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Abstract

In this talk we present some results, recently obtained in collaboration with M. Rigoli and A.G.
Setti, that extend the original Bochner technique to the case of Lp harmonic forms on geodesically
complete manifolds and in the presence of a negative amount of curvature.
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1 The case of a closed manifold

Geometric Analysis. Roughly speaking: you are given a geometric problem. Summarize it into a family
of functions (of geometric content) which, in turn, are governed by a system of differential (in)equalities.
Obtain information on the qualitative and quantitative properties of solutions of these differential systems.
Geometry, in general, will impose some further constrains and guide the analysis of solutions. Apply this
information to the given geometric functions and get a conclusion about the original problem.

1.1 Bochner original argument

A prototypical example is represented by the celebrated Bochner technique, originally introduced by S.
Bochner in the ’50s to investigate the relation between the topology and the curvature of a closed (i.e.
compact and without boundary) Riemannian manifold. In fact, it is a simple matter to realize that,
given a smooth, compact manifold M , it is always possible to find a contractible, dense, open set E ⊆ M
supporting a metric with constant curvature of a prescribed sign. Simply fix any metric (, ) on M , a
reference origin p ∈ M and delete from M the corresponding cut-locus cut (p), which is a closed (hence
compact) set of zero-measure. Thus E = M − cut (p) is diffeomorphic to the star-shaped, relatively
compact, open set 0 ∈ E ⊆ TpM ≈ Rm via the exponential map expp. To conclude, fix a constant
curvature metric on E and pull it back on E . Note that, in a (quite strong) sense, the topology of M
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is contained in the (apparently evanescent) removed set cut (p). For instance, it is not difficult to show
that the inclusion i : cut (p) ↪→ M induces isomorphisms between homology (and cohomology) groups

Hk (cut (p) ;Z) ' Hk (M ;Z)

at least for k 6= m, m− 1. Now, closing M − cut (p) by addition of cut (p) produces a non-trivial topology
that, in general, may represent an obstruction for M to support a Riemannian metric with some curvature
bound, e.g., given sign. Bochner result goes precisely in this direction. Let us recall the argument.

Theorem 1 (Bochner) Let (M, 〈, 〉) be an oriented, closed, connected Riemannian manifold of dimen-
sion m = dim M . Suppose that Ric ≥ 0 on M . Then the first (real) Betti number of M satisfies

b1 (M ;R) ≤ m

the equality holding if and only if M is a flat torus. Furthermore, if Ric > 0 at some p ∈ M , then

b1 (M ;R) = 0.

Proof. By the Hodge-de Rham theory we know that the simplicial/singular and the de Rham coho-
mology theories with real coefficients are isomorphic. Furthermore, every de Rham cohomology class is
represented by a unique harmonic form. Namely, given [ω] ∈ H1

dR (M ;R) there exists one and only one
ω̄ ∈ [ω] such that ∆H ω̄ = (δd + δd) ω̄ = 0. Here, d is the exterior differential while δ stands for the
(formal) adjoint of d with respect to the L2 inner product of k-forms. Thus, denoting by Hk (M) the
vector space of harmonic k-forms on M , we have

H1 (M ;R) ' H1
dR (M ;R) ' H1 (M) .

It suffices to deal with the space H1 (M). A formula of Weitzenbock, independently rediscovered by
Bochner, states that

(1)
1
2
∆ |ω̄|2 = |Dω̄|2 + Ric

(
ω̄#, ω̄#

)
,

where ∆ is the Laplace-Beltrami operator (with the sign convention +d2/dx2) and D denotes the extension
to 1-forms of the Levi-Civita connection of M . Suppose Ric ≥ 0. With this assumption we get the
differential inequality

∆ |ω̄|2 ≥ 0,

i.e., |ω̄| is sub-harmonic. Since M is closed, we easily conclude that |ω̄| =const. This can be done using
two different viewpoints, (i) the L∞ and (ii) the Lp<+∞ one. As for (i) note that the smooth function
|ω̄| attains its maximum at some point and, therefore, by the Hopf maximum principle we conclude that
|ω̄| =const. In case (ii) we use the divergence theorem to deduce

0 =
∫

M

div
(
|ω̄|2∇ |ω̄|2

)
=

∫

M

∣∣∣∇ |ω̄|2
∣∣∣
2

+
∫

M

|ω̄|2 ∆ |ω̄|2 ≥
∫

M

∣∣∣∇|ω̄|2
∣∣∣
2

≥ 0.

