Università La Sapienza di Roma - Seminar

3D-Reconstruction: Some Results

Jean-Denis DUROU

IRIT - Université Paul Sabatier - Toulouse

Schedule

- What is 3D-reconstruction?
- 2 Shape-from-shading: modelling
- 3) Shape-from-shading: resolution
- 4 Shape-from-shading: application
- 5 Normal integration: modelling
- Normal integration: resolution
- Normal integration: application
- 8 Perspectives in 3D-reconstruction

Schedule

- 2 Shape-from-shading: modelling
- 3 Shape-from-shading: resolution
- Shape-from-shading: application
- 5 Normal integration: modelling
- On the second second
- 7 Normal integration: application
- 8 Perspectives in 3D-reconstruction

- ∢ ⊒ →

What is 3D-reconstruction? Direct problem or inverse problem?

Scene Σ

Photograph Φ

Data	Unknown	Technique	Problem
Σ, Γ	Φ	Image synthesis	Direct
Φ, <i>F</i>	Σ	3D-reconstruction	Inverse

What is 3D-reconstruction?

Well-posed problem or ill-posed problem?

Data	Solutions	Technique	Problem
(Φ_1, F_1)	Σ_1 ou Σ_2 ?	Monoscopic vision	III-posed
(Φ_1, F_1) et (Φ_2, F_2)	Σ ₁	Stereoscopic vision	Well-posed

< D > < B > < E > < E</p>

What is 3D-reconstruction?

Well-posed problem or ill-posed problem?

Data	Solutions	Technique	Problem
(Φ_1, F_1)	Σ_1 ou Σ_2 ?	Monoscopic vision	III-posed
(Φ_1, F_1) et (Φ_2, F_2)	Σ ₁	Stereoscopic vision	Well-posed

<ロ> <問> <問> < E> < E

What is 3D-reconstruction?

Monoscopic vision

$$\Sigma = F^{-1}(\Phi_1)$$

 $\Phi_2 = F(\Sigma)$

< 17 ▶

Interesting for face recognition?An idea for image cryptation!

Φı

Schedule

- 5 Normal integration: modelling
- 6 Normal integration: resolution
- 7 Normal integration: application
- 8 Perspectives in 3D-reconstruction

Shape-from-shading: modelling Principle of the darkroom

< ロ > < 回 > < 回 > < 回 > < 回</p>

Shape-from-shading: modelling Principle of the darkroom

< E

・ロ・ ・ 日・ ・ ヨ・

Main interest of photography

Main interest of photography

< ≣

Main weakness of photography

Jean-Denis DUROU

22 April 2008 10 / 51

-∢ ≣

æ

Main weakness of photography

э.

< < >> < <</>

< E

Depth images

Depth image

Slope image

AFM images

< ≣

Shape-from-shading: an ill-posed problem

- Data: greylevel g in P'
- Unknowns: r, θ_c , ϕ_c , θ_i and ϕ_i
- Five unknowns for one equation: ill-posed problem

Shape-from-shading: an ill-posed problem

- Data: greylevel g in P'
- Unknowns: r, θ_c , ϕ_c , θ_i and ϕ_i
- Five unknowns for one equation: ill-posed problem

The most famous shape-from-shading modelling

Eikonal equation

- Partial Differential Equation (PDE) of the first order
- Non-linear equation

Required assumptions

- The photograph is sharp
- The camera is photometrically calibrated
- The inter-reflections can be neglected
- The surface is Lambertian
- The lighting is parallel, uniform and frontal
- The perspective projection can be neglected
- The scene surface is differentiable

• • • • • • • • • • • •

Satisfaction of the required assumptions

Validation of the obtained photographs

Original photograph

Corrected photograph

Synthetic image

original photograph

Cut of the corrected photograph

Cut of the synthetic image

Photographs which conform to the eikonal equation

Bibliography on shape-from-shading (www.irit.fr/sfs)

Several communities implied

- 1950 → 1970: astronomy
- 1970 \rightarrow 1990: computer vision
- 1990 \rightarrow today: applied mathematics

Great dispersal of the publications

- 1989: book by Horn and Brooks, MIT Press (250 published papers)
- 1999: state of the art by Zhang *et al.*, PAMI (750 published papers)
- 2008: state of the art by Durou, Falcone and Sagona, CVIU (1200 published papers)

< ロ > < 同 > < 三 >

Schedule

- 2 Shape-from-shading: modelling
- Shape-from-shading: resolution
 - 4 Shape-from-shading: application
- 5 Normal integration: modelling
- 6 Normal integration: resolution
- 7 Normal integration: application
- 8 Perspectives in 3D-reconstruction

Three classes of methods of resolution

Methods of resolution of PDEs (Falcone and Sagona, ICIAP 1997)

