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THE MAXIMUM MATCHING PROBLEM 

 
Example 1:  Postmen hiring in the province of L’Aquila 
 
 

Barisciano 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        Simeone 

      Moscarini 

   Petreschi 

        Panconesi 

Navelli 

Rivisondoli 

Rocca di Mezzo 

 
Can each winner be assigned to some place s/he likes? 
 
More generally, 
 
What is the maximum number of winners such that each of them 
can be assigned to some place s/he likes? 
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Example 2:  Two-bed room assignment in a college 
 
 

  Meg 

Julia

Gwyneth

  Wynona 

 
 
 
 
 
 
 
 
 
 
 

Sharon Nicole 

 
 
 
 
 
 
 
 
 
 
What is the maximum number of  two-bed rooms that can be  
occupied by pairs of compatible girls? 
 
DEF.:  A matching in a graph is a set of pairwise nonincident 
edges 
 
PROBLEM: Find a maximum (cardinality) matching in a graph 
 

 Perfect matchings 
 Weighted version 
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TALK OUTLINE 
 
 
 

1. The maximum matching problem 
 
2. Bipartite Matching: the MarriageTheorem and  

some equivalent theorems 
 

3. Three applications to other branches of mathematics 
 
4. Nonbipartite Matching: The theorems of  Tutte and 

Gallai-Edmonds 
 

    5.   Matching, polyhedral geometry and linear 
  programming 

 
6.   Efficient matching algorithms 
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THE MARRIAGE THEOREM 
 
 
 
 

       Panconesi 

Navelli 

Rocca di Mezzo 

Rivisondoli 

Barisciano

 
 

   Petreschi  
 
 
 
 
 
 
 

      Moscarini 

 
 
 
 
        Simeone 

A maximum matching 
 
 
G = (V, E)   bipartite graph with sides A and B 
N(S)  =  { y ∈ B :   (x,y)  ∈ E  for some  x ∈ S}     (S  ⊆  A) 
 
THEOREM: (Frobenius 1917, P. Hall 1935)  
 
G has a perfect matching  iff  
 

(i) ⏐ A  ⏐ =  ⏐B⏐ ; 
(ii) ⏐ S   ⏐ ≤  ⏐N(S)⏐,        ∀    S  ⊆  A                                           

 
COROLLARY:  Every regular bipartite graph has a perfect 
matching 
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KÖNIG–EGERVÁRY’s THEOREM 
 
DEF.:  A  transversal  of a graph is a set of nodes that covers all 
the edges  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Panconesi 

   Petreschi 

      Moscarini 

 

Maximum matching 

        Simeone 

Barisciano

Navelli 

Rocca di Mezzo 

Rivisondoli 

 
Minimum transversal  

 
 
THEOREM (König, 1931; Egerváry, 1931) : 
 
In any bipartite graph, the maximum cardinality of a matching is 
equal to the minimum cardinality of a transversal 



 7

DILWORTH’s THEOREM 
 
(P, ≤ )  finite poset 
 
DEF.: A chain of  P is any totally ordered subset of  P. 
 
DEF.: An antichain of  P  is any set of pairwise incomparable 
elements of P. 
 

Hasse Diagram 

Chain Antichain 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
THEOREM: ( Dilworth, 1950) 
 
The minimum number of chains into which P can be partitioned is 
equal to the maximum cardinality of an antichain of  P 
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A THEOREM ON CLOSED CURVES IN THE PLANE 
 
  C  continuous closed curve (Jordan curve) in the plane 
 
Assumption: 
There exist an open interval X of the x-axis and an open interval  
Y of the y-axis such that: 
(i) for each  a ∈ X, the vertical line  x = a  intersects  C  in two 
points; 
(ii) for each  b ∈ Y, the horizontal line  y = b  intersects C  in two 
points. 
 
THEOREM: (Berge, 1962) 
There is a  C’ ⊆  C such that: 
(i)   for each  a ∈ X, the vertical line  x = a  intersects  C’  exactly 
in one point; 
(ii) for each  b ∈ Y, the horizontal line  y = b  intersects C’  
exactly in one point. 

 
 

 x 

W
y1

y2

X 

Y 

Γx 
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EGÉRVÁRY-BIRKHOFF-VON NEUMANN’s 
THEOREM 

 
DEF.: A bistochastic matrix is a square real nonnegative matrix 
where the entries of each row and of each column add up to 1.  
 
