Combinatorial invariance of
Kazhdan-Lusztig polynomials for

short intervals in the symmetric group

Federico Incitti

21/3/2005

OVERVIEW

1. Preliminaries
2. Main result
3. Drawing the Bruhat order: the diagram of (x, y)
4. From the diagram to the poset structure of $[x, y]$
5. From the diagram to the polynomial $\widetilde{R}_{x, y}(q)$
6. Proof sketch
7. Explicit formulas

1. PRELIMINARIES

1.1 Coxeter groups

W : Coxeter group $\quad S$: set of generators

Set of reflections: $T=\left\{w s w^{-1}: w \in W, s \in S\right\}$.

Let $w \in W$. Length of w :

$$
\ell(w)=\min \{k: w \text { is a product of } k \text { generators }\}
$$

Absolute length of w :

$$
a \ell(w)=\min \{k: w \text { is a product of } k \text { reflections }\} .
$$

Bruhat graph of $W(B G)$: directed graph with W as vertex set and

$$
x \rightarrow y \quad \Leftrightarrow \quad y=x t, \quad \text { with } t \in T, \quad \text { and } \quad \ell(x)<\ell(y) .
$$

Edge supposed labelled by the reflection $t: \quad x \xrightarrow{t} y$

Bruhat order of W : partial order on W defined by

$$
x \leq y \quad \Leftrightarrow \quad x=x_{0} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{k}=y
$$

W, with the Bruhat order, is a graded poset with rank function ℓ.

Let $x, y \in W$, with $x<y$. The length of the pair (x, y) is

$$
\ell(x, y)=\ell(y)-\ell(x)
$$

1.2 The symmetric group

$$
\begin{aligned}
& \mathbf{N}=\{1,2,3, \ldots\}, \quad[n]=\{1,2, \ldots, n\} \quad(n \in \mathbf{N}) \\
& {[n, m]=\{n, n+1, \ldots, m\} \quad(n, m \in \mathbf{N}, \text { with } n \leq m)}
\end{aligned}
$$

Denote by S_{n} the symmetric group over n elements:

$$
S_{n}=\{x:[n] \rightarrow[n] \text { bijection }\}
$$

S_{n} is a Coxeter group, with generators $\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}$, where

$$
s_{i}=(i, i+1) \quad \forall i \in[n-1] .
$$

1.3 Polynomials associated with W

Theorem There exists a unique family of polynomials

$$
\left\{R_{x, y}(q)\right\}_{x, y \in W} \subseteq \mathbb{Z}[q]
$$

such that

1. $R_{x, y}(q)=0$, if $x \not \leq y$;
2. $R_{x, y}(q)=1, \quad$ if $x=y$;
3. if $x<y$ and $s \in S$ is such that $y s \triangleleft y$ then

$$
R_{x, y}(q)= \begin{cases}R_{x s, y s}(q), & \text { if } x s \triangleleft x \\ q R_{x s, y s}(q)+(q-1) R_{x, y s}(q), & \text { if } x s \triangleright x\end{cases}
$$

They are called the R-polynomials of W.

Theorem There exists a unique family of polynomials

$$
\left\{P_{x, y}(q)\right\}_{x, y \in W} \subseteq \mathbb{Z}[q]
$$

such that

1. $P_{x, y}(q)=0$, if $x \not \leq y$;
2. $P_{x, y}(q)=1$, if $x=y$;
3. if $x<y$ then $\operatorname{deg}\left(P_{x, y}(q)\right)<\ell(x, y) / 2$ and

$$
q^{\ell(x, y)} P_{x, y}\left(q^{-1}\right)-P_{x, y}(q)=\sum_{x<z \leq y} R_{x, z}(q) P_{z, y}(q)
$$

They are called the Kazhdan-Lusztig polynomials of W.

1.4 Applications

Kazhdan-Lusztig polynomials play a crucial role in

- algebraic geometry of Schubert varieties;
- topology of Schubert varieties;
- representation theory of semisimple algebraic groups;
- representation theory of Hecke algebras.

1.5 Combinatorial interpretation

Proposition There exists a unique family of polynomials

$$
\left\{\widetilde{R}_{x, y}(q)\right\}_{x, y \in W} \subseteq \mathbb{Z}_{\geq 0}[q]
$$

such that

$$
R_{x, y}(q)=q^{\frac{\ell(x, y)}{2}} \widetilde{R}_{x, y}\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)
$$

for every $x, y \in W$.

They are called the \widetilde{R}-polynomials of W.

Proposition There is a bijection

$$
\text { (positive roots) } \begin{aligned}
\Phi^{+} & \leftrightarrow T \text { (reflections) } \\
\alpha & \mapsto t_{\alpha}
\end{aligned}
$$

Definition A reflection ordering on T is a total ordering \prec such that

$$
\begin{gathered}
\forall \alpha, \beta \in \Phi^{+}, \quad \forall \lambda, \mu \in \mathbf{R}^{+}, \quad \text { with } \lambda \alpha+\mu \beta \in \Phi^{+} \\
t_{\alpha} \prec t_{\beta} \quad \Rightarrow \quad t_{\alpha} \prec t_{\lambda \alpha+\mu \beta} \prec t_{\beta} .
\end{gathered}
$$

Proposition A reflection ordering on T always exists.
$\operatorname{Paths}(x, y)$: set of paths in $B G$ from x to y.
$\Delta=\left(x_{0}, x_{1}, \ldots, x_{k}\right) \in \operatorname{Paths}(x, y)$ has length $|\Delta|=k$.

Let \prec be a fixed reflection ordering on T.
A path $x_{0} \xrightarrow{t_{1}} x_{1} \xrightarrow{t_{2}} \cdots \xrightarrow{t_{k}} x_{k}$ is increasing if $t_{1} \prec t_{2} \prec \cdots \prec t_{k}$. Paths ${ }^{\prec}(x, y)$: set of increasing paths in $B G$ from x to y.

Theorem [Dyer] Let $x, y \in W$, with $x<y$. Then

$$
\widetilde{R}_{x, y}(q)=\sum_{\Delta \in \text { Paths }^{\prec}(x, y)} q^{|\Delta|} .
$$

1.6 Absolute length of a pair

Definition Let $x, y \in W$, with $x<y$. The absolute length of (x, y), denoted by $a \ell(x, y)$, is the (oriented) distance between x and y in $B G$.

Corollary Let $x, y \in W, x<y$. Set $\ell=\ell(x, y)$ and $a \ell=a \ell(x, y)$. Then

$$
\widetilde{R}_{x, y}(q)=q^{\ell}+c_{\ell-2} q^{\ell-2}+\cdots+c_{a \ell+2} q^{a \ell+2}+c_{a \ell} q^{a \ell}
$$

where, $\forall k \in[a \ell, \ell-2]$, with $k \equiv \ell(2)$

$$
c_{k}=\mid\left\{\Delta \in \text { Paths }^{\prec}(x, y):|\Delta|=k\right\} \mid \geq 1
$$

Proposition [Dyer] The absolute length $a \ell(x, y)$ is a combinatorial invariant, that is, it depends only on the poset structure of $[x, y]$.

1.7 Combinatorial invariance conjecture

Conjecture [Lusztig] [Dyer] The Kazhdan-Lusztig polynomials are combinatorial invariants. In other words, if W_{1}, W_{2} are Coxeter groups and $x, y \in W_{1}$, with $x<y$, and $u, v \in W_{2}$, with $u<v$, then

$$
[x, y] \cong[u, v] \quad \Rightarrow \quad P_{x, y}(q)=P_{u, v}(q) .
$$

Equivalent to the same statement for R - and \widetilde{R}-polynomials.
Known to be true if $[x, y]$ is a lattice or if $\ell(x, y) \leq 4$.
Theorem [Brenti, Caselli, Marietti] True for $x=u=e$.

2. MAIN RESULT

2.1 Some notation

Let W be a Coxeter group and let $x, y \in W$, with $x<y$.
Number of atoms and coatoms of $[x, y]$:

$$
a(x, y)=|\{z \in[x, y]: x \triangleleft z\}| \quad \text { and } \quad c(x, y)=|\{z \in[x, y]: z \triangleleft y\}|
$$

Introduce the capacity of $[x, y]$:

$$
\operatorname{cap}(x, y)=\min \{a(x, y), c(x, y)\}
$$

Denote by \mathcal{B}_{k} the boolean algebra of rank k, that is, the family $\mathcal{P}([k])$ of all subsets of $[k$] partially ordered by inclusion.

