Combinatorial invariance of Kazhdan-Lusztig polynomials for short intervals in the symmetric group

Federico Incitti

21/3/2005

OVERVIEW

- 1. Preliminaries
- 2. Main result
- 3. Drawing the Bruhat order: the diagram of (x, y)
- 4. From the diagram to the poset structure of [x, y]
- 5. From the diagram to the polynomial $\widetilde{R}_{x,y}(q)$
- 6. Proof sketch
- 7. Explicit formulas

1. PRELIMINARIES

1.1 Coxeter groups

W: Coxeter group S: set of generators

Set of *reflections*: $T = \{wsw^{-1} : w \in W, s \in S\}.$

Let $w \in W$. Length of w:

 $\ell(w) = \min\{k : w \text{ is a product of } k \text{ generators}\}.$

Absolute length of w:

 $a\ell(w) = \min\{k : w \text{ is a product of } k \text{ reflections}\}.$

Bruhat graph of W(BG): directed graph with W as vertex set and

 $x \to y \quad \Leftrightarrow \quad y = xt$, with $t \in T$, and $\ell(x) < \ell(y)$.

Edge supposed labelled by the reflection $t: \qquad x \xrightarrow{t} y$

Bruhat order of W: partial order on W defined by

$$x \le y \quad \Leftrightarrow \quad x = x_0 \to x_1 \to \cdots \to x_k = y.$$

W, with the Bruhat order, is a graded poset with rank function ℓ .

Let $x, y \in W$, with x < y. The *length* of the pair (x, y) is

$$\ell(x,y) = \ell(y) - \ell(x).$$

1.2 The symmetric group

$$N = \{1, 2, 3, ...\},$$
 $[n] = \{1, 2, ..., n\}$ $(n \in N),$

 $[n,m] = \{n, n+1, ..., m\}$ $(n,m \in \mathbb{N}, \text{ with } n \leq m).$

Denote by S_n the symmetric group over n elements:

 $S_n = \{x : [n] \to [n] \text{ bijection}\}.$

 S_n is a Coxeter group, with generators $\{s_1, s_2, \ldots, s_{n-1}\}$, where $s_i = (i, i+1) \quad \forall i \in [n-1].$

1.3 Polynomials associated with *W*

Theorem There exists a unique family of polynomials

 $\{R_{x,y}(q)\}_{x,y\in W}\subseteq \mathbf{Z}[q]$

such that

- 1. $R_{x,y}(q) = 0$, if $x \leq y$;
- 2. $R_{x,y}(q) = 1$, if x = y;
- 3. if x < y and $s \in S$ is such that $ys \triangleleft y$ then

$$R_{x,y}(q) = \begin{cases} R_{xs,ys}(q), & \text{if } xs \triangleleft x, \\ qR_{xs,ys}(q) + (q-1)R_{x,ys}(q), & \text{if } xs \triangleright x. \end{cases}$$

They are called the R-polynomials of W.

Theorem There exists a unique family of polynomials $\{P_{x,y}(q)\}_{x,y\in W}\subseteq \mathbf{Z}[q]$

such that

- 1. $P_{x,y}(q) = 0$, if $x \not\leq y$;
- 2. $P_{x,y}(q) = 1$, if x = y;
- 3. if x < y then $\deg(P_{x,y}(q)) < \ell(x,y)/2$ and $q^{\ell(x,y)} P_{x,y}(q^{-1}) - P_{x,y}(q) = \sum_{x < z \le y} R_{x,z}(q) P_{z,y}(q).$

They are called the Kazhdan-Lusztig polynomials of W.

1.4 Applications

Kazhdan-Lusztig polynomials play a crucial role in

- algebraic geometry of Schubert varieties;
- topology of Schubert varieties;
- representation theory of semisimple algebraic groups;
- representation theory of Hecke algebras.

1.5 Combinatorial interpretation

Proposition There exists a unique family of polynomials

$$\{\widetilde{R}_{x,y}(q)\}_{x,y\in W}\subseteq \mathbf{Z}_{\geq 0}[q]$$

such that

$$R_{x,y}(q) = q^{\frac{\ell(x,y)}{2}} \widetilde{R}_{x,y} \left(q^{\frac{1}{2}} - q^{-\frac{1}{2}} \right)$$

for every $x, y \in W$.

They are called the \tilde{R} -polynomials of W.

PropositionThere is a bijection(positive roots) $\Phi^+ \leftrightarrow T$ (reflections) $\alpha \mapsto t_{\alpha}$

Definition A reflection ordering on T is a total ordering \prec such that $\forall \alpha, \beta \in \Phi^+, \quad \forall \lambda, \mu \in \mathbb{R}^+, \quad \text{with } \lambda \alpha + \mu \beta \in \Phi^+$ $t_\alpha \prec t_\beta \quad \Rightarrow \quad t_\alpha \prec t_{\lambda \alpha + \mu \beta} \prec t_\beta.$

Proposition A reflection ordering on T always exists.

Paths(x, y): set of paths in BG from x to y.

 $\Delta = (x_0, x_1, \dots, x_k) \in Paths(x, y)$ has *length* $|\Delta| = k$.

Let \prec be a fixed reflection ordering on T.

A path $x_0 \xrightarrow{t_1} x_1 \xrightarrow{t_2} \cdots \xrightarrow{t_k} x_k$ is *increasing* if $t_1 \prec t_2 \prec \cdots \prec t_k$. $Paths^{\prec}(x,y)$: set of increasing paths in *BG* from *x* to *y*.

