Connected Permutations, Hypermaps and Weighted Dyck Words

1

Why?

- Graph embeddings
- Nice bijection by Patrice Ossona de Mendez and Pierre Rosenstiehl.
- Deduce enumerative results.
- Extensions?

2

Cycles (or orbits)

A *permutation* α is a sequence of n distinct integers a_1, a_2, \ldots, a_n all such that $1 \le a_i \le n$. It is often useful to consider α as a one to one map from $\{1, 2, \ldots, n\}$ on to itself, denoting a_i by $\alpha(i)$.

A cycle is a sequence b_1, b_2, \ldots, b_p of distinct integers such that $b_{i+1} = \alpha(b_i)$ for $1 \le i < p$ and $b_1 = \alpha(b_p)$

Example : A permutation

$$\alpha = 7, 3, 4, 2, 1, 6, 5$$

and its cycles :

(1,7,5) (2,3,4) (6)

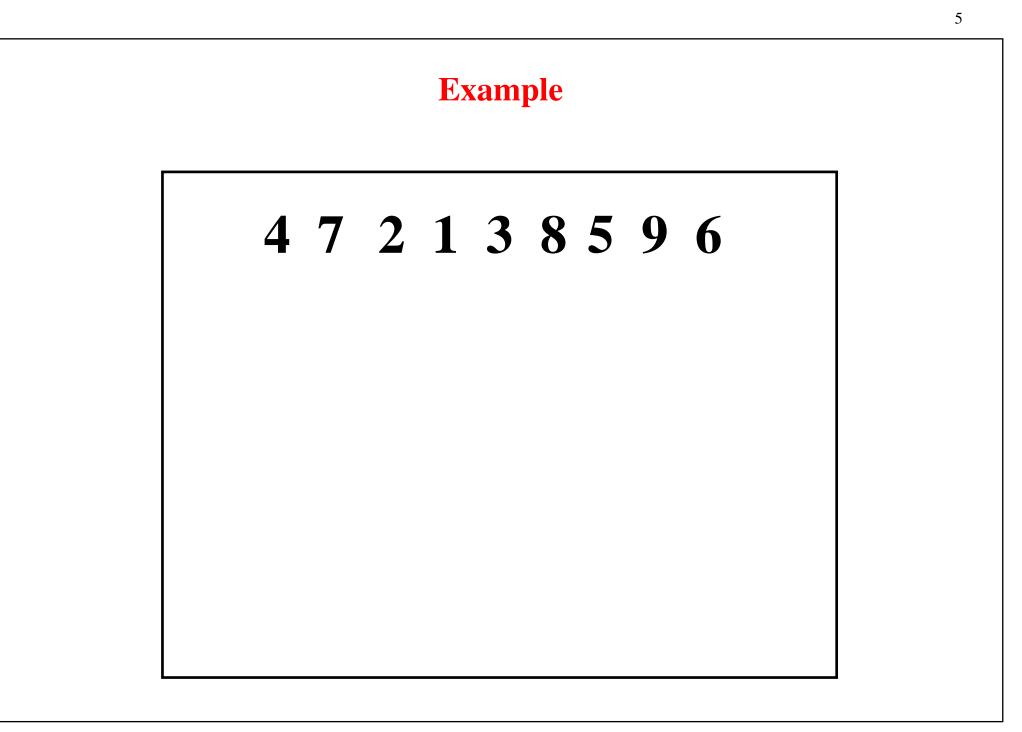
The set of all permutations (i. e. the symmetric group) is denoted S_n .

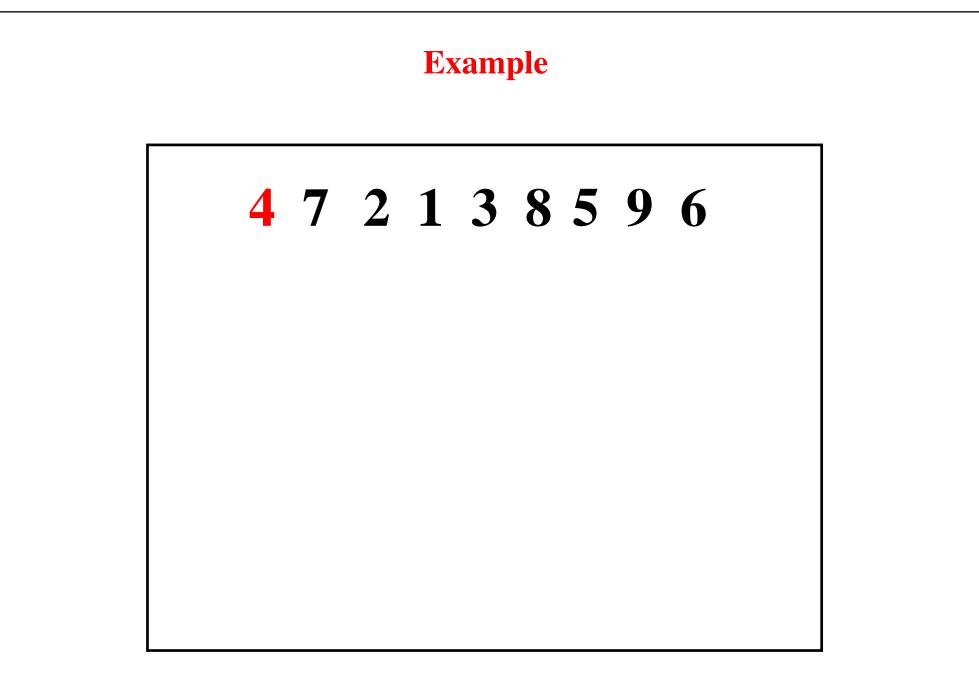
Left-to-right maxima

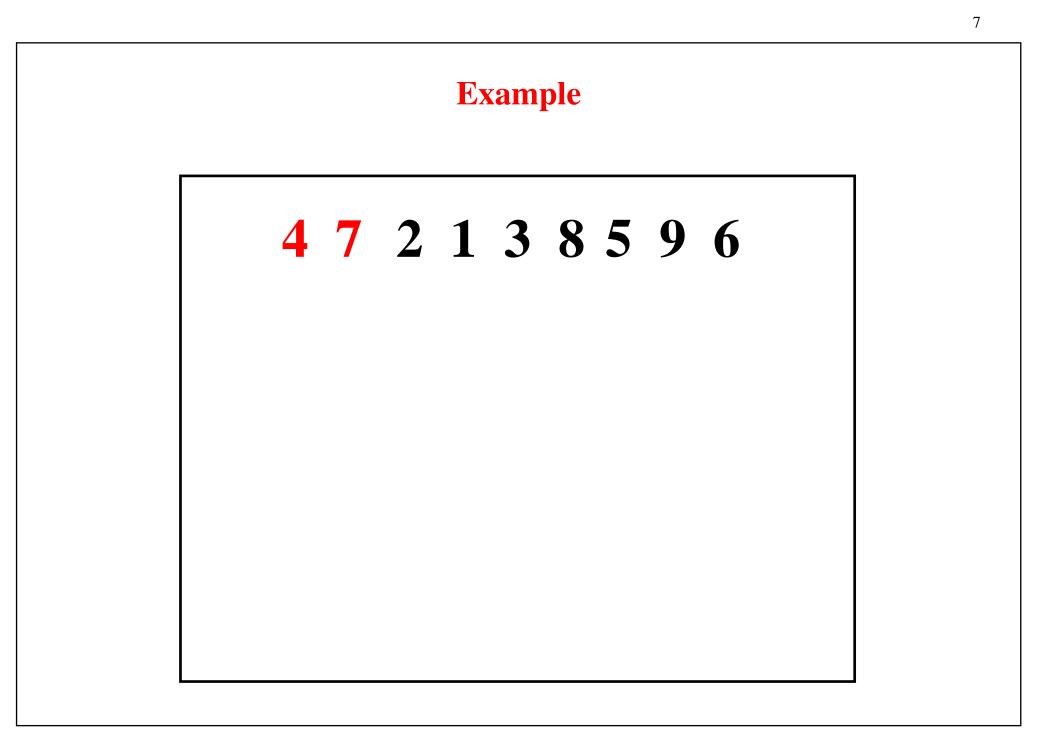
Let $\alpha = a_1, a_2, \ldots, a_n$ be a permutation, a_i is a left-to-right maxima if $a_j < a_i$ for all $1 \le j < i$.

