Un modello di transizione di fase per le dislocazioni planari nei cristalli

Simone Cacace

Dipartimento di Matematica G.Castelnuovo Università degli Studi di Roma "La Sapienza"

29 Gennaio 2008

< ∃ →

• Dislocazioni nei Cristalli

- Dislocazioni nei Cristalli
- Il modello variazionale di Koslowski, Cuitiño e Ortiz

글 문 문 글 문 문

- Dislocazioni nei Cristalli
- Il modello variazionale di Koslowski, Cuitiño e Ortiz
- Γ-convergenza del funzionale di energia

< ∃→

ъ.

- Dislocazioni nei Cristalli
- Il modello variazionale di Koslowski, Cuitiño e Ortiz
- Γ-convergenza del funzionale di energia
- Approssimazione Numerica

э

< ∃ →

Cristalli

Materiali che presentano una struttura atomica estremamente ordinata (reticolo cristallino)

< 注→ < 注→ …

Deformazioni elastiche e plastiche

Risposta di un materiale ad uno sforzo di taglio au applicato

 τ^{c} = tensione di snervamento (caratteristica del materiale)

- ∢ ≣ ▶

Dislocazioni

Difetti del reticolo cristallino di carattere unidimensionale che facilitano lo scorrimento relativo degli atomi

- Volterra (1905)
- Taylor, Orowan e Polyani (1934)

• • = •

Dislocazioni

Difetti del reticolo cristallino di carattere unidimensionale che facilitano lo scorrimento relativo degli atomi

- Volterra (1905)
- Taylor, Orowan e Polyani (1934)

In presenza di forze esterne la particolare geometria di un reticolo cristallino

< ∃ →

In presenza di forze esterne la particolare geometria di un reticolo cristallino

• vincola le deformazioni plastiche del cristallo lungo dei piani preferenziali (piani di slittamento)

- ∢ ≣ ▶

In presenza di forze esterne la particolare geometria di un reticolo cristallino

- vincola le deformazioni plastiche del cristallo lungo dei piani preferenziali (piani di slittamento)
- determina le direzioni lungo le quali è favorito lo scorrimento degli atomi (sistemi di slittamento)

In presenza di forze esterne la particolare geometria di un reticolo cristallino

- vincola le deformazioni plastiche del cristallo lungo dei piani preferenziali (piani di slittamento)
- determina le direzioni lungo le quali è favorito lo scorrimento degli atomi (sistemi di slittamento)

Reticolo Cubico

э

In presenza di forze esterne la particolare geometria di un reticolo cristallino

- vincola le deformazioni plastiche del cristallo lungo dei piani preferenziali (piani di slittamento)
- determina le direzioni lungo le quali è favorito lo scorrimento degli atomi (sistemi di slittamento)

Reticolo Cubico

In presenza di forze esterne la particolare geometria di un reticolo cristallino

- vincola le deformazioni plastiche del cristallo lungo dei piani preferenziali (piani di slittamento)
- determina le direzioni lungo le quali è favorito lo scorrimento degli atomi (sistemi di slittamento)

Reticolo Cubico

slittamento = $u_1 \mathbf{b_1} + u_2 \mathbf{b_2}$ $u_1, u_2 : S \to \mathbb{R}$

In presenza di forze esterne la particolare geometria di un reticolo cristallino

- vincola le deformazioni plastiche del cristallo lungo dei piani preferenziali (piani di slittamento)
- determina le direzioni lungo le quali è favorito lo scorrimento degli atomi (sistemi di slittamento)

slittamento = $u_1 \mathbf{b_1} + u_2 \mathbf{b_2}$ $u_1, u_2 : S \to \mathbb{R}$

In generale lo slittamento degli atomi non è uniforme

In presenza di forze esterne la particolare geometria di un reticolo cristallino

- vincola le deformazioni plastiche del cristallo lungo dei piani preferenziali (piani di slittamento)
- determina le direzioni lungo le quali è favorito lo scorrimento degli atomi (sistemi di slittamento)

slittamento = $u_1 \mathbf{b_1} + u_2 \mathbf{b_2}$ $u_1, u_2 : S \to \mathbb{R}$

In generale lo slittamento degli atomi non è uniforme \implies Dislocazioni

▶ ★ 臣 ▶ …

-

ъ.

→ 문 → 문

-

→ 문 → 문

-

Simone Cacace Un modello di transizione di fase per le dislocazioni

La zona deformata intorno alla linea AB è detta core della dislocazione

< ∃ >

La zona deformata intorno alla linea AB è detta core della dislocazione Una dislocazione può essere definita tramite un vettore di Burgers

La zona deformata intorno alla linea AB è detta core della dislocazione Una dislocazione può essere definita tramite un vettore di Burgers

э

La zona deformata intorno alla linea AB è detta core della dislocazione Una dislocazione può essere definita tramite un vettore di Burgers

La dislocazione a spigolo è ortogonale al suo vettore di Burgers ${\bf b}$

B 5

Dislocazioni e Plasticità

문 문 문

Si considera un cristallo elastico, periodico e infinito che possiede

э

- Si considera un cristallo elastico, periodico e infinito che possiede
 - un singolo piano di slittamento *S* (su cui avviene la deformazione plastica)

э

Si considera un cristallo elastico, periodico e infinito che possiede

- un singolo piano di slittamento *S* (su cui avviene la deformazione plastica)
- *N* sistemi di slittamento attivi su *S* (determinati dalla struttura cristallina)

Si considera un cristallo elastico, periodico e infinito che possiede

- un singolo piano di slittamento *S* (su cui avviene la deformazione plastica)
- *N* sistemi di slittamento attivi su *S* (determinati dalla struttura cristallina)

slittamento =
$$\sum_{i=1}^{N} u_i \mathbf{b}_i$$
 $u = (u_1, ..., u_N) : S \to \mathbb{R}^N$

Si considera un cristallo elastico, periodico e infinito che possiede

. .