Theorem [Dyer] Let $x, y \in W$, with x < y. Then

$$\widetilde{R}_{x,y}(q) = \sum_{\Delta \in Paths \prec (x,y)} q^{|\Delta|}$$

1.6 Absolute length of a pair

Definition Let $x, y \in W$, with x < y. The *absolute length* of (x, y), denoted by $a\ell(x, y)$, is the (oriented) distance between x and y in BG.

Corollary Let $x, y \in W$, x < y. Set $\ell = \ell(x, y)$ and $a\ell = a\ell(x, y)$. Then

$$\widetilde{R}_{x,y}(q) = q^{\ell} + c_{\ell-2} q^{\ell-2} + \dots + c_{a\ell+2} q^{a\ell+2} + c_{a\ell} q^{a\ell},$$

where, $\forall k \in [a\ell, \ell-2]$, with $k \equiv \ell$ (2)

$$c_k = |\{\Delta \in Paths^{\prec}(x, y) : |\Delta| = k\}| \ge 1.$$

Proposition [Dyer] The absolute length $a\ell(x, y)$ is a combinatorial invariant, that is, it depends only on the poset structure of [x, y].

1.7 Combinatorial invariance conjecture

Conjecture [Lusztig] [Dyer] The Kazhdan-Lusztig polynomials are combinatorial invariants. In other words, if W_1, W_2 are Coxeter groups and $x, y \in W_1$, with x < y, and $u, v \in W_2$, with u < v, then

$$[x,y] \cong [u,v] \quad \Rightarrow \quad P_{x,y}(q) = P_{u,v}(q).$$

Equivalent to the same statement for R- and \tilde{R} -polynomials.

Known to be true if [x, y] is a lattice or if $\ell(x, y) \leq 4$.

Theorem [Brenti, Caselli, Marietti] True for x = u = e.

2. MAIN RESULT

2.1 Some notation

Let W be a Coxeter group and let $x, y \in W$, with x < y.

Number of *atoms* and *coatoms* of [x, y]:

 $a(x,y) = |\{z \in [x,y] : x \triangleleft z\}| \quad \text{and} \quad c(x,y) = |\{z \in [x,y] : z \triangleleft y\}|.$

Introduce the *capacity* of [x, y]:

 $cap(x,y) = \min\{a(x,y), c(x,y)\}.$

Denote by \mathcal{B}_k the *boolean algebra* of rank k, that is, the family $\mathcal{P}([k])$ of all subsets of [k] partially ordered by inclusion.

2.2 Main result

Theorem Let $x, y \in S_n$, for some n, with x < y and $\ell(x, y) = 5$. Set a = a(x, y), c = c(x, y) and cap = cap(x, y). Then

$$\widetilde{R}_{x,y}(q) = \begin{cases} q^5 + 2q^3 + q, & \text{if } \{a,c\} = \{3,4\}, \\ q^5 + 2q^3, & \text{if } a = c = 3, \\ q^5 + q^3, & \text{if } cap \in \{4,5\} \text{ but } [x,y] \ncong \mathcal{B}_5, \\ q^5, & \text{if } cap \in \{6,7\} \text{ or } [x,y] \cong \mathcal{B}_5. \end{cases}$$

Corollary Let $x, y \in S_n$, with x < y and $\ell(x, y) = 5$, and $u, v \in S_m$, with u < v and $\ell(u, v) = 5$, for some n and m. Then

$$[x,y] \cong [u,v] \quad \Rightarrow \quad P_{x,y}(q) = P_{u,v}(q).$$

Proposition Let $x, y \in W$, with x < y. Then

$$\sum_{x \le z \le y} (-1)^{\ell(x,z)} R_{x,z}(q) R_{z,y}(q) = 0.$$

In particular, if $\ell(x,y)$ is even,

$$R_{x,y}(q) = \frac{1}{2} \sum_{x < z < y} (-1)^{\ell(x,z)-1} R_{x,z}(q) R_{z,y}(q).$$

Corollary Let $x, y \in S_n$, with x < y and $\ell(x, y) = 6$, and $u, v \in S_m$, with u < v and $\ell(u, v) = 6$, for some n and m. Then

$$[x,y] \cong [u,v] \quad \Rightarrow \quad P_{x,y}(q) = P_{u,v}(q).$$

3. DRAWING THE BRUHAT ORDER

3.1 Denoting permutations

Denote a permutation $x \in S_n$ using the *one-line notation*:

 $x = x_1 x_2 \dots x_n$ means $x(i) = x_i$ $\forall i \in [n].$

The *diagram* of $x \in S_n$ is the subset of \mathbb{N}^2 so defined:

 $Diag(x) = \{(i, x(i)) : i \in [n]\}.$

Let $x \in S_n$. Number of *inversions* of x: $inv(x) = |\{(i, j) \in [n]^2 : i < j, x(i) > x(j)\}|.$

Proposition Let $x \in S_n$. Then

 $\ell(x) = inv(x).$

Let $x \in S_n$. Number of *inversions* of x:

 $inv(x) = |\{(i,j) \in [n]^2 : i < j, x(i) > x(j)\}|.$

Proposition Let $x \in S_n$. Then

 $\ell(x) = inv(x).$

Example $x = 315472986 \in S_9$.

Let $x \in S_n$. Number of *inversions* of x:

 $inv(x) = |\{(i,j) \in [n]^2 : i < j, x(i) > x(j)\}|.$

Proposition Let $x \in S_n$. Then

 $\ell(x) = inv(x).$

Example $x = 315472986 \in S_9$.