- Boundary condition required
- Exact solution Σ : $F(\Sigma) = \Phi$
- Difficult to implement

Methods using optimization (Daniel and Durou, ACCV 2000)

- Boundary condition not required
- Approached solution Σ : $F(\Sigma) \approx \Phi$
- Difficult to implement

Methods approximating the modelling (Tsai and Shah, CVPR 1992)

- Boundary condition required
- Approached solution Σ : $F(\Sigma) \approx \Phi$
- Easy to implement

Reconstructions using Falcone and Sagona's method

< 17 ▶

Reconstructions using Daniel and Durou's method

< < >> < <</>

Reconstructions using Tsai and Shah's method

Use of a global surface model

Use of a global surface model

Use of a global surface model

Use of a global surface model

Use of a global surface model

Jean-Denis DUROU

22 April 2008 23 / 51

Use of a global surface model

Use of a global surface model

Jean-Denis DUROU

22 April 2008 23 / 51

Use of a global surface model

Use of a global surface model

Use of stochastic optimization

Real shape

Synthetic image

Reconstructed shape

Use of stochastic optimization

Real shape

Synthetic image

Reconstructed shape

Use of stochastic optimization

Real shape

Synthetic image

< < >> < <</>

Reconstructed shape

Global surface model and stochastic optimization

Global surface model: B-splineStochastic optimization: simulated annealing

Schedule

- 2 Shape-from-shading: modelling
- 3 Shape-from-shading: resolution
- 4 Shape-from-shading: application
- 5 Normal integration: modelling
- 6 Normal integration: resolution
- 7 Normal integration: application
- 8 Perspectives in 3D-reconstruction

Documents digitization

Various devices

-∢ ≣

Defaults of books photographs

The lines of text are distorted

Some characters are shortened

The greylevel of the non-inked paper is not uniform

Defaults of books photographs

• The lines of text are distorted

Some characters are shortened

The greylevel of the non-inked paper is not uniform

Defaults of books photographs

- The lines of text are distorted
- Some characters are shortened

The greylevel of the non-inked paper is not uniform

Defaults of books photographs

- The lines of text are distorted
- Some characters are shortened
- The greylevel of the non-inked paper is not uniform

Document flattening using shape-from-shading

Example 1

Original photograph

Corrected image

《口》《聞》《臣》《臣》

Document flattening using shape-from-shading

Zoom on the area close to the binding

Il est souvent fait état, dans les mémoires maritimes de cette époque, de capitaines ou de seconds qui ont dû quitter leur navire sur rade, sachau le sort qui leur était réservé, et disparaître avant que les hommes sim pris contact avec la terre. Ces hommes, pourtant, ont moins de raison de se plaindre que leurs prédécesseurs. Les postes d'équipage que les chp pers inaugurent sur le pont sont aérés et clairs, en comparaison des ancien taudis placés sous le gaillard ou à l'avant du faux pont. La nouritur

Original photograph

Il est souvent fait état, dans les mémoires maritimes de cette époque, de capitaines ou de seconds qui ont dû quitter leur navire sur rade, sachant le sort qui leur était réservé, et disparaître avant que les hommes aient pris contact avec la terre. Ces hommes, pourtant, ont moins de raisons de se plaindre que leurs prédécesseurs. Les postes d'équipage que les clippers inaugurent sur le pont sont aérés et clairs, en comparaison des anciens taudis placés sous le gaillard ou à l'avant du faux pont. La nourriture

Corrected image

・ロ・・ (日・・ ほ・・ (日・)

Document flattening using shape-from-shading

Example 2

< < >> < <</>

Other method using shape-from-contour

Example 3

Original photograph

Corrected image

itterreté com

Other method using shape-from-contour

Example 4

Jean-Denis DUROU

<ロ> <同> <同> < 同> < 同>

FlatBOOK: A software by Frédéric COURTEILLE

Schedule

- 2 Shape-from-shading: modelling
- 3 Shape-from-shading: resolution
- 4 Shape-from-shading: application
- 5 Normal integration: modelling
- 6 Normal integration: resolution
- 7 Normal integration: application
- 8 Perspectives in 3D-reconstruction

Problematic

• Data: a field of unit normals $\overrightarrow{n}(x, y) = (n_1(x, y), n_2(x, y), n_3(x, y))$ $\|\overrightarrow{n}\| = 1 \rightarrow 2$ degrees of freedom

• Unknown: the scene surface P(x, y) = (X(x, y), Y(x, y), Z(x, y))

Problematic

• Data: a field of unit normals $\overrightarrow{n}(x, y) = (n_1(x, y), n_2(x, y), n_3(x, y))$ $\|\overrightarrow{n}\| = 1 \rightarrow 2$ degrees of freedom

• Unknown: the scene surface P(x, y) = (X(x, y), Y(x, y), Z(x, y))

