PERTIE EELONI AURIFERI NELLA TEORIA DELMATCHING

La Sapienza University, ROME, Italy

Pietre Miliari
3 Ottobre 2006

THE MAXIMUM MATCHING PROBLEM

Example 1: Postmen hiring in the province of L'Aquila

Barisciano

Navelli

Rivisondoli

Rocca di Mezzo

Can each winner be assigned to some place s / he likes?
More generally,
What is the maximum number of winners such that each of them can be assigned to some place s/he likes?

Example 2: Two-bed room assignment in a college

Wynona

What is the maximum number of two-bed rooms that can be occupied by pairs of compatible girls?

DEF.: A matching in a graph is a set of pairwise nonincident edges

PROBLEM: Find a maximum (cardinality) matching in a graph
$>$ Perfect matchings
$>$ Weighted version

TALK OUTLINE

1. The maximum matching problem
2. Bipartite Matching: the MarriageTheorem and some equivalent theorems
3. Three applications to other branches of mathematics
4. Nonbipartite Matching: The theorems of Tutte and Gallai-Edmonds
5. Matching, polyhedral geometry and linear programming
6. Efficient matching algorithms

THE MARRIAGE THEOREM

Barisciano

Navelli

Rivisondoli

Rocca di Mezzo

A maximum matching
$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ bipartite graph with sides A and B
$N(S)=\{y \in B:(x, y) \in E$ for some $x \in S\}$
$(\mathrm{S} \subseteq \mathrm{A})$
THEOREM: (Frobenius 1917, P. Hall 1935)
G has a perfect matching iff
$\begin{array}{ll}\text { (i) } & |\mathrm{A}|=|\mathrm{B}| ; \\ \text { (ii) } & \\ \mathrm{S}|\leq|\mathrm{N}(\mathrm{S})|, \quad \forall \mathrm{S} \subseteq \mathrm{A}\end{array}$
COROLLARY: Every regular bipartite graph has a perfect matching

KÖNIG-EGERVÁRY's THEOREM

DEF.: A transversal of a graph is a set of nodes that covers all the edges

Barisciano

Navelli

Rivisondoli

Rocca di Mezzo

Maximum matching

Minimum transversal

THEOREM (König, 1931; Egerváry, 1931) :
In any bipartite graph, the maximum cardinality of a matching is equal to the minimum cardinality of a transversal

DILWORTH's THEOREM

(P, \leq) finite poset
DEF.: A chain of P is any totally ordered subset of P .
DEF.: An antichain of P is any set of pairwise incomparable elements of P .

Hasse Diagram

THEOREM: (Dilworth, 1950)
The minimum number of chains into which P can be partitioned is equal to the maximum cardinality of an antichain of P

A THEOREM ON CLOSED CURVES IN THE PLANE

C continuous closed curve (Jordan curve) in the plane

Assumption:

There exist an open interval X of the x-axis and an open interval Y of the y-axis such that:
(i) for each $a \in \mathrm{X}$, the vertical line $x=a$ intersects C in two points;
(ii) for each $b \in \mathrm{Y}$, the horizontal line $y=b$ intersects \boldsymbol{C} in two points.

THEOREM: (Berge, 1962)
There is a $\boldsymbol{C}^{\prime} \subseteq \boldsymbol{C}$ such that:
(i) for each $a \in \mathrm{X}$, the vertical line $x=a$ intersects C^{\prime} exactly in one point;
(ii) for each $b \in \mathrm{Y}$, the horizontal line $y=b$ intersects C^{\prime} exactly in one point.

EGÉRVÁRY-BIRKHOFF-VON NEUMANN's THEOREM

DEF.: A bistochastic matrix is a square real nonnegative matrix where the entries of each row and of each column add up to 1 .

