is necessary in order to have existence. This means that,
for every f(x) ≥ 0, with f 6≡ 0, there is no solution of problem (4) for λ large. Therefore equation
(2) has no solution in the space of functions u such that eu−1 ∈ W 1,2

0 (Ω) (see also [25] for a detailed
result in this direction). A first contribution of our paper is a non-existence result in the larger
space W 1,2

0 (Ω) when λ is large. More precisely, if f(x) is a locally integrable function, verifying

(A) There exists φ0 ∈ C∞0 (Ω) such that
∫
Ω

|∇φ0|2dx < λ

∫
Ω

fφ2
0dx < +∞ ;

then we show that problem (3) admits no solution in W 1,2
0 (Ω) for such λ. We will also analyse the

existence and nonexistence under regularity condition on f . It is well known that in general there
is no uniqueness of solutions of (3). For instance, if N > 2, the functions

um(x) = log
(
|x|2−N −m

1−m

)
∈ W 1,2

0 (B1), 0 ≤ m < 1,

all solve the equation −∆u = |∇u|2 in the unit ball B1 = {x ∈ IRN : |x| < 1} (though only the
zero function satisfies eu−1 ∈ W 1,2

0 (B1)). One of the main aims of this paper is to characterize this
non-uniqueness phenomenon, and to show that every solution of problem (2) comes from a solution
of a linear problem with measure data, after a suitable change of variable. The first step is to show
that all solutions of equation (3), also satisfy some exponential integrability (independently on the
regularity of f(x), provided this function is nonnegative). More precisely they verify

eδu − 1 ∈ W 1,2
0 (B1) , for every δ < 1

2 .

Note that the bound on δ is sharp by the previous example. The main novelty in the proof of this
regularity result is the fact that the “regularizing” term is the right-hand side of the equation,
rather than –as usually happens– the diffusion term. Using this regularity result we show that if
we perform the change of variable v = eu− 1, then the new function v is still in a (larger) Sobolev
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space, that is, v ∈ W 1,q
0 (Ω), for every q < N

N−1 . We show that v is a distributional solution of the
problem {

−∆v = λf(x)(v + 1) + µs in Ω
v = 0 on ∂Ω,

(5)

where µs is a bounded positive Radon measure which is concentrated on a set of capacity zero. On
the other hand, we can also prove a result in the opposite direction, that is, if f is a nonnegative
function such that f ∈ Lq(Ω), with q > N

2 , and if λ is small enough, and if µs is a bounded positive
Radon measure, then problem (5) has a unique solution, a result which was proved for bounded
f by Radulescu-Willem [45] (see also Orsina [41]). Then, if µs is concentrated on a set of zero
capacity, we will show that u = log(1 + v) ∈ W 1,2

0 (Ω) is a solution of problem (3). The remaining
part of this paper is devoted to the study of equation (2) for a continuous nonnegative function β
under some hypotheses that will be precised in each section. In this case, the change of unknown
function

v = Ψ(u) =
∫ u

0

e
R s
0 β(t)dt ds

leads formally to the following semilinear problem,{
−∆v = λf(x)(1 + g(v)) in Ω

v = 0 on ∂Ω,
(6)

where g(s) : [0,+∞) → [0,+∞) is a positive, increasing, convex function which is superlinear at
infinity. The passage from problem (2) to problem (6) and viceversa is correct only if the function
v = Ψ(u) belongs to W 1,2

0 (Ω). We emphasize the fact that, for every choice of increasing function
β(s), the function g is only very slightly superlinear, in the sense that∫ +∞

0

ds

1 + g(s)
= +∞ . (7)

However we do not know if, for any choice of β(s), the transformed function g(s) satisfies a point-
wise condition of the form g(s) ≤ csq for some q > 1, though for every choice of β among elementary
functions (for instance β(s) = (log(1 + s))α, β(s) = sα, β(s) = es, β(s) = ee

s

, etc.) this condition
is satisfied. We will always assume a condition of this kind (see assumption (H) below). We de-
vote Section 3 to the study of slightly superlinear problems of the form (7). These problems are
variational in nature, in the sense that their positive solutions are critical points of the functional

Jλ(u) =
1
2

∫
Ω

|∇u|2dx− λ

∫
Ω

f(x)u+dx− λ

∫
Ω

f(x)G(u+) dx , (8)

where G(s) is the primitive of g(s). For bounded f , and λ not too large, this functional has a
concave-convex geometry, which suggests the existence of (at least) two distinct positive solutions.
However, due to the slow growth of the nonlinearity, the usual Ambrosetti-Rabinowitz condition,
which ensures that all the Palais-Smale sequences for the functional Jλ(u) are bounded in W 1,2

0 (Ω),
does not hold. Therefore the proof of the existence of two solutions for problem (6) has to use more
sophisticated tools, such as a more recent result by Jeanjean (see [30]). We show that there exist
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a positive number λ∗ such that problem (6) has at least two positive solutions for λ < λ∗, at
least one solution for λ = λ∗, and no solution for λ > λ∗. Therefore this means that for λ not
too large problem (2) admits at least two solutions such that Ψ(u) ∈ W 1,2

0 (Ω). The next natural
question, by analogy with the case β ≡ 1, is whether there exist less regular solutions for which the
change of variable v = Ψ(u) generates a singular measure in the resulting semilinear problem. The
last section of this paper is devoted to answering (positively) to this question. We show that all
solutions to problem (2) satisfy some exponential integrability, and that the transformed function
v satisfy some semilinear problem with measure data, of the form{

−∆v = λf(x)(1 + g(v)) + µs in Ω
v = 0 on ∂Ω,

(9)

where µs is a positive, bounded Radon measure, which is concentrated on a set of zero capacity.
Viceversa, every solution of (9), with µs singular and f(x)(1 + g(v)) ∈ L1(Ω), generates a solution
u ∈ W 1,2

0 (Ω) of problem (2). Notice that, using some results by Baras-Pierre [7] and Adams-Pierre
[3] (see also [9]) one can prove the existence of a solution of problem (9) for any measure µs,
for every positive bounded function f(x) and for every nonlinearity g satisfying condition (H)
below for a small enough (which is true in all model cases). The existence of an infinite number of
solutions in W 1,2

0 (Ω) of problem (2) in the case of an increasing function β(u) should be contrasted
with the uniqueness result recently proven by Korkut, Pašić and Žubrinić in [33]. They show that
if β(s) ∈ L∞(IR) ∩ L1(IR) and if f ≡ 0, then the only solution u ∈ W 1,2

0 (Ω) of problem (2) is the
zero function. Remark that if β ∈ L1(R+) ∩ L∞(R+) there exist solutions for all f ∈ L1(Ω) and
all λ > 0. See [43]. The non-uniqueness results are based on the following Picone type inequality
(see [2]).

Theorem 1.1 If u ∈ W 1,2
0 (Ω), u ≥ 0, v ∈ W 1,2

0 (Ω), −∆v ≥ 0 is a bounded Radon measure,
v|∂Ω = 0, v ≥ 0 and not identically zero, then∫

Ω

|∇u|2 ≥
∫
Ω

(
u2

v
)(−∆v).

The plan of the paper is the following: Section 2 is devoted to the study of β ≡ 1, while in Section
3 we study by variational methods, in the case of general β, the semi-linear problem obtained by
change of variables with variational methods in the case of general β. Finally, Section 4 is devoted to
study the existence and regularity of weaker solutions and its connection with semi-linear problems
with measure data.
The parabolic case will be explained in a forthcoming paper.

2 The case β(u) ≡ 1: analysis of the solutions in W 1,2
0 (Ω)

Consider the problem {
−∆u = |∇u|2 + λf(x) in Ω

u = 0 on ∂Ω,
(10)
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where λ > 0 and f ∈ Lm(Ω), m ≥ N

2
, f(x) ≥ 0. Note that, in order to be a solution in the sense

of distributions, a function u must be in W 1,2
0 (Ω).

2.1 Existence and nonexistence

Following Kazdan-Kramer [32] we perform the change of variable

v = eu − 1

and then problem (10) becomes{
−∆v = λf(x)(v + 1) in Ω

v = 0 on ∂Ω,
(11)

where f ∈ Lm(Ω), m ≥ N

2
, f(x) ≥ 0.

It is well known that this problem admits a unique solution provided λ is small enough. As a
straightforward consequence we obtain the following result.

Theorem 2.1 If λ is small enough, there exists a unique solution to problem (10) such that eu−1 ∈
W 1,2

0 (Ω).

Next we will study a deeper existence and nonexistence result according with some hypothesis on
f and the size of λ. Assume that f is a measurable, non-negative function such that f satisfies the
following property:

(A) There exists φ0 ∈ C∞0 (Ω) such that
∫
Ω

|∇φ0|2dx < λ

∫
Ω

fφ2
0dx < +∞ ;

then we have the following nonexistence result.

Theorem 2.2 If λ, f verify the hypothesis (A) above, then problem (10) has no solution.

Proof. By contradiction, assume that problem (10) has a solution u, then multiplying by φ2
0 we

obtain that
2

∫
Ω

φ0∇φ0∇u dx =
∫
Ω

φ2
0|∇u|2dx + λ

∫
Ω

fφ2
0dx.

Hence we conclude that

λ

∫
Ω

fφ2
0dx = 2

∫
Ω

φ0∇φ0∇udx−
∫
Ω

φ2
0|∇u|2dx ≤

∫
Ω

|∇φ0|2dx

a contradiction with the definition of φ0.
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Assume that f ∈ L1(Ω) is a non-negative function, and set

λ1(f) = inf
φ∈W 1,2

0 (Ω)

∫
Ω

|∇φ|2dx

∫
Ω

fφ2dx

≥ 0. (12)

We consider the following hypothesis

(B) λ1(f) > 0.