2.2 Main result

Theorem Let $x, y \in S_{n}$, for some n, with $x<y$ and $\ell(x, y)=5$. Set $a=a(x, y), c=c(x, y)$ and $c a p=\operatorname{cap}(x, y)$. Then

$$
\widetilde{R}_{x, y}(q)= \begin{cases}q^{5}+2 q^{3}+q, & \text { if }\{a, c\}=\{3,4\} \\ q^{5}+2 q^{3}, & \text { if } a=c=3, \\ q^{5}+q^{3}, & \text { if } c a p \in\{4,5\} \text { but }[x, y] \nsupseteq \mathcal{B}_{5}, \\ q^{5}, & \text { if } \operatorname{cap} \in\{6,7\} \text { or }[x, y] \cong \mathcal{B}_{5}\end{cases}
$$

Corollary Let $x, y \in S_{n}$, with $x<y$ and $\ell(x, y)=5$, and $u, v \in S_{m}$, with $u<v$ and $\ell(u, v)=5$, for some n and m. Then

$$
[x, y] \cong[u, v] \quad \Rightarrow \quad P_{x, y}(q)=P_{u, v}(q)
$$

Proposition Let $x, y \in W$, with $x<y$. Then

$$
\sum_{x \leq z \leq y}(-1)^{\ell(x, z)} R_{x, z}(q) R_{z, y}(q)=0
$$

In particular, if $\ell(x, y)$ is even,

$$
R_{x, y}(q)=\frac{1}{2} \sum_{x<z<y}(-1)^{\ell(x, z)-1} R_{x, z}(q) R_{z, y}(q)
$$

Corollary Let $x, y \in S_{n}$, with $x<y$ and $\ell(x, y)=6$, and $u, v \in S_{m}$, with $u<v$ and $\ell(u, v)=6$, for some n and m. Then

$$
[x, y] \cong[u, v] \quad \Rightarrow \quad P_{x, y}(q)=P_{u, v}(q)
$$

3. DRAWING THE BRUHAT ORDER

3.1 Denoting permutations

Denote a permutation $x \in S_{n}$ using the one-line notation:

$$
x=x_{1} x_{2} \ldots x_{n} \quad \text { means } \quad x(i)=x_{i} \quad \forall i \in[n] .
$$

The diagram of $x \in S_{n}$ is the subset of \mathbf{N}^{2} so defined:

$$
\operatorname{Diag}(x)=\{(i, x(i)): i \in[n]\} .
$$

Example $x=315472986 \in S_{9}$. Diagram of x :

3.2 Length in the symmetric group

Let $x \in S_{n}$. Number of inversions of x :

$$
\operatorname{inv}(x)=\left|\left\{(i, j) \in[n]^{2}: i<j, x(i)>x(j)\right\}\right| .
$$

Proposition Let $x \in S_{n}$. Then

$$
\ell(x)=\operatorname{inv}(x)
$$

3.2 Length in the symmetric group

Let $x \in S_{n}$. Number of inversions of x :

$$
\operatorname{inv}(x)=\left|\left\{(i, j) \in[n]^{2}: i<j, x(i)>x(j)\right\}\right|
$$

Proposition Let $x \in S_{n}$. Then

$$
\ell(x)=\operatorname{inv}(x)
$$

Example $x=315472986 \in S_{9}$.

3.2 Length in the symmetric group

Let $x \in S_{n}$. Number of inversions of x :

$$
\operatorname{inv}(x)=\left|\left\{(i, j) \in[n]^{2}: i<j, x(i)>x(j)\right\}\right|
$$

Proposition Let $x \in S_{n}$. Then

$$
\ell(x)=\operatorname{inv}(x)
$$

Example $x=315472986 \in S_{9}$.

$$
\ell(x)=\operatorname{inv}(x)=10
$$

3.2 Length in the symmetric group

Let $x \in S_{n}$. Number of inversions of x :

$$
\operatorname{inv}(x)=\left|\left\{(i, j) \in[n]^{2}: i<j, x(i)>x(j)\right\}\right|
$$

Proposition Let $x \in S_{n}$. Then

$$
\ell(x)=\operatorname{inv}(x)
$$

Example $x=315472986 \in S_{9}$.

$$
\ell(x)=\operatorname{inv}(x)=10
$$

Let $x, y \in S_{n}$, with $x<y$. Then

$$
\ell(x, y)=i n v(y)-i n v(x)
$$

3.3 Bruhat order in the symmetric group

Let $x \in S_{n} . \forall(h, k) \in[n]^{2}$ set

$$
x[h, k]=\mid\{i \in[h]: x(i) \in[k, n]\} .
$$

3.3 Bruhat order in the symmetric group

Let $x \in S_{n} . \forall(h, k) \in[n]^{2}$ set

$$
x[h, k]=\mid\{i \in[h]: x(i) \in[k, n]\} .
$$

Example $x=315472986 \in S_{9}$.

3.3 Bruhat order in the symmetric group

Let $x \in S_{n} . \forall(h, k) \in[n]^{2}$ set

$$
x[h, k]=\mid\{i \in[h]: x(i) \in[k, n]\} .
$$

Example $\quad x=315472986 \in S_{9}$.

$$
x[8,7]=3
$$

3.3 Bruhat order in the symmetric group

Let $x \in S_{n} . \forall(h, k) \in[n]^{2}$ set

$$
x[h, k]=\mid\{i \in[h]: x(i) \in[k, n]\} .
$$

Example $\quad x=315472986 \in S_{9}$.

$$
\begin{aligned}
& x[8,7]=3 \\
& x[6,2]=5
\end{aligned}
$$

3.3 Bruhat order in the symmetric group

Let $x, y \in S_{n} . \forall(h, k) \in[n]^{2}$ set

$$
(x, y)[h, k]=y[h, k]-x[h, k] .
$$

3.3 Bruhat order in the symmetric group

Let $x, y \in S_{n} . \forall(h, k) \in[n]^{2}$ set

$$
(x, y)[h, k]=y[h, k]-x[h, k] .
$$

Example $\quad x=315472986 \in S_{9}$.

3.3 Bruhat order in the symmetric group

Let $x, y \in S_{n} . \forall(h, k) \in[n]^{2}$ set

$$
(x, y)[h, k]=y[h, k]-x[h, k] .
$$

Example $\quad x=315472986$ (\bullet)

$$
y=782496315
$$

3.3 Bruhat order in the symmetric group

Let $x, y \in S_{n} . \forall(h, k) \in[n]^{2}$ set

$$
(x, y)[h, k]=y[h, k]-x[h, k] .
$$

Example $\quad x=315472986$ ($\left.{ }^{(}\right)$

$$
y=782496315
$$

$$
(x, y)[8,7]=0
$$

3.3 Bruhat order in the symmetric group

Let $x, y \in S_{n} . \forall(h, k) \in[n]^{2}$ set

$$
(x, y)[h, k]=y[h, k]-x[h, k] .
$$

Example $\quad x=315472986$ ($\left.{ }^{(}\right)$

$$
y=782496315(\circ)
$$

$$
(x, y)[8,7]=0
$$

$$
(x, y)[6,2]=1
$$

Theorem Let $x, y \in S_{n}$. Then

$$
x \leq y \quad \Leftrightarrow \quad(x, y)[h, k] \geq 0, \quad \forall(h, k) \in[n]^{2} .
$$

Theorem Let $x, y \in S_{n}$. Then

$$
x \leq y \quad \Leftrightarrow \quad(x, y)[h, k] \geq 0, \quad \forall(h, k) \in[n]^{2} .
$$

Example $\quad x=315472986$ (•)

$$
y=782496315
$$

Theorem Let $x, y \in S_{n}$. Then

$$
x \leq y \quad \Leftrightarrow \quad(x, y)[h, k] \geq 0, \quad \forall(h, k) \in[n]^{2} .
$$