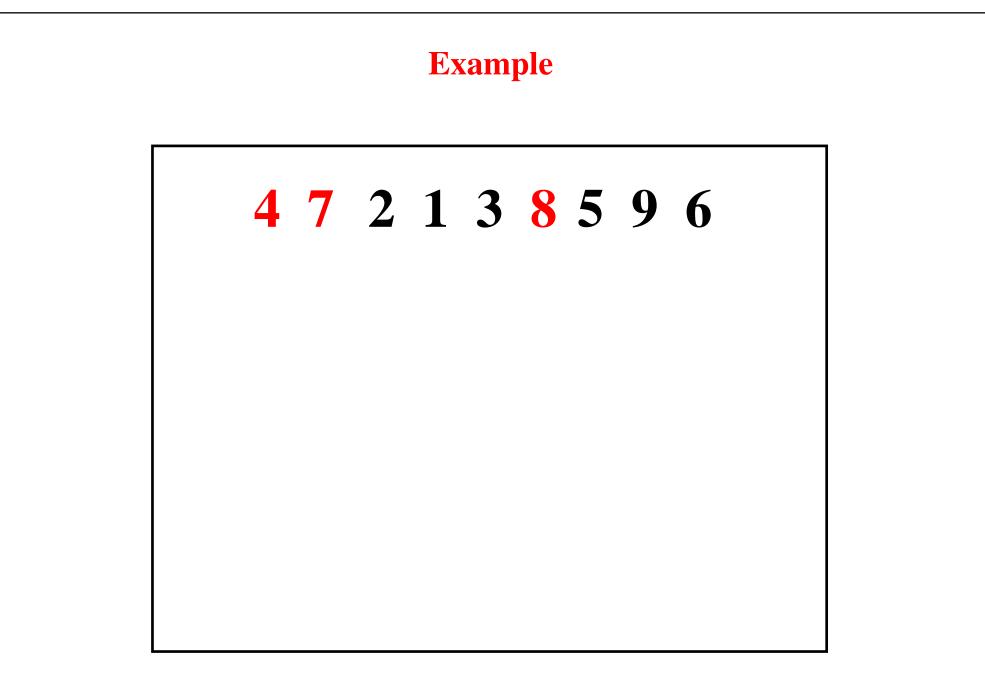
Remarks :

- for any α , a_1 is a left-to-right maxima
- if $a_k = n$ then it is a left-to -right maxima
- the number of left-to-right maxima of a permutation α is equal to 1 if and only if $a_1 = n$.