This again implies |ω̄| =const.
Now, using this information into formula (1) shows that ω̄ is parallel, i.e., Dω̄ = 0. As a consequence,

ω̄ is completely determined by its value at given point, say p ∈ M . The evaluation map εp : H1 (M) →
Λ1

(
T ∗p M

)
defined by

εp (ω̄) = ω̄p

is an injective homomorphism, proving that, in general,

dimH1 (M) ≤ m.

Note that (1) yields
0 = Ric

(
ω̄#

p , ω̄#
p

)
at p.

Therefore, if Ric (p) > 0, we get ω̄p = 0 which, in turn, implies ω̄ = 0. This shows that, when Ricci is
positive somewhere,

dimH1 (M) = 0.
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Remark 2 The assumption Ric ≥ 0 is vital in order to deduce that |ω̄| is subharmonic, i.e., ∆ |ω̄| ≥ 0.
A negative amount of Ric could destroy this happy picture. For instance, if S is an orientable, closed
Riemann surface of genus g ≥ 2, by uniformization (and recalling the Gauss-Bonnet theorem) we can
endow S with a Riemannian metric of Gauss curvature −1. Therefore, in general, there is no control on
the topology of a negatively curved manifold. The analytical counterpart of this fact is that, setting

(2) −a (x) = min
v∈Sm−1⊂TxM

Ricx (v, v) ,

from (1) we have

(3)
1
2
∆ |ω̄|2 + a (x) |ω̄|2 ≥ |Dω̄|2 ≥ 0

and, in general, the maximum principle fails to hold for inequalities of this type.

Remark 3 The previuous simple example shows that, in the negatively curved case, a uniform curvature
bound is in general not sufficient to give a uniform limitation on the Betti numbers of a close manifold.
According to a celebrated result by M. Gromov, later extended in various ways, such a universal topolog-
ical limitation can be obtained up to requiring a control on a further Riemannian invariant, namely, the
diameter; see [13]. From a different (more analytic) perspective, we shall see momentarily how one could
think of extending Bochner estimating theorem in the presence of (a little amount of) negative curvature.

1.2 Generalized maximum principle

As a matter of fact, a form of the maximum principle still holds for a function ψ ≥ 0 satisfying

(4) ∆ψ + q (x)ψ ≥ 0,

provided M supports a solution ϕ > 0 of

(5) ∆ϕ + q (x)ϕ ≤ 0.

This is named the “generalized maximum principle”. We shall see later that the existence of ϕ is related
to spectral properties of the operator −∆− q (x). The generalized maximum principle relies on the idea
of absorbing the linear term of (4) using a combination of the solutions ψ and ϕ. Indeed, setting

u =
ψ

ϕ

one can verify by direct computations that

∆u + 〈∇u,∇ log ϕ〉 ≥ 0.

Now, in the last inequality there is no linear (i.e. zero-order) term in u and therefore the Hopf maximum
principle applies. In case M is closed, u must attain its maximum so that, by Hopf, u is constant.
Equivalently,

ψ = Cϕ,

for some constant C ≥ 0. Note that, in particular, using this latter into (4) and (5), we deduce

(6) ∆ψ + q (x)ψ = 0.

In case ψ = |ω̄|2 and q (x) = 2a (x) as in (2), comparing (6) with (3) yields, once again, that ω̄ is parallel,
thus extending the original Bochner vanishing result.

Remark 4 As a matter of fact the same conclusion can be reached by taking ψ = |ω̄| and q (x) = a (x) .
This latter, according to (5), implies a less stringent condition on the manifold. To recover the result,
compute ∆ |ω̄| and use the Kato inequalities as explained below.

Remark 5 On a closed manifold M , if q (x) ≥ 0, the validity of (5) for some ϕ > 0 is equivalent to saying
that q (x) ≡ 0. Indeed, according to (5), ϕ is superharmonic, hence constant. Using this information into
(5) gives the vanishing of q (x) . As a consequence (in the compact setting) the request (5) represents a
genuine extension of Bochner condition Ric ≥ 0 only in case the Ricci tensor changes its sign.
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2 The setting of open manifolds

What does of the previous survive picture in the case of a non-compact manifold (M, 〈, 〉)?