Example $\quad x=315472986$ (•)

$$
y=782496315
$$

$$
(x, y)[h, k] \geq 0, \quad \forall(h, k) \in[9]^{2}
$$

| 9 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 0 | 1 | 1 | 1 | 2 | 2 | 1 | 0 | 0 |
| 7 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 0 | 0 |
| 6 | \cdots | 2 | 2 | 2 | 2 | 3 | 2 | 1 | 0 |
| 5 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 0 | 0 |
| 4 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Theorem Let $x, y \in S_{n}$. Then

$$
x \leq y \quad \Leftrightarrow \quad(x, y)[h, k] \geq 0, \quad \forall(h, k) \in[n]^{2} .
$$

Example $\quad x=315472986$ (•) $y=782496315$ (०)
$(x, y)[h, k] \geq 0, \quad \forall(h, k) \in[9]^{2}$

$$
\begin{gathered}
\Downarrow \\
x<y
\end{gathered}
$$

9	0	0	0	0	1	1	0	0	0
8	0	1	1	1	2	2	1	0	0
7	1	2	2	2	2	2	1	0	0
6	1	2	2	2	2	3	2	1	0
5	1	2	1	1	1	2	1	0	0
4	1	2	1	1	1	2	1	0	0
3	0	0	0	0	0	1	1	0	0
2	0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	0	0	0	0

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

Extend the notation: $\forall(h, k) \in \mathbf{R}^{2}$ set

$$
x[h, k]=|\{i \in[h]: x(i) \in[k, n]\}|, \quad(x, y)[h, k]=y[h, k]-x[h, k] .
$$

Definition Let $x, y \in S_{n}$. The multiplicity mapping of (x, y) is

$$
(h, k) \in \mathbf{R}^{2} \mapsto(x, y)[h, k] \in \mathbf{Z} .
$$

Definition Let $x, y \in S_{n}$, with $x<y$. The support of (x, y) is

$$
\Omega(x, y)=\left\{(h, k) \in \mathbf{R}^{2}:(x, y)[h, k]>0\right\} .
$$

3.4 Diagram of a pair of permutations

Definition Let $x, y \in S_{n}$. The diagram of (x, y) is the collection of:

1. the diagram of x;
2. the diagram of y;
3. the multiplicity mapping $(h, k) \mapsto(x, y)[h, k]$.

Analog definition in [Kassel, Lascoux, Reutenauer, 2003]

Example $x=315472986$ (•), $y=782496315$ (०).

Example $x=315472986$ (•), $y=782496315$ (०).

	0	0	0	0	0	0	0	0	0	0	
9	0	0	0	0	0	1	1	0	0	0	
8	0	0	0	1	1	1	2	2	1	0	0
7	0	0	1	1	2	2	2	2	2	1	0
6	0	1	2	0	0						
5	0	1	2	2	2	2	3	2	1	0	
4	0	1	2	1	1	1	2	1	0	0	
4	0	1	2	1	1	1	2	1	0	0	
3	0	0	1	0	0	0	1	1	0	0	
2	\cdots	0	1	1	1	1	1	1	0	0	
1	0	0	0	0	0	0	0	0	0	0	

Example $x=315472986$ (•), $y=782496315$ (०).

4. FROM THE DIAGRAM TO $[x, y]$

4.1 Symmetries

Let W be a Coxeter group.

The mapping $x \mapsto x^{-1}$ is an isomorphism of the Bruhat order.

If W is finite, then it has a maximum, denoted by w_{0}, and

$$
x \mapsto x w_{0} \text { and } x \mapsto w_{0} x \text { are anti-isomorphisms }
$$

$x \mapsto w_{0} x w_{0}$ is an isomorphism.
4. FROM THE DIAGRAM TO $[x, y]$ - $24 / 50$

4. FROM THE DIAGRAM TO $[x, y]$ - $24 / 50$

$[x, y] \cong I$

4. FROM THE DIAGRAM TO $[x, y]$ - $24 / 50$
$\left[y w_{0}, x w_{0}\right] \cong-I$

4. FROM THE DIAGRAM TO $[x, y]$ - $24 / 50$
$\left[y w_{0}, x w_{0}\right] \cong-I$

$\left[w_{0} y, w_{0} x\right] \cong-I$
4. FROM THE DIAGRAM TO $[x, y]$ - $24 / 50$

$\left[w_{0} x^{-1} w_{0}, w_{0} y^{-1} w_{0}\right] \cong I$

$\left[w_{0} x w_{0}, w_{0} y w_{0}\right] \cong I$

$\left[w_{0} y^{-1}, w_{0} x^{-1}\right] \cong-I$
$\left[w_{0} y, w_{0} x\right] \cong-I$

4.2 Covering relation

Definition Let $x \in S_{n}$. A rise of x is a pair (i, j), with

$$
i<j \quad \text { and } \quad x(i)<x(j)
$$

A rise (i, j) of x is free if there is no $k \in \mathbf{N}$, with

$$
i<k<j \quad \text { and } \quad x(i)<x(k)<x(j) .
$$

Proposition Let $x, y \in S_{n}$. Then

$$
x \triangleleft y \quad \Leftrightarrow \quad y=x(i, j), \quad \text { with }(i, j) \text { free rise of } x .
$$

Proposition Let $x, y \in S_{n}$. Then

$$
x \triangleleft y \quad \Leftrightarrow \quad y=x(i, j), \quad \text { with }(i, j) \text { free rise of } x .
$$

Example $\quad x=315472986$ (\bullet

Proposition Let $x, y \in S_{n}$. Then

$$
x \triangleleft y \quad \Leftrightarrow \quad y=x(i, j), \quad \text { with }(i, j) \text { free rise of } x .
$$

Example $\quad x=315472986$ (\bullet
$(1,5)$ non-free rise of x

Proposition Let $x, y \in S_{n}$. Then

$$
x \triangleleft y \quad \Leftrightarrow \quad y=x(i, j), \quad \text { with }(i, j) \text { free rise of } x .
$$

Example $\quad x=315472986$ (\bullet
$(1,3)$ free rise of x

Proposition Let $x, y \in S_{n}$. Then

$$
x \triangleleft y \quad \Leftrightarrow \quad y=x(i, j), \quad \text { with }(i, j) \text { free rise of } x .
$$

Example $\quad x=315472986$ (\bullet

$$
\begin{aligned}
& (1,3) \text { free rise of } x \\
& y=x(1,3)
\end{aligned}
$$

Proposition Let $x, y \in S_{n}$. Then

$$
x \triangleleft y \quad \Leftrightarrow \quad y=x(i, j), \quad \text { with }(i, j) \text { free rise of } x .
$$

Example $\quad x=315472986$ (\bullet

$$
\begin{gathered}
(1,3) \text { free rise of } x \\
y=x(1,3) \quad(\circ) \\
\Downarrow \\
x \triangleleft y
\end{gathered}
$$

Proposition Let $x, y \in S_{n}$. Then

$$
x \triangleleft y \quad \Leftrightarrow \quad y=x(i, j), \quad \text { with }(i, j) \text { free rise of } x .
$$

Example $\quad x=315472986$ (\bullet
x has 14 free rises:

Proposition Let $x, y \in S_{n}$. Then

$$
x \triangleleft y \quad \Leftrightarrow \quad y=x(i, j), \quad \text { with }(i, j) \text { free rise of } x .
$$

Example $\quad x=315472986$ (\bullet
x has 14 free rises
\Downarrow
x is covered by
14 permutations

4.3 Atoms and coatoms

Definition Let (i, j) be a free rise of x. The rectangle associated is

$$
\operatorname{Rect}_{x}(i, j)=\left\{(h, k) \in \mathbf{R}^{2}: i \leq h<j, x(i)<k \leq x(j)\right\}
$$

Let $x, y \in S_{n}$, with $x<y$. A free rise (i, j) of x is good w.r.t. y if

$$
\operatorname{Rect}_{x}(i, j) \subseteq \Omega(x, y)
$$

Proposition Let $x, y \in S_{n}$, with $x<y$. Then

$$
z \text { atom of }[x, y] \quad \Leftrightarrow \quad z=x(i, j)
$$

with (i, j) free rise of x, good with respect to y.