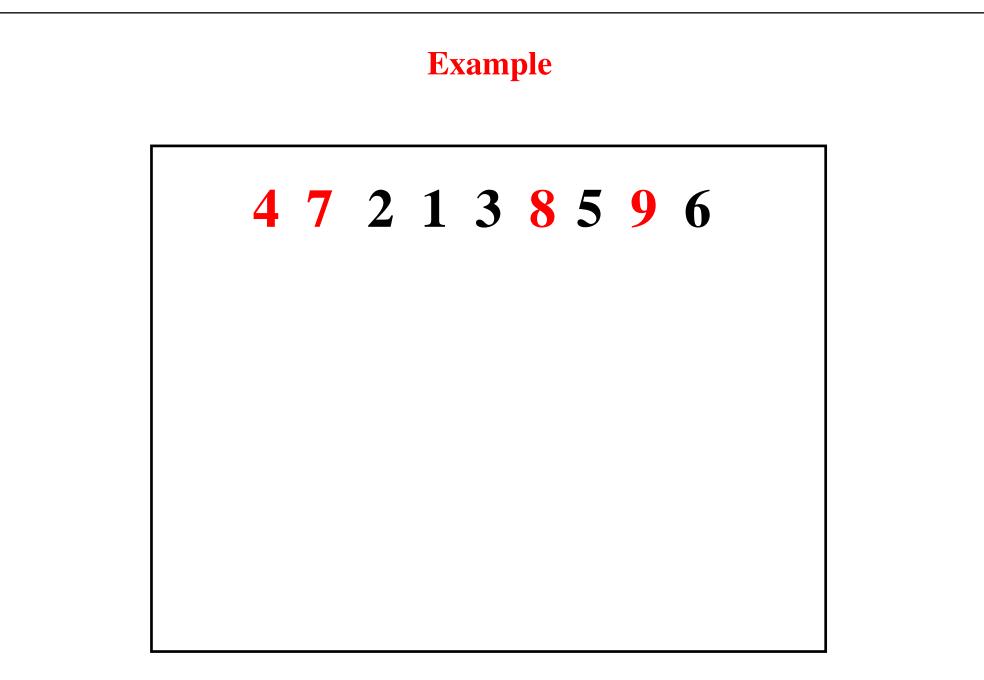








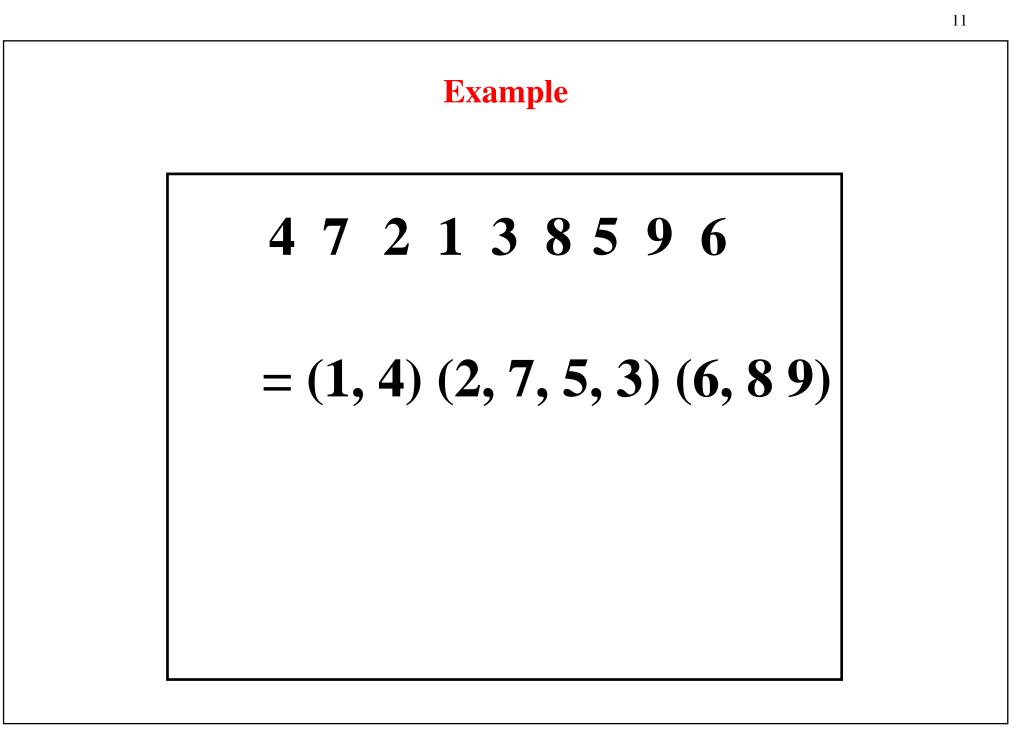
8

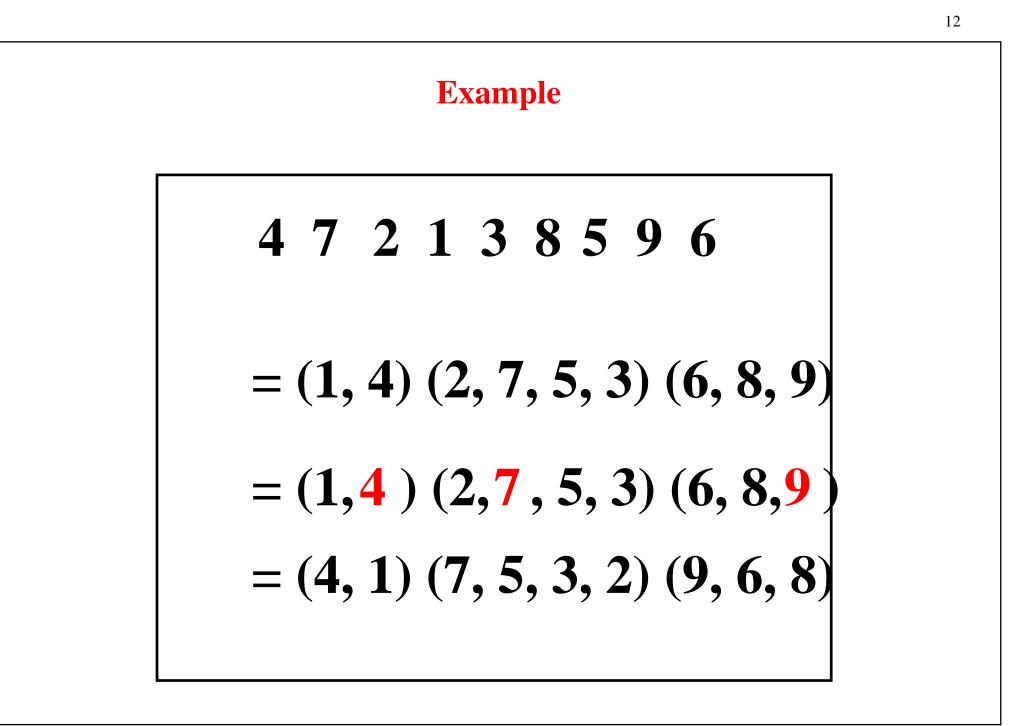


Bijection (Foata Transform)

The following algorithm describes a bijection from the set of permutations having k cycles to the set of permutations having k left-to-right maxima.

- Write the permutation α as a product of cycles $\Gamma_1, \Gamma_2, \ldots, \Gamma_k$ in which the first element of each cycle Γ_i is the maximum among the elements of Γ_i
- Reorder the Γ_i such that the first elements of the cycles appear in increasing order.
- Delete the parenthesis around the cycles.





Example

$$frac{1}{2}$$

$$frac{1}{4}$$

$$frac{1}{7}$$

$$frac{1}{2}$$

$$frac{1}{3}$$

$$frac{1}$$

Enumeration

The number of permutations $s_{n,k}$ of S_n having k cycles is equal to the coefficient of x^k in the polynomial :

$$A_n(x) = x(x+1)(x+2)\cdots(x+n-1)$$

Proof: In order to build the permutations of S_n with k cycles, we can start with permutations from S_{n-1} having k - 1 cycles and add one cycle containing only n, or with the permutations from S_{n-1} having k cycles and add n inside one of its cycles. This second construction gives n - 1 permutations for each permutation of S_{n-1} , hence :

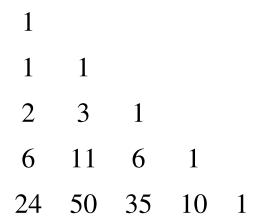
$$s_{n,k} = s_{n-1,k-1} + (n-1)s_{n-1,k}$$

Multiplying each equality by x^k and summing up we get :

$$A_n(x) = xA_{n-1}(x) = (n-1)A_{n-1}(x)$$

giving the result.

Stirling numbers



Connected Permutations

• Seems to be considered for the first time by André Lentin (Thesis, 1969) then by Louis Comtet (note aux Comptes Rendus Acad Sci Paris (1972))

Définition A permutation $\alpha = a_1, a_2, \dots, a_n$ is connected if it does not contain a left factor (of length $p, 0) which is a permutation of <math>1, 2, \dots p$.

Exemple For n = 3, there are 3 connected permutations : 2, 3, 1, 3, 2, 1 and 3, 1, 2, there are also 3 non connected permutations : 1, 2, 3, 1, 3, 2 and 2, 1, 3. The permutations 2, 4, 1, 3 and 3, 1, 4, 2 are connected.

• The numbers of connected permutations 1, 1, 3, 13, 71, 461, 3447,

First formula

- Any non connected permutation is the concatenation of a connected permutation on $1, 2, \ldots p$ and a permutation on $p + 1, \ldots n$ where $: 1 \le p < n$.
- hence :

$$n! - c_n = \sum_{p=1}^{n-1} c_p \ (n-p)!$$

• Allows us to compute the first terms

Generating functions

$$Fact(x) - C(x) = C(x)Fact(x)$$
 where $Fact(x) = \sum_{n \ge 1} n! x^n$

Giving :

$$C(x) = \frac{Fact(x)}{Fact(x) + 1} = 1 - \frac{1}{1 + Fact(x)}$$

Another formula (Lentin)

A permutation β of S_{n-1} is *k*-connectable if there are exactly *k* positions in β where inserting *n* gives a connected permutation.

Remarks

- if the insertion of n in position j gives a connected permutation then this is also the case for any insertion in position i < j
- Any permutation β , is *p*-connectable for some $p \ge 1$
- A permutation is 1-connectable if and only if the first element is 1
- A permutation on 1, 2, ..., n 1 is (n 1) connectable if and only if it is connected.

Another formula (2)

Proposition For $1 \le k < n$ the number $u_{n,p}$ of *p*-connectable permutations on $1 \dots n - 1$ is equal to :

 $c_p(n-p-1)!$

Proof: If a permutation is the concatenation of a connected permutation of length p and of a permutation of length n - 1 - p then it is *p*-connectable.

Corollary:

$$c_n = \sum_{p=1}^{n-1} pc_p (n-1-p)!$$

Moreover, the number of connected permutations on 1, 2, ..., n such that 1 is in position p is given by :

$$\sum_{k=1}^{p-1} c_{n-k}(k-1)!$$

Foata transform

Proposition α is connected if and only if its Foata transform is connected **Consequence** The number of connected permutations with k cycles is equal to the number of connected permutations with k left-to-right maxima

20

Why these permutations?