DEF.: A permutation matrix is a square binary matrix where each 
row and each column has exactly one entry equal to 1.  
Obviously, any permutation matrix is bistochastic 
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THEOREM: (Egérváry 1931, Birkhoff 1946, Von Neumann 1953) 
 
Every bistochastic matrix B is a convex combination of (a finite 
number of) permutation matrices, 
i.e., there exist permutation matrices P1 , … , Pr  and nonnegative 
reals  α1 , … , αr  , with   α1 + …  + αr  = 1,   such that 
 
                           B = α1 P1 + …  + αr Pr . 
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HAAR MEASURES IN COMPACT TOPOLOGICAL GROUPS 
 
Γ    compact topological group 
 
C ( Γ )   set of all continuous functions  f :  Γ → R  ( = reals ) 
 
DEF.:  An invariant integration is a functional  L :  C ( Γ ) → R 
     having the following properties: 
 
(a) L ( α f  +  β g )  = α L(f ) +  β L( g)   (linearity) 
 
(b)   f  ≥ 0   ⇒ L(f ) ≥ 0    (monotonicity) 
 
(c )   if   i  is the identity function, then  L( i ) =1 (normalization) 
 
(d )   if  s, t  ∈ Γ  and  f, g ∈ C ( Γ )   are such that 
                    g (x) = f (s x t ),        ∀ x ∈ Γ ,  
        then  L(g) = L (f)    (double translation invariance) 
 
THEOREM: (von Neumann, 1934; Rota and Harper, 1971) 
 
For every compact topological group Γ there exists an invariant 
integration 
 
CONSEQUENCE: 
Existence of a Haar measure on locally compact topological 
groups 
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TUTTE’s  THEOREM 
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G = (V, E)  arbitrary graph 
 
odd(G)  =   no. of odd components of  G 
 
THEOREM:  (Tutte, 1947) 
G has a perfect matching if and only if 
 
          odd(G − S)  ≤  | S | ,    ∀  S  ⊆  V 
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GALLAI-EDMONDS’ STRUCTURE THEOREM 
 
DEF.:  A matching is near-perfect if exactly one vertex is left 
exposed 
 
DEF.:  A graph G is  factor-critical  if, for each v ∈ V, the graph  
G − v  has a perfect matching. 
 
THEOREM: (Gallai, 1963, 1964; Edmonds, 1965) 
 
Let 
 
G = (V, E) arbitrary graph 
 
D = set of all vertices that are exposed in some maximum 
matching 
 
A = N(D) ;   C = V − (D ∪ A); 
 
M  =  any maximum matching of G. 
 
Then: 
 

(a) G(C) has a perfect matching; 
 

(b) all the components of  G(D) are factor-critical, and M 
induces a near-perfect matching in each of them; 
 

(c) each vertex in A is matched in M to some vertex in D, and 
no two vertices of A are matched to vertices lying in the 
same component of G(D). 
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THE GALLAI-EDMONDS SETS D, A, C : A GROUP PHOTO 
 
 
 

any maximum matching

 
D A C 
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LINEAR PROGRAMMING 
 
DEF.:  Linear program (LP) :  optimization (maximization or 
minimization) of a linear function of  n ≥ 1 real variables 
(objective function), subject to a finite system of linear 
inequalities or equations (constraints) on these variables 
 
DEF.:  Feasible solution:  real n-vector satisfying all constraints 
 
DEF.:  Feasible region:  set of all feasible solutions 
 
DEF.: Optimal solution: feasible solution that optimizes the 
objective function over the feasible region 
 
DEF.:  Polyhedron: the set of all solutions to a finite system of 
linear inequalities. Polytope: bounded polyhedron 
 
REMARK:  The feasible region of any LP is a polyhedron. 
Hence an LP amounts to the optimization of a linear function over 
a polyhedron. 
 
DEF.:  Intermediate point of a polyhedron P:  any  x∈P with the 
property that there exist  y, z ∈P, y ≠ z, such that x is an interior 
point of the segment [y,z], i.e. , there is an   0 < α <1 such that      
x = α y + (1 - α) z . 
 
DEF.: Extreme point of  P:  any point of  P that is not 
intermediate. 
 
FUNDAMENTAL THEOREM OF LINEAR PROGRAMMING: 
If a linear function has a finite optimum in a polyhedron P, then 
among the optimal solutions there is always at least one extreme 
point. 
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MAXIMUM WEIGHT MATCHING: 
A BINARY LP FORMULATION 
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(FM) is an ordinary linear program 
 



 16

INTEGRALITY AND HALF-INTEGRALITY PROPERTIES 
 

 P(G)  feasible polytope of  (FM) 
 
THEOREM: ( Heller and Tompkins, 1956 ) 
If  G  is bipartite, then every extreme point of  P(G) is  binary. 
 
COROLLARY:  
If  G is bipartite, there exists some binary optimal solution to 
(FM). Such solution is clearly optimal also for (M). 
 
DEF.: For an arbitrary graph G, a (basic) 2-matching of  G is any 
collection of disjoint edges and odd cycles. 
 
THEOREM: ( Balinski, 1970) 
If  G  is an arbitrary graph,  then every extreme point x of  P(G) is 
half-integral, i.e., its components are in {0, 1, ½ }.  
 