2.1 Bochner-type inequalities

On a (generic) manifold of dimension m = dim M , any differential k-form ω ∈ Λk (M) satisfies the
Bochner-Weitzenbock identity

(7) ∆Hω = ∆Bω +R (ω)

where ∆B = −trD2, the Bochner Laplacian, and R is a suitable (symmetric) endomorphism of the vector
bundle Λk (M). In particular, if ω is harmonic, i.e., ω ∈ Hk (M), we deduce that

(BW)
1
2
∆ |ω|2 = |Dω|2 + 〈R (ω) , ω〉 .

For instance, in case k = 1, 〈R (ω) , ω〉 = Ric
(
ω#, ω#

)
. For a general k, denoting by ρx : Λ2 (TxM) →

Λ2 (TxM) the curvature operator of (M, 〈, 〉) , condition ρx ≥ −a (x) implies

〈R (ω) , ω〉 ≥ −C · a (x) |ω|2 ,

with C = C (m, k) > 0 a suitable constant; see [12]. Therefore, if we set ψ = |ω|, from (BW) we deduce

ψ {∆ψ + q (x)ψ} ≥ |Dω|2 − |∇ |ω||2 ,

with q (x) = Ca (x). Now, in general, one has the Kato inequality

|Dω|2 − |∇ |ω||2 ≥ 0,

the equality holding if and only if
ω = |ω|ω0,

for some parallel form ω0. However, in case ω is both closed and co-closed, i.e.,

dω = 0, δω = 0,

the Kato inequality refines to

(8) |Dω̄|2 − |∇ |ω̄||2 ≥ A |∇ |ω̄||2

for a suitable constant A = A (m, k) > 0; see e.g. [5]. For instance, in case of a 1-form it is easy to see
that A = 1/ (m− 1) . Note that, in general, (Lp 6=2) harmonic forms on non-compact manifolds are neither
closed nor co-closed; see [24]. In contrast, using a Gaffney cut-off trick, one can show that L2-harmonic
forms on complete manifolds (hence any harmonic form in the compact setting) enjoy this property. We
thus conclude that ψ = |ω| satisfies an inequality of the form

(9) ψ {∆ψ + q (x)ψ} ≥ A |∇ψ|2 ,

with q (x) a continuous function and A ∈ R. We shall refer to (9) as the general Bochner-type
inequality.

2.2 General existence result

Bochner result is essentially a vanishing&estimating theorem for the space of harmonic forms. Harmonic
forms on a closed manifold represent cohomology classes: therefore their vanishing or their presence is
a topological question. In strong contrast, in the non-compact setting, harmonic forms may represent
nothing, even for a geodesically complete manifold (M, 〈, 〉). For instance, on the flat Euclidean space Rm

every differential k-form h (x) dxi1 ∧ ...∧ dxik is harmonic provided h (x) is a harmonic function (in fact,
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every harmonic form in Rm is obtained from these ones). Now, the space of harmonic functions on Rm is
not finitely generated. Simply consider the polynomials in any two independent variables x = xi1 , y = xi2

2k∑

j=0

P2j (y)x2j

satisfying the conditions

{
P2k (y) = αy + β
d2

dy2 P2j (y) + (2j + 2) (2j + 1) P2(j+1) (y) = 0.

Whence, we conclude that, for the vector space Hk (Rm) of harmonic k-forms on Rm, one has

dimHk (Rm) = +∞.

In fact, a generic open manifold (M, 〈, 〉) always supports non-zero harmonic forms of every degree.
To see this, fix a smooth, compact domain Ω. According to a classical result by Duff and Spencer, [7],
for any differential k-form ω0 on Ω with non-zero tangential (or normal) part on ∂Ω, we can uniquely
solve the Dirichlet problem {

∆Hω = 0, on Ω
ω = ω0, on ∂Ω,

thus obtaining a non-zero harmonic form on the region Ω. Now, choose a domain D ⊂⊂ Ω so that M−D
has no compact components (e.g. choose D to be a small geodesic ball). Note that, by (7), ∆Hω = 0
represents an elliptic differential system of second order. By unique continuation, ω 6≡ 0 on D. Using the
Runge-type theorem by Malgrange, [18], we can uniformly approximate ω on D by a harmonic k-form
on M , say η ∈ Hk (M) . If η is sufficiently close to ω on D, we have η 6≡ 0, proving that

dimHk (M) 6= 0.