- Basis for the Hopf Algebra of permutations introduced by Malvenuto and Reutenauer (see also Aguilar Sottile, 2004)
- Counting some configurations in statistical physics
- Maps and Hypermaps

Number of connected permutations with k left-to-right maxima

$$c_{n,k} = \sum_{i=1}^{n-1} \sum_{p=1}^{k} i c_{i,p} s_{n-i-1,k-p}$$

where $s_{m,j}$ is the number of permutations of S_m with *j* left-to-right maxima.

$$C_n(x) = \sum_{k=1}^{n-1} k A_{n-1-k}(x) C_k(x)$$

Connected Stirling numbers

1					
2	1				
6	6	1			
24	34	12	1		
120	210	110	20	1	
720	1452	974	270	30	1

Maps

- A (non-oriented) graph G = (V, E) consists of a set V of vertices and a set E of edges, each edge is a subset of V of cardinality 2.
- Each edge gives two arcs, one attached to each vertex contained in it
- An embedding of G in an orientable surface determines a circular order of the arcs incident to each vertex
- This gives a permutation σ on the arcs which cycles consists of the circular order on each vertex
- The edge set defines a fixed point free involution α on the set of arcs, each edge determining a cycle of α consisting of the two arcs associated with it.
- The graph is connected if and only if the subgroup generated by α, σ is connected.

Hypermaps

- Pair of permutations σ, α on $B = \{1, 2, ..., n\}$ such that the group they generate is transitive on B
- This means that the graph with vertex set B and with the set of edges consists of {b, α(b)}, {b, σ(b)} is connected.
- The cycles of σ are the vertices of the hypermap, and those of α the edges.

From connected permutations to Hypermaps

We show the following result : Ossona de Mendez, Rosenstiehl

Theorem There exists a bijection between the set of connected permutations on 1, 2, ..., n, n + 1 and the set of (rooted) hypermaps on : 1, 2, ..., n.

A hypermap σ, α is associated to a connected permutation $\theta = a_0, a_1, a_2, \dots, a_n$ by the following algorithm :

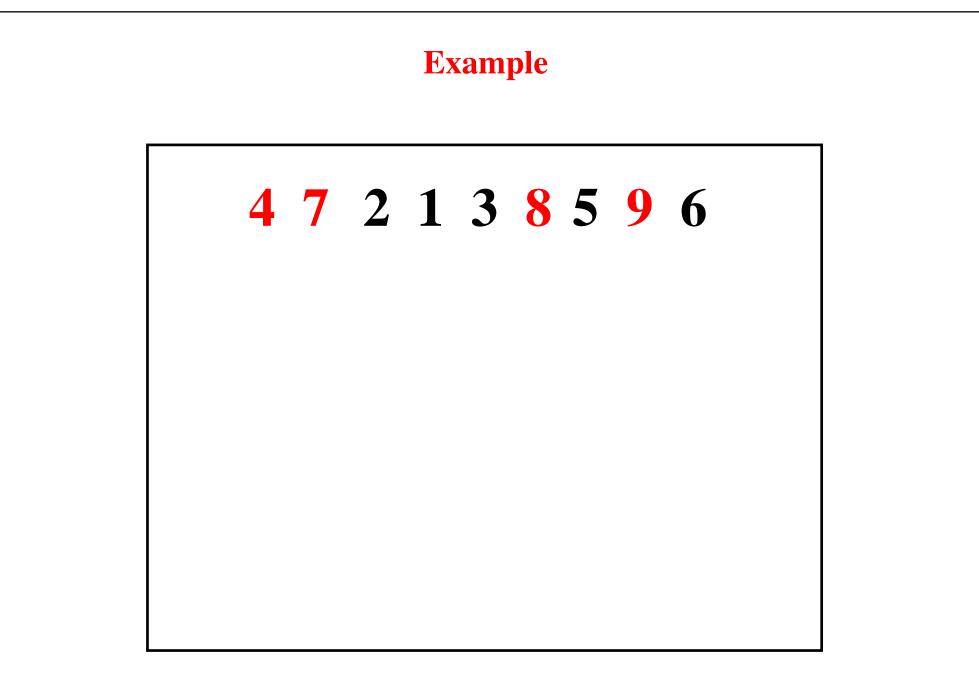
• Détermine the left-to-right maxima of θ , that is the indices such that $i_1, i_2, \dots i_k$ satisfying : $j < i_p \Rightarrow a_j < a_{i_p}$