Notice that by hypothesis (B), W 1,2
0 (Ω) is continuously imbedded in L2(Ω, f(x)dx), moreover,

using the Cauchy-Schwartz inequality for the measure f(x)dx and hypothesis (B) we obtain∫
Ω

vf(x)dx ≤
( ∫

Ω

f(x)dx

) 1
2
( ∫

Ω

v2f(x)dx

) 1
2

≤ λ1(f)−1/2

( ∫
Ω

f(x)dx

) 1
2
( ∫

Ω

|∇v|2dx

) 1
2

,

namely, hypothesis (B) implies that f ∈ W−1,2(Ω).

Theorem 2.3 Assume that (B) holds then problem (10) has no solution in W 1,2
0 (Ω) for λ > λ1(f)

and has a unique solution u such that eu − 1 ∈ W 1,2
0 (Ω) for λ < λ1(f).

Proof. If λ > λ1(f), then by a density argument we can show that condition (A) holds. Therefore,
by Theorem 2.2 we obtain that problem (10) has no solution. We prove now the existence result.
Assume that λ < λ1(f) and consider the following problem{

−∆v = λf(v + 1) in Ω
v > 0, v = 0 on ∂Ω.

(13)

Since 0 < λ < λ1(f) we have that the functional

J(v) =
1
2

∫
Ω

|∇v|2 − λ

2

∫
Ω

f(x)v2 − λ

∫
Ω

fv

is well defined in W 1,2
0 (Ω) and, moreover:

1) J is coercive, indeed,

J(v) ≥
(

1
2
− λ

λ1(f)
(
1
2

+ ε)
) ∫

Ω

|∇v|2 − C(ε)λ
∫
Ω

f

and if 0 < ε < 1
4 (λ1(f)− λ), then δ =

(
1
2 −

λ
λ1(f) (

1
2 + ε)

)
> 0.
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2) It is easy to see that J is Frechet-differentiable in W 1,2
0 (Ω) and then by the Ekeland Varia-

tional Principle (see [24]), we obtain a sequence {vk}k∈IN ⊂ W 1,2
0 (Ω), vk > 0, such that

i) vk ⇀ v weakly in W 1,2
0 (Ω); ii) J(vk) → c = inf

w∈W 1,2
0 (Ω)

J(w) and iii) J ′(vk) → 0

3) As a consequence we obtain that v is a weak solution, because for all test function φ,

0 = lim
k→∞

(−
∫
Ω

vk∆φ−
∫
Ω

f(vk + 1)φ) = −
∫
Ω

v∆φ−
∫
Ω

f(v + 1)φ = −
∫
Ω

∆vφ−
∫
Ω

f(v + 1)φ.

then (13) has a unique positive solution v ∈ W 1,2
0 (Ω). It is no too difficult to prove that in fact the

convergence of the sequence is strong. Finally by setting u = log(v+1) we obtain that u ∈ W 1,2
0 (Ω),

eu − 1 ∈ W 1,2
0 (Ω) and

−∆u = |∇u|2 + λf in D′(Ω).

Remark 2.4 Notice that the following examples verifies the assertion in Theorem 2.3:

a) If f ∈ Lp(Ω) with p ≥ N
2 , λ1(f) is attained by some eigenfunction φ1 ∈ W 1,2

0 (Ω). Moreover, if
p > N

2 the eigenfunction φ1 is Hölder continuous and then even for λ = λ1(f) problem (10)
has no solution. Indeed, by contradiction, if u is a solution, taking φ2

1 as a test function in
(10) we obtain that

2
∫
Ω

φ1∇u∇φ1 =
∫
Ω

|∇u|2φ2
1dx + λ1(f)

∫
Ω

fφ2
1dx =

∫
Ω

|∇u|2φ2
1dx +

∫
Ω

|∇φ1|2dx.

Therefore we obtain that
∫
Ω

|∇φ1 − φ1∇u|2dx = 0. Hence ∇u = ∇φ1
φ1

= ∇(log(φ1)), a contra-

diction with the fact that u ∈ W 1,2
0 (Ω).

b) If f(x) =
1
|x|2

we have the Hardy inequality. If we assume that 0 ∈ Ω then it is well known

that λ1(f) =
(N − 2)2

4
and is not attained. Then for λ > λ1(f) there is no solution and for

λ < λ1(f) there exists solution. A nonexistence result of solutions in the class eu−1 ∈ W 1,2
0 (Ω)

for λ > λ1(f) has been obtained by L. Boccardo in [10] even for a general class of elliptic
operators in divergence form. In the Laplacian case we prove that even in the larger class
W 1,2

0 (Ω) there is no solution if λ > λ1(f). See also the next remark.

In the case λ = λ1(f), using the improved Hardy inequalities (see [51] and [1]), it is possible
to prove that problem (13) has a solution v in the space H obtained as the completion of
C∞0 (Ω) with respect to the norm

||v||2 =
∫
Ω

|∇v|2dx− λ1(f)
∫
Ω

v2

|x|2
dx.



8

As a consequence u = log(1 + v) ∈ W 1,2
0 (Ω) and eu− 1 ∈ H. Obviously the case where 0 /∈ Ω

is included in the previous case a).

c) If f(x) =
1

δ(x)
, where δ(x) is the distance to the boundary, is not in L1 but we have a Hardy

inequality and that f ∈ W−1,2(Ω) (see [20]). Then a slight modification of the argument in
Theorem 2.3 allow us to conclude the same result.

Remark 2.5 The above nonexistence result can be easily extended to a large class of elliptic
problems like

−div(a(x, u,∇u)) = b(x, u,∇u) + λf, u ∈ W 1,p
0 (Ω) (14)

where f and b are positive functions and

1. |a(x, u, ξ)| ≤ c1|ξ|p−1.

2. µ1|ξ|p ≤ 〈a(x, u, ξ), ξ〉 ≤ µ2|ξ|p for all ξ ∈ IRN .

3. b(x, u, ξ) ≥ c2|ξ|p.

Assume that f ∈ L1(Ω) is a non-negative function, and consider

Λ(f) = inf
φ∈W 1,p

0 (Ω)

∫
Ω

|∇φ|pdx∫
Ω

f |φ|pdx
≥ 0.

1. If Λ(f) = 0 then (14) has not solution.

2. If Λ(f) > 0 then there exists Λ∗ > 0 such that problem (14) has no solution if λ > Λ∗.

Indeed, if φ ∈ C∞0 (Ω), φ ≥ 0 we consider φp as test function in (14) and by the structural hypotheses
of the equation, 1), 2) and 3), we find

λ

∫
Ω

fφp + c2

∫
Ω

|∇u|pφp ≤ pc1

∫
Ω

|∇u|p−1φp−1|∇φ|,

then
λ

∫
Ω

fφp + c2

∫
Ω

|∇u|pφp ≤ ε

∫
Ω

|∇u|pφp + C(ε, p)
∫
Ω

|∇φ|p

for ε small enough we obtain

λ

∫
Ω

fφp ≤ C(ε, p)
∫
Ω

|∇φ|p,

and then for λ large we have a contradiction with the definition of Λ(f).
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2.2 Regularity

We have found the solution such that (e|u| − 1) ∈ W 1,2
0 (Ω). Following the examples in [21] and

[25] we will discuss in the next subsection the existence of weaker solutions which still belong to
W 1,2

0 (Ω). In this subsection we will show that every solution u ∈ W 1,2
0 (Ω) of problem (10), and not

just the regular one given by Theorem 2.1, enjoy some exponential regularity. Precisely we have
the following Theorem.

Theorem 2.6 Assume that u ∈ W 1,2
0 (Ω) is a solution of problem (10), where f(x) ∈ L1(Ω)

satisfies f(x) ≥ 0 a.e. in Ω. Then

eδ|u| − 1 ∈ W 1,2
0 (Ω) , for every δ <

1
2
. (15)

Proof. Assume u is a weak solution to problem (11) and consider as test function

vε(x) = e
2δu

1+εu − 1 ∈ W 1,2
0 (Ω) ∩ L∞(Ω).

Then ∫
Ω

|∇u|2e
2δu

1+εu
2δ

(1 + εu)2
dx =

∫
Ω

|∇u|2
(
e

2δu
1+εu − 1

)
+

∫
Ω

f
(
e

2δu
1+εu − 1

)

≥
∫
Ω

|∇u|2
(
e

2δu
1+εu − 1

)
.

Therefore ∫
Ω

|∇u|2 ≥
∫
Ω

e
2δu

1+εu
(
1− 2δ

(1 + εu)2
)
|∇u|2dx

If δ < 1
2 then

1− 2δ

(1 + εu)2
> 0

and by Fatou’s Lemma we reach∫
Ω

|∇u|2 ≥ (1− 2δ)
δ2

∫
Ω

|∇(eδu − 1)|2dx

Remark 2.7 Notice that the regularity given by the previous theorem is optimal. Indeed if we
consider f = 0 and Ω = B1(0), the unit ball, then the equation admits the following family of
solutions (see [25])

um(x) = log
(
|x|2−N −m

1−m

)
, 0 ≤ m < 1,

which satisfies (15), but e
u
2 − 1 /∈ W 1,2

0 (Ω).
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In the case where f changes sign, we must require that its negative part is in L
N
2 (Ω), and the

regularity of u will depend on the norm of f− in this space. More precisely we have the following
result:

Theorem 2.8 Assume that u ∈ W 1,2
0 (Ω) is a solution of problem (10), where f+(x) ∈ L1(Ω) and

f−(x) ∈ L
N
2 (Ω). Then

eδ|u| − 1 ∈ W 1,2
0 (Ω) , for every δ such that 0 < δ < δ0 =

1

1 +
√

1 + S‖f−‖N
2

, (16)

where S = S(N) is the best constant in the Sobolev inequality.

Proof. We take vε(x) = e
2δ|u|

1+ε|u| − 1 as test function. Then∫
Ω

|∇u|2e
2δ|u|

1+ε|u|
2δ

(1 + ε|u|)2
sign(u) dx =

∫
Ω

|∇u|2
(
e

2δ|u|
1+ε|u| − 1

)
dx +

∫
Ω

f
(
e

2δ|u|
1+ε|u| − 1

)
dx

≥
∫
Ω

|∇u|2
(
e

2δ|u|
1+ε|u| − 1

)
dx−

∫
Ω

f−
(
e

2δ|u|
1+ε|u| − 1

)
dx.