 $\ell(x) = inv(x) = 10$

Let $x \in S_n$. Number of *inversions* of x: $inv(x) = |\{(i, j) \in [n]^2 : i < j, x(i) > x(j)\}|.$

Proposition Let $x \in S_n$. Then

 $\ell(x) = inv(x).$

Example $x = 315472986 \in S_9$.

 $\ell(x) = inv(x) = 10$

Let $x, y \in S_n$, with x < y. Then

$$\ell(x,y) = inv(y) - inv(x).$$

Let $x \in S_n$. $\forall (h,k) \in [n]^2$ set $x[h,k] = |\{i \in [h] : x(i) \in [k,n]\}.$

Let $x \in S_n$. $\forall (h,k) \in [n]^2$ set $x[h,k] = |\{i \in [h] : x(i) \in [k,n]\}.$

Example $x = 315472986 \in S_9$.

Let $x \in S_n$. $\forall (h,k) \in [n]^2$ set $x[h,k] = |\{i \in [h] : x(i) \in [k,n]\}.$

Example $x = 315472986 \in S_9$.

x[8,7] = 3

Let $x \in S_n$. $\forall (h,k) \in [n]^2$ set $x[h,k] = |\{i \in [h] : x(i) \in [k,n]\}.$

Example $x = 315472986 \in S_9$.

$$x[8,7] = 3$$

 $x[6,2] = 5$

Let $x, y \in S_n$. $\forall (h, k) \in [n]^2$ set (x, y)[h, k] = y[h, k] - x[h, k].

Let $x, y \in S_n$. $\forall (h, k) \in [n]^2$ set (x, y)[h, k] = y[h, k] - x[h, k].

Example $x = 315472986 \in S_9$.

Let
$$x, y \in S_n$$
. $\forall (h, k) \in [n]^2$ set $(x, y)[h, k] = y[h, k] - x[h, k].$

Let
$$x, y \in S_n$$
. $\forall (h, k) \in [n]^2$ set $(x, y)[h, k] = y[h, k] - x[h, k].$

Example x = 315472986 (•) y = 782496315 (•)

(x,y)[8,7] = 0

Let
$$x, y \in S_n$$
. $\forall (h, k) \in [n]^2$ set $(x, y)[h, k] = y[h, k] - x[h, k].$

$$(x, y)[8, 7] = 0$$

 $(x, y)[6, 2] = 1$

Theorem Let $x, y \in S_n$. Then

 $x \leq y \quad \Leftrightarrow \quad (x,y)[h,k] \geq 0, \quad \forall (h,k) \in [n]^2.$

Theorem Let
$$x, y \in S_n$$
. Then
 $x \leq y \quad \Leftrightarrow \quad (x, y)[h, k] \geq 0, \quad \forall (h, k) \in [n]^2.$
Example $x = 315472986$ (•)
 $y = 782496315$ (o)
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $y = 782496315$ (•)
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $y = 782496315$ (•)
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] \geq 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] = 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] = 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] = 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] = 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] = 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] = 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] = 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] = 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] = 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] = 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] = 0, \quad \forall (h, k) \in [9]^2$
 $(x, y)[h, k] = 0, \quad \forall (h, k$

(

Extend the notation: $\forall (h,k) \in \mathbb{R}^2$ set

 $x[h,k] = |\{i \in [h] : x(i) \in [k,n]\}|, \quad (x,y)[h,k] = y[h,k] - x[h,k].$

Definition Let $x, y \in S_n$. The multiplicity mapping of (x, y) is $(h, k) \in \mathbf{R}^2 \mapsto (x, y)[h, k] \in \mathbf{Z}.$

Definition Let $x, y \in S_n$, with x < y. The *support* of (x, y) is $\Omega(x, y) = \{(h, k) \in \mathbb{R}^2 : (x, y)[h, k] > 0\}.$

3.4 Diagram of a pair of permutations

Definition Let $x, y \in S_n$. The *diagram* of (x, y) is the collection of:

- 1. the diagram of x;
- 2. the diagram of y;
- 3. the multiplicity mapping $(h,k) \mapsto (x,y)[h,k]$.

Analog definition in [Kassel, Lascoux, Reutenauer, 2003]

4. FROM THE DIAGRAM TO [x, y]

4.1 Symmetries

Let W be a Coxeter group.

The mapping $x \mapsto x^{-1}$ is an isomorphism of the Bruhat order.

If W is finite, then it has a maximum, denoted by w_0 , and

 $x \mapsto xw_0$ and $x \mapsto w_0 x$ are anti-isomorphisms

 $x \mapsto w_0 x w_0$ is an isomorphism.

4.2 Covering relation

Definition Let $x \in S_n$. A *rise* of x is a pair (i, j), with i < j and x(i) < x(j). A rise (i, j) of x is *free* if there is no $k \in \mathbb{N}$, with i < k < j and x(i) < x(k) < x(j).