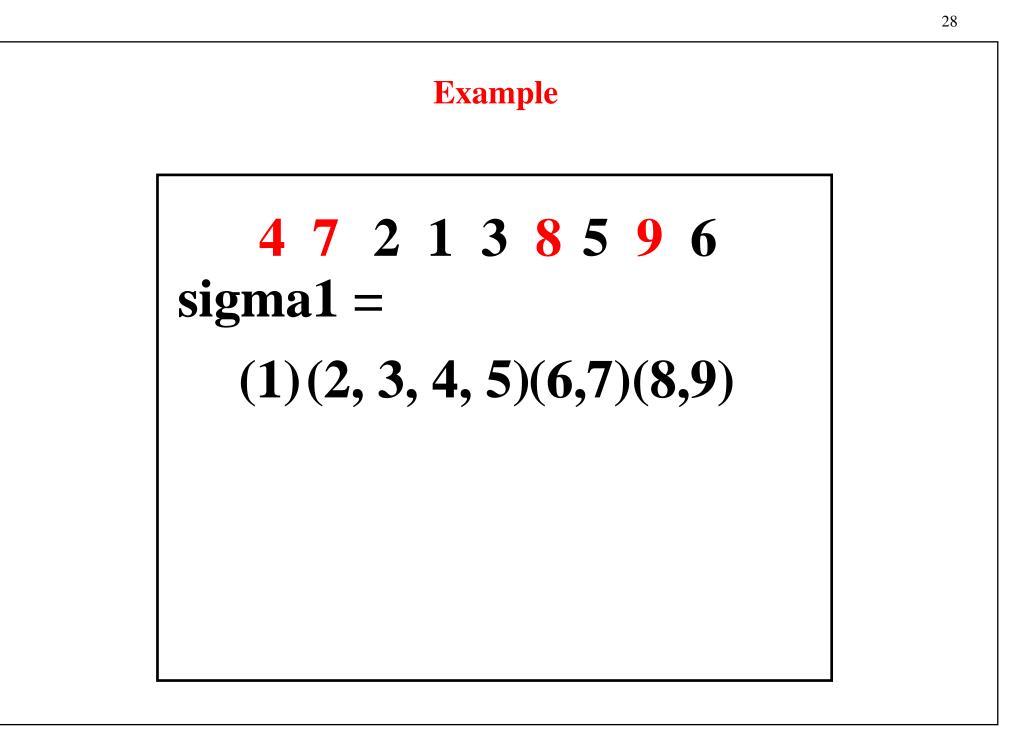
$$i_1 = 1 \quad a_{i_k} = n$$

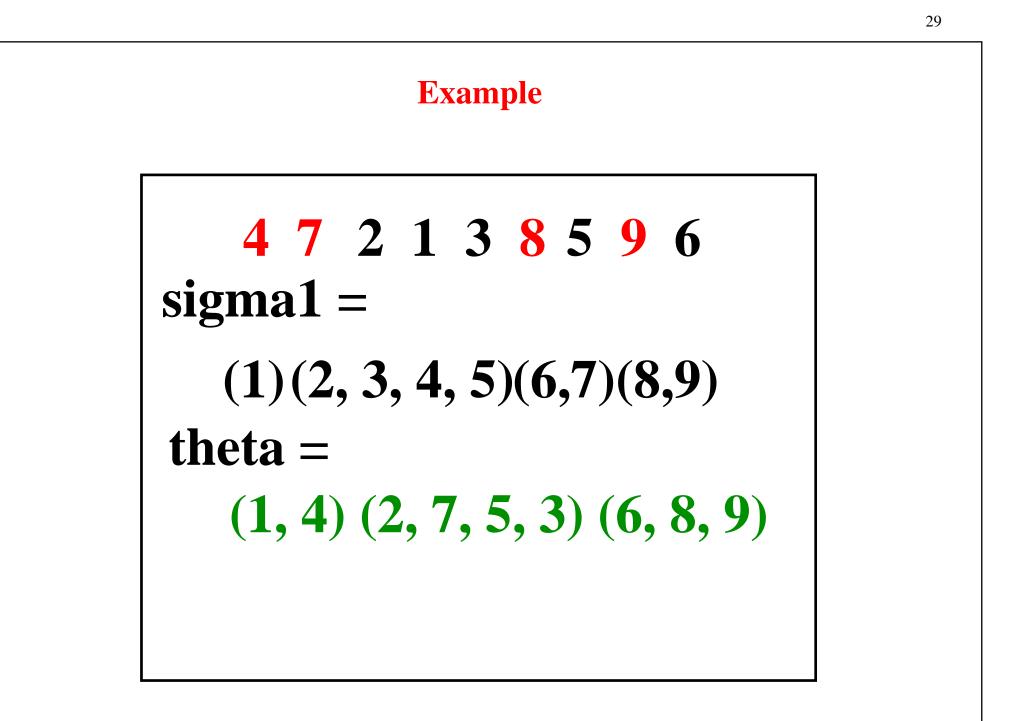
• The cycles decomposition of σ is then :

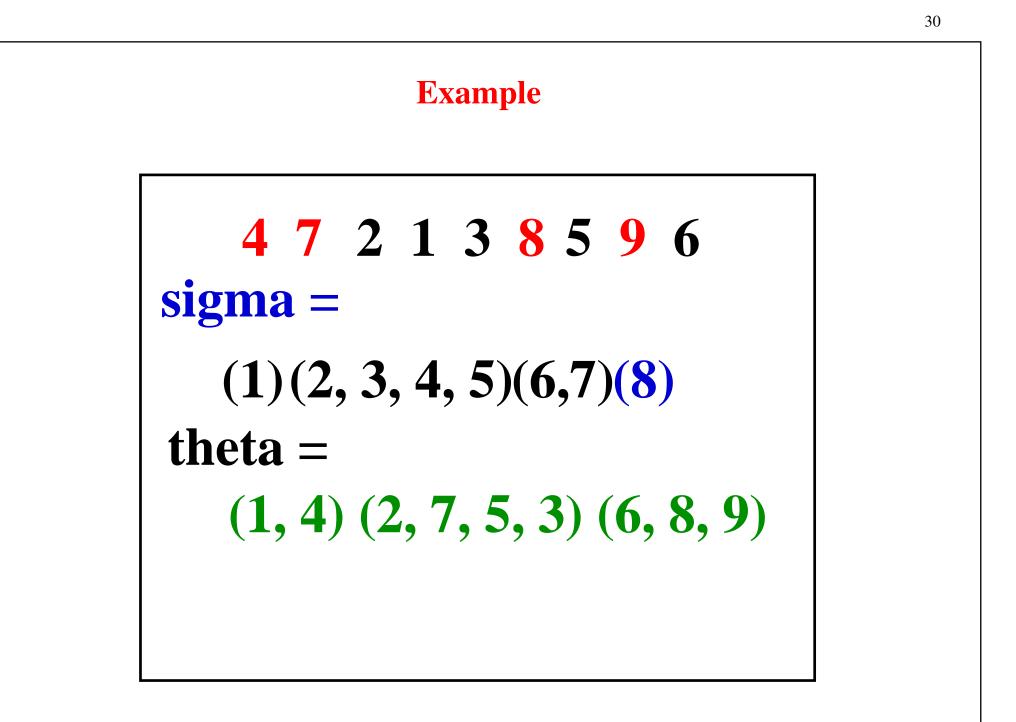
$$(1, 2, \ldots i_2 - 1)(i_2, i_1 + 1, \ldots i_3 - 1) \ldots (i_k \ldots, n)$$

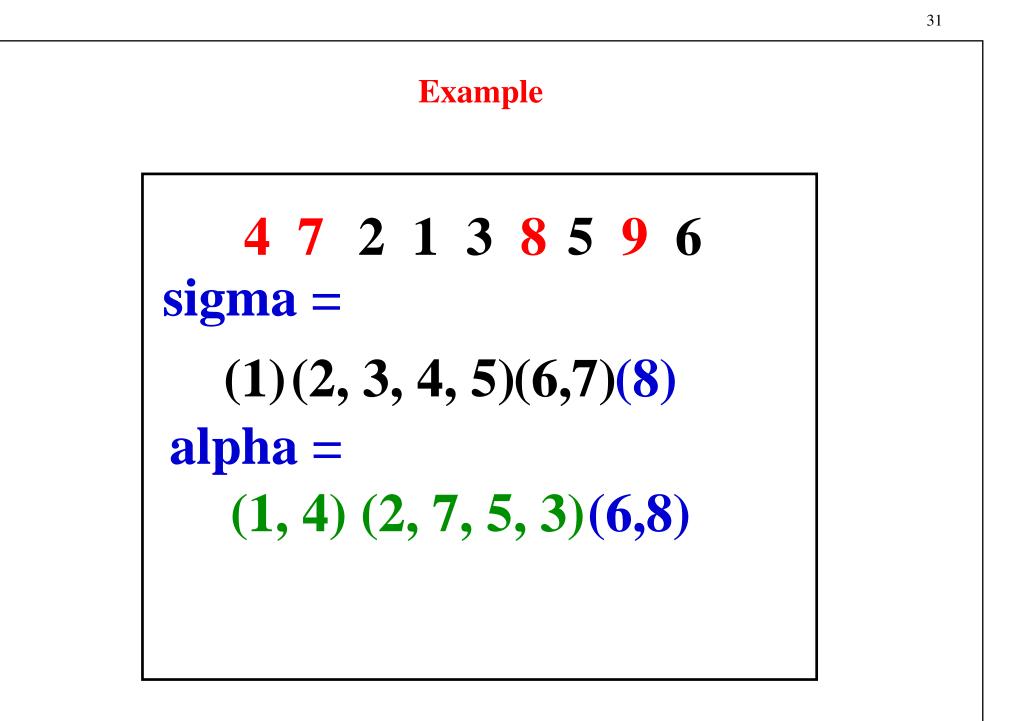
• The permutation α is obtained from θ deleting n + 1 from its cycle (note that this cycle is of length not less than 2).











Characterization of the hypermaps obtained

Any hypermap (σ, α) obtained from a connected permutation by the algorithm described above satisfies the following conditions :

- The cycles of the permutation σ consist of consecutive integers in increasing order.
- The seft of right-to-left minima of α^{-1} contains the smallest element of each cycle of σ except possibly the smallest of the last one.

Rooted Hypermaps

Theorem For any hypermap (σ, α) there is an isomorphism ϕ such that $\phi(n) = n$, and such that the hypermap (σ', α') given by :

$$\alpha' = \phi \alpha \phi^{-1} \quad \sigma' = \phi \sigma \phi^{-1}$$

satisfies the conditions above.

Enumeration by number of vertices

• The number of rooted hypermaps with n arcs and p vertices is equal to the number of connected permutations of S_{n+1} with p cycles, or the number of such permutations with p left-to-right maxima.