2.3 The need of some integrability condition

Let us take a look at the analytic counterpart of the above non-vanishing. Suppose we are in the case
of a manifold whose curvature operator ρ satisfies ρ ≥ −a (x). According to Bochner-Weitzenbock, a
harmonic k-form ω ∈ Hk (M) satisfies

1
2
∆ |ω|2 + Ca (x) |ω|2 ≥ |Dω|2 ≥ 0,

with C = C (m, k) > 0. Restrict now to ρ ≥ 0, so that a (x) ≡ 0 and the above reduces to

∆ |ω|2 ≥ 0.

Following Bochner original argument, one tries to reach the Liouville-type conclusion |ω| = const and,
hence, that ω is parallel. However, in general, |ω| is neither (i) bounded nor (ii) in some Lp<+∞ integra-
bility class and we have no Liouville property at all.

It happens that the geometry of the underlying manifold (M, 〈, 〉) enters the game when we consider
harmonic functions and forms with these special integrability properties. The L∞ and Lp<+∞ situations
are substantially different. They are dealt with completely different methods. The L∞ case is often
considered in the perspective of the weak maximum principle at infinity. We shall not consider this
situation here. For an extensive study of the subject, we refer to the paper [20]. In this talk, following
[21], [22] and [23], we will focus our attention on the Lp case.
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Example. The case of Rm is easy to handle and, therefore, can be used to exemplify the situation. Let
LpHk (Rm) be the vector space of the harmonic k-forms ω on Rm satisfying |ω| ∈ Lp (Rm). We show
that

dim LpHk (Rm) = 0.

To see this, take any ω ∈ LpHk (Rm). Then, by Bochner-Weitzenbock, |ω| ∈ Lp (Rm) is a subharmonic
function. Since non-negative subharmonic functions in Rm enjoy the Lp mean-value property we get, for
any fixed x0 ∈ Rm and for every R > 0,

|ω|p (x0) ≤
∫

BR(x0)
|ω|p

vol (BR (x0))
.

Letting R → +∞ we deduce |ω| (x0) = 0. Since x0 was an arbitrary point, we conclude ω ≡ 0, as claimed.

2.4 Controlling the negative part of the curvature

We now want to take under consideration a possible contribution of the negative part of the curvature.
In the compact setting, we remarked that hyperbolic surfaces are critical. The situation is similar in the
non-compact, complete setting.

Example. Let Hm be the standard hyperbolic space of dimension m and constant curvature −1. We
realize it as the Poincarè disc 

Bm
1 (0) ,

4
∑

dxi ⊗ dxi

(
1− |x|2

)2


 ,

where Bm
1 (0) is the Euclidean unit ball of Rm. Note that the hyperbolic metric is a pointwise conformal

deformation of the Euclidean one. More generally, say that 〈̃, 〉 is a pointwise conformal deformation of
the Riemannian metric 〈, 〉 of M , if

〈̃, 〉 = λ2 (x) 〈, 〉
for some function 0 < λ ∈ C∞. It can be shown that

L2Hk (M, 〈, 〉) ' L2Hk
(
M, 〈̃, 〉

)
,

provided
2k = m = dim M.

Specifying the situation to the Hyperbolic space we deduce

(10) L2Hk (Hm) ' L2Hk (Bm
1 (0)) .

Now, we have already observed that dimHk (Rm) = +∞. Since Bm
1 has finite Euclidean volume every

ω ∈ Hk (Rm) restricts to a form ω′ ∈ L2Hk (Bm
1 (0)). By unique continuation, the restriction map is

injective. It follows that dim L2Hk (Bm
1 (0)) = +∞. According to (10), we conclude

dim L2Hk
(
H2k

)
= +∞.

2.4.1 Bottom of the spectrum and Morse index

We introduce a “measure” of the negative part of the curvature in such a way that, “small” negative
curvature implies finite dimensionality and, furthermore, small enough gives vanishing. This will be
done using spectral properties of a suitable Schrodinger operator. From now on, (M, 〈, 〉) will denote a
geodesically complete, non-compact, connected Riemannian manifold of dimension m = dim M .

Suppose the curvature operator of M satisfies ρ ≥ −a (x), a (x) ≥ 0, so that, for every ω ∈ Hk (M),
its length ψ = |ω| satisfies

ψ {∆ψ + Ca (x)ψ} ≥ A |∇ψ|2 ,
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where C = C (k,m) > 0 and A = A (k, m) ≥ 0, with A > 0 if ω is both closed and co-closed. For
instance, in the Hyperbolic case,

C = k (m− k) , a (x) = −1.