Proposition Let $x, y \in S_{n}$, with $x<y$. Then

$$
z \text { atom of }[x, y] \Leftrightarrow z=x(i, j), \quad \begin{aligned}
& \text { with }(i, j) \text { free rise of } x, \\
& \text { good with respect to } y .
\end{aligned}
$$

Proposition Let $x, y \in S_{n}$, with $x<y$. Then

$$
z \text { atom of }[x, y] \quad \Leftrightarrow \quad z=x(i, j)
$$ with (i, j) free rise of x, good with respect to y.

Example $\quad x=315472986$ (\bullet

$$
y=782496315
$$

Proposition Let $x, y \in S_{n}$, with $x<y$. Then

$$
z \text { atom of }[x, y] \quad \Leftrightarrow \quad z=x(i, j), \quad \begin{aligned}
& \text { with }(i, j) \text { free rise of } x, \\
& \text { good with respect to } y .
\end{aligned}
$$

Example $\quad x=315472986$ (\bullet

$$
\begin{equation*}
y=782496315 \tag{০}
\end{equation*}
$$

Among the 14 free rises of x

Proposition Let $x, y \in S_{n}$, with $x<y$. Then

$$
z \text { atom of }[x, y] \quad \Leftrightarrow \quad z=x(i, j), \quad \begin{aligned}
& \text { with }(i, j) \text { free rise of } x, \\
& \text { good with respect to } y .
\end{aligned}
$$

Example $\quad x=315472986$ ($\left.{ }^{(}\right)$

$$
y=782496315
$$

Among the 14 free rises of x those non-good w.r.t. y are $(2,4)$

Proposition Let $x, y \in S_{n}$, with $x<y$. Then

$$
z \text { atom of }[x, y] \quad \Leftrightarrow \quad z=x(i, j), \quad \begin{aligned}
& \text { with }(i, j) \text { free rise of } x, \\
& \text { good with respect to } y .
\end{aligned}
$$

Example $\quad x=315472986$ ($\left.{ }^{(}\right)$

$$
y=782496315
$$

Among the 14 free rises of x those non-good w.r.t. y are $(2,4),(4,9)$

Proposition Let $x, y \in S_{n}$, with $x<y$. Then

$$
z \text { atom of }[x, y] \quad \Leftrightarrow \quad z=x(i, j), \quad \begin{aligned}
& \text { with }(i, j) \text { free rise of } x, \\
& \text { good with respect to } y .
\end{aligned}
$$

Example $\quad x=315472986$ ($\left.{ }^{(}\right)$

$$
y=782496315
$$

Among the 14 free rises of x those non-good w.r.t. y are $(2,4),(4,9)$ and $(6,9)$.

Proposition Let $x, y \in S_{n}$, with $x<y$. Then

$$
z \text { atom of }[x, y] \quad \Leftrightarrow \quad z=x(i, j), \quad \begin{aligned}
& \text { with }(i, j) \text { free rise of } x, \\
& \text { good with respect to } y .
\end{aligned}
$$

Example $\quad x=315472986$ (\bullet

$$
y=782496315
$$

x has 11 free rises good w.r.t. y :

Proposition Let $x, y \in S_{n}$, with $x<y$. Then

$$
z \text { atom of }[x, y] \quad \Leftrightarrow \quad z=x(i, j), \quad \begin{aligned}
& \text { with }(i, j) \text { free rise of } x, \\
& \text { good with respect to } y .
\end{aligned}
$$

Example $\quad x=315472986$ (\bullet

$$
\begin{equation*}
y=782496315 \tag{০}
\end{equation*}
$$

x has 11 free rises good w.r.t. y \Downarrow
[x, y] has 11 atoms

Proposition Let $x, y \in S_{n}$, with $x<y$. Then

$$
z \text { atom of }[x, y] \quad \Leftrightarrow \quad z=x(i, j)
$$ with (i, j) free rise of x, good with respect to y.

Example $\quad x=315472986$ (\bullet

$$
\begin{equation*}
y=782496315 \tag{০}
\end{equation*}
$$

$(1,3)$ free rise of x
good w.r.t. y

Proposition Let $x, y \in S_{n}$, with $x<y$. Then

$$
z \text { atom of }[x, y] \quad \Leftrightarrow \quad z=x(i, j)
$$ with (i, j) free rise of x, good with respect to y.

Example $\quad x=315472986$ (\bullet

$$
\begin{equation*}
y=782496315 \tag{০}
\end{equation*}
$$

$(1,3)$ free rise of x good w.r.t. y

$$
z=x(1,3)
$$

Proposition Let $x, y \in S_{n}$, with $x<y$. Then

$$
z \text { atom of }[x, y] \quad \Leftrightarrow \quad z=x(i, j)
$$ with (i, j) free rise of x, good with respect to y.

Example $\quad x=315472986$

$$
\begin{equation*}
y=782496315 \tag{০}
\end{equation*}
$$

$(1,3)$ free rise of x
good w.r.t. y

$$
z=x(1,3)
$$

Proposition Let $x, y \in S_{n}$, with $x<y$. Then

$$
z \text { atom of }[x, y] \quad \Leftrightarrow \quad z=x(i, j)
$$ with (i, j) free rise of x, good with respect to y.

Example $\quad x=315472986$

$$
\begin{equation*}
y=782496315 \tag{○}
\end{equation*}
$$

$(1,3)$ free rise of x
good w.r.t. y

$$
z=x(1,3)
$$

$$
\Downarrow
$$

$$
z \text { atom of }[x, y]
$$

Proposition Let $x, y \in S_{n}$, with $x<y$. Then

$$
z \text { atom of }[x, y] \quad \Leftrightarrow \quad z=x(i, j)
$$ with (i, j) free rise of x, good with respect to y.

Example $\quad x=315472986$ (\bullet

$$
\begin{equation*}
y=782496315 \tag{০}
\end{equation*}
$$

$(3,9)$ free rise of x good w.r.t. y

Proposition Let $x, y \in S_{n}$, with $x<y$. Then

$$
z \text { atom of }[x, y] \quad \Leftrightarrow \quad z=x(i, j)
$$ with (i, j) free rise of x, good with respect to y.

Example $\quad x=315472986$ (\bullet

$$
\begin{equation*}
y=782496315 \tag{০}
\end{equation*}
$$

$(3,9)$ free rise of x good w.r.t. y

$$
z_{1}=x(3,9)
$$

Proposition Let $x, y \in S_{n}$, with $x<y$. Then

$$
z \text { atom of }[x, y] \quad \Leftrightarrow \quad z=x(i, j)
$$ with (i, j) free rise of x, good with respect to y.

Example $\quad x=315472986$

$$
\begin{equation*}
y=782496315 \tag{০}
\end{equation*}
$$

$(3,9)$ free rise of x good w.r.t. y

$$
z_{1}=x(3,9)
$$

Proposition Let $x, y \in S_{n}$, with $x<y$. Then

$$
z \text { atom of }[x, y] \quad \Leftrightarrow \quad z=x(i, j)
$$ with (i, j) free rise of x, good with respect to y.

Example $\quad x=315472986$

$$
\begin{equation*}
y=782496315 \tag{০}
\end{equation*}
$$

$(3,9)$ free rise of x good w.r.t. y

$$
z_{1}=x(3,9)
$$

$$
\Downarrow
$$

z_{1} atom of $[x, y]$

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

Proposition Let $x, y \in S_{n}$, with $x<y$. Then
w coatom of $[x, y] \quad \Leftrightarrow \quad w=y(i, j)$,
with (i, j) free inversion of y, good with respect to x.

Proposition Let $x, y \in S_{n}$, with $x<y$. Then
w coatom of $[x, y] \quad \Leftrightarrow \quad w=y(i, j)$, with (i, j) free inversion of y, good with respect to x.

Example $\quad x=315472986$ (•)

$$
y=782496315
$$

Proposition Let $x, y \in S_{n}$, with $x<y$. Then
w coatom of $[x, y] \quad \Leftrightarrow \quad w=y(i, j)$, with (i, j) free inversion of y, good with respect to x.

Example $\quad x=315472986$ (\bullet)

$$
\begin{equation*}
y=782496315 \tag{০}
\end{equation*}
$$

y has 11 free inversions

$$
\text { good w.r.t. } x \text { : }
$$

Proposition Let $x, y \in S_{n}$, with $x<y$. Then
w coatom of $[x, y] \quad \Leftrightarrow \quad w=y(i, j)$, with (i, j) free inversion of y, good with respect to x.