Sistema

- un singolo piano di slittamento *S* (su cui avviene la deformazione plastica)
- *N* sistemi di slittamento attivi su *S* (determinati dalla struttura cristallina)

slittamento =
$$\sum_{i=1}^{N} u_i \mathbf{b}_i$$
 $u = (u_1, ..., u_N) : S \to \mathbb{R}^N$
di riferimento:

Si considera un cristallo elastico, periodico e infinito che possiede

. .

Sistema • Pia

- un singolo piano di slittamento *S* (su cui avviene la deformazione plastica)
- *N* sistemi di slittamento attivi su *S* (determinati dalla struttura cristallina)

$$slittamento = \sum_{i=1}^{N} u_i \mathbf{b}_i \qquad u = (u_1, ..., u_N) : S \to \mathbb{R}^N$$

di riferimento:
no di slittamento $\longrightarrow S = \{x_3 = 0\}$

X1

ī

Si considera un cristallo elastico, periodico e infinito che possiede

- un singolo piano di slittamento *S* (su cui avviene la deformazione plastica)
- *N* sistemi di slittamento attivi su *S* (determinati dalla struttura cristallina)

slittamento =
$$\sum_{i=1}^{N} u_i \mathbf{b}_i$$
 $u = (u_1, ..., u_N) : S \to \mathbb{R}^N$

Sistema di riferimento:

- Piano di slittamento $\longrightarrow S = \{x_3 = 0\}$
- Cella di periodicità $\longrightarrow Q \times \mathbb{R}$

$$Q=(-1/2,1/2)^2\subset \mathbb{R}^2$$

Si scrive in funzione dello slittamento u come somma di due contributi

$$E(u) = E^{elast.}(u) + E^{core}(u)$$

ミ▶ ▲ ミ▶ ミニー のへの

Si scrive in funzione dello slittamento u come somma di due contributi

$$E(u) = E^{elast.}(u) + E^{core}(u)$$

• E^{elast.}: energia elastica a lungo raggio indotta dallo slittamento

э.

Si scrive in funzione dello slittamento u come somma di due contributi

$$E(u) = E^{elast.}(u) + E^{core}(u)$$

• *E^{elast.}*: energia elastica a lungo raggio indotta dallo slittamento

• *E^{core}*: energia d'interazione a corto raggio che penalizza gli slittamenti non compatibili con il reticolo cristallino

(misura le deformazioni del reticolo in corrispondenza dei core delle dislocazioni).

「戸下」 イ 戸下」

$$E^{elast.}(u) = \int_Q \int_Q (u(x) - u(y))^T \mathbb{J}(x - y)(u(x) - u(y)) \, dx \, dy$$

글에 비밀어 다

= 990
$$E^{elast.}(u) = \int_Q \int_Q (u(x) - u(y))^T \mathbb{J}(x - y)(u(x) - u(y)) \, dx \, dy$$

ll nucleo $\mathbb J$ dipende dalla struttura cristallina e soddisfa le seguenti proprietà:

• = •

э.

$$E^{elast.}(u) = \int_Q \int_Q (u(x) - u(y))^T \mathbb{J}(x - y)(u(x) - u(y)) \, dx \, dy$$

ll nucleo $\mathbb J$ dipende dalla struttura cristallina e soddisfa le seguenti proprietà:

•
$$\mathbb{J}(t) \in \mathbb{M}^{N \times N}$$

• = •

э.

$$E^{elast.}(u) = \int_Q \int_Q (u(x) - u(y))^T \mathbb{J}(x - y)(u(x) - u(y)) \, dx \, dy$$

ll nucleo $\mathbb J$ dipende dalla struttura cristallina e soddisfa le seguenti proprietà:

- $\mathbb{J}(t) \in \mathbb{M}^{N \times N}$
- \mathbb{J} definisce una forma quadratica positiva equivalente al quadrato della seminorma $H^{\frac{1}{2}}$:

$$rac{c_1}{|t|^3} |\xi|^2 \leq \xi^{ op} \mathbb{J}(t) \xi \leq rac{c_2}{|t|^3} |\xi|^2$$

글 🖌 🔺 글 🕨

Descritta da un potenziale quadratico a tratti che misura la distorsione del reticolo cristallino indotta dagli slittamenti $u \notin \mathbb{Z}^N$.