Let us consider the Schrodinger operator

L = −∆− q (x)

where we have set q (x) = Ca (x) . For any smooth domain Ω ⊂⊂ M , the operator L acting on C∞c (Ω)
has discrete spectrum

−∞ < λ1 (L, Ω) < λ2 (L,Ω) ≤ λ3 (L, Ω) ≤ ... ≤ λs (L, Ω) < 0 ≤ λs+1 (L, Ω) ≤ ...

From the variational characterization,

λk (L, Ω) = inf
V⊂C∞c (Ω)
dim V =k

∫ |∇ϕ|2 − ∫
q (x)ϕ2

∫
ϕ2

.

Define the Morse index of L on Ω as

Ind (L, Ω) = s = #negative eigenvalues.

In particular, Ind (L, Ω) = 0 if and only if λ1 (L,Ω) ≥ 0. Now, by (strict) domain monotonicity we have
that

Ω1 ⊂ Ω2 =⇒ λk (L, Ω2) < λk (L,Ω1) ,

and therefore
Ω1 ⊂ Ω2 =⇒ Ind (L, Ω1) ≤ Ind (L,Ω2) .

Define the generalized Morse index of L on M to be

Ind (L, M) = sup
Ω↗M

Ind (L, Ω) ≤ +∞.

Also, define the bottom of the spectrum of L on M to be

λ1 (L, M) = inf
Ω↗M

λ1 (L, Ω) = inf
ϕ∈Lipc(M)

∫ |∇ϕ|2 − ∫
q (x)ϕ2

∫
ϕ2

≥ −∞.

In case λ1 (L,M) > −∞ we say that L is semi-bounded.

Remark 6 The generalized Morse index and the bottom of the spectrum are obviously related by the
following

Ind (L,M) = 0 ⇐⇒ λ1 (L,M) ≥ 0.

Finiteness and vanishing of the Morse index essentially reflect the fact that the (positive part of the)
potential is small in some integral sense. This is made precise in the following classical theorem due to
G.V. Rosenbljum, W. Cwikel and E. Lieb. The present statement, is a version by P. Li and S.T. Yau.

Theorem 7 Let (Mm, 〈, 〉) be a complete Riemannian manifold supporting the following global L2-
Sobolev inequality

Sµ

(∫

M

v2µ

) 1
µ

≤
∫

M

|∇v|2 , ∀v ∈ C∞0 (M)

for some µ > 1 and some constant Sµ > 0. Given a smooth function q (x) satisfying

q+ (x) = max (q (x) , 0) ∈ L
µ

µ−1 (M) ,

consider the Schrodinger operator L = −∆ − q (x) acting on C∞0 (M). Then, L is a semi-bounded,
essentially self-adjoint operator on L2 (M) with non-negative essential spectrum. Let N0 be the number
(counting multiplicity) of strictly negative eigenvalues of L. Then, N0 = Ind (L, M) and there exists a
constant C = C (m,Sµ) > 0 such that

Ind (L,M) ≤ C ‖q+‖
L

µ
µ−1 (M)

.
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2.4.2 PDE counterparts of the spectral properties

The following theorem is the result of contributions of many authors: D. Fisher-Colbrie [9], and R.
Gulliver [14] (finite index part) and Fisher-Colbrie and R. Schoen [10], and W. Moss and J. Piepenbrink
[19] (zero index part). See also [21] for regularity questions concerning potential and solutions.

Theorem 8 Let L = −∆− q (x). Then

(a) For any domain W ⊆ M ,

λ1 (L,W ) ≥ 0 ⇐⇒ ∃ϕ > 0 solution of − Lϕ = 0 on W.

(b) It holds the implication

Ind (L,M) < +∞ =⇒ ∃K ⊂⊂ M such that λ1 (L, M −K) ≥ 0.

In particular

Corollary 9 Let L = −∆− q (x). Then

Ind (L,M) = 0 ⇐⇒ ∃ϕ > 0 : −Lϕ = 0 on M

and

Ind (L, M) < +∞ =⇒ ∃ϕ > 0 : −Lϕ = 0 on M −K, for some K ⊂⊂ M.

Some observations are in order.

Remark 10 The bottom-of-the-spectrum condition on M−K is slightly weaker than the finiteness of the
Morse index. Moreover, it is easier to handle. For instance, suppose (M, 〈, 〉) enjoys a global L2-Sobolev
inequality (∫

|u|2µ

) 1
µ

≤ S−1
µ

∫
|∇u|2 , ∀u ∈ C∞c (M)

with µ > 1 and Sµ > 0 a suitable constant. Then, it is readily seen that

‖q‖
L

µ
µ−1 (M)

< +∞ =⇒ λ1 (L,M −K) ≥ 0,

for a sufficiently large K ⊂⊂ M . Furthermore

‖q‖
L

µ
µ−1 (M)

≤ Sµ =⇒ λ1 (L,M) ≥ 0.