Interest for 3D-reconstruction

Photometric methods

- Shape-from-shading Computing the normal field (not necessary): ill-posed problem
- Stereophotometry
 Computing the normal field: well
 - Computing the normal field: well-posed problem
 - \rightarrow Validation of our new method of integration of a normal field

Geometric methods

- Shape-from-texture
 - Computing the normal field: well-posed problem

Orthographic projection

Fonction Z_o can be computed only up to an additive constant

Orthographic projection

Normal to point Q₀: n₀ = (n₁,₀, n₂,₀, n₃,₀)
Conjugated objet point: P₀ = (X₀, Y₀, Z₀)

Fonction Z_o can be computed only up to an additive constant

Orthographic gradient equations

Equations

$$\begin{bmatrix} \frac{\partial Z_o}{\partial x} = -\frac{d}{f} \frac{n_{1,o}}{n_{3,o}} \\ \frac{\partial Z_o}{\partial y} = -\frac{d}{f} \frac{n_{2,o}}{n_{3,o}} \end{bmatrix}$$

Solution

$$Z_{o}(Q) = Z_{o}(Q_{\text{start}}) - \frac{d}{f} \int_{Q_{\text{start}}}^{Q} \frac{n_{1,o} \, dx + n_{2,o} \, dy}{n_{3,o}}$$

Jean-Denis DUROU

æ

< □ > < □ > < □ > < □ > < □ > <

Orthographic gradient equations

Equations

$$\frac{\partial Z_o}{\partial x} = -\frac{d}{f} \frac{n_{1,o}}{n_{3,o}}$$
$$\frac{\partial Z_o}{\partial y} = -\frac{d}{f} \frac{n_{2,o}}{n_{3,o}}$$

Solution

$$Z_{o}(Q) = \frac{Z_{o}(Q_{\text{start}})}{f} - \frac{d}{f} \int_{Q_{\text{start}}}^{Q} \frac{n_{1,o} \, dx + n_{2,o} \, dy}{n_{3,o}}$$

æ

・ロト ・回ト ・ヨト ・ヨト

Perspective projection

Normal to point Q_p: n
→ p = (n_{1,p}, n_{2,p}, n_{3,p})
Conjugated object point: P_p = (X_p, Y_p, Z_p)

Fonction Z_{p} can be computed only up to a multiplicative constant

Perspective projection

Normal to point Q_p: n
→ = (n_{1,p}, n_{2,p}, n_{3,p})
Conjugated object point: P_p = (X_p, Y_p, Z_p)

Fonction Z_p can be computed only up to a multiplicative constant

Perspective gradient equations

Equations

$$\begin{cases} \frac{\partial \ln |Z_{p}|}{\partial x} = -\frac{n_{1,p}}{x n_{1,p} + y n_{2,p} + f n_{3,p}}\\ \frac{\partial \ln |Z_{p}|}{\partial y} = -\frac{n_{2,p}}{x n_{1,p} + y n_{2,p} + f n_{3,p}} \end{cases}$$

Solution

$$-\int_{-}^{Q} \frac{n_{1,p} \, dx + n_{2,p} \, dy}{x \, n_{1,p} + y \, n_{2,p} + f \, n_{3,p}}$$
$$Z_p(Q) = Z_p(Q_{\text{start}}) \, e^{-Q_{\text{start}}}$$

æ

・ロ・・ (日・・ (日・・ 日・・)

Perspective gradient equations

Equations

$$\begin{cases} \frac{\partial \ln |Z_{\rho}|}{\partial x} = -\frac{n_{1,\rho}}{x n_{1,\rho} + y n_{2,\rho} + f n_{3,\rho}} \\ \frac{\partial \ln |Z_{\rho}|}{\partial y} = -\frac{n_{2,\rho}}{x n_{1,\rho} + y n_{2,\rho} + f n_{3,\rho}} \end{cases}$$

Solution

$$-\int_{p}^{Q} \frac{n_{1,p} \, dx + n_{2,p} \, dy}{x \, n_{1,p} + y \, n_{2,p} + f \, n_{3,p}}$$
$$Z_p(Q) = Z_p(Q_{\text{start}}) \, e^{-Q_{\text{start}}}$$

æ

・ロト ・回ト ・ヨト ・ヨト

Schedule

- 2 Shape-from-shading: modelling
- 3 Shape-from-shading: resolution
- 4 Shape-from-shading: application
- 5 Normal integration: modelling
- 6 Normal integration: resolution
- Normal integration: application
- Perspectives in 3D-reconstruction

Orthographic projection: two existing methods

Local integration

$$Z_{o}(Q) = Z_{o}(Q_{\text{start}}) - \frac{d}{f} \int_{Q_{\text{start}}}^{Q} \frac{n_{1,o} \, dx + n_{2,o} \, dy}{n_{3,o}}$$