э

Descritta da un potenziale quadratico a tratti che misura la distorsione del reticolo cristallino indotta dagli slittamenti $u \notin \mathbb{Z}^N$.

$$E^{core}(u) = \frac{1}{\varepsilon} \int_Q \operatorname{dist}^2(u(x), \mathbb{Z}^N) dx$$

Descritta da un potenziale quadratico a tratti che misura la distorsione del reticolo cristallino indotta dagli slittamenti $u \notin \mathbb{Z}^N$.

$$E^{core}(u) = rac{1}{arepsilon} \int_Q \operatorname{dist}^2(u(x), \mathbb{Z}^N) dx$$

 $\varepsilon \sim$ distanza tra gli atomi del cristallo

-

Descritta da un potenziale quadratico a tratti che misura la distorsione del reticolo cristallino indotta dagli slittamenti $u \notin \mathbb{Z}^N$.

$$E^{core}(u) = rac{1}{arepsilon} \int_Q \operatorname{dist}^2(u(x), \mathbb{Z}^N) dx$$

 $\varepsilon \sim$ distanza tra gli atomi del cristallo

$$\mathsf{dist}^2(u(x),\mathbb{Z}^N) = \min_{\xi(x)\in\mathbb{Z}^N} |u(x) - \xi(x)|^2$$

▲●▼▲目▼▲目▼ 目 わえぐ

$$dist^{2}(u(x), \mathbb{Z}^{N}) = \min_{\xi(x) \in \mathbb{Z}^{N}} |u(x) - \xi(x)|^{2}$$

campo di fase $\xi = (\xi_{1}, ..., \xi_{N}) : S \to \mathbb{Z}^{N}$

▲●▼▲目▼▲目▼ 目 わえぐ

$$\begin{split} \operatorname{dist}^2(u(x),\mathbb{Z}^N) &= \min_{\xi(x)\in\mathbb{Z}^N} |u(x) - \xi(x)|^2\\ \text{campo di fase} \qquad \xi &= (\xi_1,...,\xi_N) : S \to \mathbb{Z}^N \end{split}$$

Le dislocazioni sono identificate con le discontinuità di salto di ξ

2

< ≣ ▶

$$\begin{split} \operatorname{dist}^2(u(x),\mathbb{Z}^N) &= \min_{\xi(x)\in\mathbb{Z}^N} |u(x) - \xi(x)|^2\\ \text{campo di fase} \qquad \xi &= (\xi_1,...,\xi_N) : S \to \mathbb{Z}^N \end{split}$$

Le dislocazioni sono identificate con le discontinuità di salto di ξ

slittamento cristallografico \iff transizione di fase

문에 비용에 다

э.

$$E_{\varepsilon}(u) = \int_{Q} \int_{Q} (u(x) - u(y))^{T} \mathbb{J}(x - y) (u(x) - u(y)) \, dx \, dy + \frac{1}{\varepsilon} \int_{Q} \operatorname{dist}^{2}(u, \mathbb{Z}^{N}) \, dx$$

문어 세 문어

∃ • ク へ (~

$$E_{\varepsilon}(u) = \int_{Q} \int_{Q} (u(x) - u(y))^{T} \mathbb{J}(x - y) (u(x) - u(y)) \, dx \, dy + \frac{1}{\varepsilon} \int_{Q} \operatorname{dist}^{2}(u, \mathbb{Z}^{N}) \, dx$$

< ∃ >

$$E_{\varepsilon}(u) = \int_{Q} \int_{Q} (u(x) - u(y))^{T} \mathbb{J}(x - y) (u(x) - u(y)) \, dx \, dy + \frac{1}{\varepsilon} \int_{Q} \operatorname{dist}^{2}(u, \mathbb{Z}^{N}) \, dx$$

Alcuni riferimenti

• Perturbazione locale (integrale di Dirichlet)

Modica-Mortola, Modica, Sternberg

$$E_{\varepsilon}(u) = \int_{Q} \int_{Q} (u(x) - u(y))^{T} \mathbb{J}(x - y) (u(x) - u(y)) \, dx \, dy + \frac{1}{\varepsilon} \int_{Q} \operatorname{dist}^{2}(u, \mathbb{Z}^{N}) \, dx$$

Alcuni riferimenti

- Perturbazione locale (integrale di Dirichlet) Modica-Mortola, Modica, Sternberg
- Perturbazione non locale regolare

Alberti-Bellettini, Alberti-Bellettini-Cassandro-Presutti

$$E_{\varepsilon}(u) = \int_{Q} \int_{Q} (u(x) - u(y))^{T} \mathbb{J}(x - y) (u(x) - u(y)) \, dx \, dy + \frac{1}{\varepsilon} \int_{Q} \operatorname{dist}^{2}(u, \mathbb{Z}^{N}) \, dx$$

Alcuni riferimenti

- Perturbazione locale (integrale di Dirichlet) Modica-Mortola, Modica, Sternberg
- Perturbazione non locale regolare

Alberti-Bellettini, Alberti-Bellettini-Cassandro-Presutti

• Perturbazione non locale singolare

Alberti-Bouchitté-Seppecher, Kurzke, Garroni-Müller

▲臣▶ ▲臣▶ 臣 めへで

 F_{ε} $\Gamma(d)$ -converge a F se

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 • • • • • ● •

```
F_{\varepsilon} \Gamma(d)-converge a F se
```

• Per ogni $u \in X$ e per ogni successione $\{u_{\varepsilon}\} \subseteq X$ tale che $u_{\varepsilon} \xrightarrow{d} u$ risulta

 $\liminf_{\varepsilon\to 0} F_{\varepsilon}(u_{\varepsilon}) \geq F(u) \,.$

```
F_{\varepsilon} \Gamma(d)-converge a F se
```

• Per ogni $u \in X$ e per ogni successione $\{u_{\varepsilon}\} \subseteq X$ tale che $u_{\varepsilon} \xrightarrow{d} u$ risulta

 $\liminf_{\varepsilon\to 0} F_{\varepsilon}(u_{\varepsilon}) \geq F(u) \,.$

• Per ogni $u \in X$ esiste $\{u_{\varepsilon}\} \subseteq X$ tale che $u_{\varepsilon} \stackrel{d}{\rightarrow} u$ e risulta

$$\lim_{\varepsilon\to 0}F_{\varepsilon}(u_{\varepsilon})=F(u)\,.$$

 u_{ε} è detta successione ottimale

• = •

э.