Enumeration by number of vertices and edges

Theorem

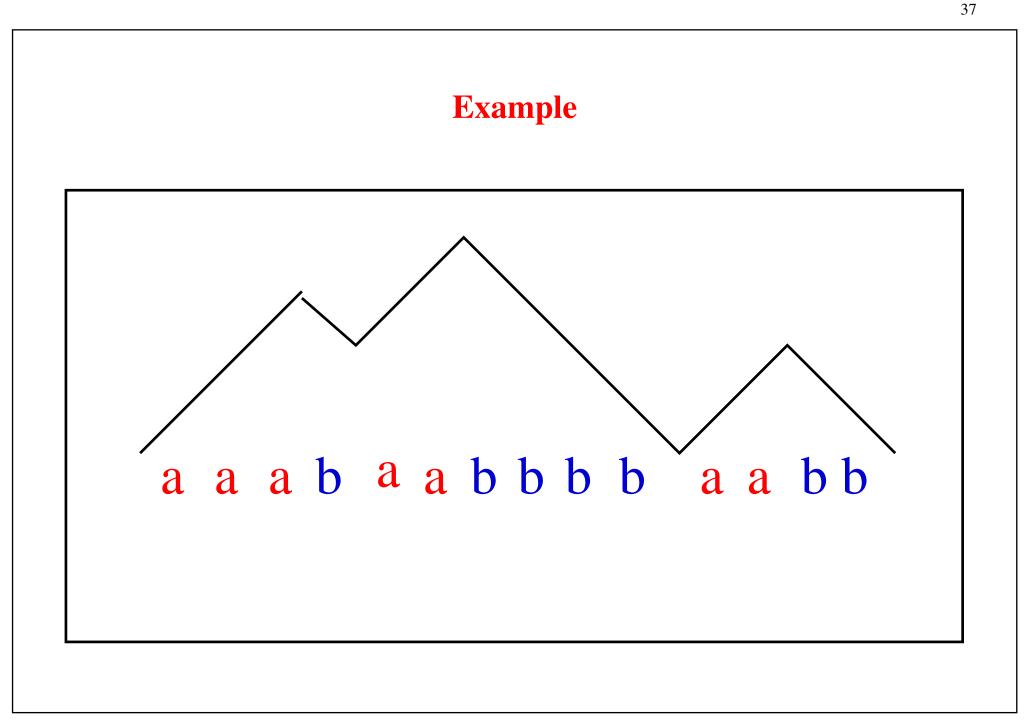
• The number of rooted hypermaps with n arcs, p vertices and q edges is equal to the number of connected permutations of S_{n+1} with p cycles, and q left-to-right maxima.

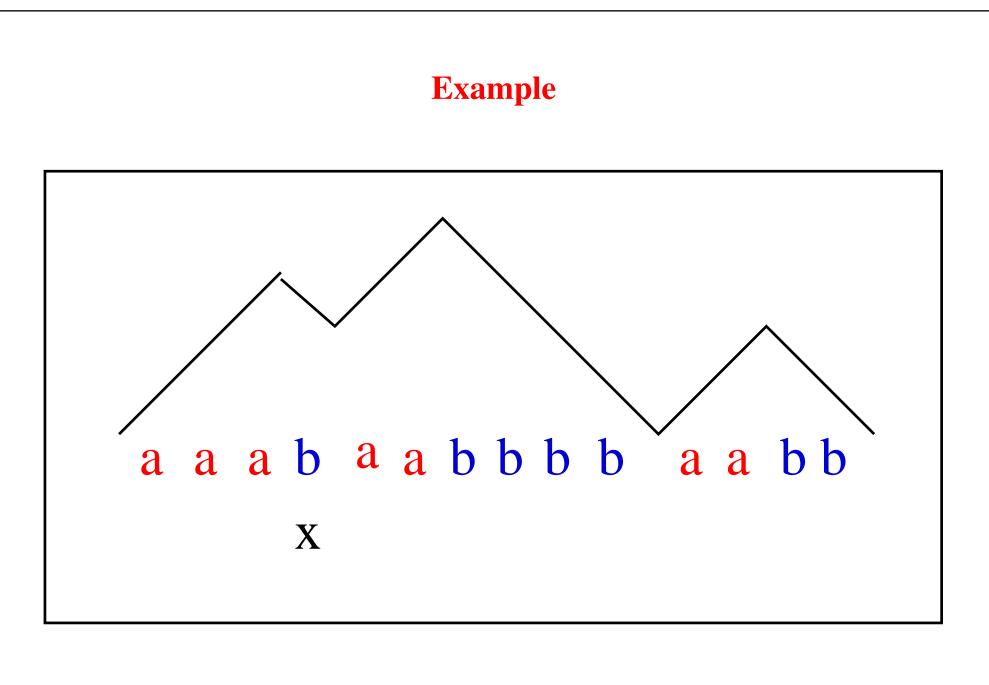
Weighted Dyck words (or paths)

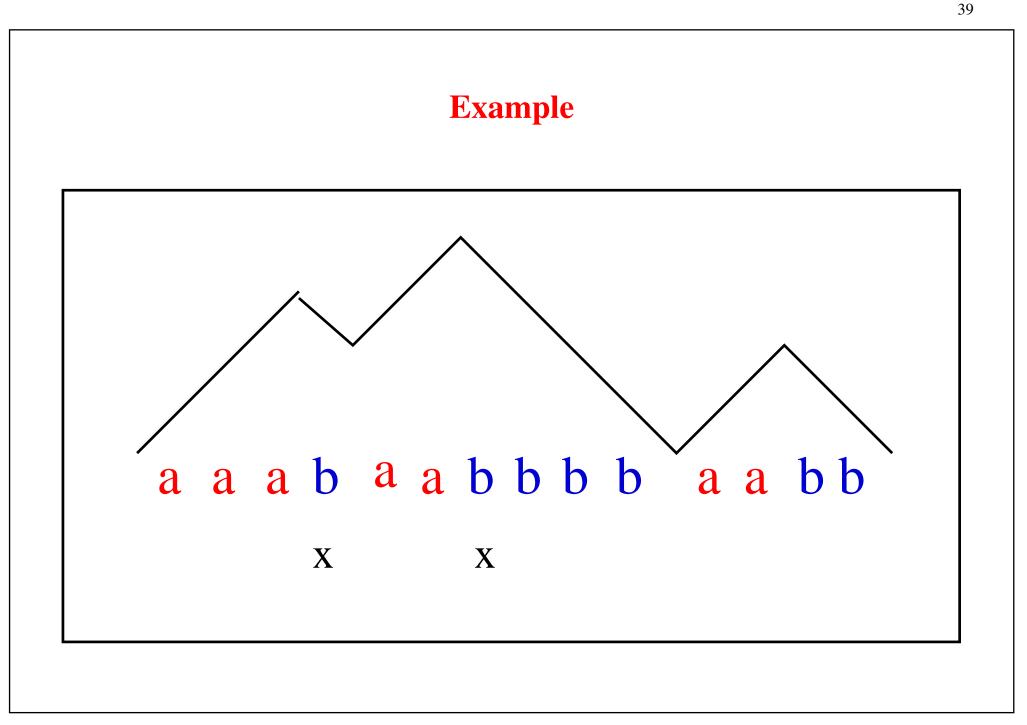
- A Dyck word is a sequence *w* of letters *a* and *b*, having as many *a*'s as *b*'s, and such that for any left factor the number of *a*'s is not less that the number of *b*'s.
- We will write