DEF.: A permutation matrix is a square binary matrix where each row and each column has exactly one entry equal to 1 . Obviously, any permutation matrix is bistochastic
$\left[\begin{array}{ccc}1 / 4 & 0 & \mathbf{3} / \mathbf{4} \\ 1 / \mathbf{2} & 1 / 2 & 0 \\ 1 / 4 & \mathbf{1} / \mathbf{2} & 1 / 4\end{array}\right]=1 / 2\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]+\left[\begin{array}{ccc}1 / 4 & 0 & \mathbf{1} / \mathbf{4} \\ 0 & \mathbf{1} / \mathbf{2} & 0 \\ \mathbf{1} / \mathbf{4} & 0 & 1 / 4\end{array}\right]$
$=1 / 2\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]+1 / 4\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]+\left[\begin{array}{ccc}\mathbf{1} / \mathbf{4} & 0 & 0 \\ 0 & \mathbf{1} / \mathbf{4} & 0 \\ 0 & 0 & \mathbf{1} / \mathbf{4}\end{array}\right]$
$=1 / 2\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]+1 / 4\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]+1 / 4\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

THEOREM: (Egérváry 1931, Birkhoff 1946, Von Neumann 1953)

Every bistochastic matrix B is a convex combination of (a finite number of) permutation matrices,
i.e., there exist permutation matrices $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{r}}$ and nonnegative reals $\alpha_{1}, \ldots, \alpha_{r}$, with $\alpha_{1}+\ldots+\alpha_{r}=1$, such that

$$
\mathrm{B}=\alpha_{1} \mathrm{P}_{1}+\ldots+\alpha_{\mathrm{r}} \mathrm{P}_{\mathrm{r}}
$$

HAAR MEASURES IN COMPACT TOPOLOGICAL GROUPS

Γ compact topological group
$\mathcal{C}(\Gamma)$ set of all continuous functions $\mathrm{f}: \Gamma \rightarrow \mathbf{R}$ ($=$ reals)
DEF.: An invariant integration is a functional $\mathrm{L}: \mathcal{C}(\Gamma) \rightarrow \mathbf{R}$ having the following properties:
(a) $\mathrm{L}(\alpha \mathrm{f}+\beta \mathrm{g})=\alpha \mathrm{L}(\mathrm{f})+\beta \mathrm{L}(\mathrm{g})$ (linearity)
(b) $\mathrm{f} \geq 0 \Rightarrow \mathrm{~L}(\mathrm{f}) \geq 0 \quad$ (monotonicity)
(c) if \mathbf{i} is the identity function, then $L(\mathbf{i})=1$ (normalization)
(d) if $\mathrm{s}, \mathrm{t} \in \Gamma$ and $\mathrm{f}, \mathrm{g} \in \mathcal{C}(\Gamma)$ are such that

$$
\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{~s} x \mathrm{t}), \quad \forall \mathrm{x} \in \Gamma,
$$

then $\mathrm{L}(\mathrm{g})=\mathrm{L}$ (f) (double translation invariance)
THEOREM: (von Neumann, 1934; Rota and Harper, 1971)
For every compact topological group Γ there exists an invariant integration

CONSEQUENCE:

Existence of a Haar measure on locally compact topological groups

TUTTE's THEOREM

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ arbitrary graph
$\operatorname{odd}(\mathrm{G})=$ no. of odd components of G
THEOREM: (Tutte, 1947)
G has a perfect matching if and only if

$$
\operatorname{odd}(\mathrm{G}-\mathrm{S}) \leq|\mathrm{S}|, \quad \forall \mathrm{S} \subseteq \mathrm{~V}
$$

GALLAI-EDMONDS' STRUCTURE THEOREM

DEF.: A matching is near-perfect if exactly one vertex is left exposed

DEF.: A graph G is factor-critical if, for each $\mathrm{v} \in \mathrm{V}$, the graph $\mathrm{G}-\mathrm{v}$ has a perfect matching.