Taking into account that for all η > 0

e2t − 1 ≤ (1 + η)(et − 1)2 +
(1− η)2

η

we obtain∫
Ω

|∇u|2e
2δ|u|

1+ε|u|
2δ

(1 + ε|u|)2
dx ≥

∫
Ω

|∇u|2
(
e

2δ|u|
1+ε|u| − 1

)
dx−

∫
Ω

f−
(
e

2δ|u|
1+ε|u| − 1

)
dx

≥
∫
Ω

|∇u|2
(
e

2δ|u|
1+ε|u| − 1

)
dx− (1 + η)||f−||N

2
||e

δ|u|
1+ε|u| − 1||22∗ − cη||f−||1

≥
∫
Ω

|∇u|2
(
e

2δ|u|
1+ε|u| − 1

)
dx− (1 + η)||f−||N

2
Sδ2

∫
Ω

|∇u|2 e
2δ|u|

1+ε|u|

(1 + ε|u|)4
− cη||f−||1

therefore ∫
Ω

|∇u|2 + cη||f−||1 ≥
∫
Ω

|∇u|2e
2δ|u|

1+ε|u|

(
1− 2δ − (1 + η)Sδ2||f−||N

2

)
dx

and taking limit in ε we reach the conclusion, provided
(
1− 2δ − (1 + η)Sδ2||f−||N

2

)
> 0 which

gives the bound on δ.

Remark 2.9 Note that δ0 goes to 1
2 when ||f−||N

2
→ 0 and δ0 → 0 when ||f−||N

2
increases.
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2.3 Existence of weaker solutions: Connection with elliptic problems
with measure data

In this subsection we will show a tight relation between problems with first order quadratic
terms and linear equations with measure data. This relation will imply a very strong form of
non-uniqueness for distributional solutions of problem (10).
We recall that, given a Radon measure µ on Ω and a Borel set E ⊂ Ω, then µ is said to be
concentrated on E if µ(B) = µ(B ∩ E) for every Borel set B.
Moreover we define by cap(E) = cap1,2(E) the capacity of subsets of Ω, which is induced by the
norm ‖u‖2

W 1,2
0 (Ω)

=
∫
Ω
|∇u|2 dx (we refer to [38] for an introduction to capacity).

Theorem 2.10 Let u ∈ W 1,2
0 (Ω) be a solution to problem (10), where f ∈ L1(Ω) is a positive

function. Consider v = eu − 1, then there exists a measure µs, which is concentrated on a set of
zero capacity, such that

−∆v = λf(x)(v + 1) + µs in D′(Ω)
v ∈ W 1,q

0 (Ω) for all q < N
N−1

Tk(v) ∈ W 1,2
0 (Ω), log(1 + v) ∈ W 1,2

0 (Ω).
(17)

Moreover µs can be characterized as a weak limit in the space of bounded Radon measures, as
follows:

µs = lim
ε→0

|∇u|2e
u

1+εu

(
1− 1

(1 + εu)2

)
. (18)

Proof. Since λ does not play any role, we will take λ = 1. We set v = eu−1, then by the regularity
result of Theorem 2.6 and Hölder’s inequality we obtain that v ∈ W 1,q

0 (Ω) for all q < N
N−1 . For

ε > 0, take e
u

1+εu − 1 ∈ L∞(Ω) ∩W 1,2
0 (Ω) as test function in (10) Then integrating by parts,∫

Ω

|∇u|2dx =
∫
Ω

|∇u|2e
u

1+εu

(
1− 1

(1 + εu)2

)
dx +

∫
Ω

f (e
u

1+εu − 1) dx

Hence ∫
Ω

f (e
u

1+εu − 1) dx ≤
∫
Ω

|∇u|2dx

and then by monotone convergence we conclude that∫
Ω

f (e
u

1+εu − 1) →
∫
Ω

fvdx ≤
∫
Ω

|∇u|2dx < +∞. (19)

On the other hand again by the same argument∫
Ω

|∇u|2e
u

1+εu

(
1− 1

(1 + εu)2

)
dx ≤

∫
Ω

|∇u|2dx (20)
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then, up to a subsequence,

|∇u|2e
u

1+εu

(
1− 1

(1 + εu)2

)
⇀ µs

a positive Radon measure. Notice that µs is concentrated on the set A ≡ {x ∈ Ω : u(x) = +∞}.
This follows from the fact that∫

u≤k

|∇u|2e
u

1+εu

(
1− 1

(1 + εu)2

)
dx → 0 as ε → 0.

Since u ∈ W 1,2
0 (Ω), we conclude that cap(A) = 0.

We now define

vε(x) =
∫ u(x)

0

e
s

1+εs ds ∈ W 1,2
0 (Ω).

It is easy to check that vε solves

−∆vε = e
u

1+εu (−∆u)− e
u

1+εu
|∇u|2

(1 + εu)2

= e
u

1+εu |∇u|2(1− 1
(1 + εu)2

) + λf(x)e
u

1+εu

(21)

in the sense of distributions. The last term converges in L1(Ω) by (19), while the remaining one
converges to µs. Since vε → v in L1(Ω), we obtain that v solves the equation (17) in the sense of
distribution. Therefore µs is uniquely determined and the convergence in (18) holds for the whole
sequence.

Remark 2.11 Notice that in the case where e|u|/2 − 1 ∈ W 1,2
0 (Ω), that is, the regular solution,

the limit in (18) is zero, by Lebesgue’s convergence theorem.

Remark 2.12 We emphasize the fact that, given the special elliptic operator under consideration
(the Laplace operator), then for measure data the notions of solution in the sense of distributions,
in the sense of duality (see [48]) and of renormalized solutions (see [39] and [23]) all coincide (see
also [44]).

Theorem 2.13 Let f(x) be a positive function in Lr(Ω), with r > N/2, and set

λ1(f) = inf
φ∈W 1,2

0 (Ω)\{0}

∫
Ω

|∇φ|2dx

∫
Ω

fφ2dx

. (22)

Let µ be a positive Radon measure with bounded total variation. Then, for all λ < λ1(f), problem
−∆v = λf(x)(v + 1) + µ in D′(Ω)

v ∈ W 1,q
0 (Ω) for all q < N

N−1

Tk(v) ∈ W 1,2
0 (Ω), log(1 + v) ∈ W 1,2

0 (Ω).
(23)

has a unique positive solution v.
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Proof. We follow an approximation argument, as in [41]. Let {gn} a sequence of a positive
bounded functions such that gn → µ in M0(Ω) and consider the problem{

−∆vn = λf(x)(vn + 1) + gn in Ω
vn = 0 on ∂Ω.

(24)

Since λ < λ1(f), then problem (24) has a unique positive solution vn ∈ W 1,2
0 (Ω).

We claim that vn is bounded in Lr
′
(Ω), where r′ =

r

r − 1
. If not, we can extract a subsequence

(still denoted by {vn}) such that ‖vn‖r′ → +∞. Then we set

wn =
vn

‖vn‖r′
.

Then wn solves the equation

−∆wn = λf wn +
λf + gn
‖vn‖r′

. (25)

Since the right-hand side of (25) is bounded in L1(Ω), it follows (see [48]) that wn is bounded in
W 1,q(Ω) for every q < N

N−1 , and in Ls(Ω) for every s < N
N−2 . Then one can extract a subsequence

which converges weakly in the same spaces to w. Passing to the limit in (25), one sees that w solves

−∆w = λf w . (26)

Moreover, by Rellich’s compactness theorem, wn → w strongly in Lr
′
(Ω), therefore w 6= 0. More-

over, by a bootstrap argument applied to problem (26), one can check that w ∈ W 1,2
0 (Ω). Therefore

λ must be an eigenvalue of problem (26), which contradicts the assumption on λ. This proves that
vn is bounded in Lr

′
(Ω).

Therefore, by applying the same arguments with the sequence {wn} replaced by {vn}, one can
extract a subsequence which converges weakly to a solution v of (23). Since λ < λ1(f), it is easy
to prove that v(x) > 0 in Ω. Notice that v ∈ W 1,q

0 (Ω) for all q < N
N−1 and (see again [48])

Tk(v) ∈ W 1,2
0 (Ω) for all k > 0. We prove now that log(v + 1) ∈ W 1,2

0 (Ω). By using zn =
vn

vn + 1
as

a test function in (24) we obtain that∫
Ω

|∇vn|2

(vn + 1)2
dx =

∫
Ω

f vn dx +
∫
Ω

gn
vn

vn + 1
dx.

Hence we conclude that ∫
Ω

|∇vn|2

(vn + 1)2
dx ≤ C.

Therefore by Fatou lemma we conclude that∫
Ω

|∇ log(v + 1)|2dx =
∫
Ω

|∇v|2

(v + 1)2
dx ≤ C.

The uniqueness follows by a standard bootstrap argument. Note that the operator is the Laplacean,
so the well-known counterexamples to uniqueness in the space W 1,q

0 (Ω) (see [47]) do not apply.
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Remark 2.14 The previous proof shows that problem (24) admits a unique solution v for every
λ which is not an eigenvalue of problem (26). However, v > 0 only for λ < λ1(f).

As a consequence we obtain the next result.

Theorem 2.15 Let µs be a bounded positive measure which is concentrated on a set of zero capacity
and f is in the hypothesis of Theorem 2.13. For λ < λ1(f), let v be the solution to problem

−∆v = λf(x)(v + 1) + µs in D′(Ω)
v ∈ W 1,q

0 (Ω) for all q < N
N−1

Tk(v) ∈ W 1,2
0 (Ω), log(1 + v) ∈ W 1,2

0 (Ω).
(27)

We set u = log(v + 1), then u verifies{
−∆u = |∇u|2 + λf(x) in D′(Ω)

u ∈ W 1,2
0 (Ω).