• Semicontinuità inferiore:

ogni $\Gamma(d)$ -limite risulta essere sempre semicontinuo inferiormente rispetto alla topologia generata dalla metrica d.

A 3 - 5

• Semicontinuità inferiore:

ogni $\Gamma(d)$ -limite risulta essere sempre semicontinuo inferiormente rispetto alla topologia generata dalla metrica d.

• Stabilità rispetto alle perturbazioni continue: se F_{ε} $\Gamma(d)$ -converge ad F e G è un funzionale d-continuo, allora $F_{\varepsilon} + G \Gamma(d)$ -converge ad F + G.

• Semicontinuità inferiore:

ogni $\Gamma(d)$ -limite risulta essere sempre semicontinuo inferiormente rispetto alla topologia generata dalla metrica d.

- Stabilità rispetto alle perturbazioni continue: se F_{ε} $\Gamma(d)$ -converge ad F e G è un funzionale d-continuo, allora $F_{\varepsilon} + G \Gamma(d)$ -converge ad F + G.
- Stabilità dei punti di minimo e dei valori minimi: se F_ε Γ(d)-converge ad F e {u_ε} à una successione che minimizza F_ε su X, tale che u_ε ^{ε→0}/_→ u, allora u minimizza F su X e risulta

$$\lim_{\varepsilon \to 0} F_{\varepsilon}(u_{\varepsilon}) = \lim_{\varepsilon \to 0} \min_{v \in X} F_{\varepsilon}(v) = \min_{v \in X} F(v) = F(u).$$

Quanto "costa" una transizione di fase?

문제 세 문제 ...

문 문 문

$$E_{\varepsilon}(u_{\varepsilon}) \sim C \int_{Q} \int_{Q} \frac{|u_{\varepsilon}(x) - u_{\varepsilon}(y)|^{2}}{|x - y|^{3}} dx dy + \text{t.o.i.}$$
$$= C \int_{A} \int_{B} \frac{|u_{\varepsilon}(x) - u_{\varepsilon}(y)|^{2}}{|x - y|^{3}} dx dy + \text{t.o.i.} = C |\log \varepsilon| + \text{t.o.i}$$

문 문 문

Γ-convergenza del funzionale di energia

$$F_{\varepsilon}(u) = \frac{1}{|\log \varepsilon|} \int_{Q} \int_{Q} (u(x) - u(y))^{T} \mathbb{J}(x - y) (u(x) - u(y)) \, dx \, dy + \frac{1}{\varepsilon |\log \varepsilon|} \int_{Q} \operatorname{dist}^{2} (u, \mathbb{Z}^{N}) \, dx$$

▶ ★ 臣 ▶ …

э.

Γ-convergenza del funzionale di energia

$$F_{\varepsilon}(u) = \frac{1}{|\log \varepsilon|} \int_{Q} \int_{Q} (u(x) - u(y))^{T} \mathbb{J}(x - y) (u(x) - u(y)) \, dx \, dy + \frac{1}{\varepsilon |\log \varepsilon|} \int_{Q} \operatorname{dist}^{2} (u, \mathbb{Z}^{N}) \, dx$$

Teorema (C.-Garroni)

Compattezza

Se $F_{\varepsilon}(u_{\varepsilon}) \leq M$, allora $\exists a_{\varepsilon} \in \mathbb{Z}^{N}$ e $u \in BV(Q, \mathbb{Z}^{N})$ tali che (a meno di sottosuccessioni)

$$u_{\varepsilon} - a_{\varepsilon} \rightarrow u \quad in \ L^{1}(Q)$$

□Convergenza

 \exists una sottosuccessione $\varepsilon_k \to 0$ ed una funzione $\varphi : \mathbb{Z}^N \times S^1 \to \mathbb{R}$ tali che

$$egin{array}{cc} {\mathcal F}_{arepsilon_k}(u) & {\Gamma}(L^1) ext{-}converge \; a & {\mathcal F}(u) = \int_{{\mathcal S} u} arphi([u], n_u) \, d{\mathcal H}^1 \end{array}$$

Su = insieme dei salti di u [u] = salto di u $n_u =$ versore normale su Su

< 3 > < 3 >

Simone Cacace Un modello di transizione di fase per le dislocazioni

문어 문

• Il funzionale F dipende dalla sottosuccessione ε_k estratta

문 문 문

- Il funzionale F dipende dalla sottosuccessione ε_k estratta
- $\varphi(s,n) = ?$

- ∢ ⊒ →

Ξ.