Proposition Let $x, y \in S_n$. Then

 $x \triangleleft y \quad \Leftrightarrow \quad y = x(i,j), \quad \text{with } (i,j) \text{ free rise of } x.$

Proposition Let $x, y \in S_n$. Then $x \triangleleft y \quad \Leftrightarrow \quad y = x(i, j), \quad \text{with } (i, j) \text{ free rise of } x.$ Example x = 315472986 (•)

Proposition Let $x, y \in S_n$. Then $x \triangleleft y \quad \Leftrightarrow \quad y = x(i,j), \quad \text{with } (i,j) \text{ free rise of } x.$ **Example** x = 315472986 (•) 9 8 (1,5) non-free rise of x7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9

Proposition Let
$$x, y \in S_n$$
. Then
 $x \triangleleft y \Leftrightarrow y = x(i, j)$, with (i, j) free rise of x .
Example $x = 315472986$ (•)
(1,3) free rise of x
 $y = x(1,3)$ (o)
 $y = x(1,3)$ (o)
 $y = x(1,3) = 0$

Proposition Let $x, y \in S_n$. Then $x \triangleleft y \quad \Leftrightarrow \quad y = x(i,j), \quad \text{with } (i,j) \text{ free rise of } x.$ **Example** x = 315472986 (•) x has 14 free rises:

3 4 5 6 7

8 9

4.3 Atoms and coatoms

Definition Let (i, j) be a free rise of x. The *rectangle associated* is $Rect_x(i, j) = \{(h, k) \in \mathbb{R}^2 : i \le h < j, x(i) < k \le x(j)\}.$

Let $x, y \in S_n$, with x < y. A free rise (i, j) of x is *good* w.r.t. y if $Rect_x(i, j) \subseteq \Omega(x, y)$.

Proposition Let $x, y \in S_n$, with x < y. Then

z atom of [x, y] \Leftrightarrow z = x(i, j), with (i, j) free rise of x, good with respect to y.

Proposition Let $x, y \in S_n$, with x < y. Then

 $z \text{ atom of } [x,y] \Leftrightarrow z = x(i,j), \quad \begin{array}{l} \text{with } (i,j) \text{ free rise of } x, \\ \text{good with respect to } y. \end{array}$

Proposition Let $x, y \in S_n$, with x < y. Then

 $z \text{ atom of } [x,y] \quad \Leftrightarrow \quad z = x(i,j),$

with (i, j) free rise of x, good with respect to y.

Example x = 315472986 (•) y = 782496315 (•)

Proposition Let $x, y \in S_n$, with x < y. Then

 $z \text{ atom of } [x, y] \quad \Leftrightarrow \quad z = x(i, j),$

with (i, j) free rise of x, good with respect to y.

Example x = 315472986 (•) y = 782496315 (•)

Among the 14 free rises of x

Proposition Let $x, y \in S_n$, with x < y. Then

 $z \text{ atom of } [x, y] \quad \Leftrightarrow \quad z = x(i, j),$

with (i, j) free rise of x, good with respect to y.

Example x = 315472986 (•) y = 782496315 (•)

Among the 14 free rises of x those non-good w.r.t. y are

(2,4)

Proposition Let $x, y \in S_n$, with x < y. Then

 $z \text{ atom of } [x, y] \quad \Leftrightarrow \quad z = x(i, j),$

with (i, j) free rise of x, good with respect to y.

Example x = 315472986 (•) y = 782496315 (•)

Among the 14 free rises of x those non-good w.r.t. y are

(2,4), (4,9)

Proposition Let $x, y \in S_n$, with x < y. Then

 $z \text{ atom of } [x,y] \quad \Leftrightarrow \quad z = x(i,j),$

with (i, j) free rise of x, good with respect to y.

Example x = 315472986 (•) y = 782496315 (•)

> Among the 14 free rises of xthose non-good w.r.t. y are (2,4), (4,9) and (6,9).

Proposition Let $x, y \in S_n$, with x < y. Then

 $z \text{ atom of } [x, y] \quad \Leftrightarrow \quad z = x(i, j),$

with (i, j) free rise of x, good with respect to y.

Example x = 315472986 (•) y = 782496315 (•)

> x has 11 free rises good w.r.t. y:

Proposition Let $x, y \in S_n$, with x < y. Then

 $z \text{ atom of } [x, y] \quad \Leftrightarrow \quad z = x(i, j),$

with (i, j) free rise of x, good with respect to y.

Example x = 315472986 (•) y = 782496315 (•)

> x has 11 free rises good w.r.t. y \downarrow

> [x, y] has 11 atoms

Proposition Let $x, y \in S_n$, with x < y. Then

 $z \text{ atom of } [x, y] \quad \Leftrightarrow \quad z = x(i, j),$

with (i, j) free rise of x, good with respect to y.

Example x = 315472986 (•) y = 782496315 (•)

(1,3) free rise of x
good w.r.t. y

Proposition Let $x, y \in S_n$, with x < y. Then

 $z \text{ atom of } [x, y] \quad \Leftrightarrow \quad z = x(i, j),$

with (i, j) free rise of x, good with respect to y.

Example x = 315472986 (•) y = 782496315 (•)

(1,3) free rise of x
good w.r.t. y

z = x(1,3)

Proposition Let $x, y \in S_n$, with x < y. Then

 $z \text{ atom of } [x, y] \quad \Leftrightarrow \quad z = x(i, j),$

with (i, j) free rise of x, good with respect to y.

Example x = 315472986y = 782496315 (\circ)

(1,3) free rise of x
good w.r.t. y

z = x(1,3) (•)

Proposition Let $x, y \in S_n$, with x < y. Then

 $z \text{ atom of } [x, y] \quad \Leftrightarrow \quad z = x(i, j),$

with (i, j) free rise of x, good with respect to y.