(28)

Proof. The existence of v is obtained in Theorem 2.13, where it is also proved that u = log(v +
1) ∈ W 1,2

0 (Ω). Let {gn} be a sequence of a bounded positive function such that ‖gn‖1 ≤ c and
gn → µs in M0(Ω). Let vn be the unique solution to problem{

−∆vn = λTn(f(v + 1)) + gn(x) in Ω
vn ∈ W 1,2

0 (Ω).
(29)

Notice that vn → v in W 1,q
0 (Ω) for all q < N

N−1 . We set un = log(1 + vn), then by a direct
computation one can obtain that

−∆un = |∇un|2 + λ
Tn(f(v + 1))

vn + 1
+

gn
vn + 1

in D′(Ω). (30)

We will show that the right-hand side of (30) converges to |∇u|2 + λf in D′(Ω). This will suffice

to prove that u solves (28). It is easy to check that
Tn(f(v + 1))

vn + 1
→ f(x) in L1(Ω). We now claim

that
gn

vn + 1
→ 0 in D′(Ω). To prove the claim, let A ⊂ Ω be such that cap(A) = 0 and µ is

concentrated on A, then for all ε > 0 we get the existence of an open set Uε such that A ⊂ Uε and
cap(Uε) ≤ ε. Namely for all ε > 0 we get the existence of φ ∈ C∞0 (Ω) such that φ ≥ 0, φ ≡ 1 in Uε
and

∫
Ω

|∇φ|2dx ≤ 2ε. By using Picone type inequality, see [2], we have

∫
Ω

|∇φ|2dx ≥
∫
Ω

−∆(vn + 1)
vn + 1

φ2dx ≥
∫
Uε

gn
vn + 1

dx .

Hence we conclude that ∫
Uε

gn
vn + 1

dx ≤ 2ε
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for every n. Let φ ∈ C∞0 (Ω); we wish to show that

lim
n→∞

∫
Ω

φ
gn

vn + 1
dx = 0.

we can write ∫
Ω

φ
gn

vn + 1
dx =

∫
Uε

φ
gn

vn + 1
dx +

∫
Ω\Uε

φ
gn

vn + 1
dx.

Hence

|
∫
Ω

φ
gn

vn + 1
dx| ≤ ||φ||∞

∫
Uε

gn
vn + 1

dx +
∫

Ω\Uε

|φ| gn dx ≤ 2ε||φ||∞ +
∫

Ω\Uε

|φ| gn dx.

Now since gn → µs in M0(Ω) and µ is concentrated on A ⊂ Uε, we conclude that∫
Ω\Uε

|φ| gn dx → 0 as n →∞,

hence the claim follows. To conclude the proof, let us show that

|∇un|2 → |∇u|2 strongly in L1(Ω),

that is,
|∇vn|2

(1 + vn)2
→ |∇v|2

(1 + v)2
strongly in L1(Ω).

Since the sequence converges a.e. in Ω, by Vitali’s theorem we only have to show that it is equi-
integrable. Let E ⊂ Ω be a measurable set. Then, for every δ ∈ (0, 1) and k > 0,∫

E

|∇vn|2

(1 + vn)2
dx =

∫
E∩{vn≤k}

|∇vn|2

(1 + vn)2
dx +

∫
E∩{vn>k}

|∇vn|2

(1 + vn)2
dx

≤
∫
E

|∇Tk(vn)|2 dx +
1

(1 + k)1−δ

∫
Ω

|∇vn|2

(1 + vn)1+δ
dx .

The last integral is uniformly bounded with respect to n (see, for instance [12]), therefore the
corresponding term can be made small by choosing k large enough. Moreover, for every k > 0, one
has that Tk(vn) → Tk(v) strongly on W 1,2

0 (Ω) (see [23]), therefore the integral
∫
E
|∇Tk(vn)|2 dx is

uniformly small if meas (E) is small enough. The equi-integrability of |∇un|2 follows immediately,
and the proof is completed.
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Remark 2.16 If one takes the solution v to problem (27), and makes the change of variable
u = log(1 + v), then it is easy to check that u formally satisfies the equation

−∆u = |∇u|2 + f +
µs

1 + v
.

The proof of Theorem 2.15 shows that the fraction
µs

1 + v
is zero, which corresponds to saying that

“v(x) = +∞ on the set on which the singular measure µs is different from zero”, a result which is
obvious in the case where µs is a Dirac delta concentrated on some point of Ω. For results on the
behavior of solutions of elliptic equations with measure data, one should check the papers [23] and
[40].

3 The case of increasing β: variational setting and regular
solutions

Consider problem {
−∆u = β(u)|∇u|2 + λf(x) in Ω

u = 0 on ∂Ω,
(31)

where Ω ⊂ IRN is a bounded domain, f ∈ Lr(Ω), with r > N
2 , and

β : [0,+∞) −→ [0,+∞)

is a continuous nondecreasing function such that

lim
t→+∞

β(t) = +∞. (32)

We will perform a change in the dependent variable in such a way that the problem becomes
semi-linear. We set

γ(t) =
∫ t

0

β(s)ds, Ψ(t) =
∫ t

0

eγ(s)ds, (33)

then we define
v(x) = Ψ(u(x)).

Then problem (31) becomes{
−∆v = λf(x)(1 + g(v)) in Ω

v = 0 on ∂Ω,
(34)

where

g(t) = eγ(Ψ
−1(t)) − 1 =

∫ t

0

β(Ψ−1(s))ds . (35)

The main properties of the differentiable function g : [0,+∞) −→ [0,+∞) are:

1. g(0) = 0, and g is increasing and convex
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2. lim
s→0

g(s)
s

= g′(0) = β(0)

3. lim
s→+∞

g(s)
s

= +∞

4.
∫ +∞

0

ds

1 + g(s)
= +∞; indeed

∫ +∞

0

ds

1 + g(s)
=

∫ +∞

0

ds

eγ(ψ−1(s))
=

∫ +∞

0

eγ(t)

eγ(t)
dt = +∞ ..

Proposition 3.1 Assume that g verifies the assumptions above. There exists λ0 such that for
λ ≤ λ0, problem (34) has at least a positive solution v ∈ W 1,2

0 (Ω)∩L∞(Ω), and then u = Ψ−1(v) ∈
W 1,2

0 (Ω) is a positive solution of (31).

Proof. We look for a super-solution in the form v = tw, where w is the solution to problem{
−∆w = f in Ω

w ∈ W 1,2
0 (Ω) .

Notice that the function
h(t) =

t

1 + g(t||w||∞)

admits a positive maximum in IR+. If 0 < λ ≤ λ0 = maxIR+ h(t), fixed t such that t ≥ λ(1 +
g(t||w||∞)), then since g is increasing

−∆v = tf ≥ λf (1 + g(t||w||∞) ≥ λf (1 + g(v)).

To have a sub-solution we consider v = t1φ1 where φ1 is the normalized positive eigenfunctions
corresponding to the first eigenvalue to problem

λ1(f) = inf
φ∈W 1,2

0 (Ω)\{0}

∫
Ω

|∇φ|2 dx∫
Ω

f φ2 dx
(36)

Since g > 0, it suffices to have λ1(f)t1||φ1||∞ ≤ λ then

−∆v = t1λ1(f)f φ1 ≤ λf (1 + g(v))

Moreover v ≤ v for t1 small enough, by Hopf’s Lemma. The result is a consequence of the usual
iteration argument.

Theorem 3.2 There exists Λ > 0 such that, if λ > Λ, then problem (34) has no positive solution
v ∈ W 1,2

0 (Ω).
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Proof. Using the properties of g, we get the existence of a positive constant c > 0 such that
g(s) ≥ cs− 1. Consider now φ1 defined as in (36), then multiplying equation (34) by φ1 and using
the hypothesis on g we obtain that

λ1(f)
∫
Ω

fvφ1 dx = λ

∫
Ω

f (g(v) + 1) φ1 dx ≥ λc

∫
Ω

fvφ1 dx .

Hence we conclude that
λ1(f)

∫
Ω

fvφ1 dx ≥ λc

∫
Ω

fvφ1 dx .

Choosing λ such that cλ > λ1(f) we obtain that
∫
Ω

fvφ1 dx = 0; therefore the strong maximum

principle implies v ≡ 0. Hence problem (34) has no positive solution for λ > Λ =
λ1(f)

c
.

Corollary 3.3 Let Λ be as in Theorem 3.2, then for λ > Λ problem (31) has no solution u such
that Ψ(u) ∈ W 1,2

0 (Ω).

We will see in section 4, Proposition 4.8 that the nonexistence result for λ large remain true even
in the distributional framework.

Remark 3.4 In the case where β is a decreasing function, it is easy to conclude that
g(s)
s

is also

decreasing. In this case problem (34) has a unique solution for λ small enough. The existence can
be proved as in Proposition 3.1, while for uniqueness we refer to [5]. If, moreover, β(s) ↓ 0, then
g(s)
s

↓ 0 as s →∞ then there exist a unique solution for all λ ∈ R+. These observations motivates

the hypotheses of β nondecreasing to have two solutions to problem (34).

Next we will prove the existence of a second positive solution w ∈ W 1,2
0 (Ω) ∩ L∞(Ω) under the

following extra hypotheses on β and f . We assume that β satisfies

(H) lim
t→+∞

β(t)

ea
R t
0 β(s)ds

= 0, for some a <
4

N + 2

or its equivalent form

lim
t→+∞

g′(t)
(1 + g(t))a

= 0, for some a <
4

N + 2

then, using the expression of g and De L’Hôpital’s rule, it is easy to check that

lim
t→+∞

g(t)
tq

= 0, 1− 1
q

= a. (37)

By direct calculation we check that condition (H) is satisfied for the elementary functions such as
β(s) = (log(1 + s))α, β(s) = sα, β(s) = es, β(s) = ee

s

, etc.
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Notice that in this way q < N+2
N−2 = 2∗ − 1, and problem (34) becomes variational in nature.