- Il funzionale F dipende dalla sottosuccessione ε_k estratta
- $\varphi(s, n) = ?$

 $\forall \, (s,n) \in \mathbb{Z}^N \times S^1 \qquad \varphi(s,n) = F(u_s^n,Q^n) \qquad u_s^n(x) = s \, \chi_{\{x \cdot n > 0\}}$

- Il funzionale F dipende dalla sottosuccessione ε_k estratta
- $\varphi(s, n) = ?$
- $\forall \, (s,n) \in \mathbb{Z}^N \times S^1 \qquad \varphi(s,n) = F(u_s^n,Q^n) \qquad u_s^n(x) = s \, \chi_{\{x \cdot n > 0\}}$

Non conosciamo le successioni ottimali:

$$u_{\varepsilon} \to u_{s}^{n} \qquad \lim_{\varepsilon \to 0} F_{\varepsilon}(u_{\varepsilon}, Q^{n}) = F(u_{s}^{n}, Q^{n})$$

э

- Il funzionale F dipende dalla sottosuccessione ε_k estratta
- $\varphi(s, n) = ?$
- $\forall \, (s,n) \in \mathbb{Z}^N \times S^1 \qquad \varphi(s,n) = F(u_s^n,Q^n) \qquad u_s^n(x) = s \, \chi_{\{x \cdot n > 0\}}$

Non conosciamo le successioni ottimali:

$$u_{\varepsilon} \to u_{s}^{n} \qquad \lim_{\varepsilon \to 0} F_{\varepsilon}(u_{\varepsilon}, Q^{n}) = F(u_{s}^{n}, Q^{n})$$

Completamente risolto in un caso scalare (Garroni-Müller)

э

Un solo sistema di slittamento attivo

slittamento = $u\mathbf{b}$

dove $u: Q \to \mathbb{R}$ è scalare e **b** è un vettore di Burgers assegnato.

ミ▶ ▲ ミ ト ミ つへで
Un solo sistema di slittamento attivo

slittamento = $u\mathbf{b}$

dove $u: Q \to \mathbb{R}$ è scalare e **b** è un vettore di Burgers assegnato.

Il funzionale si riduce a

$$F_{\varepsilon}(u,Q) = \frac{1}{|\log \varepsilon|} \int_{Q} \int_{Q} J(x-y) |u(x) - u(y)|^{2} dx dy + \frac{1}{\varepsilon |\log \varepsilon|} \int_{Q} \operatorname{dist}^{2}(u,\mathbb{Z}) dx$$

ミ▶ ▲ ミ ト ミ つへぐ

Un solo sistema di slittamento attivo

slittamento = $u\mathbf{b}$

dove $u: Q \to \mathbb{R}$ è scalare e **b** è un vettore di Burgers assegnato.

Il funzionale si riduce a

$$F_{\varepsilon}(u,Q) = \frac{1}{|\log \varepsilon|} \int_{Q} \int_{Q} J(x-y) |u(x) - u(y)|^{2} dx dy + \frac{1}{\varepsilon |\log \varepsilon|} \int_{Q} \operatorname{dist}^{2}(u,\mathbb{Z}) dx$$

Teorema (Garroni-Müller)

$$F_arepsilon(u,Q)$$
 $\Gamma(L^1)$ -converge a $F(u,Q) = \int_{Su\cap Q} \gamma(n_u) |[u]| \mathcal{H}^1$

dove

$$\gamma(n)=2\int_{x\cdot n=1}J(x)\,dx$$

向 ト イヨ ト イヨ ト

æ –

Successione ottimale: è sufficiente considerare una qualunque mollificazione di $u^n = \chi_{\{x \cdot n > 0\}}$, i.e. $u_{\varepsilon} = u^n * \phi_{\varepsilon}$

э

Successione ottimale: è sufficiente considerare una qualunque mollificazione di $u^n = \chi_{\{x:n>0\}}$, i.e. $u_{\varepsilon} = u^n * \phi_{\varepsilon}$

 $\lim_{\varepsilon \to 0} F_{\varepsilon}(u_{\varepsilon}, Q^n) = \lim_{\varepsilon \to 0} \frac{1}{|\log \varepsilon|} \int_{Q^n} \int_{Q^n} J(x-y) |u(x) - u(y)|^2 \, dx \, dy = \gamma(n) = F(u^n, Q^n)$

Successione ottimale: è sufficiente considerare una qualunque mollificazione di $u^n = \chi_{\{x:n>0\}}$, i.e. $u_{\varepsilon} = u^n * \phi_{\varepsilon}$

 $\lim_{\varepsilon \to 0} F_{\varepsilon}(u_{\varepsilon}, Q^n) = \lim_{\varepsilon \to 0} \frac{1}{|\log \varepsilon|} \int_{Q^n} \int_{Q^n} \int_{Q^n} J(x-y) |u(x) - u(y)|^2 \, dx \, dy = \gamma(n) = F(u^n, Q^n)$

• "profilo unidimensionale"

Due sistemi di slittamento attivi

slittamento = $u_1 \mathbf{b_1} + u_2 \mathbf{b_2}$

dove $u = (u_1, u_2) : Q \to \mathbb{R}^2$ e **b**₁, **b**₂ sono due vettori di Burgers paralleli ai versori della base canonica di \mathbb{R}^2 .

Due sistemi di slittamento attivi

slittamento = $u_1 \mathbf{b_1} + u_2 \mathbf{b_2}$

dove $u = (u_1, u_2) : Q \to \mathbb{R}^2$ e **b**₁, **b**₂ sono due vettori di Burgers paralleli ai versori della base canonica di \mathbb{R}^2 .