Example $\quad x=315472986$ (\bullet)

$$
\begin{equation*}
y=782496315 \tag{০}
\end{equation*}
$$

y has 11 free inversions

$$
\text { good w.r.t. } x
$$

$$
[x, y] \text { has } 11 \text { coatoms }
$$

5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)$

5.1 Symmetries

Let W be a Coxeter group.

Proposition Let $x, y \in W, x<y$. Then

$$
\widetilde{R}_{x, y}(q)=\widetilde{R}_{x^{-1}, y^{-1}}(q)
$$

If W is finite, then

$$
\begin{aligned}
\widetilde{R}_{x, y}(q) & =\widetilde{R}_{y w_{0}, x w_{0}}(q) \\
& =\widetilde{R}_{w_{0} y, w_{0} x}(q) \\
& =\widetilde{R}_{w_{0} x w_{0}, w_{0} y w_{0}}(q)
\end{aligned}
$$

5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-28 / 50$

$$
\widetilde{R}_{x, y}(q)=R(q)
$$

5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-28 / 50$

$\widetilde{R}_{w_{0} x^{-1} w_{0}, w_{0} y^{-1} w_{0}}(q)=R(q)$

$$
\widetilde{R}_{w_{0} y^{-1}, w_{0} x^{-1}}(q)=R(q)
$$

$$
\widetilde{R}_{w_{0} x w_{0}, w_{0} y w_{0}}(q)=R(q)
$$

$$
\widetilde{R}_{w_{0} y, w_{0} x}=R(q)
$$

5.2 Reflection ordering in S_{n}

In the symmetric group S_{n} the reflections are the transpositions:

$$
T=\{(i, j): i, j \in[n]\}
$$

Proposition [Dyer] A possible reflection ordering \prec on the transpositions of S_{n} is the lexicographic order.

Assume this order \prec fixed on T. For example, in S_{4} :

$$
(1,2) \prec(1,3) \prec(1,4) \prec(2,3) \prec(2,4) \prec(3,4) .
$$

5.3 Edges of the Bruhat graph

$x \xrightarrow{(i, j)} y$ in S_{n} means $y=x(i, j), \quad$ with (i, j) rise of x.

5.3 Edges of the Bruhat graph

$x \xrightarrow{(i, j)} y$ in S_{n} means $y=x(i, j), \quad$ with (i, j) rise of x.

Example $\quad x=315472986$ (•)

5.3 Edges of the Bruhat graph

$x \xrightarrow{(i, j)} y$ in S_{n} means $y=x(i, j), \quad$ with (i, j) rise of x.

Example $\quad x=315472986$ (\bullet
$(1,5)$ rise of x

5.3 Edges of the Bruhat graph

$x \xrightarrow{(i, j)} y$ in S_{n} means $y=x(i, j), \quad$ with (i, j) rise of x.

Example $\quad x=315472986$ (\bullet

$$
\begin{aligned}
& (1,5) \text { rise of } x \\
& y=x(1,5)
\end{aligned}
$$

5.3 Edges of the Bruhat graph

$x \xrightarrow{(i, j)} y$ in S_{n} means $y=x(i, j), \quad$ with (i, j) rise of x.

Example $\quad x=315472986$ (\bullet

$$
\begin{gathered}
(1,5) \text { rise of } x \\
y=x(1,5) \quad(\circ) \\
\Downarrow \\
x \xrightarrow{(1,5)} y
\end{gathered}
$$

5.4 Increasing paths

Let $x, y \in S_{n}$, with $x<y$. An increasing path in $B G$ from x to y is

$$
x=x_{0} \xrightarrow{\left(i_{1}, j_{1}\right)} x_{1} \xrightarrow{\left(i_{2, j}\right)} \ldots \xrightarrow{\left(i_{k}, j_{k}\right)} x_{k}=y
$$

with $\left(i_{1}, j_{1}\right) \prec\left(i_{2}, j_{2}\right) \prec \cdots \prec\left(i_{k}, j_{k}\right)$.

Special case: $i_{1}=i_{2}=\cdots=i_{k}=i$

$$
x=x_{0} \xrightarrow{\left(i, j_{1}\right)} x_{1} \xrightarrow{\left(i, j_{2}\right)} \cdots \xrightarrow{\left(i, j_{k}\right)} x_{k}=y,
$$

with $i<j_{1}<j_{2}<\cdots<j_{k}$. Call it a stair path.

General case: an increasing path is a sequence of stair paths.
5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-32 / 50$

Example $x=126384579$ (•)

$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-32 / 50$

Example $x=126384579$ (•)
$(1,4)$ rise of x

5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-32 / 50$

Example $x=126384579$ (•)

5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-32 / 50$

Example $x=126384579$ (•)

5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-32 / 50$

Example $x=126384579$ (•)

5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-32 / 50$

Example $x=126384579$ (•)
$(1,4)$ rise of x
$(1,6)$ rise of x_{1}
$(1,8)$ rise of x_{2}

$$
\begin{array}{ccc}
x \\
(\bullet) & \xrightarrow{(1,4)} x_{1} \xrightarrow{(1,6)} x_{2} \\
(0)
\end{array}
$$

5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-32 / 50$

Example $x=126384579$ (•)
$(1,4)$ rise of x
$(1,6)$ rise of x_{1}
$(1,8)$ rise of x_{2}

$x \xrightarrow{(1,4)} x_{1} \xrightarrow{(1,6)} x_{2} \xrightarrow{(1,8)} x_{3}$
(•)
(o)
5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-32 / 50$

Example $x=126384579$ (•)
$(1,4)$ rise of x
$(1,6)$ rise of x_{1}
$(1,8)$ rise of x_{2}
$(1,9)$ rise of x_{3}

$$
\begin{aligned}
& x \\
& (\bullet) \\
& (\bullet) \\
& (1,4) \\
& x_{1}
\end{aligned} \xrightarrow{(1,6)} x_{2} \xrightarrow{(1,8)} x_{3}
$$

5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-32 / 50$

Example $x=126384579$ ($)$
$(1,4)$ rise of x
$(1,6)$ rise of x_{1}
$(1,8)$ rise of x_{2}
$(1,9)$ rise of x_{3}

$x \xrightarrow{(1,4)} x_{1} \xrightarrow{(1,6)} x_{2} \xrightarrow{(1,8)} x_{3} \xrightarrow{(1,9)} y$
(•)
(o)
5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-32 / 50$

Example $x=126384579$ (•)

Definition Let $x \in S_{n}$. A stair of x is an increasing sequence

$$
s=\left(i, j_{1}, \ldots, j_{k}\right) \in[n]^{k}
$$

such that $\left(x(i), x\left(j_{1}\right), \ldots, x\left(j_{k}\right)\right)$ is also increasing.

The permutation obtained from x by performing the stair s is

$$
x s=x\left(i, j_{k}, \ldots, j_{1}\right)
$$

The stair area associated with s is

$$
\operatorname{Stair}_{x}(s)=\Omega(x, x s)
$$

5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-34 / 50$

Example $x=126384579$ (•)

Example $x=126384579$
(•)
($1,4,6,8,9$) stair of x

Example $x=126384579$
(•)
($1,4,6,8,9$) stair of x
\Downarrow
$y=x(1,9,8,6,4) \quad(0)$
obtained from x by
performing ($1,4,6,8,9$)

Example $x=126384579$
(1, 4, 6, 8, 9) stair of x
\Downarrow

$$
\begin{equation*}
y=x(1,9,8,6,4) \tag{o}
\end{equation*}
$$

obtained from x by performing (1, 4, 6, 8, 9)
(•)

$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

(•)
(o)

Definition Let $x, y \in S_{n}, x<y$. The difference index of (x, y) is

$$
d i=\min \{k: x(k) \neq y(k)\} .
$$

The stair index of (x, y) is si $=x^{-1} y(d i)$.