Moreover this variational problem has a subcritical concave-convex structure. We will look for
positive solutions to problem (34) as critical points of the associated energy functional

Jλ(u) =
1
2

∫
Ω

|∇u|2dx− λ

∫
Ω

f u+dx− λ

∫
Ω

f G(u+)dx, (38)

where
G(s) =

∫ s

0

g(t)dt ,

which is well defined in in W 1,2
0 (Ω). As far as f(x) is concerned, for simplicity we will prove the

result in the case where it is a non-negative, bounded function. However all the results can be
easily proved under the assumption that

(F) f(x) ∈ Lr(Ω), for r >
2∗

2∗ − (q + 1)
,

where q is defined by (37).
As a first step, we will prove the existence of at least two positive solutions for λ small enough.

Precisely we have the following result.

Theorem 3.5 Assume that (32) and (H) hold, that f(x) is bounded and non-negative, and that the
functional Jλ has the geometry of the mountain pass, that is, there exist two points v1, v2 ∈ W 1,2

0 (Ω)
such that, setting

Γ = {γ ∈ C([0, 1];W 1,2
0 ), γ(0) = v1, γ(1) = v2},

there holds
c(λ) = inf

γ∈Γ
max
t∈[0,1]

Jλ(γ(t)) > max{Jλ(v1), Jλ(v2)}. (39)

Then problem (34) has a mountain-pass type positive solution u.

Corollary 3.6 There exists λ0 such that if 0 < λ ≤ λ0, then the functional Jλ has the geometry
of the mountain pass and then problem (34) has at least two positive solutions.

Proof. Since Jλ(0) = 0, using (H) one can easily prove that for λ small enough there exists a
number R = R(λ) > 0 such that Jλ(v) ≥ ρ0 > 0 for every v satisfying ‖v‖ = R. On the other
hand, using the superlinearity at ∞ of g(s), it is easy to prove, for every λ > 0, the existence of a
function w ∈ W 1,2

0 (Ω), with norm arbitrarily large, such that Jλ(w) < 0. Therefore

c(λ) = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)) > 0 = max{Jλ(0), Jλ(w)}.

Therefore, applying Theorem 3.5 to the points 0 and w, we obtain the existence of a positive
solution v1 to problem (34) such that Jλ(v1) = c(λ) > 0. We have to prove that v1 6= v, where v
is the minimal solution obtained by Proposition 3.1. It is sufficient to prove that Jλ(v) ≤ 0.
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We follow closely the argument used in [5]. Setting a(x) = λf(x)g′(v(x)) ∈ Lr(Ω), r > N
2 , we are

able to define the first eigenvalue m1 to problem{
−∆φ1 − a(x)φ1 = m1φ1 in Ω

φ1 = 0 on ∂Ω.
(40)

Here φ1 is the associated eigenfunction and then we can take φ1 > 0. We will prove that m1 ≥ 0.
We argue by contradiction. Assume that m1 < 0. We claim that there exists α > 0 such that
v − αφ1 is a supersolution to problem (34). Indeed, we have

−∆(v − αφ1)− λf (1 + g(v − αφ1)) = λf [g(v)− g(v − αφ1)− αg′(v)φ1]− αm1φ1.

Since λf [g(v)− g(v − αφ1)− αg′(v)φ1] = o(αφ1) and using the fact that m1 < 0, we get

λf [g(v)− g(v − αφ1)− αg′(v)φ1]− αm1φ1 ≥ 0.

Hence by comparison the claim follows. Moreover, by Hopf’s lemma, one has v − αφ1 > 0 for α
small enough. Then by an iteration argument we obtain that problem (34) has a positive solution
w ≤ v − αφ1, a contradiction with the definition of v as the minimal solution. Hence m1 ≥ 0.

In particular we have ∫
Ω

|∇v|2dx− λ

∫
Ω

f g′(v)v2dx ≥ 0. (41)

We prove now that Jλ(v) ≤ 0. Since v is a solution to (34) we obtain that

Jλ(v) = Jλ(v)− 1
2
〈J ′λ(v), v〉 =

λ

2

∫
Ω

f
(
g(v)v − 2G(v)− v

)
dx

= − λ

2

∫
Ω

f
(
(1 + g(v))v − v2g′(v)

)
dx− λ

2

∫
Ω

f
(
2G(v)− 2g(v)v + v2g′(v)

)
dx

(42)

Using (41) we obtain that

λ

2

∫
Ω

f
(
(1 + g(v))v − v2g′(v)

)
dx =

1
2

∫
Ω

(
|∇v|2 − λf v2g′(v)

)
dx ≥ 0.

We deal with the second term in (42). We set h(s) = 2G(s)− 2sg(s) + s2g′(s), then h(0) = 0 and
h′(s) ≥ 0. Hence we conclude that h(s) ≥ 0 for all s. In particular

λ

2

∫
Ω

f(x)
(
2G(v)− 2g(v)v + v2g′(u)

)
dx =

λ

2

∫
Ω

f h(v)dx ≥ 0.

Hence we conclude that Jλ(v) ≤ 0.

For the proof of Theorem 3.5 we use the following general result proved in [30].
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Theorem 3.7 Let X be a Banach space endowed with the norm ||.|| and let J ⊂ IR+ be an
interval. Let {Jα}α∈J be a family of functionals on X of the form

Jα(u) = A(u)− αB(u)

where B(u) ≥ 0 and such that A(u) or B(u) → +∞ as ||u|| → ∞. We assume that there exist two
points v1, v2 ∈ X such that, setting

Γ = {γ ∈ C([0, 1];X), γ(0) = v1, γ(1) = v2},

there hold, for all α ∈ J ,

c(α) = inf
γ∈Γ

max
t∈[0,1]

Jα(γ(t)) > max{Jα(v1), Jα(v2)}.

Then for almost every α ∈ J , there exists a sequence {vk} ⊂ X such that : i) {vk} is bounded; ii)
Jα(vk) → c(α) and iii) J ′α(vk) → 0 in X ′, the dual of X.

Proof of Theorem 3.5 Assume that (39) holds. By a continuity argument we get the existence
of ε > 0 such that for all α ∈ J = [1− ε, 1 + ε], the family of functional {Jλ,α}α∈J defined by

Jλ,α(u) =
1
2

∫
Ω

|∇u|2dx− λα
( ∫

Ω

f u+dx +
∫
Ω

f G(u+)dx
)

have the same geometry, namely

c(λ, α) = inf
γ∈Γ

max
t∈[0,1]

Jλ,α(γ(t)) > max{Jλ,α(v1), Jλ,α(v2)}.

Notice that (v1, v2) are independent of α ∈ J . By Theorem 3.7 we obtain that for almost every
α ∈ J there exists a sequence {v(α)

k } such that: i) {v(α)
k } is bounded; ii) Jλ,α(v(α)

k ) → c(λ, α) and
iii) J ′λ,α(v(α)

k ) → 0 in W−1,2(Ω). Since g verifies (H), then using a compactness argument we obtain

that the Palais-Smale compactness condition holds, namely, up to a subsequence, v
(α)
k → v(α)

strongly in W 1,2
0 (Ω), where v(α) is a positive solution to problem{

−∆v(α) = λαf (1 + g(v(α))) in Ω
v(α) = 0 on ∂Ω,

(43)

such that Jλ,α(v(α)) = c(λ, α). We have to prove that the conclusion in Theorem 3.7 holds for
α = 1. Let {αn} be a decreasing sequence in J such that αn ↓ 1 as n → ∞ and consider v(αn)

the corresponding solution to problem (43). We will prove that {v(αn)} is bounded in W 1,2
0 (Ω).

For the simplicity of notation we set vn = v(αn). If ||vn||∞ ≤ C for all n, then using (43) and by
the condition on f and g we conclude that ||vn||W 1,2

0
≤ C1. Assume now that ||vn||∞ → +∞ as

n →∞. Notice that ∫
Ω

f vndx ≤ C. (44)
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Indeed, consider φ1 the positive eigenfunction associated to the first eigenvalue{
−∆φ1 = λ1(f)f φ1 in Ω

φ1 = 0 on ∂Ω.
(45)

By taking φ1 as a test function in (43) we obtain that

λ1(f)
∫
Ω

f φ1vndx = λαn

∫
Ω

f φ1 + λαn

∫
Ω

f g(vn)φ1dx.

Since the hypothesis 3. on g it is easy to check that there exists a constant C1 such that∫
Ω

f φ1vndx ≤ C1 and
∫
Ω

f φ1g(vn)dx ≤ C1.

Let now φ2 be the solution to problem{
−∆φ2 = f in Ω

φ2 = 0 on ∂Ω.
(46)

Notice that, by Hopf Lemma, there exist c1, c2 > 0 such that c1φ1 ≤ φ2 ≤ c2φ1. Taking φ2 as a
test function in (43) we obtain that∫

Ω

f vndx = λαn

∫
Ω

f φ2 + λαn

∫
Ω

f g(vn)φ2dx. (47)

Since φ2 ≤ c2φ1 we conclude that∫
Ω

f vndx ≤ λαn

∫
Ω

f φ2 + c2λαn

∫
Ω

f g(vn)φ1dx.

Hence
∫
Ω

f vndx ≤ C. As Jλ,αn(vn) = c(λ, αn) ≤ c(λ) + 1, by using (44) we obtain that

∫
Ω

f (g(vn)vn − 2G(vn))dx ≤ C. (48)

We now prove the energy estimate. Assume by contradiction that ||vn||W 1,2
0

→ ∞ as n → ∞. We

set wn =
vn

||vn||W 1,2
0

, then ||wn||W 1,2
0

= 1, hence we get the existence of w0 ∈ W 1,2
0 (Ω) such that,

up to subsequences, wn ⇀ w0 weakly in W 1,2
0 (Ω) and wn → w0 strongly in La(Ω) for all a < 2N

N−2 .
Moreover wn verifies

−∆wn =
αnλf

||vn||W 1,2
0

+ αnλ
f g(vn)
||vn||W 1,2

0

.
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Since wn ⇀ w0 weakly in W 1,2
0 we obtain that∫

Ω

−∆w0φ = lim
n→∞

λ

∫
Ω

f g(vn)
||vn||W 1,2

0

φ for all φ ∈ C∞0 (Ω). (49)

From (47) and (44) we obtain that fg(vn) is bounded in L1
loc(Ω). Therefore (49) implies w0 = 0.