THEOREM: (Gallai, 1963, 1964; Edmonds, 1965)
Let
$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ arbitrary graph
$\mathrm{D}=$ set of all vertices that are exposed in some maximum matching
$A=N(D) ; C=V-(D \cup A) ;$
$\mathrm{M}=$ any maximum matching of G .
Then:
(a) $\mathrm{G}(\mathrm{C})$ has a perfect matching;
(b) all the components of $G(D)$ are factor-critical, and M induces a near-perfect matching in each of them;
(c) each vertex in A is matched in M to some vertex in D , and no two vertices of A are matched to vertices lying in the same component of $G(D)$.

THE GALLAI-EDMONDS SETS D, A, C : A GROUP PHOTO
=any maximum matching
○ D
○ A
O

LINEAR PROGRAMMING

DEF.: Linear program (LP) : optimization (maximization or minimization) of a linear function of $n \geq 1$ real variables (objective function), subject to a finite system of linear inequalities or equations (constraints) on these variables

DEF.: Feasible solution: real n-vector satisfying all constraints
DEF.: Feasible region: set of all feasible solutions
DEF.: Optimal solution: feasible solution that optimizes the objective function over the feasible region

DEF.: Polyhedron: the set of all solutions to a finite system of linear inequalities. Polytope: bounded polyhedron

REMARK: The feasible region of any LP is a polyhedron.
Hence an LP amounts to the optimization of a linear function over a polyhedron.

DEF.: Intermediate point of a polyhedron P : any $x \in P$ with the property that there exist $\mathrm{y}, \mathrm{z} \in \mathrm{P}, \mathrm{y} \neq \mathrm{z}$, such that x is an interior point of the segment [y,z], i.e., there is an $0<\alpha<1$ such that $x=\alpha y+(1-\alpha) z$.

DEF.: Extreme point of P : any point of P that is not intermediate.

FUNDAMENTAL THEOREM OF LINEAR PROGRAMMING:

If a linear function has a finite optimum in a polyhedron P, then among the optimal solutions there is always at least one extreme point.

MAXIMUM WEIGHT MATCHING: A BINARY LP FORMULATION

$w_{i j} \quad$ weight of edge (i, j)

$x_{i j}=\left\{\begin{array}{lc}1, & (i, j) \text { matching edge } \\ 0, & \text { else }\end{array}\right.$

	$\max \sum_{(i, j) \in E} w_{i j} x_{i j}$	
(M)		
	s.t.	$\sum_{j \in N(i)} x_{i j} \leq 1, \quad i \in V$
	$x_{i j} \in\{0,1\}, \quad(i, j) \in E$	
(FM)		

(FM) is an ordinary linear program

INTEGRALITY AND HALF-INTEGRALITY PROPERTIES

$\mathrm{P}(\mathrm{G})$ feasible polytope of (FM)
THEOREM: (Heller and Tompkins, 1956)
If G is bipartite, then every extreme point of $\mathrm{P}(\mathrm{G})$ is binary.

COROLLARY:

If G is bipartite, there exists some binary optimal solution to (FM). Such solution is clearly optimal also for (M).

DEF.: For an arbitrary graph G, a (basic) 2-matching of G is any collection of disjoint edges and odd cycles.

THEOREM: (Balinski, 1970)
If G is an arbitrary graph, then every extreme point x of $P(G)$ is half-integral, i.e., its components are in $\{0,1,1 / 2\}$.

COROLLARY:
If G is an arbitrary graph, then there exists some half-integral optimal solution to (FM).

PERSISTENCY THEOREM: (Balas, 1981)
In the unweighted case there are some half-integral optimal solution \bar{x} to (FM) and some optimal solution x^{*} to (M) such that:

$$
\bar{x}_{i j}=0 \text { or } 1 \Rightarrow x_{i j}^{*}=\bar{x}_{i j}
$$

LINEAR FINITE OPTIMIZATION = LP

$\mathrm{S} \subseteq \mathrm{R}^{\mathrm{n}}$ finite; $[\mathrm{S}]$ convex hull of S : set of all convex combinations of the points in S
linear function $\mathrm{c}(\mathrm{x})=\mathrm{c}_{1} \mathrm{x}_{1}+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}$
Then one has:

$$
\min \{c(x): x \in S\}=\min \{c(x): x \in[S]\}
$$

(notice that the r.h.s. is an LP).