Il funzionale si riduce a

$$F_{\varepsilon}(u,Q) = \frac{1}{|\log \varepsilon|} \int_{Q} \int_{Q} (u(x) - u(y))^{T} \mathbb{J}(x-y) (u(x) - u(y)) \, dx \, dy + \frac{1}{\varepsilon |\log \varepsilon|} \int_{Q} \operatorname{dist}^{2}(u,\mathbb{Z}^{2}) \, dx$$

Due sistemi di slittamento attivi

slittamento = $u_1 \mathbf{b_1} + u_2 \mathbf{b_2}$

dove $u = (u_1, u_2) : Q \to \mathbb{R}^2$ e **b**₁, **b**₂ sono due vettori di Burgers paralleli ai versori della base canonica di \mathbb{R}^2 .

Il funzionale si riduce a

$$F_{\varepsilon}(u,Q) = \frac{1}{|\log \varepsilon|} \int_{Q} \int_{Q} (u(x) - u(y))^{T} \mathbb{J}(x-y) (u(x) - u(y)) \, dx \, dy + \frac{1}{\varepsilon |\log \varepsilon|} \int_{Q} \operatorname{dist}^{2} (u, \mathbb{Z}^{2}) \, dx$$

Strategia del caso scalare: $u_s^n = s\chi_{\{x\cdot n>0\}}$ con $s\in\mathbb{Z}^2$, $n\in S^1$ e $u_\varepsilon = u_s^n * \phi_\varepsilon$

$$\lim_{\varepsilon \to 0} F_{\varepsilon}(u_{\varepsilon}, Q^n) = s^T \gamma(n) s =: F_{flat}(u_s^n, Q^n)$$

< ∃ >

$$\lim_{\varepsilon \to 0} F_{\varepsilon}(u_{\varepsilon}, Q^{n}) = s^{T} \gamma(n) s =: F_{flat}(u_{s}^{n}, Q^{n})$$

$$n \to \theta$$

$$\gamma(n) = 2 \int_{x \cdot n = 1} \mathbb{J}(x) \, dx = \gamma(\theta) = C \begin{pmatrix} 2(1 - \frac{1}{2}) \sin^{2}\theta & \frac{1}{2} \sin 2\theta \\ \frac{1}{2} \sin 2\theta & 2(1 - \frac{1}{2}) \cos^{2}\theta \end{pmatrix}$$

< ∃ >

$$\lim_{\varepsilon \to 0} F_{\varepsilon}(u_{\varepsilon}, Q^{n}) = s^{T} \gamma(n) s =: F_{flat}(u_{s}^{n}, Q^{n})$$

$$\gamma(n) = 2 \int_{x \cdot n = 1} \mathbb{J}(x) \, dx = \gamma(\theta) = C \begin{pmatrix} 2(1 - \frac{1}{2}) \sin^{2} \theta & \frac{1}{2} \sin 2\theta \\ \frac{1}{2} \sin 2\theta & 2(1 - \frac{1}{2}) \cos^{2} \theta \end{pmatrix}$$

 $\gamma(n)$ è definita positiva, ma la diagonale secondaria può cambiare segno

In alcune direzioni è più conveniente separare i salti:

2

- ∢ ⊒ →

In alcune direzioni è più conveniente separare i salti:

< ∃ >

In alcune direzioni è più conveniente separare i salti:

 $\lim_{\varepsilon \to 0} F_{\varepsilon}(u * \phi_{\varepsilon}, Q^{n}) = \gamma_{11}(\theta) + \gamma_{22}(\theta) + 2\gamma_{12}(\theta) > \gamma_{11}(\theta) + \gamma_{22}(\theta) = \lim_{\varepsilon \to 0} F_{\varepsilon}(v_{\varepsilon} * \phi_{\varepsilon}, Q^{n})$

In alcune direzioni è più conveniente concentrare i salti:

ъ.

< ∃ >

In alcune direzioni è più conveniente concentrare i salti:

In alcune direzioni è più conveniente concentrare i salti:

 $\lim_{\varepsilon \to 0} F_{\varepsilon}(u * \phi_{\varepsilon}, Q^{n}) = \gamma_{11}(\theta) + \gamma_{22}(\theta) + 2\gamma_{12}(\theta) < \gamma_{11}(\theta) + \gamma_{22}(\theta) = \lim_{\varepsilon \to 0} F_{\varepsilon}(v_{\varepsilon} * \phi_{\varepsilon}, Q^{n})$

Un Caso Vettoriale: non ottimalità del profilo 1D

э

Un Caso Vettoriale: non ottimalità del profilo 1D

Consideriamo

э

Un Caso Vettoriale: non ottimalità del profilo 1D

Consideriamo

Problema modello: funzionale 1D, scalare con potenziale a doppio pozzo (Alberti-Bouchitté-Seppecher)

글 🖌 🔺 글 🕨

Problema modello: funzionale 1D, scalare con potenziale a doppio pozzo (Alberti-Bouchitté-Seppecher)

$$F_{\varepsilon}(u) = \begin{cases} \frac{1}{|\log \varepsilon|} \left(\int_{I} \int_{I} \frac{|u(x) - u(y)|^{2}}{|x - y|^{2}} dx dy + \frac{1}{\varepsilon} \int_{I} W(u) dx \right) & \text{se } u \in H^{\frac{1}{2}}(I) \\ +\infty & \text{altrimenti in } L^{1}(I) \end{cases}$$

con $I = (0,1), u: I \rightarrow \mathbb{R}, W: \mathbb{R} \rightarrow [0,+\infty), \{W = 0\} = \{0,1\}$