Let zn = tnvn where tn is defined as

tn = inf
{

t ∈ [0, 1] | Jλ,αn(tvn) = max
t∈[0,1]

Jλ,αn
(tvn)

}
.

We prove that tn ∈ (0, 1) for n large enough. That tn 6= 0 is obvious because Jλ,αn(0) = 0 for all
values of αn. To show that t 6= 1 we claim that

lim
n→∞

Jλ,αn
(zn) = +∞ . (50)

We argue by contradiction; if lim inf
n→∞

Jλ,αn
(zn) ≤ M , we set un =

√
4Mwn, then un ⇀ 0 weakly in

W 1,2
0 (Ω), hence

∫
Ω

f G(un)dx,
∫
Ω

f undx → 0 as n →∞. Therefore we obtain that

Jλ,αn
(un) = 2M − αnλ

2

∫
Ω

fundx− αnλ

∫
Ω

f G(un)dx ≥ 3
2
M as n →∞. (51)

On the other hand, using the definition of zn and observing that un =
√

4M
||vn||

W
1,2
0

vn, we obtain that

Jλ,αn
(un) ≤ Jλ,αn

(zn) ≤ M

a contradiction with (51). Hence (50) is proved.
Therefore, taking into account that Jλ,αn

(vn) = cλ,αn
≤ c(λ) + 1 and by the claim, we conclude

tn 6= 1 for n large enough. As a consequence by the definition of zn we have 〈J ′λ,αn
(zn), zn〉 = 0,

hence we conclude that

Jλ,αn
(zn) =

αnλ

2

∫
Ω

f (g(zn)zn − 2G(zn)) dx− αnλ

2

∫
Ω

f zn dx .

Since
∫
Ω

f zn dx ≤
∫
Ω

f vn dx ≤ C, by (50) we conclude that

∫
Ω

f (g(zn)zn − 2G(zn)) dx → +∞, as n →∞.

By the fact that the function l(s) = g(s)s− 2G(s) is increasing we obtain that

g(zn)zn − 2G(zn) ≤ g(vn)vn −G(vn)
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and then ∫
Ω

f (g(vn)vn − 2G(vn)) dx →∞ as n →∞ ,

a contradiction with (48). As a consequence we conclude that

||vn||W 1,2
0

≤ C1.

Therefore vn → v weakly in W 1,2
0 (Ω) and strongly in Lθ(Ω) for all θ < 2N

N−2 . Using again the
hypotheses on g and by a simple compactness argument we obtain that v is a weak solution to
problem (34) and then we get easily that vn → v strongly in W 1,2

0 (Ω). Therefore we conclude that
v is a non-negative solution to problem (34) such that

c(λ, αn) = Jλ,αn
(vn) → Jλ(v) as n →∞.

Hence we get the existence of a positive solution v to problem (34) with Jλ(v) = c(λ) and the
proof is complete.

We now prove the general existence result.

Theorem 3.8 Under the same assumptions of Theorem 3.5, let λ∗ be defined by

λ∗ = sup{λ ≥ 0 such that problem (34) has a positive solution }. (52)

Then for all λ ∈ (0, λ∗), problem (34) has at least two positive solutions. If λ = λ∗, then problem
(34) has at least one positive solution.

Proof. Consider the case λ < λ∗; then problem (34) has a minimal solution vλ, and as in the
proof of Corollary 3.5 one can show that Jλ(vλ) ≤ 0. Using the hypothesis on g and integrating by
parts we conclude that

g(s)
s

≤ g′(s) ≤ g(2s)
s

,

therefore

lim
t→∞

g′(t)
tq1

= 0, for some q1 <
4

N − 2
. (53)

Fixed λ1 < λ∗, let λ1 < λ2 < λ∗ and consider v1 and v2 the minimal solutions to problem (34)
with λ = λ1, λ2, respectively; since λ1 < λ2, we get that v2 is a strict super-solution to problem
with λ1 and v2 > v1 by the strong maximum principle. We set

M = {u ∈ W 1,2
0 (Ω) : 0 ≤ u ≤ v2 a.e. in Ω} and I = inf

u∈M
Jλ1(u).

Since M is a convex closed subset of W 1,2
0 (Ω), using the fact that Jλ1 is bounded and weakly

lower-semicontinuous in M , we get the existence of ϑ ∈ M such that Jλ1(ϑ) = I. Notice that I < 0
and then ϑ 6= 0. using a similar argument as in Theorem 2.4 of [49] we can prove that ϑ is a weak
solution to problem (34) with λ = λ1. If ϑ 6= v1 we obtain the existence of at least two positive
solutions. If ϑ = vλ1 , then will prove that ϑ is a local minimum for Jλ1 . We follow closely the
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argument used in [5] (see also [4]). By contradiction, suppose that ϑ is not a local minimum for
Jλ1 , then there exists {vn} ⊂ W 1,2

0 (Ω) such that ||vn − ϑ||W 1,2
0

→ 0 and Jλ1(vn) < Jλ1(ϑ). We set
wn = (vn − v2)+ and un = max{0,min{vn, v2}}. Then un ∈ M and

un(x) =

 0 if vn(x) ≤ 0
vn(x) if 0 ≤ vn(x) ≤ v2(x)
v2(x) if v2(x) ≤ vn(x).

We define

Tn = {x ∈ Ω : 0 < vn(x) ≤ v2(x)} , Sn = {x ∈ Ω : vn(x) > v2(x)} .

Notice that un > 0 only on Tn ∪ Sn. We will prove that |Sn| → 0 as n → ∞, where | · | is the
Lebesgue measure. For ε > 0, we define

En = {x ∈ Ω : vn(x) ≥ v2(x) > ϑ(x)+δ} and Fn = {x ∈ Ω : vn(x) ≥ v2(x) and v2(x) ≤ ϑ(x)+δ} ,

where δ is a positive constant that we will choose later. Using the fact that v2(x) > ϑ(x) for all
x ∈ Ω, then

0 =

∣∣∣∣∣∣
∞⋂
j=1

{
x ∈ Ω : v2(x) ≤ ϑ(x) +

1
j

}∣∣∣∣∣∣ = lim
j→∞

∣∣∣∣{x ∈ Ω : v2(x) ≤ ϑ(x) +
1
j

}∣∣∣∣ , (54)

and we obtain the existence of δ0 =
1
j0

such that if δ < δ0, we have

|Fn| ≤ |{x ∈ Ω : v2(x) ≤ ϑ(x) + δ}| ≤ ε

2
.

Since ||vn − ϑ||L2(Ω) → 0 as n →∞, setting η = δ2ε
2 , we obtain that for n large enough

δ2ε

2
≥

∫
Ω

|vn − ϑ|2dx ≥
∫
En

|vn − ϑ|2dx ≥ δ2|En|.

Hence |En| ≤ ε
2 . Since Sn ⊂ Fn ∪ En we conclude that |Sn| → 0 as n →∞. We define

H(u) = H(x, u) = λ1f(x)(u+ + G(u+)),

then we obtain

Jλ1(vn) =
1
2

∫
Ω

|∇vn|2dx−
∫
Ω

H(vn) dx

=
1
2

∫
Tn

|∇un|2dx−
∫
Tn

H(un) dx +
1
2

∫
Sn

|∇vn|2dx−
∫
Sn

H(vn) dx +
1
2

∫
Ω

|∇v−n |2dx

≥ 1
2

∫
Tn

|∇un|2dx−
∫
Tn

H(un) dx +
1
2

∫
Sn

|∇(wn + v2)|2dx−
∫
Sn

H(wn + v2) dx .
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Since ∫
Ω

|∇un|2dx =
∫
Tn

|∇un|2dx +
∫
Sn

|∇v2|2dx ,

∫
Ω

H(un) dx =
∫
Tn

H(un) dx +
∫
Sn

H(v2) dx ,

using the fact that v2 is a supersolution to (34) with λ = λ1, we conclude that

Jλ1(vn) ≥ Jλ1(un) +
1
2

∫
Sn

(|∇(wn + v2)|2 − |∇v2|2) dx−
∫
Sn

(H(wn + v2)−H(v2)) dx

≥ Jλ1(un) +
1
2
||wn||2W 1,2

0
−

∫
Ω

{
H(wn + v2)−H(v2)−Hu(v2)wn

}
dx

≥ Jλ1(ϑ) +
1
2
||wn||2W 1,2

0
−

∫
Ω

{
H(wn + v2)−H(v2)−Hu(v2) wn

}
dx.

Notice that

H(wn + v2)−H(v2)−Hu(v2)wn = λ1f(x)
(
G(wn + v2)−G(v2)− wng(v2)

)
.

Hence we conclude that

H(wn + v2)−H(v2)−Hu(v2)wn ≤ λ1f(x)w2
ng

′(wn + v2) .

From (53) one obtains

g′(s) ≤ C(1 + sq1), q1 <
4

N − 2
.

Hence we conclude that

w2
ng

′(wn + v2) ≤ C(w2
n + wq1+2

n + vq12 w2
n) .

On the other hand ∫
Ω

w2+q1
n dx ≤ C

( ∫
Ω

|∇wn|2dx
) 2+q1

2
= o(1)||wn||2W 1,2

0

and ∫
Ω

w2
nv

q1
2 dx ≤ C

( ∫
Supp wn

w2∗

n dx
) 2

2∗
( ∫

Supp wn

v
q1N/2
2 dx

) 2
N

.

Since q1N
2 < 2∗ we obtain that∫

Ω

w2
nv

q1
2 dx ≤ C

( ∫
Ω

|∇wn|2dx
)( ∫

Ω

v2∗

2 dx
) q1

2∗ |supp (wn)|
4−q1(N−2)

2N .
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Since |supp (wn)| = |Sn| → 0 as n →∞ and 4−q1(N−2)
2N > 0 we conclude that∫

Ω

w2
nv

q1
2 dx ≤ o(1)||wn||2W 1,2

0
.

