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Connected Permutations, Hypermaps and Weighted Dyck Words
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Why?

• Graph embeddings

• Nice bijection by Patrice Ossona de Mendez and Pierre Rosenstiehl.

• Deduce enumerative results.

• Extensions?
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Cycles (or orbits)

A permutation α is a sequence of n distinct integers a1, a2, . . . , an all such that
1 ≤ ai ≤ n. It is often useful to consider α as a one to one map from {1, 2, . . . , n}
on to itself, denoting ai by α(i).

A cycle is a sequence b1, b2, . . . , bp of distinct integers such that bi+1 = α(bi) for
1 ≤ i < p and b1 = α(bp)

Example : A permutation
α = 7, 3, 4, 2, 1, 6, 5

and its cycles :

(1, 7, 5) (2, 3, 4) (6)

The set of all permutations (i. e. the symmetric group) is denoted Sn.
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Left-to-right maxima

Let α = a1, a2, . . . , an be a permutation, ai is a left-to-right maxima if aj < ai for
all 1 ≤ j < i.

Remarks :

• for any α, a1 is a left-to-right maxima

• if ak = n then it is a left-to -right maxima

• the number of left-to-right maxima of a permutation α is equal to 1 if and only if
a1 = n.
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Example

64 7 2 1 3 8 5 9
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Example

64 7 2 1 3 8 5 9
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Bijection (Foata Transform)

The following algorithm describes a bijection from the set of permutations having k

cycles to the set of permutations having k left-to-right maxima.

• Write the permutation α as a product of cycles Γ1, Γ2, . . . Γk in which the first
element of each cycle Γi is the maximum among the elements of Γi

• Reorder the Γi such that the first elements of the cycles appear in increasing order.

• Delete the parenthesis around the cycles.
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Example

= (1, 4) (2, 7, 5, 3) (6, 8 9)

4 7 2 1 3 8 5 9 6
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Example

= (4, 1) (7, 5, 3, 2) (9, 6, 8)

4 7 2 1 3 8 5 9 6

= (1, 4) (2, 7, 5, 3) (6, 8, 9)

= (1, 4 ) (2,   , 5, 3) (6, 8,   )7 9
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Example

9

7 2 1 3 8 5 9 6

= (4, 1) (7, 5, 3, 2) (9, 6, 8)

  ,  1,   ,  5,  3,  2,   ,  6,  8

theta = 
4

F (theta) = 

4 7
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Enumeration

The number of permutations sn,k of Sn having k cycles is equal to the coefficient of
xk in the polynomial :

An(x) = x(x + 1)(x + 2) · · · (x + n− 1)

Proof: In order to build the permutations of Sn with k cycles, we can start with
permutations from Sn−1 having k − 1 cycles and add one cycle containing only n, or
with the permutations from Sn−1 having k cycles and add n inside one of its cycles.
This second construction gives n− 1 permutations for each permutation of Sn−1,
hence :

sn,k = sn−1,k−1 + (n− 1)sn−1,k

Multiplying each equality by xk and summing up we get :

An(x) = xAn−1(x) = (n− 1)An−1(x)

giving the result.
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Stirling numbers

1

1 1

2 3 1

6 11 6 1

24 50 35 10 1
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Connected Permutations

• Seems to be considered for the first time by André Lentin (Thesis, 1969) then by
Louis Comtet (note aux Comptes Rendus Acad Sci Paris (1972))

Définition A permutation α = a1, a2, . . . , an is connected if it does not contain a left
factor (of length p, 0 < p < n) which is a a permutation of 1, 2, . . . p.

Exemple For n = 3, there are 3 connected permutations : 2, 3, 1 3, 2, 1 and
3, 1, 2, there are also 3 non connected permutations : 1, 2, 3 1, 3, 2 and 2, 1, 3.

The permutations 2, 4, 1, 3 and 3, 1, 4, 2 are connected.

• The numbers of connected permutations 1, 1, 3, 13, 71, 461, 3447, ....
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First formula

• Any non connected permutation is the concatenation of a connected permutation
on 1, 2, . . . p and a permutation on p + 1, . . . n where : 1 ≤ p < n.

• hence :

n!− cn =
n−1∑
p=1

cp (n− p)!