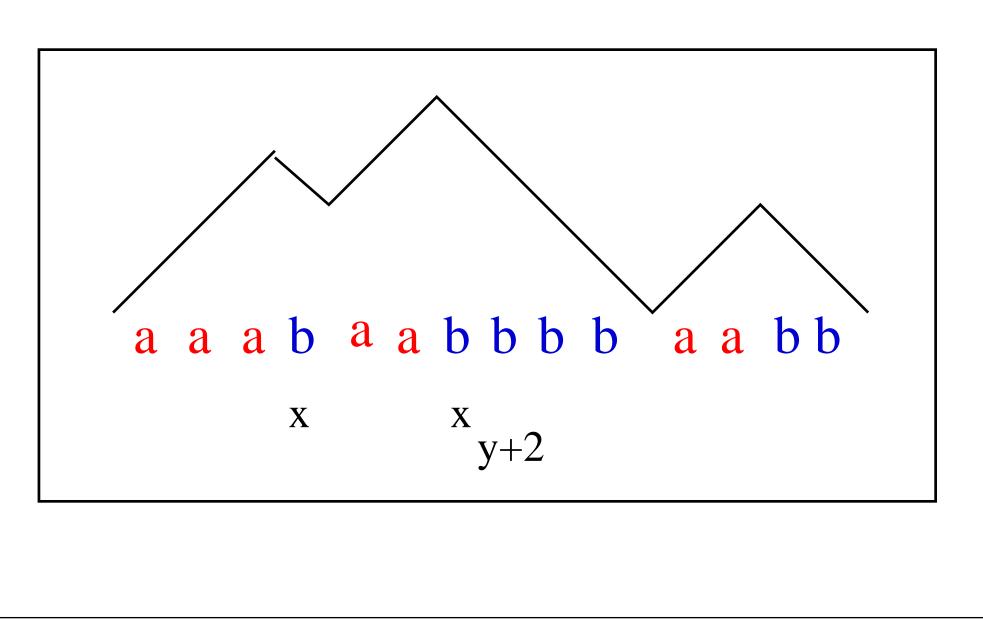
$$|w|_a = |w|_b \quad w = w'w" \Rightarrow |w'|_a \ge |w'|_b$$

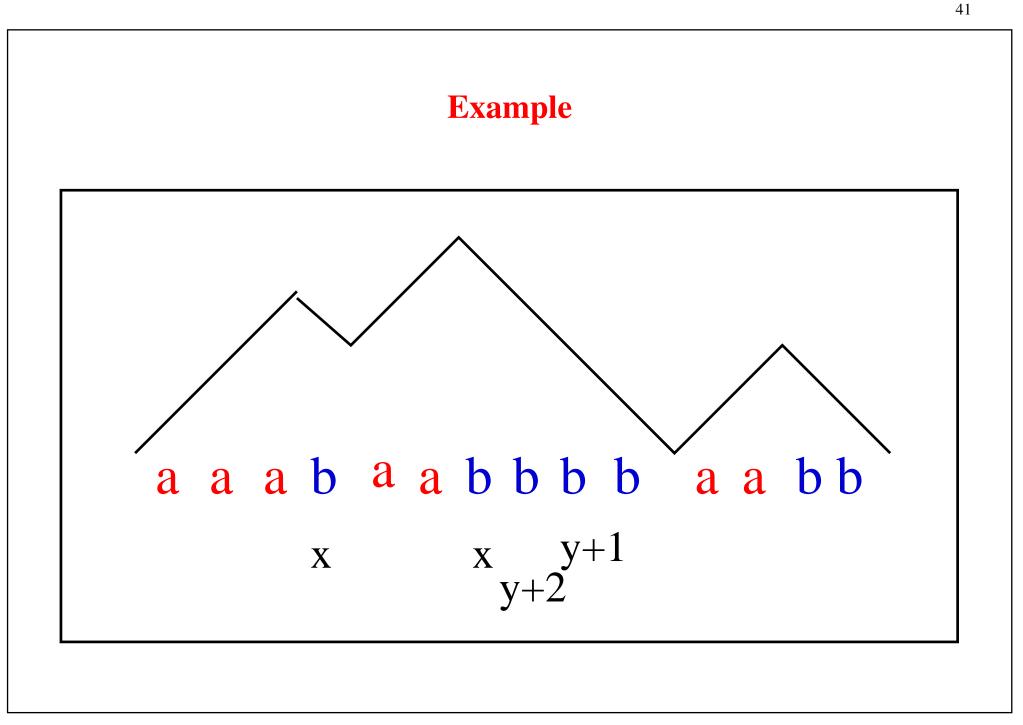
- We associate a polynomial λ(w) in two variables x, y to each Dyck word by associating to each letter b appearing in w a polynomial of degree 1 λ_i and then taking the product of these λ_i
- For each decomposition $w = w'_i b w''_i$, $\lambda_i = x$ if w' ends with an a and $\lambda_i = y + h_i$ when w' ends with an b, where $h_i = |w'_i b|_a |w'_i b|_b$