Example x = 315472986 y = 782496315 (o) (1,3) free rise of x good w.r.t. y z = x(1,3) (•)

 \downarrow z atom of [x, y]

Proposition Let $x, y \in S_n$, with x < y. Then

 $z \text{ atom of } [x, y] \quad \Leftrightarrow \quad z = x(i, j),$

with (i, j) free rise of x, good with respect to y.

Example x = 315472986 (•) y = 782496315 (•)

(3,9) free rise of x
good w.r.t. y

Proposition Let $x, y \in S_n$, with x < y. Then

 $z \text{ atom of } [x, y] \quad \Leftrightarrow \quad z = x(i, j),$

with (i, j) free rise of x, good with respect to y.

Example x = 315472986 (•) y = 782496315 (•)

(3,9) free rise of x
good w.r.t. y

 $z_1 = x(3,9)$

Proposition Let $x, y \in S_n$, with x < y. Then

 $z \text{ atom of } [x, y] \quad \Leftrightarrow \quad z = x(i, j),$

with (i, j) free rise of x, good with respect to y.

Example x = 315472986y = 782496315 (\circ)

(3,9) free rise of x
good w.r.t. y

 $z_1 = x(3,9)$ (•)

Proposition Let $x, y \in S_n$, with x < y. Then

 $z \text{ atom of } [x, y] \quad \Leftrightarrow \quad z = x(i, j),$

with (i, j) free rise of x, good with respect to y.

Example x = 315472986y = 782496315 (o) (3,9) free rise of xgood w.r.t. y

 $z_1 = x(3,9)$ (•)

 \downarrow z_1 atom of [x, y]

Proposition Let $x, y \in S_n$, with x < y. Then

 $w \text{ coatom of } [x, y] \quad \Leftrightarrow \quad w = y(i, j),$

with (i, j) free inversion of y, good with respect to x.

Proposition Let $x, y \in S_n$, with x < y. Then

 $w \text{ coatom of } [x,y] \quad \Leftrightarrow \quad w = y(i,j),$

with (i, j) free inversion of y, good with respect to x.

Example x = 315472986 (•) y = 782496315 (•)

Proposition Let $x, y \in S_n$, with x < y. Then

$$w \text{ coatom of } [x,y] \quad \Leftrightarrow \quad w = y(i,j),$$

with (i, j) free inversion of y, good with respect to x.

Example x = 315472986 (•) y = 782496315 (•)

> y has 11 free inversions good w.r.t. x:

Proposition Let $x, y \in S_n$, with x < y. Then

$$w \text{ coatom of } [x, y] \quad \Leftrightarrow \quad w = y(i, j),$$

with (i, j) free inversion of y, good with respect to x.

Example x = 315472986 (•) y = 782496315 (•)

> y has 11 free inversions good w.r.t. x \downarrow

[x, y] has 11 coatoms

5. FROM THE DIAGRAM TO $\tilde{R}_{x,y}(q)$

5.1 Symmetries

Let W be a Coxeter group.

Proposition Let $x, y \in W$, x < y. Then

$$\widetilde{R}_{x,y}(q) = \widetilde{R}_{x^{-1},y^{-1}}(q).$$

If W is finite, then

$$\widetilde{R}_{x,y}(q) = \widetilde{R}_{yw_0, xw_0}(q)$$

= $\widetilde{R}_{w_0y, w_0x}(q)$
= $\widetilde{R}_{w_0xw_0, w_0yw_0}(q).$

5. FROM THE DIAGRAM TO $\widetilde{R}_{x,y}(q)$ - 28/50

5.2 Reflection ordering in S_n

In the symmetric group S_n the reflections are the transpositions:

$$T = \{(i, j) : i, j \in [n]\}.$$

Proposition [Dyer] A possible reflection ordering \prec on the transpositions of S_n is the lexicographic order.

Assume this order \prec fixed on T. For example, in S_4 :

 $(1,2) \prec (1,3) \prec (1,4) \prec (2,3) \prec (2,4) \prec (3,4).$

5.3 Edges of the Bruhat graph

$$x \xrightarrow{(i,j)} y$$
 in S_n means $y = x(i,j)$, with (i,j) rise of x .

5.3 Edges of the Bruhat graph

 $x \xrightarrow{(i,j)} y$ in S_n means y = x(i,j), with (i,j) rise of x.

Example x = 315472986 (•)

5.3 Edges of the Bruhat graph

 $x \xrightarrow{(i,j)} y$ in S_n means y = x(i,j), with (i,j) rise of x.

Example x = 315472986 (•)

(1,5) rise of x

5.3 Edges of the Bruhat graph

 $x \xrightarrow{(i,j)} y$ in S_n means y = x(i,j), with (i,j) rise of x.

Example x = 315472986 (•)

(1,5) rise of xy = x(1,5) (0)

5.3 Edges of the Bruhat graph

 $x \xrightarrow{(i,j)} y$ in S_n means y = x(i,j), with (i,j) rise of x.

Example x = 315472986 (•) (1,5) rise of x y = x(1,5) (o) ψ $x \xrightarrow{(1,5)} y$

5.4 Increasing paths

Let $x, y \in S_n$, with x < y. An increasing path in BG from x to y is

$$x = x_0 \xrightarrow{(i_1, j_1)} x_1 \xrightarrow{(i_2, j_2)} \cdots \xrightarrow{(i_k, j_k)} x_k = y,$$

with $(i_1, j_1) \prec (i_2, j_2) \prec \cdots \prec (i_k, j_k)$.