Definition Let $x, y \in S_{n}, x<y$. The difference index of (x, y) is

$$
d i=\min \{k: x(k) \neq y(k)\} .
$$

The stair index of (x, y) is si $=x^{-1} y(d i)$.

$$
x<y
$$

(•) (○)

Definition Let $x, y \in S_{n}, x<y$. The difference index of (x, y) is

$$
d i=\min \{k: x(k) \neq y(k)\} .
$$

The stair index of (x, y) is si $=x^{-1} y(d i)$.
$x<y$
(•) (०)

Definition Let $x, y \in S_{n}, x<y$. The difference index of (x, y) is

$$
d i=\min \{k: x(k) \neq y(k)\} .
$$

The stair index of (x, y) is si $=x^{-1} y(d i)$.
$x<y$
(•) (०)

Definition Let $x, y \in S_{n}, x<y$. The difference index of (x, y) is

$$
d i=\min \{k: x(k) \neq y(k)\} .
$$

The stair index of (x, y) is si $=x^{-1} y(d i)$.
$x<y$
(•) (०)

Definition Let $x, y \in S_{n}, x<y$. The difference index of (x, y) is

$$
d i=\min \{k: x(k) \neq y(k)\} .
$$

The stair index of (x, y) is si $=x^{-1} y(d i)$.
$x<y$
(•) (०)

Definition Let $x, y \in S_{n}, x<y$. The difference index of (x, y) is

$$
d i=\min \{k: x(k) \neq y(k)\} .
$$

The stair index of (x, y) is si $=x^{-1} y(d i)$.

Definition Let $x, y \in S_{n}, x<y$. The difference index of (x, y) is

$$
d i=\min \{k: x(k) \neq y(k)\} .
$$

The stair index of (x, y) is si $=x^{-1} y(d i)$.

Definition Let $x, y \in S_{n}, x<y$. The difference index of (x, y) is

$$
d i=\min \{k: x(k) \neq y(k)\} .
$$

The stair index of (x, y) is si $=x^{-1} y(d i)$.

Definition Let $x, y \in S_{n}, x<y$. The difference index of (x, y) is

$$
d i=\min \{k: x(k) \neq y(k)\} .
$$

The stair index of (x, y) is si $=x^{-1} y(d i)$.

Note that
$x(d i)<y(d i)$
and $d i<s i$.

Definition Let $x, y \in S_{n}, x<y$. The difference index of (x, y) is

$$
d i=\min \{k: x(k) \neq y(k)\} .
$$

The stair index of (x, y) is si $=x^{-1} y(d i)$.

Note that
$x(d i)<y(d i)$
and $d i<s i$.

Definition Let $x, y \in S_{n}, x<y$. The difference index of (x, y) is

$$
d i=\min \{k: x(k) \neq y(k)\} .
$$

The stair index of (x, y) is si $=x^{-1} y(d i)$.

Note that $x(d i)<y(d i)$ and $d i<s i$.

Definition Let $x, y \in S_{n}$, with $x<y$. A stair s of x is good w.r.t. y if

$$
\operatorname{Stair}_{x}(s) \subseteq \Omega(x, y)
$$

Proposition Let $x, y \in S_{n}$, with $x<y$. Let s be a stair of x. Then

$$
x s \leq y \quad \Leftrightarrow \quad s \text { is good w.r.t. } y \text {. }
$$

Definition A stair s of x, good w.r.t. y, is an initial stair of (x, y) if

$$
s=\left(d i, j_{1}, j_{2}, \ldots, j_{k-1}, s i\right)
$$

Proposition An initial stair of (x, y) always exists.

5.5 The stair method

General algorithm: given $x, y \in S_{n}$, with $x<y$

1. choose an initial stair s of (x, y);
2. call x_{1} the permutation obtained from x by performing s;
3. recursively apply the procedure on $\left(x_{1}, y\right)$.

Proposition Let $x, y \in S_{n}$, with $x<y$. The stair method allows to generate all possible increasing paths in $B G$ from x to y.

So, in particular, it allows to compute $\widetilde{R}_{x, y}(q)$.
5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-38 / 50$

Example $x=315472986$ (•) $y=782496315$ (०)

Example $x=315472986$ (•) $y=782496315$ (०)

Initial stairs of (x, y) :
$(1,5)$

$x<y$
(•) (○)

Example $x=315472986$ (•) $y=782496315$ (०)

Initial stairs of (x, y) :
$(1,5),(1,3,5)$

$x<y$
(•) (○)
5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-38 / 50$

Example $x=315472986$ (•) $y=782496315$ (०)

5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-38 / 50$

Example $x=315472986$ (•) $y=782496315$ (०)
$(1,4,5)$ initial stair of (x, y)

$$
x<y
$$

(•)
(o)

Example $x=315472986$ (•) $y=782496315$ (०)
$(1,4,5)$ initial stair of (x, y)

$$
\begin{gathered}
\qquad \\
x_{1}=x(1,5,4) \\
\text { obtained from } x \text { by } \\
\text { performing }(1,4,5)
\end{gathered}
$$

12345
$x<y$
(•)
(o)

Example $x=315472986 \quad(\bullet) \quad y=782496315 \quad$ (०)
$(1,4,5)$ initial stair of (x, y)

$$
\begin{gathered}
\Downarrow \\
x_{1}=x(1,5,4)
\end{gathered}
$$

obtained from x by performing ($1,4,5$)

$$
x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1}
$$

(•)
y
(o)

Example $x=315472986 \quad y=782496315 \quad$ (०)
$(1,4,5)$ initial stair of (x, y)

$$
\begin{gathered}
\Downarrow \\
x_{1}=x(1,5,4)
\end{gathered}
$$

obtained from x by performing ($1,4,5$)

$x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1}$
y
(•)
(o)

Example $x=315472986 \quad y=782496315 \quad$ (०)
$(1,4,5)$ initial stair of (x, y)

$$
\begin{gathered}
\Downarrow \\
x_{1}=x(1,5,4)
\end{gathered}
$$

obtained from x by performing ($1,4,5$)

$$
x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \quad<\quad y
$$

5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-38 / 50$

Example $x=315472986 \quad y=782496315 \quad$ (०)
$(2,3,8)$ initial stair of $\left(x_{1}, y\right)$

$$
x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1}<y
$$

(•)
(o)

Example $x=315472986 \quad y=782496315 \quad$ (०)
$(2,3,8)$ initial stair of $\left(x_{1}, y\right)$

$$
\begin{gathered}
\Downarrow \\
x_{2}=x_{1}(2,8,3)
\end{gathered}
$$

obtained from x_{1} by performing (2, 3, 8)

$$
x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \quad<\quad y
$$

Example $x=315472986$

$$
y=782496315
$$

$(2,3,8)$ initial stair of $\left(x_{1}, y\right)$
\Downarrow
$x_{2}=x_{1}(2,8,3)$
obtained from x_{1} by performing (2, 3, 8)

(o)

Example $x=315472986 \quad y=782496315 \quad$ (०)
$(2,3,8)$ initial stair of $\left(x_{1}, y\right)$

$$
\begin{gathered}
\Downarrow \\
x_{2}=x_{1}(2,8,3)
\end{gathered}
$$

obtained from x_{1} by performing (2, 3, 8)

$$
x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_{2}
$$

$$
y
$$

(•)
(o)

Example $x=315472986 \quad y=782496315 \quad$ (०)
$(2,3,8)$ initial stair of $\left(x_{1}, y\right)$

$$
\begin{gathered}
\Downarrow \\
x_{2}=x_{1}(2,8,3)
\end{gathered}
$$

obtained from x_{1} by performing (2, 3, 8)

$$
x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_{2}<y
$$

(•)
(o)
5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-38 / 50$

Example $x=315472986 \quad y=782496315 \quad$ (०)

Example $x=315472986$

$$
y=782496315
$$

$(3,6)$ initial stair of $\left(x_{2}, y\right)$

$$
\begin{gathered}
\Downarrow \\
x_{3}=x_{2}(3,6)
\end{gathered}
$$

obtained from x_{2} by performing $(3,6)$

$$
x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_{2}<y
$$

(•)
(o)

Example $x=315472986$

$$
y=782496315
$$

$(3,6)$ initial stair of $\left(x_{2}, y\right)$

$$
\begin{gathered}
\Downarrow \\
x_{3}=x_{2}(3,6)
\end{gathered}
$$

$$
\text { obtained from } x_{2} \text { by }
$$

$$
\text { performing }(3,6)
$$

$$
x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_{2} \xrightarrow{(3,6)} x_{3}
$$

(•)
(o)

