PEPITE-E ' UNLAURIFERI
NELLA TEOR'" DELMATCHING

Bruno Simeone

La Sapienza University,
ROME, Italy

Pietre Miliari
3 Ottobre 2006



THE MAXIMUM MATCHING PROBLEM

Example 1: Postmen hiring in the province of L’Aquila

Panconesi Barisciano
Petreschi Navelli
Moscarini Rivisondoli
Simeone Rocca di Mezzo

Can each winner be assigned to some place s/he likes?
More generally,

What 1s the maximum number of winners such that each of them
can be assigned to some place s/he likes?



Example 2: Two-bed room assignment in a college

Gwyneth

Sharon Nicole

Julia

Wynona

What is the maximum number of two-bed rooms that can be
occupied by pairs of compatible girls?

DEF.: A matching in a graph is a set of pairwise nonincident
edges

PROBLEM: Find a maximum (cardinality) matching in a graph

» Perfect matchings
» Weighted version



TALK OUTLINE

The maximum matching problem

. Bipartite Matching: the MarriageTheorem and
some equivalent theorems

Three applications to other branches of mathematics

. Nonbipartite Matching: The theorems of Tutte and
Gallai-Edmonds

. Matching, polyhedral geometry and linear
programming

. Efficient matching algorithms



THE MARRIAGE THEOREM
Panconesi ® O Barisciano
Petreschi O () Navelli
Moscarini Rivisondoli

N

‘ Rocca di Mezzo

Simeone

A maximum matching

G =(V, E) bipartite graph with sides A and B
NS) ={yeB: (xy) €E forsome xe S} (S c A)

THEOREM: (Frobenius 1917, P. Hall 1935)

G has a perfect matching iff

@ |al=18Bl;
i) |s |<IN®S)|, Vv sca

COROLLARY: Every regular bipartite graph has a perfect
matching



KONIG-EGERVARY’s THEOREM

DEF.: A transversal of a graph is a set of nodes that covers all
the edges

Panconest O Barisciano
Petreschi O ® Navelli
Moscarini () Rivisondoli
\
Simeone O Rocca di Mezzo

Maximum matching

‘ Minimum transversal

THEOREM (Konig, 1931; Egervary, 1931) :

In any bipartite graph, the maximum cardinality of a matching is
equal to the minimum cardinality of a transversal



DILWORTH’s THEOREM
(P, <) finite poset
DEF.: A chain of P is any totally ordered subset of P.

DEF.: An antichain of P is any set of pairwise incomparable
elements of P.

Hasse Diagram

Chain . Antichain

THEOREM: ( Dilworth, 1950)

The minimum number of chains into which P can be partitioned is
equal to the maximum cardinality of an antichain of P



A THEOREM ON CLOSED CURVES IN THE PLANE

C continuous closed curve (Jordan curve) in the plane

Assumption:

There exist an open interval X of the X-axis and an open interval

Y of the y-axis such that:

(1) for each a € X, the vertical line x = a intersects C in two
points;

(i1) for each b € Y, the horizontal line y = b intersects C in two
points.

THEOREM: (Berge, 1962)

There isa C’ ¢ C such that:

(1) foreach a € X, the vertical line X = a intersects C’ exactly
n one point;

(i1) for each b € Y, the horizontal line y = b intersects C’
exactly in one point.




EGERVARY-BIRKHOFF-VON NEUMANN’s
THEOREM

DEF.: A bistochastic matrix is a square real nonnegative matrix
where the entries of each row and of each column add up to 1.

DEF.: A permutation matrix is a square binary matrix where each
row and each column has exactly one entry equal to 1.
Obviously, any permutation matrix is bistochastic

/4 0 3/4] 0 0 1| [U/4 0 14
2 1/2 0 |=1U2(1 0 0+ 0 12 O
/4 1/2 1/4 01 0 1/4 0 1/4
0 0 1 0 0 1 14 0 0]
= 1/2/1 0 O +1/4/0 1 O +| 0 1/4 0
0 1 0 100 |0 0 14
0 0 1 0 0 1 1 0 O]
= 1/2(1 0 0 +1/4/0 1 0 + 1/40 1 O
0 1 0 100 0 0 1

THEOREM: (Egérvary 1931, Birkhoff 1946, Von Neumann 1953)

Every bistochastic matrix B is a convex combination of (a finite

number of) permutation matrices,
i.e., there exist permutation matrices P , ..