Proof:

Fundamental Theorem of Linear Programming and Ext $[\mathrm{S}] \subseteq \mathrm{S}$.
Many important combinatorial optimization problems (clique number, chromatic number, set covering, knapsack, travelling salesman, and so on) can be formulated as binary linear programs

$$
\min \left\{c(x): x \in P \cap \mathbf{B}^{\mathrm{n}}\right\},
$$

(P polyhedron; $\mathbf{B}=\{0,1\} ; \mathrm{c}(\mathrm{x})$ linear $)$.
In view of the above, such binary LP can be formulated as the ordinary LP $\quad \min \left\{c(x): x \in H \equiv\left[P \cap \mathbf{B}^{\mathrm{n}}\right]\right\}$
$c(x)=$ const.

THE MATCHING POLYTOPE

A fundamental question in polyhedral combinatorics is to give an explicit representation of the polytope $\mathrm{H}=\left[\mathrm{P} \cap \mathbf{B}^{\mathrm{n}}\right]$ as the solution set of some finite system of linear inequalities

DEF.: Matching polytope: convex hull of all (binary) feasible solutions to (M)

Let $\mathrm{S} \subseteq \mathrm{V} ; \mathrm{E}(\mathrm{S})=$ set of all edges having both their endpoints in S THEOREM: (Edmonds, 1965)

The matching polytope is precisely the set of all real solutions x to the following system of linear inequalities:

$$
\sum_{j \in N(i)} x_{i j} \leq 1, \quad i \in V
$$

$$
\sum_{(i, j) \in E(S)} x_{i j} \leq \frac{|S|-1}{2}, \quad \forall S \subseteq V, \quad 3 \leq|S| \quad \text { odd }
$$

$$
x_{i j} \geq 0, \quad(i, j) \in E
$$

MATCHING ALGORITHMS

Augmenting path

THEOREM: (Petersen,1891;Berge,1957;Norman and Rabin,1959) A matching is maximum iff it has no augmenting path

Bipartite Matching

IDEA: Starting from an exposed vertex, grow an alternating tree

(a) Augmenting path found

(b) Hungarian tree: no augmenting path from exposed vertex

Nonbipartite Matching

EDMONDS' BLOSSOM ALGORITHM

PROBLEM: Odd cycles

SOLUTION: Blossom shrinking

THEOREM: (Edmonds, 1965)
If G^{\prime} is obtained from G by shrinking a blossom B , then G has an augmenting path iff G ' does
> Basis for Edmonds' nonbipartite matching algorithm

BEST KNOWN MATCHING ALGORITHMS

$\mathrm{G}=(\mathrm{V}, \mathrm{E}) ; \quad \mathrm{n}=|\mathrm{V}| ; \quad \mathrm{m}=|\mathrm{E}| ;$

- MAXIMUM MATCHING

Bipartite:
$\mathrm{O}\left(n^{1 / 2} m\right)$ (Hopcroft and Karp, 1973)
$\mathrm{O}\left(n^{3 / 2}(m / \log n)^{1 / 2}\right) \quad$ (Alt, Blum, Mehlhorn, Paul, 1991)
$\mathrm{O}\left(n^{1 / 2}(m+n)\left(\log \left(1+n^{2} / m\right)\right) / \log n\right)($ Feder and Motwani, 1991)
Nonbipartite:
$\mathrm{O}\left(\mathrm{n}^{1 / 2} \mathrm{~m}\right)$ (Micali and Vazirani, 1980)

- Maximum Weight Matching

Bipartite:
$\mathrm{O}(m n+n \log n) \quad($ Fredman and Tarjan, 1987)
Nonbipartite:
$\mathrm{O}\left(m n+n^{2} \log n\right)($ Gabow, 1990)

A RETROSPECTIVE VIEW

Edmonds' Blossom Algorithm