Example $x=315472986$

$$
y=782496315
$$

$(3,6)$ initial stair of $\left(x_{2}, y\right)$

$$
\begin{gathered}
\Downarrow \\
x_{3}=x_{2}(3,6)
\end{gathered}
$$

$$
\text { obtained from } x_{2} \text { by }
$$

$$
\text { performing }(3,6)
$$

$$
x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_{2} \xrightarrow{(3,6)} x_{3}
$$

(•)
(o)

Example $x=315472986$

$$
y=782496315
$$

$(3,6)$ initial stair of $\left(x_{2}, y\right)$

$$
\begin{gathered}
\Downarrow \\
x_{3}=x_{2}(3,6)
\end{gathered}
$$

obtained from x_{2} by performing $(3,6)$

$$
x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_{2} \xrightarrow{(3,6)} x_{3}<y
$$

(•)
(o)

Example $x=315472986 \quad y=782496315 \quad$ (०)

Example $x=315472986 \quad y=782496315 \quad$ (०)
$(4,5)$ initial stair of $\left(x_{3}, y\right)$

$$
\begin{gathered}
\Downarrow \\
x_{4}=x_{3}(4,5)
\end{gathered}
$$

obtained from x_{3} by performing $(4,5)$

$$
x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_{2} \xrightarrow{(3,6)} x_{3}<y
$$

(•)
(o)

Example $x=315472986 \quad y=782496315 \quad$ (०)
$(4,5)$ initial stair of $\left(x_{3}, y\right)$

$$
\begin{gathered}
\Downarrow \\
x_{4}=x_{3}(4,5)
\end{gathered}
$$

obtained from x_{3} by performing $(4,5)$

$$
x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_{2} \xrightarrow{(3,6)} x_{3} \xrightarrow{(4,5)} x_{4}
$$

(•)
y
(o)

Example $x=315472986$

$$
y=782496315
$$

$(4,5)$ initial stair of $\left(x_{3}, y\right)$

$$
\begin{gathered}
\Downarrow \\
x_{4}=x_{3}(4,5)
\end{gathered}
$$

$$
\text { obtained from } x_{3} \text { by }
$$

$$
\text { performing }(4,5)
$$

$$
x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_{2} \xrightarrow{(3,6)} x_{3} \xrightarrow{(4,5)} x_{4}
$$

Example $x=315472986$

$$
y=782496315
$$

$(4,5)$ initial stair of $\left(x_{3}, y\right)$

$$
\begin{gathered}
\Downarrow \\
x_{4}=x_{3}(4,5)
\end{gathered}
$$

$$
\text { obtained from } x_{3} \text { by }
$$

$$
\text { performing }(4,5)
$$

$$
x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_{2} \xrightarrow{(3,6)} x_{3} \xrightarrow{(4,5)} x_{4}<y
$$

5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-38 / 50$

Example $x=315472986 \quad y=782496315 \quad$ (०)

Example $x=315472986$

$$
y=782496315
$$

$(5,7)$ initial stair of $\left(x_{4}, y\right)$

$$
\begin{gathered}
\Downarrow \\
x_{5}=x_{4}(5,7)
\end{gathered}
$$

$$
\text { obtained from } x_{4} \text { by }
$$

$$
\text { performing }(5,7)
$$

$$
x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_{2} \xrightarrow{(3,6)} x_{3} \xrightarrow{(4,5)} x_{4}<y
$$

Example $x=315472986$

$$
y=782496315
$$

$(5,7)$ initial stair of $\left(x_{4}, y\right)$

$$
\begin{gathered}
\Downarrow \\
x_{5}=x_{4}(5,7)
\end{gathered}
$$

$$
\text { obtained from } x_{4} \text { by }
$$

$$
\text { performing }(5,7)
$$

$$
x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_{2} \xrightarrow{(3,6)} x_{3} \xrightarrow{(4,5)} x_{4} \xrightarrow{(5,7)} x_{5}
$$

Example $x=315472986$

$$
y=782496315
$$

$(5,7)$ initial stair of $\left(x_{4}, y\right)$

$$
\begin{gathered}
\Downarrow \\
x_{5}=x_{4}(5,7)
\end{gathered}
$$

$$
\text { obtained from } x_{4} \text { by }
$$

$$
\text { performing }(5,7)
$$

$$
x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_{2} \xrightarrow{(3,6)} x_{3} \xrightarrow{(4,5)} x_{4} \xrightarrow{(5,7)} x_{5}
$$

Example $x=315472986$

$$
y=782496315
$$

$(5,7)$ initial stair of $\left(x_{4}, y\right)$

$$
\begin{gathered}
\Downarrow \\
x_{5}=x_{4}(5,7)
\end{gathered}
$$

$$
\text { obtained from } x_{4} \text { by }
$$

$$
\text { performing }(5,7)
$$

$$
x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_{2} \xrightarrow{(3,6)} x_{3} \xrightarrow{(4,5)} x_{4} \xrightarrow{(5,7)} x_{5}<y
$$

(o)

Example $x=315472986 \quad y=782496315 \quad$ (०)

(•)
(o)

Example $x=315472986$

$$
y=782496315
$$

$$
\begin{aligned}
& \\
& \\
& \\
& \hline
\end{aligned} \mathrm{B}_{1}
$$

(o)
5. FROM THE DIAGRAM TO $\widetilde{R}_{x, y}(q)-38 / 50$

Example $x=315472986 \quad y=782496315 \quad$ (०)

(o)

Example $x=315472986$

$$
y=782496315
$$

$(6,8,9)$ initial stair of $\left(x_{5}, y\right)$
\Downarrow
$y=x_{5}(6,9,8)$
obtained from x_{5} by performing (6, 8, 9)

$$
x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_{2} \xrightarrow{(3,6)} x_{3} \xrightarrow{(4,5)} x_{4} \xrightarrow{(5,7)} x_{5}<y
$$

Example $x=315472986 \quad y=782496315 \quad$ (०)

$$
\begin{aligned}
& (6,8,9) \text { initial stair of }\left(x_{5}, y\right) \\
& \Downarrow \\
& y=x_{5}(6,9,8) \\
& \text { obtained from } x_{5} \text { by } \\
& \text { performing (} 6,8,9 \text {) } \\
& x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_{2} \xrightarrow{(3,6)} x_{3} \xrightarrow{(4,5)} x_{4} \xrightarrow{(5,7)} x_{5} \xrightarrow{(6,8)} \bullet \xrightarrow{(6,9)} y
\end{aligned}
$$

$$
y=782496315
$$

Example $x=315472986 \quad y=782496315 \quad(\bullet)$

$$
\begin{aligned}
& (6,8,9) \text { initial stair of }\left(x_{5}, y\right) \\
& \Downarrow \\
& y=x_{5}(6,9,8) \\
& \text { obtained from } x_{5} \text { by } \\
& \text { performing (} 6,8,9 \text {) } \\
& x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_{2} \xrightarrow{(3,6)} x_{3} \xrightarrow{(4,5)} x_{4} \xrightarrow{(5,7)} x_{5} \xrightarrow{(6,8)} \bullet \xrightarrow{(6,9)} y
\end{aligned}
$$

Example $x=315472986 \quad y=782496315 \quad(\bullet)$

$$
\begin{aligned}
& (6,8,9) \text { initial stair of }\left(x_{5}, y\right) \\
& \Downarrow \\
& y=x_{5}(6,9,8) \\
& \text { obtained from } x_{5} \text { by } \\
& \text { performing (} 6,8,9 \text {) } \\
& x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_{1} \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_{2} \xrightarrow{(3,6)} x_{3} \xrightarrow{(4,5)} x_{4} \xrightarrow{(5,7)} x_{5} \xrightarrow{(6,8)} \bullet \xrightarrow{(6,9)} y
\end{aligned}
$$

Example $x=315472986$ (•) $y=782496315$ (०)

Example $x=315472986$ (•) $y=782496315$ (०)

Example $x=315472986 \quad y=782496315 \quad$ (०)

Example $x=315472986 \quad y=782496315$ (०)

Example $x=315472986 \quad y=782496315$ (o)

Example $x=315472986 \quad y=782496315$ (०)

Example $x=315472986 \quad y=782496315$ (०)

Example $x=315472986 \quad y=782496315$ (०)