• Allows us to compute the first terms

Generating functions

Fact(x)− C(x) = C(x)Fact(x) where Fact(x) =
∑
n≥1

n!xn

Giving :

C(x) =
Fact(x)

Fact(x) + 1
= 1− 1

1 + Fact(x)
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Another formula (Lentin)

A permutation β of Sn−1 is k-connectable if there are exactly k positions in β

where inserting n gives a connected permutation.

Remarks

• if the insertion of n in position j gives a connected permutation then this is also
the case for any insertion in position i < j

• Any permutationβ, is p-connectable for some p ≥ 1

• A permutation is 1-connectable if and only if the first element is 1

• A permutation on 1, 2, . . . , n− 1 is (n− 1) connectable if and only if it is
connected.
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Another formula (2)
Proposition For 1 ≤ k < n the number un,p of p-connectable permutations on
1 . . . n− 1 is equal to :

cp(n− p− 1)!

Proof: If a permutation is the concatenation of a connected permutation of length p

and of a permutation of length n− 1− p then it is p-connectable.

Corollary:

cn =
n−1∑
p=1

pcp(n− 1− p)!

Moreover, the number of connected permutations on 1, 2, . . . , n such that 1 is in
position p is given by :

p−1∑
k=1

cn−k(k − 1)!
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Foata transform

Proposition α is connected if and only if its Foata transform is connected

Consequence The number of connected permutations with k cycles is equal to the
number of connected permutations with k left-to-right maxima
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Why these permutations?

• Basis for the Hopf Algebra of permutations introduced by Malvenuto and
Reutenauer (see also Aguilar Sottile, 2004)

• Counting some configurations in statistical physics

• Maps and Hypermaps
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Number of connected permutations with k left-to-right maxima

cn,k =
n−1∑
i=1

k∑
p=1

ici,psn−i−1,k−p

where sm,j is the number of permutations of Sm with j left-to-right maxima.

Cn(x) =
n−1∑
k=1

kAn−1−k(x)Ck(x)

Robert Cori Mini course, Maps Hypermaps february 2008



23

Connected Stirling numbers

1

2 1

6 6 1

24 34 12 1

120 210 110 20 1

720 1452 974 270 30 1
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Maps

• A (non-oriented) graph G = (V, E) consists of a set V of vertices and a set E of
edges, each edge is a subset of V of cardinality 2.

• Each edge gives two arcs, one attached to each vertex contained in it

• An embedding of G in an orientable surface determines a circular order of the
arcs incident to each vertex

• This gives a permutation σ on the arcs which cycles consists of the circular order
on each vertex

• The edge set defines a fixed point free involution α on the set of arcs, each edge
determining a cycle of α consisting of the two arcs associated with it.

• The graph is connecetd if and only if the subgroup generated by α, σ is connected.
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Hypermaps

• Pair of permutations σ, α on B = {1, 2, . . . , n} such that the group they generate
is transitive on B

• This means that the graph with vertex set B and with the set of edges consists of
{b, α(b)}, {b, σ(b)} is connected .

• The cycles of σ are the vertices of the hypermap, and those of α the edges.
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From connected permutations to Hypermaps

We show the following result : Ossona de Mendez, Rosenstiehl

Theorem There exists a bijection between the set of connected permutations on
1, 2, . . . , n, n + 1 and the set of (rooted) hypermaps on : 1, 2, . . . , n.

A hypermap σ, α is associated to a connected permutation θ = a0, a1, a2, . . . , an by
the following algorithm :

• Détermine the left-to-right maxima of θ, that is the indices such that i1, i2, . . . ik
satisfying : j < ip ⇒ aj < aip

i1 = 1 aik = n

• The cycles decomposition of σ is then :

(1, 2, . . . i2 − 1)(i2, i1 + 1, . . . i3 − 1) . . . (ik . . . , n)

• The permutation α is obtained from θ deleting n + 1 from its cycle (note that this
cycle is of length not less than 2).
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Example

64 7 2 1 3 8 5 9
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Example

(2, 3, 4, 5)

4 7 2 1 3 8 5 9 6

(1)

sigma1 = 

(6,7)(8,9)
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Example

(1, 4) (2, 7, 5, 3) (6, 8, 9)

4 7 2 1 3 8 5 9 6

(1)

sigma1 = 

(6,7)(8,9)(2, 3, 4, 5)
theta = 
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Example

(8)

4 7 2 1 3 8 5 9 6

(1)

sigma = 

(6,7)(2, 3, 4, 5)
theta = 

(1, 4) (2, 7, 5, 3) (6, 8, 9)
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Example

(6,8)

4 7 2 1 3 8 5 9 6

(1)

sigma = 

(6,7)(2, 3, 4, 5)
alpha = 

(1, 4) (2, 7, 5, 3) 

(8)
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Characterization of the hypermaps obtained

Any hypermap (σ, α) obtained from a connected permutation by the algorithm
described above satisfies the following conditions :

• The cycles of the permutation σ consist of consecutive integers in increasing
order.