Moreover∫
Ω

w2
ndx ≤ |supp(wn)|

2
N

(∫
Ω

w2∗

n dx

) 2
2∗

≤ C|supp(wn)|
2
N

∫
Ω

|∇wn|2dx = o(1)||wn||2W 1,2
0

.

Hence we conclude that∫
Ω

{
H(wn + v2)−H(v2)−Hu(v2)wn

}
dx ≤ o(1)||wn||2W 1,2

0
.

Hence
Jλ1(vn) ≥ Jλ1(ϑ) +

1
2
||wn||2W 1,2

0
(1− o(1)).

Therefore we obtain that Jλ1(ϑ) > Jλ1(vn) ≥ Jλ1(ϑ) for n large enough, which is a contradiction.
Hence we conclude that ϑ is a local minimum for Jλ1 . Since now Jλ has a local minimum, then we
get easily that Jλ1 has the geometry of the Mountain Pass Theorem, i.e., the existence of (v1, v2)
such that

c(λ) = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)) > max{Jλ(v1), Jλ(v2)}.

Then using Theorem 3.5 we get the multiplicity result. Let now λ = λ∗ and consider a sequence
of increasing numbers λn such that λn ∈ (0, λ∗) and λn ↑ λ∗ as n → ∞. Let {vλn} be the family
of minimal solution to problem (34) with λ = λn. Then we obtain that {vλn} is an increasing
sequence in n and Jλn

(vλn
) ≤ 0. Using the same argument as in the proof of Theorem 3.5 we get

the existence of a constant C > 0 such that
∫
Ω

f vndx ≤ C. Since

Jλn(vn) =
λn
2

∫
Ω

f
(
g(vn)vn − 2G(vn)

)
dx− λn

2

∫
Ω

f vndx

we conclude that |Jλn(vn)| ≤ C1. Hence following again the idea of the proof of Theorem 3.5 we
obtain that ||vλn

||W 1,2
0

≤ C1 and then vλn
⇀ v0 weakly in W 1,2

0 (Ω). Since {vλn
} is an increasing

sequence we conclude that v0 verifies{
−∆v0 = λ∗f(x)(1 + g(v0)) in Ω

v0 = 0 on ∂Ω.
(55)

Hence we conclude.

Remark 3.9
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1. Notice that the nonlinear term g(u) has slightly super-linear growth and, in general, doesn’t
verify Ambrosetti-Rabinowitz assumption ensuring that all Palais-Smale sequences for the
associated energy functional are bounded. Namely we must prove this boundedness by alter-
native estimates.

2. The result of Theorem 3.8 is true if we assume that f satisfies hypothesis (F).

The following result shows that the assumption f ∈ L
N
2 (Ω) is optimal as far as existence of a

solution to problem (34) is concerned.

Proposition 3.10 Let f be a positive function such that |x|2f(x) ≥ c > 0 for x ∈ Br(0), then for
all λ > 0, problem (34) has no positive weak solution.

Proof. We argue by contradiction. Assume that v is a non negative weak solution to problem
(34), namely v, f(x)g(v) ∈ L1(Ω) and for all φ ∈ C∞0 (Ω) we have∫

Ω

v(−∆φ)dx = λ

∫
Ω

f(x)(1 + g(v))φdx.

Since λ > 0, using the hypothesis on f we will show that lim
x→0

v(x) = +∞. Indeed,

λf(x)(1 + g(v)) ≥ λ
c

|x|2
in Br(0),

and an appropriate choice of c1 provides

−c1∆(log r − log |x|) = λ
c

|x|2
.

Therefore the weak comparison principle implies

v(x) ≥ c1(log r − log |x|), x ∈ Br(0).

Since lim
s→+∞

g(s)
s

= +∞, we get the existence of η(λ, g, v, f) > 0 such that if x ∈ Bη(0), then

λf(x)(1 + g(v)) ≥ C
v

|x|2

where C can be chosen large enough, in particular we can choose η > 0 such that C > ΛN ≡ (N−2
2 )2,

the critical constant in the Hardy inequality(see [27]). Then we conclude that

−∆v ≥ C
v

|x|2
with C > ΛN

a contradiction with the result of [27] (see also [2]).

As a direct application of Theorem 3.8 we get the following result.
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Corollary 3.11 Assume that β is an increasing function such that (32) and (H) hold. Let λ∗

be defined as in (52). Then for every λ < λ∗, problem (31) admits a least two solutions u1, u2

such that Ψ(u) ∈ W 1,2
0 (Ω) where Ψ is defined as in (33). For λ = λ∗ problem (31) admits at

least one solution u with Ψ(u) ∈ W 1,2
0 (Ω) and for λ > λ∗ problem (31) has no solution such that

Ψ(u) ∈ W 1,2
0 (Ω).

Remark 3.12 We will show in the next section that no distributional solution exists for problem
(31) for λ > λ∗. We will also prove that for λ small an infinite number of solutions appears. As in
the previous section, we will show that each of these solutions is related, via a change of variable,
to a semilinear problem with measure datum.

4 The case of continuous β: Regularity and existence of
weaker solutions.

In this section we deal with problem (31) where β satisfies more general hypotheses than in the
previous section. Precisely we will only assume that,

• b1) β is a continuous non-negative function on [0,+∞).

• b2) lim inf
t→∞

β(t) ∈ (0,+∞].

In the existence result, Theorem 4.4, we will use an extra hypothesis, that is,

lim
t→∞

β(t)
eaγ(t)

= 0,


a <

2
N

if N ≥ 3

a < 1 if N = 1, 2

(56)

or its equivalent form lim
t→∞

g′(t)
(1 + g(t))a

= 0. Then it is easy to check that

lim
t→∞

g(t)
tq

= 0, q =
1

1− a
<

N

N − 2
if N ≥ 3

and

lim
t→∞

g(t)
tq

= 0, q < ∞ if N = 1, 2

(we recall that the functions γ and g have been defined at the beginning of the previous section).
This condition is verified if β is any elementary function. We will also suppose that f ∈ L1(Ω) is
a positive function.
By a solution to problem (31) we mean a function u ∈ W 1,2

0 (Ω) such that β(u)|∇u|2 ∈ L1(Ω) and
u is a solution in distribution sense to problem{

−∆u = β(u)|∇u|2 + f in Ω
u = 0 on ∂Ω.

(57)



30

Once u is fixed one can consider (57) as a problem with L1 right-hand side. Notice that, in this
case the renormalized solution coincide with the distributional solution (see [23] for details). As a
consequence we obtain that Tk(u) ∈ W 1,2

0 (Ω) for all k > 0. Since β(t) > A > 0 as τ → ∞ and
by the fact that β(u)|∇u|2 ∈ L1(Ω) we conclude that u ∈ W 1,2

0 (Ω). We start with the following
regularity result.

Theorem 4.1 Assume that u ∈ W 1,2
0 (Ω) is a solution of problem (31), where f(x) ∈ L1(Ω)

satisfies f(x) ≥ 0 a.e. in Ω. Then

Ψδ(u) ∈ W 1,2
0 (Ω) for every δ <

1
2

, where Ψδ(s) =
∫ s

0

√
β(t)eδγ(t)dt. (58)

Proof. By using wε = e
δγ(u)

1+εγ(u) −1 as a test function in (31) and by passing to the limit as ε → 0,
we can conclude with a similar argument to the one used in the proof of Theorem 2.6.

The main result of this section is the following.

Theorem 4.2 Let u ∈ W 1,2
0 (Ω) be a solution to problem (31), where f ∈ L1(Ω) is a positive

function. Consider v = Ψ(u) where Ψ is defined in (33), then there exists a measure µs, which is
concentrated on a set of zero capacity, such that

−∆v = f(x)(1 + g(v)) + µs in D′(Ω)

v ∈ W 1,q
0 (Ω) for all q <

N

N − 1
.

(59)

Moreover µs can be characterized as a weak limit in the space of bounded Radon measures, as
follows

µs = lim
ε→0

|∇u|2β(u)e
γ(u)

(1+εγ(u))

(
1− 1

(1 + εγ(u))2

)
. (60)

Proof. Since u ∈ W 1,2
0 (Ω) and satisfies (58) we conclude that the truncation of v, Tk(v) ∈

W 1,2
0 (Ω). We take e

γ(u)
1+εγ(u) − 1 ∈ L∞(Ω) ∩ W 1,2

0 (Ω) as test function in (31). Then, by similar
calculation as in the proof of Theorem 2.10, we obtain∫

Ω

f (e
γ(u)

1+εγ(u) − 1) dx ≤
∫
Ω

β(u)|∇u|2dx

which implies by monotone convergence that∫
Ω

f (e
γ(u)

1+εγ(u) − 1) dx →
∫
Ω

fg(v)dx ≤
∫
Ω

β(u)|∇u|2dx < +∞. (61)

Moreover, ∫
Ω

|∇u|2β(u)e
γ(u)

(1+εγ(u))

(
1− 1

(1 + εγ(u))2

)
dx ≤

∫
Ω

β(u)|∇u|2dx (62)
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therefore, up to a subsequence,

β(u)|∇u|2e
γ(u)

1+εγ(u)

(
1− 1

(1 + εγ(u))2

)
⇀ µs

a positive Radon measure. Notice that µs is concentrated on the set A = {x ∈ Ω : u(x) = +∞},
which has capacity zero. This follows from the fact that∫

u≤k

β(u)|∇u|2e
γ(u)

1+εγ(u)

(
1− 1

(1 + εγ(u))2

)
dx → 0 as ε → 0.