., 0 ,with o +... o, =1,

., P, and nonnegative
reals o, .. such that

B=o,Pi+... +o,P;.
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HAAR MEASURES IN COMPACT TOPOLOGICAL GROUPS

I compact topological group

C (I') set of all continuous functions f: I' > R (=reals )

DEF.: An invariant integration is a functional L: C (I"') > R
having the following properties:

(@ L(af+Bg)=al(f)+ BL(g) (linearity)
(b) >0 = L(f)>0 (monotonicity)
(c) if 1 isthe identity function, then L( i) =1 (normalization)

(d) if s,t eI and f,g e C(I") are such that
g(x)=f(sxt), Vxel,
then L(g) =L (f) (double translation invariance)

THEOREM: (von Neumann, 1934; Rota and Harper, 1971)

For every compact topological group I' there exists an invariant
integration

CONSEQUENCE:
Existence of a Haar measure on locally compact topological
groups



TUTTE’s THEOREM

1

G =(V, E) arbitrary graph
odd(G) = no. of odd components of G

THEOREM: (Tutte, 1947)
G has a perfect matching if and only if

odd(G-S) < |S|, VS cV

11
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GALLAI-EDMONDS’ STRUCTURE THEOREM

DEF.: A matching is near-perfect if exactly one vertex is left
exposed

DEF.:. A graph G is factor-critical if, for each v € V, the graph
G — v has a perfect matching.

THEOREM: (Gallai, 1963, 1964; Edmonds, 1965)
Let
G = (V, E) arbitrary graph

D = set of all vertices that are exposed in some maximum
matching

A=ND); C=V-(DuUA);
M = any maximum matching of G.
Then:

(@) G(C) has a perfect matching;

(b) all the components of G(D) are factor-critical, and M
induces a near-perfect matching in each of them,;

(c) each vertex in A is matched in M to some vertex in D, and
no two vertices of A are matched to vertices lying in the
same component of G(D).
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THE GALLAI-EDMONDS SETS D, A, C: A GROUP PHOTO

—— | ANV Maximum matching

@7 O A

.—.

AN

"
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LINEAR PROGRAMMING

DEF.: Linear program (LP) : optimization (maximization or
minimization) of a linear function of n > 1 real variables
(objective function), subject to a finite system of linear
inequalities or equations (constraints) on these variables

DEF.: Feasible solution: real n-vector satisfying all constraints
DEF.: Feasible region: set of all feasible solutions

DEF.: Optimal solution: feasible solution that optimizes the
objective function over the feasible region

DEF.: Polyhedron: the set of all solutions to a finite system of
linear inequalities. Polytope: bounded polyhedron

REMARK: The feasible region of any LP is a polyhedron.
Hence an LP amounts to the optimization of a linear function over
a polyhedron.

DEF.: Intermediate point of a polyhedron P: any xeP with the
property that there exist y, z €P, y # z, such that x is an interior
point of the segment [y,z], i.e. , there is an 0 < a <I such that
x=ayt+t(l-a)z.

DEF.. Extreme point of P: any point of P that is not
intermediate.

FUNDAMENTAL THEOREM OF LINEAR PROGRAMMING:
If a linear function has a finite optimum in a polyhedron P, then
among the optimal solutions there is always at least one extreme
point.



MAXIMUM WEIGHT MATCHING:
A BINARY LP FORMULATION

W; weightof edge (1,))

" {1, (i, j) matching edge
i =

0, else
(1,))eE
™)
S.t. > X” <1 eV
JeN(I)
xelol, @<k
I
(FM) 0<x (<D, (iJ)<E

(FM) is an ordinary linear program
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INTEGRALITY AND HALF-INTEGRALITY PROPERTIES

P(G) feasible polytope of (FM)

THEOREM: ( Heller and Tompkins, 1956 )
If G i1s bipartite, then every extreme point of P(G) is binary.

COROLLARY:
If G i1s bipartite, there exists some binary optimal solution to
(FM). Such solution is clearly optimal also for (M).