• The seft of right-to-left minima of α−1 contains the smallest element of each cycle
of σ except possibly the smallest of the last one.
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Rooted Hypermaps

Theorem For any hypermap (σ, α) there is an isomorphism φ such that φ(n) = n,
and such that the hypermap (σ′, α′) given by :

α′ = φαφ−1 σ′ = φσφ−1

satisfies the conditions above.
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Enumeration by number of vertices

• The number of rooted hypermaps with n arcs and p vertices is equal to the
number of connected permutations of Sn+1 with p cycles, or the number of such
permutations with p left-to-right maxima.
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Enumeration by number of vertices and edges

Theorem

• The number of rooted hypermaps with n arcs, p vertices and q edges is equal to
the number of connected permutations of Sn+1 with p cycles, and q left-to-right
maxima.
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Weighted Dyck words (or paths)

• A Dyck word is a sequence w of letters a and b, having as many a’s as b’s, and
such that for any left factor the number of a’s is not less that the number of b’s.

• We will write
|w|a = |w|b w = w′w” ⇒ |w′|a ≥ |w′|b

• We associate a polynomial λ(w) in two variables x, y to each Dyck word by
associating to each letter b appearing in w a polynomial of degree 1 λi and then
taking the product of these λi

• For each decomposition w = w′
ibw”i, λi = x if w′ ends with an a and

λi = y + hi when w′ ends with an b, where hi = |w′
ib|a − |w′

ib|b

Robert Cori Mini course, Maps Hypermaps february 2008



37

Example

aa a a b ab b b b bba a
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Example

x
a a a b ab b b b bba a a

Robert Cori Mini course, Maps Hypermaps february 2008



39

Example

x

a a a b ab b b b bba a a
x
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y+2

a a a b ab b b b bba a a
x x
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Example

y+1

a a a b ab b b b bba a a
x x

y+2
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Example

y

a a a b ab b b b bba a a
x x

y+2
y+1
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Example

y

a a a b ab b b b bba a a
x x

y+2
y+1

y
x
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Example

2

a a a b ab b b b bba a a
x x

y+2
y+1

y
x y

3
x  y  (y+1)(y+2)
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The polynomial Ln(x, y)

This polynomial is the sum of the λ(w) for all Dyck words w of length 2n.

x x x

x(y+1)y x y x x x y

x x y
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Stirling numbers again

We have :

L3(x, y) = x3 + 3x2y + xy2 + xy

L3(x, y) = x[(x + 1 + y)2 + (x + 1)y − 2(x + 1 + y) + 1]

For all n :

Ln(x, 1) = x(x + 1)(x + 2) · · · (x + n− 1)

L3(x, 1) = x(x2 + 3x + 2)

Proof :
Bijection between permutations and labelled Dyck words
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From permutations to labelled Dyck words

To any permutation θ of Snwe associate a labelled Dyck word by the following
algorithm :

• Consider

•

Robert Cori Mini course, Maps Hypermaps february 2008



48

Restriction to primitive Dyck Words

This polynomial L′
n(x, y) is the sum of the λ(w) for all primitive Dyck words w of

length 2n.

This gives for instance :

L′
3(x, y) = x2y + xy2 + xy
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Number of hypermaps with p vertices and q edges.

Theorem

For all n we have. The number of hypermaps with n arcs, p vertices and q edges is
given by the coefficient of xpyq in L′

n(x, y)

Corollary :

The polynomial L′
n(x, y) is symmetric in x, y
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Le genre?
• Il est difficile de voir le genre de l’hypercarte sur la permutation connexe associée

• Une des raisons est que l’algorithme d’obtention de θ procède par parcours en
largeur, alors que le genre est reflété par le parcours en profondeur (voir
algorithme de Tarjan et mon algo de codage).

• On pourrait probablement caractériser le genre en faisant intervenir un algorithme
de parcours en profondeur, mais on perdrait très probablement la caractérisation
du nombre de sommets et du nombre d’arêtes
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