Indeed, fix K ⊂⊂ M , possibly K = ∅. Then, for any ϕ ∈ C∞c (M −K), using Holder inequality,

∫
|∇ϕ|2 −

∫
q (x) ϕ2 ≥

∫
|∇ϕ|2 − ‖q‖

L
µ

µ−1 (M−K)

(∫
ϕ2µ

) 1
µ

≥
(
1− S−1

µ ‖q‖
L

µ
µ−1 (M−K)

) ∫
|∇ϕ|2 .

Now, you can choose K large enough so that
(
1− S−1

µ ‖q‖
L

µ
µ−1 (M−K)

)
≥ 0.

Remark 11 As remarked above, the spectral properties of −∆− q (x), in a sense, give a measure of the
positivity of q (x) , hence a measure of the amount of negativity of the curvature. On the other hand, the
PDE reformulation of the spectral properties is very suitable for an analytic approach to vanishing and
finiteness results in the spirit of the generalized maximum principle.
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2.5 Main theorems: Bochner generalized

In Theorems 12, 13 below, we shall generalize Bochner vanishing and finiteness results. The range of
application of our theorems goes beyond the domain of harmonic forms but, when specified to this
situation, can be essentially stated as follows.

Suppose the curvature operator satisfies ρx ≥ −a (x), so that, for any harmonic k-form ω, we have

|ω| {∆ |ω|+ Ca (x) |ω|} ≥ |Dω|2 − |∇ |ω||2 ≥ A |∇ |ω||2 ,

where C = C (m, k) > 0 and A = A (m, k) ≥ 0. Moreover A > 0 e.g. if |ω| ∈ L2 (M). For any fixed
H ≥ 1 define

LH = −∆−HCa (x) .

Then
Ind (LH , M) = 0 =⇒ dim L2pHk (M) = 0, ∀p ∈ [1,H],

and
Ind (LH ,M) < +∞ =⇒ dim L2pHk (M) < +∞, ∀p ∈ [1,H].

It is worth noting that the range of the allowed integrability exponents depends in a rather explicit way
on the “spectral smallness” of the potential. In case of closed and co-closed forms, due to the presence
of a refined Kato inequality, such a range can be further extended below 2p = 2.

Here is our Lq-vanishing theorem from [21]. We recall that vanishing results for L2 harmonic sections
on complete manifolds under spectral assumptions go back to a paper by W. Elworthy and S. Rosen-
berg, [8]. Their technique relies on very refined probabilistic tools and requires the additional curvature
assumption infM Ric > −∞ in order to guarantee that Brownian paths do not explode (a.s.) in a finite
time. Soon later, P. Berard, [1], generalized Elworthy-Rosenberg results by removing the curvature con-
dition. Moreover, his proof is completely elementary and makes a direct use of the spectral assumption.
His direct approach, however, forces him to consider only L2-energies.

Theorem 12 (P.-Rigoli-Setti, [21]) Let (M, 〈 , 〉) be a complete manifold, a(x) ∈ L∞loc(M) and let
0 ≤ ψ ∈ Liploc(M) satisfy the differential inequality

(11) ψ∆ψ + a(x)ψ2 ≥ A|∇ψ|2 weakly on M.

for some A ∈ R. Suppose that there exists ϕ ∈ Liploc (M) satisfying

(12) ∆ϕ + Ha (x)ϕ ≤ 0 weakly on M

for some H such that

(13) H ≥ −A + 1, H > 0

If

(14) ψ ∈ L2p (M)

for some
−A + 1 ≤ p ≤ H, p > 0,

then there exist a constant C ≥ 0 such that

(15) Cϕ = ψH .

Further,

(i) If H − 1 > −A, then ψ is constant on M , and if in addition, a(x) does not vanish identically, then
ψ is identically zero;

9



(ii) If H−1 = −A, and ψ does not vanish identically, then ϕ and therefore ψH satisfy (12) with equality
sign.