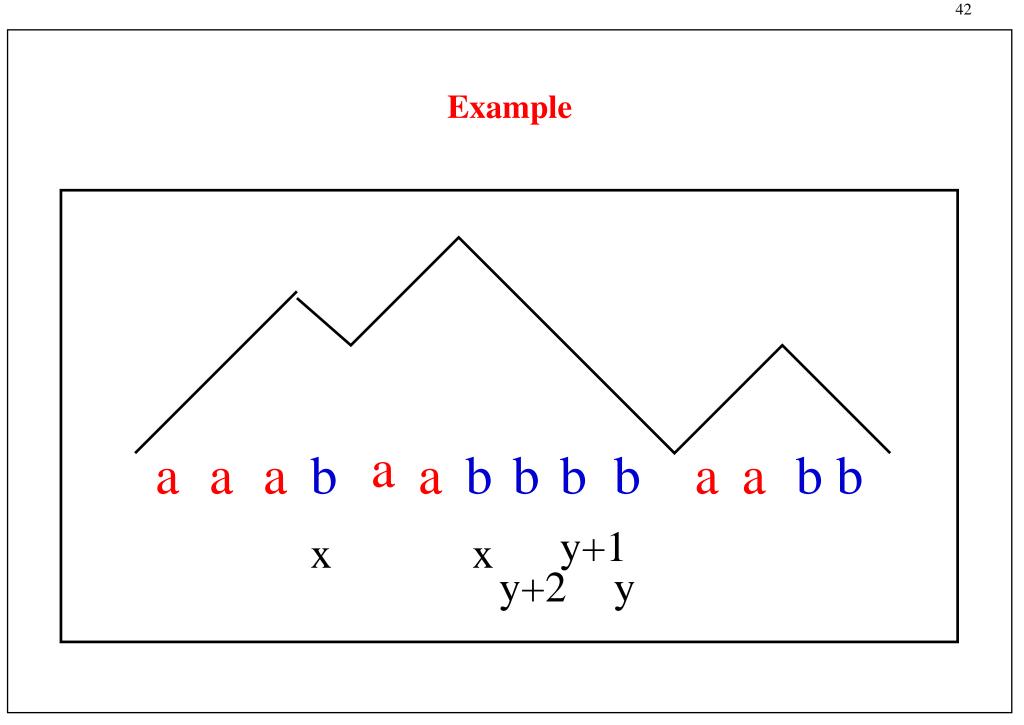


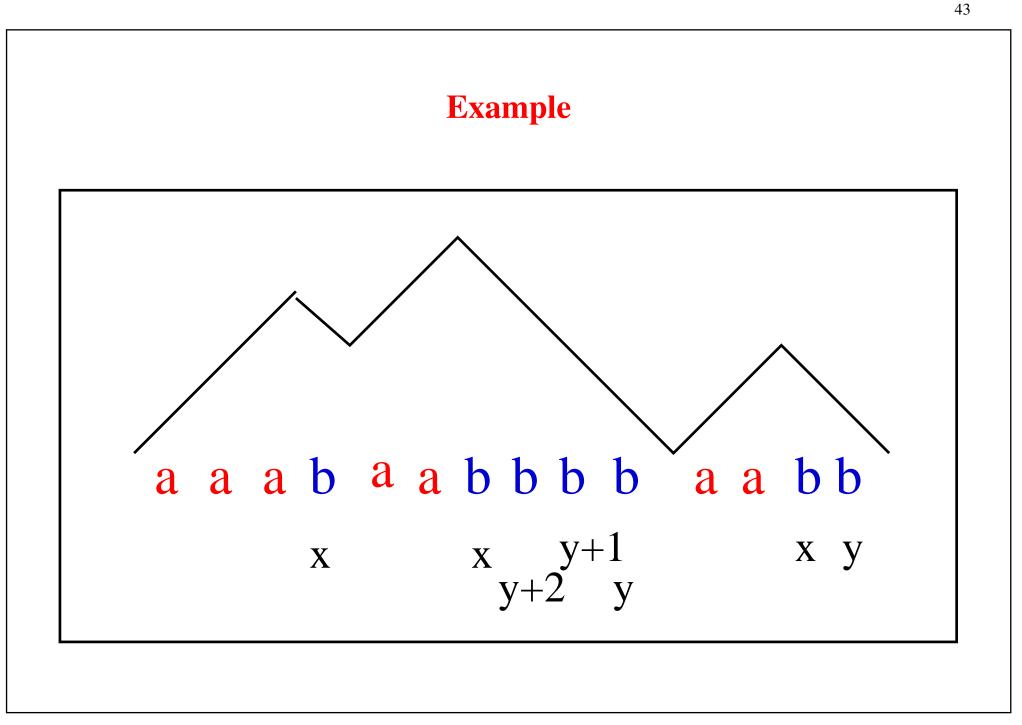


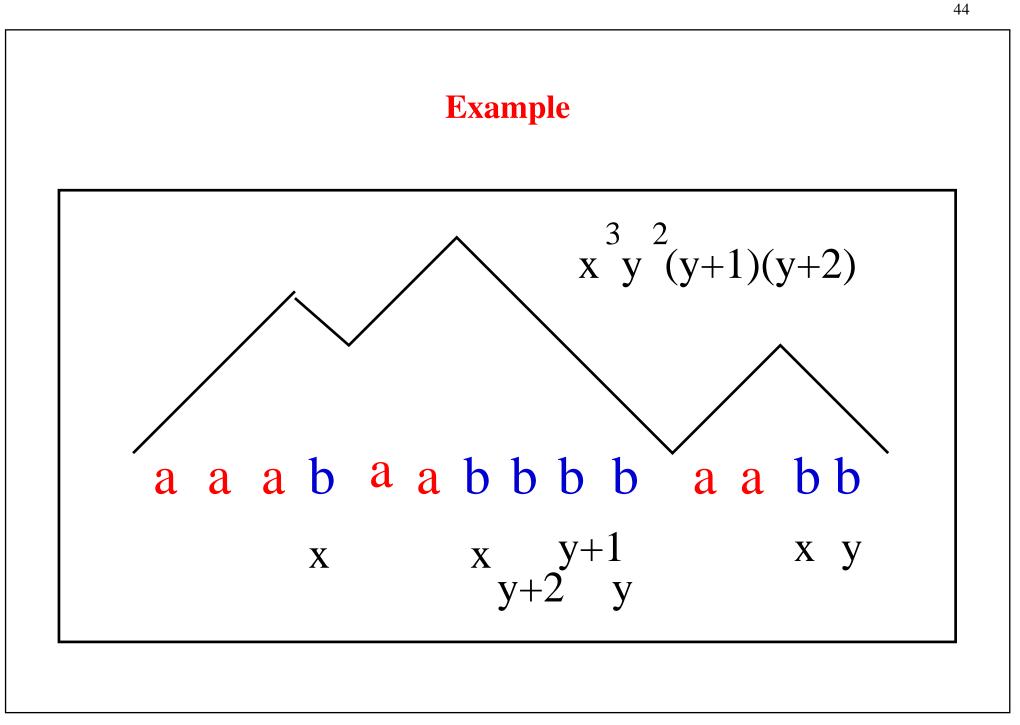






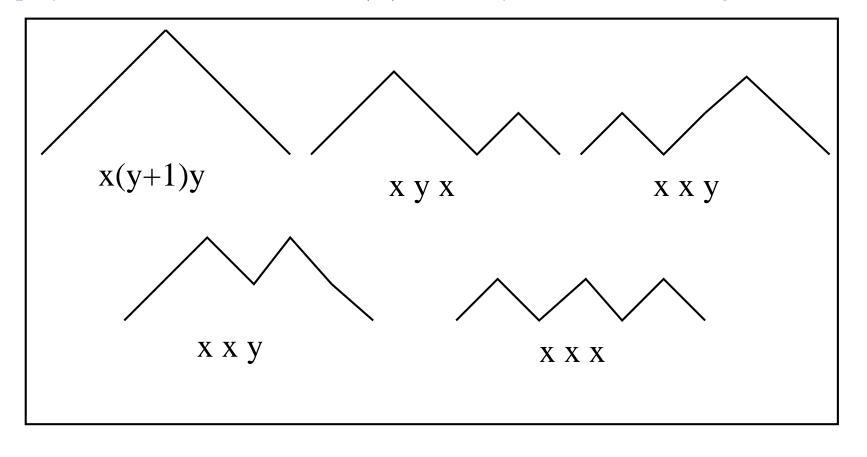






The polynomial $L_n(x, y)$

This polynomial is the sum of the $\lambda(w)$ for all Dyck words w of length 2n.



Stirling numbers again

We have :

$$L_3(x,y) = x^3 + 3x^2y + xy^2 + xy$$

$$L_3(x,y) = x[(x+1+y)^2 + (x+1)y - 2(x+1+y) + 1]$$

For all n:

$$L_n(x,1) = x(x+1)(x+2)\cdots(x+n-1)$$

$$L_3(x,1) = x(x^2 + 3x + 2)$$

Proof : Bijection between permutations and labelled Dyck words

Robert Cori

From permutations to labelled Dyck words

To any permutation θ of S_n we associate a labelled Dyck word by the following algorithm :

- Consider
- \bullet

Restriction to primitive Dyck Words

This polynomial $L'_n(x, y)$ is the sum of the $\lambda(w)$ for all primitive Dyck words w of length 2n.

This gives for instance :

 $L'_{3}(x,y) = x^{2}y + xy^{2} + xy$

Number of hypermaps with p vertices and q edges.

Theorem

For all *n* we have. The number of hypermaps with *n* arcs, *p* vertices and *q* edges is given by the coefficient of $x^p y^q$ in $L'_n(x, y)$

Corollary :

The polynomial $L'_n(x, y)$ is symmetric in x, y

Le genre?

- Il est difficile de voir le genre de l'hypercarte sur la permutation connexe associée
- Une des raisons est que l'algorithme d'obtention de θ procède par parcours en largeur, alors que le genre est reflété par le parcours en profondeur (voir algorithme de Tarjan et mon algo de codage).
- On pourrait probablement caractériser le genre en faisant intervenir un algorithme de parcours en profondeur, mais on perdrait très probablement la caractérisation du nombre de sommets et du nombre d'arêtes

50