Special case: $i_1 = i_2 = \cdots = i_k = i$

$$x = x_0 \xrightarrow{(i,j_1)} x_1 \xrightarrow{(i,j_2)} \cdots \xrightarrow{(i,j_k)} x_k = y,$$

with $i < j_1 < j_2 < \cdots < j_k$. Call it a *stair path*.

General case: an increasing path is a sequence of stair paths.

Example x = 126384579 (•)

Example x = 126384579 (•)

(1,4) rise of x

Example x = 126384579 (•)

(1,4) rise of x

Example x = 126384579 (•)

(1,4) rise of x(1,6) rise of x_1

Example x = 126384579 (•)

(1,4) rise of x(1,6) rise of x_1

Example x = 126384579 (•)

(1,4) rise of x(1,6) rise of x_1 (1,8) rise of x_2

Example x = 126384579 (•)

(1,4) rise of x(1,6) rise of x_1 (1,8) rise of x_2

Example x = 126384579 (•)

(1,4) rise of x(1,6) rise of x_1 (1,8) rise of x_2 (1,9) rise of x_3

Example x = 126384579 (•)

(1,4) rise of x(1,6) rise of x_1 (1,8) rise of x_2 (1,9) rise of x_3

Example x = 126384579 (•)

Definition Let $x \in S_n$. A *stair* of x is an increasing sequence

$$s = (i, j_1, \dots, j_k) \in [n]^k$$

such that $(x(i), x(j_1), \ldots, x(j_k))$ is also increasing.

The permutation *obtained* from x by *performing* the stair s is $xs = x(i, j_k, ..., j_1).$

The *stair area* associated with s is

 $Stair_x(s) = \Omega(x, xs).$

Example x = 126384579 (•)

Example x = 126384579 (•)

(1, 4, 6, 8, 9) stair of x

Example x = 126384579 (•)

(1,4,6,8,9) stair of x $\downarrow \downarrow$ y = x(1,9,8,6,4) (°) obtained from x by performing (1,4,6,8,9)

Example x = 126384579 (•)

9 8 (1, 4, 6, 8, 9) stair of x 7 \downarrow 6 . . . 5 y = x(1, 9, 8, 6, 4) (\circ) 4 3 obtained from x by 2 performing (1, 4, 6, 8, 9)1 1 2 3 4 5 6 8 9 7 $x \xrightarrow{(1,4)} x_1 \xrightarrow{(1,6)} x_2 \xrightarrow{(1,8)} x_3$ (1,9)Stair path: y(•) (\circ)

Definition Let $x, y \in S_n$, x < y. The *difference index* of (x, y) is

 $di = \min\{k : x(k) \neq y(k)\}.$

Definition Let $x, y \in S_n$, x < y. The *difference index* of (x, y) is

 $di = \min\{k : x(k) \neq y(k)\}.$

Definition Let $x, y \in S_n$, x < y. The *difference index* of (x, y) is

 $di = \min\{k : x(k) \neq y(k)\}.$

Definition Let $x, y \in S_n$, x < y. The *difference index* of (x, y) is $di = \min\{k : x(k) \neq y(k)\}.$

Definition Let $x, y \in S_n$, x < y. The *difference index* of (x, y) is $di = \min\{k : x(k) \neq y(k)\}.$

Definition Let $x, y \in S_n$, x < y. The *difference index* of (x, y) is $di = \min\{k : x(k) \neq y(k)\}.$

Definition Let $x, y \in S_n$, x < y. The *difference index* of (x, y) is

 $di = \min\{k : x(k) \neq y(k)\}.$

Definition Let $x, y \in S_n$, x < y. The *difference index* of (x, y) is

 $di = \min\{k : x(k) \neq y(k)\}.$

Definition Let $x, y \in S_n$, x < y. The *difference index* of (x, y) is

 $di = \min\{k : x(k) \neq y(k)\}.$

Definition Let $x, y \in S_n$, x < y. The *difference index* of (x, y) is

 $di = \min\{k : x(k) \neq y(k)\}.$

Note that x(di) < y(di)and di < si.

Definition Let $x, y \in S_n$, x < y. The *difference index* of (x, y) is

 $di = \min\{k : x(k) \neq y(k)\}.$

Note that x(di) < y(di)and di < si.

Definition Let $x, y \in S_n$, x < y. The *difference index* of (x, y) is

 $di = \min\{k : x(k) \neq y(k)\}.$

Note that x(di) < y(di)and di < si.

Definition Let $x, y \in S_n$, with x < y. A stair s of x is good w.r.t. y if $Stair_x(s) \subseteq \Omega(x, y)$

Proposition Let $x, y \in S_n$, with x < y. Let s be a stair of x. Then $xs \le y \quad \Leftrightarrow \quad s \text{ is good w.r.t. } y.$

Definition A stair s of x, good w.r.t. y, is an *initial stair* of (x, y) if

$$s = (di, j_1, j_2, \dots, j_{k-1}, si)$$

Proposition An initial stair of (x, y) always exists.

5.5 The stair method

General algorithm: given $x, y \in S_n$, with x < y

1. choose an initial stair s of (x, y);

- 2. call x_1 the permutation obtained from x by performing s;
- 3. recursively apply the procedure on (x_1, y) .

Proposition Let $x, y \in S_n$, with x < y. The stair method allows to generate all possible increasing paths in BG from x to y.

So, in particular, it allows to compute $\tilde{R}_{x,y}(q)$.