ほん イヨト

Problema modello: funzionale 1D, scalare con potenziale a doppio pozzo (Alberti-Bouchitté-Seppecher)

$$F_{\varepsilon}(u) = \begin{cases} \frac{1}{|\log \varepsilon|} \left(\int_{I} \int_{I} \frac{|u(x) - u(y)|^{2}}{|x - y|^{2}} dx dy + \frac{1}{\varepsilon} \int_{I} W(u) dx \right) & \text{se } u \in H^{\frac{1}{2}}(I) \\ +\infty & \text{altrimenti in } L^{1}(I) \end{cases}$$

con
$$I = (0,1)$$
, $u: I \rightarrow \mathbb{R}$, $W: \mathbb{R} \rightarrow [0, +\infty)$, $\{W = 0\} = \{0, 1\}$

 $F_{\varepsilon} \ \Gamma(L^1)$ -converge a

$$F(u) = \begin{cases} 2\mathcal{H}^0(Su) & \text{se } u \in BV(I, \{0, 1\}) \\ \\ +\infty & \text{altrimenti in } L^1(I) \,. \end{cases}$$

프 (프) -

Per ogni $g \in L^{\infty}(I)$ definiamo $G: L^{1}(I) \rightarrow [0, +\infty]$ ponendo

$$G(u)=\int_I |u(x)-g(x)|\,dx\,.$$

ミ▶ ▲ ミ ト ミ つへぐ

Per ogni $g \in L^\infty(I)$ definiamo $G: L^1(I) \to [0, +\infty]$ ponendo

$$G(u)=\int_I |u(x)-g(x)|\,dx\,.$$

Dalle proprietà di stabilità della Г-convergenza segue che

$$F_{\varepsilon}(u) + G(u) \stackrel{\Gamma(L^1)}{\to} F(u) + G(u)$$

е

$$\min_{u \in L^1(I)} \left(F_{\varepsilon}(u) + G(u) \right) \stackrel{\varepsilon \to 0}{\to} \min_{u \in L^1(I)} \left(F(u) + G(u) \right)$$

Per ogni h > 0 indichiamo con \mathbb{I}_h la partizione uniforme di I = (0, 1) in sottointervalli di ampiezza h e consideriamo lo spazio degli elementi finiti lineari

$$\mathcal{V}_h(I) = \left\{ u : I \to \mathbb{R} : u \in C(\overline{I}), \ u_{|_{\mathbb{I}}} \in \mathbb{P}_1(\mathbb{I}) \quad \forall \mathbb{I} \in \mathbb{I}_h \right\}.$$

Per ogni h > 0 indichiamo con \mathbb{I}_h la partizione uniforme di I = (0, 1) in sottointervalli di ampiezza h e consideriamo lo spazio degli elementi finiti lineari

$$\mathcal{V}_h(I) = \left\{ u: I \to \mathbb{R} : u \in \mathcal{C}(\overline{I}), u_{|_{\mathbb{I}}} \in \mathbb{P}_1(\mathbb{I}) \quad \forall \mathbb{I} \in \mathbb{I}_h \right\}.$$

Definiamo

$$F_{\varepsilon,h}(u) = \begin{cases} \frac{1}{|\log \varepsilon|} \left(\int_{I} \int_{I} \frac{|u(x) - u(y)|^2}{|x - y|^2} \, dx \, dy + \frac{1}{\varepsilon} \int_{I} W(u) \, dx \right) & \text{se } u \in V_h(I) \\ +\infty & \text{altrimenti in } L^1(I) \end{cases}$$

ヨト・イヨト

Per ogni h > 0 indichiamo con \mathbb{I}_h la partizione uniforme di I = (0, 1) in sottointervalli di ampiezza h e consideriamo lo spazio degli elementi finiti lineari

$$\mathcal{W}_h(I) = \left\{ u: I \to \mathbb{R} : u \in \mathcal{C}(\overline{I}), u_{|_{\mathbb{I}}} \in \mathbb{P}_1(\mathbb{I}) \quad \forall \mathbb{I} \in \mathbb{I}_h
ight\}.$$

Definiamo

$$F_{\varepsilon,h}(u) = \begin{cases} \frac{1}{|\log \varepsilon|} \left(\int_{I} \int_{I} \frac{|u(x) - u(y)|^2}{|x - y|^2} \, dx \, dy + \frac{1}{\varepsilon} \int_{I} W(u) \, dx \right) & \text{se } u \in V_h(I) \\ +\infty & \text{altrimenti in } L^1(I) \end{cases}$$

• Se $h = h(\varepsilon)$ tale che $h \to 0$ per $\varepsilon \to 0$, sotto quale condizione si ha

$$F_{\varepsilon,h(\varepsilon)}(u) \stackrel{\Gamma(L^1)}{\to} F(u)$$
?