1/2 

1/2 

1/2 

1/2 

1

1/2 1 

 
 1/2  
 
 
 
COROLLARY:    
If  G is an arbitrary graph, then there exists some half-integral 
optimal solution to (FM). 
 
PERSISTENCY THEOREM:  (Balas, 1981) 
In the unweighted case there are some half-integral optimal 
solution⎯x  to (FM) and some optimal solution  x*  to (M) such 
that: 
                    ijijij xxorx =⇒= *10  
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LINEAR FINITE OPTIMIZATION = LP 
 
S  ⊆ Rn  finite;   [S]  convex hull of S: set of all convex 
combinations of the points in S 
 
linear function  c(x) =  c1 x1  + … + cn xn
 
    Then one has:              
 
            min { c(x) :  x ∈ S } =  min { c(x) :  x ∈ [S]} 
 
(notice that the r.h.s. is an LP ). 
 
Proof:   
Fundamental Theorem of Linear Programming and Ext [S] ⊆ S. 
 
Many important combinatorial optimization problems (clique 
number, chromatic number, set covering, knapsack, travelling 
salesman, and so on) can be formulated as binary linear programs 
                       min { c(x) :  x ∈ P ∩ Bn } ,  
(P polyhedron;  B  = { 0,1};  c(x) linear ). 
 
In view of the above, such binary LP can be formulated as the 
ordinary LP             min { c(x) :  x ∈ H ≡ [P ∩ Bn] } 
 
 
 
 
 
 
 
 
 
 

(1,0) 

(1,1) 

(0,0) 

(0,1) 

H

P 

c(x) = const. 
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THE MATCHING POLYTOPE 
 
A fundamental question in polyhedral combinatorics is to give an 
explicit representation of the polytope H = [P ∩ Bn]  as the 
solution set of some finite system of linear inequalities 
 
DEF.: Matching polytope: convex hull of all (binary) feasible 
solutions to (M) 
 
Let S ⊆ V; E(S) = set of all edges having both their endpoints in S 
 
THEOREM: (Edmonds, 1965) 
 
The matching polytope is precisely the set of all real solutions x to 
the following system of linear inequalities: 
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MATCHING ALGORITHMS 

 
Augmenting path 
 
Exposed          Exposed 
 
           
 
 
 
 
 
 
 
 
 
 
 
 
 
THEOREM: (Petersen,1891;Berge,1957;Norman and Rabin,1959) 
A matching is maximum iff it has no augmenting path 
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BIPARTITE MATCHING 
IDEA: Starting from an exposed vertex, grow an alternating tree 
 
 

Exposed 

Exposed 
 
 

even  
 
 
 odd 
 
 
 

(a)  Augmenting path found 
  

Exposed 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
     (b) Hungarian tree: no augmenting path from exposed vertex 
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NONBIPARTITE MATCHING 
 
EDMONDS’ BLOSSOM ALGORITHM 
 
PROBLEM: Odd cycles 
 

 
 

Exposed 

 
 
 
 
 
SOLUTION: Blossom shrinking 
 
   
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Blossom B = {5 , 7, 9, 10, 8} 

B 

11 

6 

11 

10 9 

8 

     5 6 

7

tip

 4 

 3 

 2 

1 1

 2 

 3 

 4 

  THEOREM:  (Edmonds, 1965) 
  If   G’  is obtained from  G  by shrinking a blossom  B, 
  then  G  has  an augmenting path  iff   G’  does 
  

   Basis for Edmonds’ nonbipartite matching algorithm  
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BEST KNOWN MATCHING ALGORITHMS 
 
G = (V, E);              n  =  | V | ;                      m =  | E | ; 
 
 
 

 MAXIMUM  MATCHING 
 

Bipartite:   
 
O(n1/2 m)  (Hopcroft and Karp, 1973) 
O(n3/2 (m/log n)1/2)   (Alt, Blum, Mehlhorn, Paul, 1991) 
O(n1/2 (m + n) (log (1 + n2/m))/log n)  (Feder and Motwani, 1991) 

 
Nonbipartite:   
 
O(n1/2 m)   (Micali and Vazirani, 1980) 
 
 
 
 

 MAXIMUM  WEIGHT  MATCHING 
 

Bipartite:    
 

O(mn + n log n)   (Fredman and Tarjan, 1987) 
 

Nonbipartite:   
 

O(mn + n2log n)  (Gabow, 1990) 
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A RETROSPECTIVE VIEW 
 
 
 

 
Edmonds’ Blossom Algorithm 

Nonbipartite  Gallai-Edmonds’ Theorem 

 Tutte’s Theorem 

Bipartite Marriage Theorem 

König–Egerváry’s Theorem Dilworth’s Theorem 
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