Now we state a very general Lq-finiteness result from [22]. In the special case q = 2, finiteness results
have been extensively investigated by many authors under different assumptions. We limit ourselves to
quote the “minimal hypersurfaces” papers [16], [17] by P. Li and J. Wang, where Morse index assumptions
are used in a way similar to the present note, and the “L2-cohomology paper” [3] by G. Carron where
quantitative dimensional estimates are obtained assuming that the underlying manifold supports a global
Sobolev inequality; see also [2] and [4]. Some random remarks: the classical minimal (hyper)surface
theory in Euclidean space greatly influenced the investigation of finiteness results on non-compact spaces
under spectral properties of the relevant Schrodinger operator (the stability operator L = −∆ − |II|2).
According to the (quite recent) harmonic function theory initiated by P. Li and L.F. Tam, [15], the
dimension of (suitable subspaces of) L2H1 (M) reflects in some sense the topology at infinity of the
underlying manifold (number of non-parabolic ends). This applies in particular to minimal submanifolds
of finite index (where all ends are non-parabolic). Also, on a generic complete manifold, according to
the decomposition theorem by Hodge-de Rham-Kodaira, L2 harmonic forms completely represent the
(reduced) L2 cohomology of the manifold. It has been recently observed by D. Alexandru-Rugina, [25],
that, in case of manifolds with bounded geometry (e.g. co-compact coverings), the spaces of harmonic
forms Lp<2Hk (M) imbeds continuously into the corresponding Lp cohomology spaces. Furthermore, it
is known from works by J. Dodziuk, [6], and V.M. Gol’dshtein, V.I. Kuz’minov, I.A. Shvedov, [11], that
the Lp cohomology (non reduced, in fact) of a co-compact covering is a homotopy invariant of the base
(compact!) manifold.

Theorem 13 (P.-Rigoli-Setti, [22]) Let (M, 〈, 〉) be a connected, complete, m-dimensional Rieman-
nian manifold and E a Riemannian (Hermitian) vector bundle of rank l over M . The space of its smooth
sections is denoted by Γ (E). Having fixed

a (x) ∈ C0 (M) , A ∈ R, H ≥ p

satisfying the further restrictions

(16) p ≥ −A + 1, p > 0,

let V = V (a, A, p, H) ⊂ Γ (E) be any vector space with the following property:

(P) Every ξ ∈ V has the unique continuation property, i.e., ξ is the null section whenever it vanishes on
some domain; furthermore the locally-Lipschitz function u = |ξ| satisfies

(17)





u (∆u + a (x)u) ≥ A |∇u|2 weakly on M

∫
Br

u2p = o
(
r2

)
as r → +∞.

If there exists a solution 0 < ϕ ∈ Liploc of the differential inequality

(18) ∆ϕ + Ha (x)ϕ ≤ 0 weakly on M −K

for some compact set K ⊂ M , then

(19) dim V ≤ d,

for some d < +∞ depending only on the geometry of M in a neighborhood of K.

By way of example, let us point out the following consequence which extends to every p ≥ 1 previous
results obtained in case p = 1 by G. Carron, [3], and P. Li and J. Wang, [16].

10



Corollary 14 Let (M, 〈 , 〉) be a complete manifold satisfying the global Sobolev inequality

(∫
|u|2µ

) 1
µ

≤ S−1
µ

∫
|∇u|2 , ∀u ∈ C∞c (M) ,

with µ > 1. Assume that ρx ≥ −a (x) for some a (x) ≥ 0 such that

a (x) ∈ L
µ

µ−1 (M) .

Then, for every k = 1, ..., m and for every p ≥ 1,

dim L2pHk (M) < +∞.

Furthermore, if

‖a (x)‖
L

µ
µ−1 (M)

≤ Sµ

Cp

for some p ≥ 1 and with C = C (k, m) > 0 the constant in the Bochner-Witzenbock formula for harmonic
k-forms. Then

L2pHk (M) = 0.

2.5.1 About the proofs

The proofs of Theorems 12 and 13 have one basic feature in common but proceed along very different
paths.

Outline of the proof of the vanishing theorem. Combine the solutions ψ of (11) and ϕ of (12) so
to obtain a new function

u = ϕ−
p
H ψp

which, in turn, satisfies the easy to handle inequality

udiv
(
ϕ

2p
H ∇u

)
≥ 0.

Note that

ϕ
2p
H u2 ∈ L1 (M) .

Now, the key step is to obtain a general Liouville theorem for (possibly changing sign!) solutions of the
problem {

vdiv (w∇v) ≥ 0
w |v|q ∈ L1 (M) .