Wu and Li's [CVGIP 1988]

Global integration

$$\min_{Z_o} \iint \left[\frac{\partial Z_o}{\partial x} + \frac{d}{f} \frac{n_{1,o}}{n_{3,o}} \right]^2 + \left[\frac{\partial Z_o}{\partial y} + \frac{d}{f} \frac{n_{2,o}}{n_{3,o}} \right]^2 dx \, dy$$

Horn and Brooks' method [CVGIP 1986]

Э

・ロ・・(型・・目・・(目・)

Orthographic projection: two existing methods

Local integration

$$Z_{o}(Q) = Z_{o}(Q_{\text{start}}) - \frac{d}{f} \int_{Q_{\text{start}}}^{Q} \frac{n_{1,o} \, dx + n_{2,o} \, dy}{n_{3,o}}$$

Wu and Li's [CVGIP 1988]

Global integration

$$\min_{Z_o} \iint \left[\frac{\partial Z_o}{\partial x} + \frac{d}{f} \frac{n_{1,o}}{n_{3,o}} \right]^2 + \left[\frac{\partial Z_o}{\partial y} + \frac{d}{f} \frac{n_{2,o}}{n_{3,o}} \right]^2 dx \, dy$$

Horn and Brooks' method [CVGIP 1986]

э.

< 四> < 回> < 回> < 回> < 回> <

Illustration of these existing methods

Image

Real shape

Illustration of these existing methods

Image

Real shape

Illustration of these existing methods

Image

Illustration of these existing methods

Image

Illustration of these existing methods

Image

Illustration of these existing methods

Image

Real shape

Our new method: no boundary condition is required

Wu et Li's method Feconstruction domain Reconstructed shape
Horn et Brooks' method

Jean-Denis DUROU

22 April 2008 42 / 51

Our new method: no boundary condition is required

Wu et Li's method Feconstruction domain Reconstructed shape
Horn et Brooks' method

Jean-Denis DUROU

22 April 2008 42 / 51

Our new method: no boundary condition is required

Wu et Li's methodImage: Description of the second structure of the s

Jean-Denis DUROU

22 April 2008 42 / 51

Our new method: no boundary condition is required

Wu et Li's methodImage: Description of the second structure of the s

Jean-Denis DUROU

22 April 2008 42 / 51

Our new method: no boundary condition is required

Wu et Li's methodImage: Description of the second structure of the s

Jean-Denis DUROU

22 April 2008 42 / 51

Our new method: no boundary condition is required

Image

Our new method: taking perspective into account

A new method of integration of a normal field

- No boundary condition required
- Taking perspective into account
- Combination of the methods of Wu et Li's and of Horn et Brooks'

Schedule

- 2 Shape-from-shading: modelling
- 3 Shape-from-shading: resolution
- Shape-from-shading: application
- 5 Normal integration: modelling
- 6 Normal integration: resolution
- Normal integration: application
- Perspectives in 3D-reconstruction

Validation on synthetic images

Assumptions on the images

- Non-uniform albedo
- Lambertian surface
- Light at infinity in 5 known directions
- Each visible point is lighted in 3 images at least

< 同 > < ∃ >

Normal integration: application

Result on synthetic images

Estimate of the texture Reconstructed shape seen from the left

Reconstructed shape under perspective view

< < >> < <</>

Validation on real images

Assumptions on the images (found on the web)

- Uniform albedo
- Lambertian surface
- Light at infinity in 3 known directions
- Each visible point is lighted in 2 images at least

Normal integration: application

Result on real images

Reconstructed shape seen from the left

Reconstructed shape seen under perspective view

< 17 ▶

Schedule

- 2 Shape-from-shading: modelling
- 3 Shape-from-shading: resolution
- 4 Shape-from-shading: application
- 5 Normal integration: modelling
- 6 Normal integration: resolution
- 7 Normal integration: application
- Perspectives in 3D-reconstruction

Perspectives in 3D-reconstruction

Perspectives on shape-from-shading

Short-term perspectives

- Shape-from-shading and surfaces applicable to planes (3SD project)
- Redaction of a monography (continuation of my "Habilitation à Diriger des Recherches")
- Shape-from-shading and human vision (long stay at the CMLA, ENS Cachan)

Long-term perspectives

- Taking the inter-reflections into account
- Global surface model and stochastic optimization

3

< 口 > < 同 > < 三 > < 三 >

Other perspectives in 3D-reconstruction

Short-term perspectives

- Stereophotometry: collaboration with Maurizio Falcone?
- Shape-from-shading and shape-from-contour (3SD project)

Long-term perspectives

- Combination of shape-from-shading and shape-from-texture
- Use of the photometric methods in a more general framework for 3D-reconstruction?