(●)(○)

x

Example x = 315472986 (•) y = 782496315 (•)

Example x = 315472986 (•) y = 782496315 (•) Initial stairs of (x, y): (1,5), (1,3,5)3 4 5 y \boldsymbol{x} <

(•) (o)

9 8 7 6 Initial stairs of (x, y): 5 (1,5), (1,3,5) and (1,4,5). 4 3 2 1 1 2 3 4 5 9 6 7 yx<(•) (0)

Example x = 315472986 (•) y = 782496315 (•)

Example x = 315472986 (•) y = 782496315 (•) (1,4,5) initial stair of (x,y)3 4 5 yx<

(●)(○)

Example x = 315472986 (•) y = 782496315 (•)

(1,4,5) initial stair of (x,y) \downarrow $x_1 = x(1,5,4)$ obtained from x by performing (1,4,5)

$$\begin{array}{ccc} x & < & y \\ (\bullet) & & (\circ) \end{array}$$

Example x = 315472986 (•) y = 782496315 (•)

 $x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_1 \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_2 \xrightarrow{(3,6)} x_3 \qquad y$ (•) (•)

 $(\bullet) \qquad (\circ)$

$$x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_1 \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_2 \xrightarrow{(3,6)} x_3 \xrightarrow{(4,5)} x_4 \qquad y$$
(•)
(•)

$$x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_1 \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_2 \xrightarrow{(3,6)} x_3 \xrightarrow{(4,5)} x_4 \qquad y$$
(•) (•)

$$x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_1 \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_2 \xrightarrow{(3,6)} x_3 \xrightarrow{(4,5)} x_4 < y$$
(•) (•) (•)

$$x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_1 \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_2 \xrightarrow{(3,6)} x_3 \xrightarrow{(4,5)} x_4 < y$$
(•) (•) (•)

$$x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_1 \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_2 \xrightarrow{(3,6)} x_3 \xrightarrow{(4,5)} x_4 \xrightarrow{(5,7)} x_5 \qquad y$$
(•) (•) (•)

$$x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_1 \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_2 \xrightarrow{(3,6)} x_3 \xrightarrow{(4,5)} x_4 \xrightarrow{(5,7)} x_5 \qquad y$$
(•) (•) (•)

$$x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_1 \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_2 \xrightarrow{(3,6)} x_3 \xrightarrow{(4,5)} x_4 \xrightarrow{(5,7)} x_5 < y$$
(•) (•) (•)

(•) (0)

$$x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_1 \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_2 \xrightarrow{(3,6)} x_3 \xrightarrow{(4,5)} x_4 \xrightarrow{(5,7)} x_5 < y$$
(•) (•) (•)

 $x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_1 \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_2 \xrightarrow{(3,6)} x_3 \xrightarrow{(4,5)} x_4 \xrightarrow{(5,7)} x_5 \xrightarrow{(6,8)} \bullet \xrightarrow{(6,9)} y$ (\bullet)

 $x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_1 \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_2 \xrightarrow{(3,6)} x_3 \xrightarrow{(4,5)} x_4 \xrightarrow{(5,7)} x_5 \xrightarrow{(6,8)} \bullet \xrightarrow{(6,9)} y$ (•)

Example x = 315472986 (•) y = 782496315 (•)

 $x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_1 \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_2 \xrightarrow{(3,6)} x_3 \xrightarrow{(4,5)} x_4 \xrightarrow{(5,7)} x_5 \xrightarrow{(6,8)} \bullet \xrightarrow{(6,9)} y$ (•) (0)

Example x = 315472986 (•) y = 782496315 (•)

 $x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_1 \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_2 \xrightarrow{(3,6)} x_3 \xrightarrow{(4,5)} x_4 \xrightarrow{(5,7)} x_5 \xrightarrow{(6,8)} \bullet \xrightarrow{(6,9)} y$ (•) (0)

(0)

(•)

 $x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_1 \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_2 \xrightarrow{(3,6)} x_3 \xrightarrow{(4,5)} x_4 \xrightarrow{(5,7)} x_5 \xrightarrow{(6,8)} \bullet \xrightarrow{(6,9)} y$ $(\bullet) \qquad (\circ)$

 $x \xrightarrow{(1,4)} \bullet \xrightarrow{(1,5)} x_1 \xrightarrow{(2,3)} \bullet \xrightarrow{(2,8)} x_2 \xrightarrow{(3,6)} x_3 \xrightarrow{(4,5)} x_4 \xrightarrow{(5,7)} x_5 \xrightarrow{(6,8)} \bullet \xrightarrow{(6,9)} y$ $(\bullet) \qquad (\circ)$

Example x = 315472986 (•) y = 782496315 (•)

The stair method allows to generate all increasing paths in BG from x to y:

Example x = 315472986 (•) y = 782496315 (•)

The stair method allows to generate all increasing paths in BG from x to y:

- 1 has length 13
- 4 have length 11
- 4 have length 9
- 1 has length 7

Example x = 315472986 (•) y = 782496315 (•)

The stair method allows to generate all increasing paths in BG from x to y:

1 has length 13
 4 have length 11
 4 have length 9
 1 has length 7

 $\Rightarrow \quad \widetilde{R}_{x,y}(q) = q^{13} + 4q^{11} + 4q^9 + q^7$

5.6 Special cases

Definition Let $x, y \in S_n$, with x < y. We say that

1. (x, y) has the 01-multiplicity property if

 $(x,y)[h,k] \in \{0,1\} \quad \forall (h,k) \in \mathbf{R}^2.$

2. (x, y) is *simple* if it has the 01-multiplicity property and

 $Fix(x,y) = \{i \in [n] : x(i) = y(i)\} = \emptyset.$

3. (x, y) is a *permutaomino* if it is simple and $\Omega(x, y)$ is connected.