DEF.: For an arbitrary graph G, a (basic) 2-matching of G 1s any
collection of disjoint edges and odd cycles.

THEOREM: ( Balinski, 1970)
If G is an arbitrary graph, then every extreme point x of P(G) is
half-integral, i.e., its components are in {0, 1, %2 }.

1 1/2
1/2 ()

12 172

1/2 1/2

COROLLARY:
If G is an arbitrary graph, then there exists some half-integral
optimal solution to (FM).

PERSISTENCY THEOREM: (Balas, 1981)

In the unweighted case there are some half-integral optimal
solution x to (FM) and some optimal solution x* to (M) such
that:

_ . _
Xj = 0 orl = Xjj = Xij



c(x) = const.
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LINEAR FINITE OPTIMIZATION = LP

S < R" finite; [S] convex hull of S: set of all convex
combinations of the points in S

linear function c(x)= c; x; +... T ¢y X,
Then one has:
min { ¢c(X): x € S} = min { c(X): x € [S]}
(notice that the r.h.s. isan LP ).

Proof:
Fundamental Theorem of Linear Programming and Ext [S] < S.

Many important combinatorial optimization problems (clique

number, chromatic number, set covering, knapsack, travelling

salesman, and so on) can be formulated as binary linear programs
min { ¢(x): xe PN B" },

(P polyhedron; B ={ 0,1}; c(x) linear ).

In view of the above, such binary LP can be formulated as the

ordinary LP min { ¢(x): x e H=[P " B"] }

A

7

(1,1)

O g

N\

/RN
Y

(0,0) (1,0)

v



18
THE MATCHING POLYTOPE

A fundamental question in polyhedral combinatorics is to give an
explicit representation of the polytope H = [P n B"] as the

solution set of some finite system of linear inequalities

DEF.: Matching polytope: convex hull of all (binary) feasible
solutions to (M)

Let S < V; E(S) = set of all edges having both their endpoints in S
THEOREM: (Edmonds, 1965)

The matching polytope is precisely the set of all real solutions x to
the following system of linear inequalities:

i< L,  ¥ScV, 35|S| odd
(i,j) €E(S) 2

X
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MATCHING ALGORITHMS

Augmenting path

Exposed Exposed

\ /

O—O=—-O—""C0O—CO—0

THEOREM: (Petersen,1891;Berge,1957;Norman and Rabin,1959)
A matching 1s maximum iff it has no augmenting path
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BIPARTITE MATCHING
IDEA: Starting from an exposed vertex, grow an alternating tree

Exposed —» @ O

. even

. odd

«——— Exposed

(a) Augmenting path found

«——— Exposed

(b) Hungarian tree: no augmenting path from exposed vertex



NONBIPARTITE MATCHING

EDMONDS’ BLOSSOM ALGORITHM

PROBLEM: Odd cycles

Exposed

\O—OAO

SOLUTION: Blossom shrinking

11
10

Blossom B={5,7,9, 10, 8}
THEOREM: (Edmonds, 1965)

If G’ is obtained from G by shrinking a blossom B,
then G has an augmenting path iff G’ does

» Basis for Edmonds’ nonbipartite matching algorithm

21
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BEST KNOWN MATCHING ALGORITHMS

G=(V,E); n=|V]; m= |E|;

o MAXIMUM MATCHING
Bipartite:
O(n'? m) (Hopcroft and Karp, 1973)
O(n*? (m/log n)"?) (Alt, Blum, Mehlhorn, Paul, 1991)
O(n"? (m + n) (log (1 + n*¥/m))/log n) (Feder and Motwani, 1991)

Nonbipartite:

O(n'?m) (Micali and Vazirani, 1980)

o MAXIMUM WEIGHT MATCHING
Bipartite:
O(mn + nlogn) (Fredman and Tarjan, 1987)
Nonbipartite:

O(mn + n*log n) (Gabow, 1990)



Nonbipartite

Bipartite

A RETROSPECTIVE VIEW

Edmonds’ Blossom Algorithm

I

Gallai-Edmonds’ Theorem

1

Tutte’s Theorem

1

/ Marriage Theorem \

Konig—Egervary’s Theorem | «—— | Dilworth’s Theorem

23
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