In our special case, deduce u ≡const. Equivalently

Cϕ = ψH .

Use this information into inequality (12) and get

H (H − 1 + A)ψH−2 |∇ψ|2 ≤ 0.

This latter produces the dichotomy in the statement of the theorem, and combined with (11) and (12)
gives the desired conclusions.
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Outline of the proof of the finiteness theorem. Choose R >> 1 in such a way that K ⊂ BR (o)
and, therefore, inequality (18) holds on M − BR (o) . Note that, by unique continuation, the restriction
map

V → Γ
(
E|BR

)
ξ 7→ ξ|BR

is an injective homomorphism. Use the same symbol V to denote the image of V in Γ
(
E|BR

)
. An

extension of a classical result by P. Li states that if T ⊂ V be any finite dimensional subspace then, there
exists a (non-zero) section ξ̄ ∈ T such that, setting ψ̄ =

∣∣ξ̄
∣∣ , it holds

(20) (dim T )min(1,p)
∫

BR

ψ̄2p ≤ vol (BR)min {l, dim T }min(1,p) sup
BR

ψ̄2p.

Now, observe that, on every sufficiently small closed ball,

λ1 (LH , Bδ (x)) > 0,

where LH = −∆−Ha (x) , and therefore there exists w > 0 solution of

∆w + Ha (x)w = 0.

As above deduce that
u = w−

p
H ψp

satisfies
udiv

(
w

2p
H ∇u

)
≥ 0 on Bδ (x) .

Obtain a local Lq-mean value inequality for solutions u of this inequality and apply it to get

sup
Bδ

ψ2p ≤ C

∫

B2δ

ψ2p.

The local inequalities patches together and, in the special case of ψ̄, give

sup
BR

ψ̄2p ≤ C ′
∫

BR+1

ψ̄2p.

Inserting into (20) we obtain

(21) (dim T )min(1,p)
∫

BR

ψ̄2p ≤ Cvol (BR)min {l, dim T }min(1,p)

{∫

BR

ψ̄2p +
∫

A(R,R+1)

ψ̄2p

}

where A (a, b) is the annulus Bb −Ba. Now, using once again the combination of ψ and ϕ and a careful
cut-off analysis inspired by Li-Wang estimating technique, [17], obtain the estimate

∫

A(R,R+1)

ψ̄2p ≤ C ′′
∫

BR

ψ̄2p.

Inserting into (21) and simplifying gives

dim T ≤ C ′′′min {l, dim T }

for some C ′′′ depending only on the geometry of BR. This proves that any finitely generated subspace T
of V have a dimension which is bounded by a universal constant, depending only on the rank l of E and
on the geometry of BR. The same bound must work for the dimension of the whole V .
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[3] G. Carron, L2-Cohomolgie et inégalités de Sobolev. Math. Ann. 314 (1999), 613–639.

[4] G. Carron, L2-cohomology of manifolds with flat ends. Geom. Funct. Anal. 13 (2003), 366–395.

[5] D.M.J. Calderbank, P. Gauduchon, M. Herzlich, Refined Kato Inequalities and Conformal Weights
in Riemannian Geometry. J. Funct. Anal. 173 (2000), 214–255.

[6] J. Dodziuk, de Rham-Hodge theory for L2-cohomology of infinite coverings. Topology 16 (1977), no.
2, 157–165.

[7] G.F.D. Duff, D.C. Spencer, Harmonic tensors on Riemannian manifolds with boundary. Ann. Math.
56 (1952), pp. 128-156.

[8] K.D. Elworthy, S. Rosenberg, Generalized Bochner theorems and the spectrum of complete manifolds.
Acta Appli. Math. 12 (1988), 1–33.

[9] D. Fischer-Colbrie, Complete minimal surfaces with finite Morse index in three manifolds. Invent.
Math. 82 (1985), 121–132.

[10] D. Fischer–Colbrie, R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of
non-negative scalar curvature, Comm. Pure Appl. Math. XXXIII (1980), 199–211.

[11] V.M. Gol’dshtein, V.I. Kuz’minov, I.A. Shvedov, The de Rham isomorphism of the Lp-cohomology
of noncompact Riemannian manifolds. (Russian) Sibirsk. Mat. Zh. 29 (1988),34–44; translation in
Siberian Math. J. 29 (1988), 190–197.

[12] S. Gallot, D. Meyer, Opérateur de courbure et Laplacien des formes différentielles d’une variété
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