Example $x=315472986 \quad y=782496315$ (०)

(•)
(o)

Example $x=315472986 \quad y=782496315$ (०)

(•)
(o)

Example $x=315472986 \quad y=782496315$ (०)

(•)
(o)

Example $x=315472986 \quad y=782496315$ (o)

Example $x=315472986 \quad y=782496315$ (०)

Example $x=315472986 \quad y=782496315$ (०)

Example $x=315472986 \quad y=782496315$ (•)

Example $x=315472986 \quad y=782496315$ (•)

Example $x=315472986$ (•) $y=782496315$ (०)

Example $x=315472986$ (•) $y=782496315$ (०)

The stair method allows to generate all increasing paths in $B G$ from x to y :

Example $x=315472986$ (•) $y=782496315$ (०)

The stair method allows to generate all increasing paths in $B G$ from x to y :

1 has length 13
4 have length 11
4 have length 9
1 has length 7

$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

Example $x=315472986$ (•) $y=782496315$ (०)

The stair method allows to generate all increasing paths in $B G$ from x to y :

1 has length 13
4 have length 11
4 have length 9
1 has length 7

$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

$$
\Rightarrow \quad \widetilde{R}_{x, y}(q)=q^{13}+4 q^{11}+4 q^{9}+q^{7}
$$

5.6 Special cases

Definition Let $x, y \in S_{n}$, with $x<y$. We say that

1. (x, y) has the 01-multiplicity property if

$$
(x, y)[h, k] \in\{0,1\} \quad \forall(h, k) \in \mathbf{R}^{2} .
$$

2. (x, y) is simple if it has the 01-multiplicity property and

$$
F i x(x, y)=\{i \in[n]: x(i)=y(i)\}=\varnothing
$$

3. (x, y) is a permutaomino if it is simple and $\Omega(x, y)$ is connected.

Example

01-multiplicity property

simple pair

permutaomino

Definition Let $x, y \in S_{n}$, with $x<y$. Let $i \in \operatorname{Fix}(x, y)$.
The fixed point multiplicity of i is

$$
f p m(i)=(x, y)[i, x(i)]
$$

The fixed point multiplicity of (x, y) is

$$
\operatorname{fpm}(x, y)=\sum_{i \in F i x(x, y)} f p m(i)
$$

Proposition Let $x, y \in S_{n}$, with $x<y$.

1. If (x, y) has the 01-multiplicity property, then

$$
\widetilde{R}_{x, y}(q)=\left(q^{2}+1\right)^{f p m(x, y)} q^{a \ell(x, y)}
$$

thus

$$
a \ell(x, y)=\ell(x, y)-2 f p m(x, y)
$$

2. In particular, if (x, y) is simple, then

$$
\widetilde{R}_{x, y}(q)=q^{\ell(x, y)}
$$

3. and if (x, y) is a permutaomino, then

$$
\widetilde{R}_{x, y}(q)=q^{(n-1)}
$$

Example

01-multiplicity property

$$
\tilde{R}_{x, y}(q)=\left(q^{2}+1\right) q^{6}
$$

simple pair
$\widetilde{R}_{x, y}(q)=q^{7}$

permutaomino

$$
\tilde{R}_{x, y}(q)=q^{8}
$$

6. PROOF SKETCH

Theorem Let $x, y \in S_{n}$, for some n, with $x<y$ and $\ell(x, y)=5$. Set $a=a(x, y), c=c(x, y)$ and $c a p=\operatorname{cap}(x, y)$. Then

$$
\widetilde{R}_{x, y}(q)= \begin{cases}q^{5}+2 q^{3}+q, & \text { if }\{a, c\}=\{3,4\} \\ q^{5}+2 q^{3}, & \text { if } a=c=3, \\ q^{5}+q^{3}, & \text { if } c a p \in\{4,5\} \text { but }[x, y] \nsupseteq \mathcal{B}_{5} \\ q^{5}, & \text { if } c a p \in\{6,7\} \text { or }[x, y] \cong \mathcal{B}_{5}\end{cases}
$$

Proof sketch. Suppose known the poset structure of $[x, y]$.
By Dyer's result, it allows to determine $a \ell(x, y) \in\{1,3,5\}$.

If $a \ell(x, y)=5$, then $\widetilde{R}_{x, y}=q^{5}$ is determined. In this case it is known that $[x, y]$ is a lattice and this implies either $\operatorname{cap}(x, y) \geq 6$, or $[x, y] \cong \mathcal{B}_{5}$.

If $a \ell(x, y)=1$, then (x, y) is an edge of $B G$. Two possible diagrams:

By the stair method: $\quad \widetilde{R}_{x, y}(q)=q^{5}+2 q^{3}+q$.
By the interpretation of atoms and coatoms:

$$
\{a(x, y), c(x, y)\}=\{3,4\}
$$

Finally, if $a \ell(x, y)=3$, then $\widetilde{R}_{x, y}(q)=q^{5}+b q^{3}$, for some $b \in \mathbf{N}$.

The only possibility in S_{4} (up to symmetries) is the following:

By the stair method: $\quad \widetilde{R}_{x, y}(q)=q^{5}+2 q^{3}$.

By the interpretation of atoms and coatoms:

$$
a(x, y)=c(x, y)=3
$$

All other cases can be easily listed. A few examples:

By the stair method: $\widetilde{R}_{x, y}(q)=q^{5}+q^{3}$.

By the interpretation of atoms and coatoms:

$$
\operatorname{cap}(x, y) \in\{4,5\} .
$$

The boolean algebra \mathcal{B}_{5} never occurs.

7. EXPLICIT FORMULAS

Let $x, y \in W$, with $x<y$. For $k \in[\ell(x, y)]$ odd, set

$$
b e_{k}(x, y)=|\{(z, w): x \leq z \rightarrow w \leq y, \ell(z, w)=k\}|
$$

Theorem Let $x, y \in S_{n}$, with $x<y$ and $\ell(x, y)=5$. Then

$$
\widetilde{R}_{x, y}(q)=q^{5}+\left\lfloor\frac{b e_{3}}{3}\right\rfloor q^{3}+b e_{5} q
$$

Let $x, y \in W$, with $x<y$. Set $F_{i}(x, y)=\{z \in[x, y]: \ell(x, z)=i\}$ and

$$
\begin{aligned}
f_{i, j}(x, y) & =\left|\left\{(z, w) \in F_{i}(x, y) \times F_{j}(x, y): z<w\right\}\right| \\
b e_{i, j}(x, y) & =\left|\left\{(z, w) \in F_{i}(x, y) \times F_{j}(x, y): z \rightarrow w\right\}\right|
\end{aligned}
$$

For $a, b \in \mathbf{N}$, set $\quad a \bmod b=a-b\left\lfloor\frac{a}{b}\right\rfloor$.
Theorem Let $x, y \in S_{n}$, with $x<y$ and $\ell(x, y)=5$. Then

$$
\begin{aligned}
P_{x, y}(q)=1 & +\left(c+\left\lfloor\frac{b e_{3}}{3}\right\rfloor-5\right) q \\
& +\left(10-3 a-3 c+f_{1,4}+b e_{3} \bmod 3-\frac{b e_{1,4}}{2}+b e_{5}\right) q^{2}
\end{aligned}
$$

$[x, y]$	$\widetilde{R}_{x, y}(q)$

	$q^{5}+2 q^{3}+q$	$\frac{\Delta}{4}$	$q^{5}+q^{3}$	$\frac{1+1}{5}$	q^{5}
$\sqrt{*}$	$q^{5}+2 q^{3}$		$q^{5}+q^{3}$	$\frac{\text { Bin }}{2}$	q^{5}
	$q^{5}+q^{3}$	$\frac{\Delta}{4}$	$q^{5}+q^{3}$		q^{5}
	$q^{5}+q^{3}$	$\frac{4}{8}$	q^{5}	.ives	q^{5}
	$q^{5}+q^{3}$	ATs	q^{5}	Acintive	q^{5}

$$
\begin{array}{cc}
{[x, y]} & P_{x, y}(q) \\
P_{w_{0} y, w_{0} x}(q)
\end{array}
$$

$\left.\begin{array}{|cc|ccc|}\hline & 1+q \\ 1\end{array}\right)$