We now define

vε(x) =
∫ u(x)

0

e
γ(s)

1+εγ(s) ds ∈ W 1,2
0 (Ω),

in this way vε(x) ↗ v(x) a.e. as ε → 0. It is easy to check that vε solves

−∆vε = e
γ(u)

1+εγ(u) (−∆u)− e
γ(u)

1+εγ(u) β(u)
|∇u|2

(1 + εu)2

= e
γ(u)

1+εγ(u) β(u)|∇u|2(1− 1
(1 + εγ(u))2

) + f(x)e
γ(u)

1+εγ(u)

(63)

in the sense of distributions. By taking Tk(vε) as a test function in (63), and using the arguments
in [12], we conclude that vε ∈ W 1,q

0 (Ω) for every q < N
N−1 with ||vε||W 1,q

0 (Ω) ≤ C(q, Ω,M,N) where
M is the uniform bound in L1(Ω) of the right hand side of (63),

M = 2
∫
Ω

β(u)|∇u|2dx +
∫
Ω

fdx.

Since vε(x) ↗ v(x) as ε → 0 and up to a subsequence vε converges weakly in W 1,q
0 (Ω), we conclude

that v ∈ W 1,q
0 (Ω) for q < N

N−1 and, in particular, vε → v in L1(Ω). The end of the proof follows
closely the arguments in Theorem 2.10.

We now consider the reverse problem, namely we have the following result.

Theorem 4.3 Let µs be a bounded positive measure which is concentrated on a set with zero
capacity. Let v be a solution to problem

−∆v = f(x)(1 + g(v)) + µs in D′(Ω)

v ∈ W 1,q
0 (Ω) for all q <

N

N − 1
,

f(x)(g(v) + 1) ∈ L1(Ω)

(64)

If we define u = Ψ−1(v), where Ψ is given by (33), then u solves
−∆u = β(u)|∇u|2 + f(x) in D′(Ω)
u ∈ W 1,2

0 (Ω)
β(u)|∇u|2 ∈ L1(Ω).

(65)
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Proof. We begin by proving that β(u)|∇u|2 ∈ L1(Ω). Let {hn} be a sequence of a bounded
positive function such that hn → µs in M0(Ω). Let vn be the unique solution to problem{

−∆vn = Tn(f (1 + g(v))) + hn in Ω
vn ∈ W 1,2

0 (Ω).
(66)

Notice that vn → v in W 1,q
0 (Ω) for all q < N

N−1 and ||Tk(vn)||W 1,2
0

≤ Ak for all k > 0. By taking
g(vn)

1 + g(vn)
as a test function in (66), we obtain that

∫
Ω

g′(vn)|∇vn|2

(1 + g(vn))2
dx ≤ C.

Hence we conclude that ∫
Ω

g′(v)|∇v|2

(1 + g(v))2
dx ≤ C.

Since β(u)|∇u|2 =
g′(v)|∇v|2

(1 + g(v))2
we conclude that β(u)|∇u|2 ∈ L1(Ω). Notice that by taking wn =

1− 1
(1 + g(vn))δ

, where δ > 0, as a test function in (66), we obtain that

∫
Ω

g′(vn)|∇vn|2

(1 + g(vn))1+δ
dx ≤ C and then

∫
Ω

g′(v)|∇v|2

(1 + g(v))1+δ
dx ≤ C for all δ > 0.

Since g′(s) = β(Ψ−1(s)), the hypothesis on β implies g′(s) ≥ C1 > 0 for s large enough; recalling
that Tk(vn) is bounded in W 1,2

0 (Ω) for every fixed k, we conclude that∫
Ω

|∇vn|2

(1 + g(vn))1+δ
dx ≤ C and

∫
Ω

|∇v|2

(1 + g(v))1+δ
dx ≤ C for all δ > 0.

We set un = Ψ−1(vn), then by a direct computation one can obtain that

−∆un = β(un)|∇un|2 +
Tn(f (1 + g(v)))

1 + g(vn)
+

hn
1 + g(vn)

in D′(Ω).

Notice that
Tn(f (1 + g(v)))

1 + g(vn)
→ f in L1(Ω) and un → u in L1(Ω). (The last estimate follows by

the fact that |∇un| =
|∇vn|

1 + g(vn)
is bounded in L2(Ω), hence un → u in La(Ω) for all a < 2N

N−2 ).

We claim that
hn

1 + g(vn)
→ 0 in D′(Ω) . (67)
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Indeed, by hypothesis, we know that µs is concentrated on a set A such that cap(A) = 0. For
ε > 0 let Uε be an open set such that A ⊂ Uε and cap(Uε) ≤ ε. Moreover, there exists a function
φ ∈ C∞0 (Ω) such that φ ≥ 0, φ ≡ 1 in Uε and

∫
Ω

|∇φ|2dx ≤ 2ε. By using Picone type inequality (see

[2]) we have

2ε >

∫
Ω

|∇φ|2dx ≥
∫
Ω

−∆(vn + 1)
vn + 1

φ2dx ≥ C

∫
Uε

hn
1 + g(vn)

dx.

Notice that the last part of the above inequality follows by the fact that s + 1 ≤ C1(g(s) + 1).
Hence we conclude that ∫

Uε

hn
1 + g(vn)

dx ≤ Cε.

Let φ ∈ C∞0 (Ω), then∫
Ω

φ
hn

1 + g(vn)
dx =

∫
Uε

φ
hn

1 + g(vn)
dx +

∫
Ω\Uε

φ
hn

1 + g(vn)
dx.

Hence ∣∣∣∣∣∣
∫
Ω

φ
hn

1 + g(vn)
dx

∣∣∣∣∣∣ ≤ Cε||φ||∞ +
∫

Ω\Uε

|φ|hndx.

Since hn → µs in M0(Ω) and µs is concentrated on A, we conclude that∫
Ω\Uε

|φ|hndx → 0 as n →∞.

Hence (67) follows.
On the other hand, since

β(un)|∇un|2 =
g′(vn)|∇vn|2

(1 + g(vn))2
and β(u)|∇u|2 =

g′(v)|∇v|2

(1 + g(v))2
,

and since
g(s)
s

≥ C for s large enough and by the fact that
g′(vn)|∇vn|2

(1 + g(vn))1+δ
is bounded in L1(Ω) for

all δ > 0, then using the same argument as in the proof of Theorem 2.15 we obtain the convergence
result

β(un)|∇un|2 → β(u)|∇u|2 in L1(Ω). (68)

Hence we conclude that u solves (64).

We now give a fairly general example for which problem (64) has a solution.

Theorem 4.4 Assume that f ∈ L∞(Ω) and assumption (56) holds, then problem (64) has a
positive solution for λ small enough depending on µ. This implies that problem (31) admits infinitely
many solutions for small λ.
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For the proof we will use the following result that can be seen in [7].

Theorem 4.5 Consider the problem{
−∆v = vq + λν in D′(Ω)
v|∂Ω = 0.

(69)

Assume that q < N
N−2 if N ≥ 3 or q < ∞ if N = 1, 2, then there exists λ∗ such that problem (69)

has a solution if λ < λ∗.

Proof of Theorem 4.4. Consider the problem{
−∆v = λ(vq + C + 1) + µs in D′(Ω)
v|∂Ω = 0.

(70)

By (56), all solutions of (70) are supersolutions to problem (64), for a suitable C. Let v1 = λ
1

q−1 v,
then

−∆v1 = vq1 + λ
1

q−1 (λc + µs). (71)

Using Theorem 4.5, we get the existence of λ0 > 0 such that for all λ < λ0 equation (71) has a
solution, hence problem (70) has a solution which is a supersolution to problem (64). Using an
iteration argument we get the existence result.

Remark 4.6 The hypothesis on g is verified for all elementary functions β, such as logarithms,
powers, exponential and so on.

Remark 4.7 The existence of infinitely many solutions for problem (31) (and of (3)) should
be compared with a uniqueness result proved by Korkut-Pašić-Žubrinić in [33]. In that article,
which extends to more general operators than the Laplacian, they prove that, in the case where
β(s) ∈ L∞(IR)∩L1(IR) and f = 0, the only solution u ∈ W 1,2

0 (Ω) of (31) is zero. In the light of the
change of variable used here, one can explain this uniqueness result (and also give an alternative
proof in our particular framework). Indeed, assume that u ∈ W 1,2

0 (Ω) is a nonzero distributional
solution of (31), with β(s) ∈ L∞(IR) ∩ L1(IR) and f = 0. Then we can perform the change of
variable v = Ψ(u), with Ψ defined as in (33), obtaining, as in Theorem 4.2 above, that v is a
solution of −∆v = µs, where µs is a bounded Radon measure which is singular with respect to the
capacity. But in this case it is easy to check that Ψ is a Lipschitz function, therefore v ∈ W 1,2

0 (Ω)
and µs ∈ W−1,2(Ω). But this means (see [13]) that µs is absolutely continuous with respect to
capacity: a contradiction.

Finally, we give a non-existence result which completes the statement of Theorem 3.2 and Corollary
3.3.

Proposition 4.8 Assume that β is an nondecreasing function such that (H) and (32) hold. Let
λ∗ defined as in (52), then problem (31) admits no distributional solution for λ > λ∗.
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Proof. By contradiction. Let λ > λ∗ be such that problem (31) has a solution. We set v = Ψ(u)
where Ψ is defined as in (33), then by Theorem 4.2 we obtain that v satisfies to problem{

−∆v = λf(x)(g(v) + 1) + µs in D′(Ω)
v ∈ W 1,q

0 (Ω) for all q < N
N−1 .

(72)

where µs is a positive measure which only charges a set with singular measure. Consider now the
problem {

−∆w = λf(x)(g(w) + 1) in Ω
w|∂Ω = 0.

(73)

Since w0 = 0 is a strictly supsolution and w1 = v is a supersolution, then using an iteration
argument we obtain that problem (73) has at least a positive solution for λ > λ∗, a contradiction
with the definition of λ∗. Hence we conclude.

Remark 4.9 The above result should be compared with the existence results by Porretta-Segura
[43] in the case where β(s) is a positive function such that lims→+∞ β(s) = 0. In that paper it is
proved that, under this assumption, a solution of (31) exists for all λ > 0.
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