Example

Definition Let $x, y \in S_n$, with x < y. Let $i \in Fix(x, y)$.

The fixed point multiplicity of i is

fpm(i) = (x, y)[i, x(i)].

The fixed point multiplicity of (x, y) is

$$fpm(x,y) = \sum_{i \in Fix(x,y)} fpm(i).$$

Proposition Let $x, y \in S_n$, with x < y.

1. If (x, y) has the 01-multiplicity property, then $\widetilde{R}_{x,y}(q) = (q^2 + 1)^{fpm(x,y)}q^{a\ell(x,y)},$

thus

$$a\ell(x,y) = \ell(x,y) - 2fpm(x,y).$$

2. In particular, if (x, y) is simple, then

$$\widetilde{R}_{x,y}(q) = q^{\ell(x,y)},$$

3. and if (x, y) is a permutation of then

$$\widetilde{R}_{x,y}(q) = q^{(n-1)}.$$

Example

6. PROOF SKETCH

Theorem Let $x, y \in S_n$, for some n, with x < y and $\ell(x, y) = 5$. Set a = a(x, y), c = c(x, y) and cap = cap(x, y). Then

$$\widetilde{R}_{x,y}(q) = \begin{cases} q^5 + 2q^3 + q, & \text{if } \{a,c\} = \{3,4\}, \\ q^5 + 2q^3, & \text{if } a = c = 3, \\ q^5 + q^3, & \text{if } cap \in \{4,5\} \text{ but } [x,y] \ncong \mathcal{B}_5, \\ q^5, & \text{if } cap \in \{6,7\} \text{ or } [x,y] \cong \mathcal{B}_5. \end{cases}$$

Proof sketch. Suppose known the poset structure of [x, y]. By Dyer's result, it allows to determine $a\ell(x, y) \in \{1, 3, 5\}$. If $a\ell(x,y) = 5$, then $\tilde{R}_{x,y} = q^5$ is determined. In this case it is known that [x,y] is a lattice and this implies either $cap(x,y) \ge 6$, or $[x,y] \cong \mathcal{B}_5$.

If $a\ell(x,y) = 1$, then (x,y) is an edge of BG. Two possible diagrams:

By the stair method: $\widetilde{R}_{x,y}(q) = q^5 + 2q^3 + q$.

By the interpretation of atoms and coatoms:

 $\{a(x,y),c(x,y)\} = \{3,4\}.$

6. PROOF SKETCH - 46/50

Finally, if $a\ell(x,y) = 3$, then $\tilde{R}_{x,y}(q) = q^5 + bq^3$, for some $b \in \mathbb{N}$.

The only possibility in S_4 (up to symmetries) is the following:

By the stair method: $\tilde{R}_{x,y}(q) = q^5 + 2q^3$.

By the interpretation of atoms and coatoms:

$$a(x,y) = c(x,y) = 3.$$

All other cases can be easily listed. A few examples:

By the stair method: $\widetilde{R}_{x,y}(q) = q^5 + q^3$.

By the interpretation of atoms and coatoms:

 $cap(x, y) \in \{4, 5\}.$

The boolean algebra \mathcal{B}_5 never occurs.

7. EXPLICIT FORMULAS

Let $x, y \in W$, with x < y. For $k \in [\ell(x, y)]$ odd, set

 $be_k(x,y) = |\{(z,w) : x \le z \to w \le y, \, \ell(z,w) = k\}|.$

Theorem Let $x, y \in S_n$, with x < y and $\ell(x, y) = 5$. Then

$$\widetilde{R}_{x,y}(q) = q^5 + \left\lfloor \frac{be_3}{3} \right\rfloor q^3 + be_5 q.$$

7. EXPLICIT FORMULAS - 49/50

Let $x, y \in W$, with x < y. Set $F_i(x, y) = \{z \in [x, y] : \ell(x, z) = i\}$ and $f_{i,j}(x, y) = |\{(z, w) \in F_i(x, y) \times F_j(x, y) : z < w\}|,$ $be_{i,j}(x, y) = |\{(z, w) \in F_i(x, y) \times F_j(x, y) : z \to w\}|.$

For $a, b \in \mathbb{N}$, set $a \mod b = a - b \left\lfloor \frac{a}{b} \right\rfloor$.

Theorem Let $x, y \in S_n$, with x < y and $\ell(x, y) = 5$. Then

$$P_{x,y}(q) = 1 + \left(c + \left\lfloor \frac{be_3}{3} \right\rfloor - 5\right)q + \left(10 - 3a - 3c + f_{1,4} + be_3 \mod 3 - \frac{be_{1,4}}{2} + be_5\right)q^2.$$

7. EXPLICIT FORMULAS - 50/50

1+q1	$1 + 2q + q^2$ $1 + q^2$	$\begin{array}{c}1+2q\\1+q\end{array}$
1	$\begin{array}{c} 1+q\\ 1+q\end{array}$	1 + 3q $1 + q$
1	1 + 2q $1 + q$. $1 + 4q + q^2$ $1 + q + q^2$
1+q 1	1	1 + 2q
1+q1	1 + q	$ 1 + 3q + q^2 1 + 2q + q^2 $