医下颌 医下颌

Approssimazione Numerica

Per ogni
$$g \in L^{\infty}(I)$$
 sia $g_{\varepsilon} \in C_{0}^{\infty}(I)$ tale che
 $g_{\varepsilon} \to g$ in $L^{1}(I)$, $\|g_{\varepsilon}\|_{\infty} \leq \|g\|_{\infty}$, $\|g'_{\varepsilon}\|_{\infty} \leq C/\varepsilon$.
Sia $M = \max\left\{1, \|g\|_{\infty}\right\}$ e $\mathcal{D}_{h}(I) := \left\{u \in V_{h}(I) : \|u\|_{\infty} \leq M\right\}$.

Approssimazione Numerica

Per ogni
$$g \in L^{\infty}(I)$$
 sia $g_{\varepsilon} \in C_{0}^{\infty}(I)$ tale che
 $g_{\varepsilon} \to g$ in $L^{1}(I)$, $\|g_{\varepsilon}\|_{\infty} \le \|g\|_{\infty}$, $\|g'_{\varepsilon}\|_{\infty} \le C/\varepsilon$.
Sia $M = \max\left\{1, \|g\|_{\infty}\right\}$ e $\mathcal{D}_{h}(I) := \left\{u \in V_{h}(I) : \|u\|_{\infty} \le M\right\}$.

Definiamo

$$\mathcal{F}_{\varepsilon,h}(u) = \begin{cases} \frac{1}{|\log \varepsilon|} \left(\int_{I} \int_{I} \frac{|u(x) - u(y)|^2}{|x - y|^2} \, dx \, dy + \frac{1}{\varepsilon} \int_{I} \pi_h(W(u)) \, dx \right) & \text{se } u \in \mathcal{D}_h(I) \\ +\infty & \text{altrimenti in } L^1(I) \end{cases}$$

е

$$G_{\varepsilon,h}(u) = \int_I \pi_h(|u(x) - g_{\varepsilon}(x)|) dx.$$

dove $\pi_h : C(\overline{I}) \to V_h(I)$ indica l'operatore di interpolazione di Lagrange.

< E > < E > E - のQ (~

Approssimazione Numerica

Per ogni
$$g \in L^{\infty}(I)$$
 sia $g_{\varepsilon} \in C_{0}^{\infty}(I)$ tale che
 $g_{\varepsilon} \to g$ in $L^{1}(I)$, $\|g_{\varepsilon}\|_{\infty} \le \|g\|_{\infty}$, $\|g'_{\varepsilon}\|_{\infty} \le C/\varepsilon$.
Sia $M = \max\left\{1, \|g\|_{\infty}\right\}$ e $\mathcal{D}_{h}(I) := \left\{u \in V_{h}(I) : \|u\|_{\infty} \le M\right\}$.

Definiamo

$$\mathcal{F}_{\varepsilon,h}(u) = \begin{cases} \frac{1}{|\log \varepsilon|} \left(\int_{I} \int_{I} \frac{|u(x) - u(y)|^2}{|x - y|^2} \, dx \, dy + \frac{1}{\varepsilon} \int_{I} \pi_h(W(u)) \, dx \right) & \text{se } u \in \mathcal{D}_h(I) \\ +\infty & \text{altrimenti in } L^1(I) \end{cases}$$

е

$$G_{\varepsilon,h}(u) = \int_I \pi_h(|u(x) - g_{\varepsilon}(x)|) dx.$$

dove $\pi_h : C(\overline{I}) \to V_h(I)$ indica l'operatore di interpolazione di Lagrange. • Se $h = h(\varepsilon) \to 0$ per $\varepsilon \to 0$, risulta

$$\mathcal{F}_{\varepsilon,h(\varepsilon)}(u) + G_{\varepsilon,h(\varepsilon)}(u) \stackrel{\Gamma(L^1)}{\to} F(u) + G(u) ?$$

Poniamo

$$a(u,v) = \int_I \int_I \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^2} \, dx \, dy \, .$$

문에 비용에 다

ъ.

Poniamo

$$a(u,v) = \int_I \int_I \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^2} \, dx \, dy \, .$$

Se $\{\phi_i\} \subset V_h(I)$ è una base per V_h allora ogni $u \in V_h(I)$ si scrive come

$$u(x) = \sum_{i} u_i \phi_i(x)$$
 con $U := \{u_i\} \in \mathbb{R}^{N(h)}$

e risulta

$$\int_{I} \int_{I} \frac{|u(x) - u(y)|^2}{|x - y|^2} \, dx \, dy = a(u, u) = U^T \mathbb{A} U$$

con

$$\mathbb{A} = (\mathbb{A}_{ij}) = (a(\phi_i, \phi_j))$$

э.

Poniamo

$$a(u,v) = \int_I \int_I \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^2} \, dx \, dy \, .$$

Se $\{\phi_i\} \subset V_h(I)$ è una base per V_h allora ogni $u \in V_h(I)$ si scrive come

$$u(x) = \sum_{i} u_i \phi_i(x)$$
 con $U := \{u_i\} \in \mathbb{R}^{N(h)}$

e risulta

$$\int_{I} \int_{I} \frac{|u(x) - u(y)|^2}{|x - y|^2} \, dx \, dy = a(u, u) = U^T \mathbb{A} U$$

con

$$\mathbb{A} = (\mathbb{A}_{ij}) = (a(\phi_i, \phi_j))$$

• Occorre una formula di quadratura (il nucleo $|x - y|^{-2}$ è singolare!)

э.

D'altra parte

$$\mathbb{W}(U) = \int_{I} \pi_h \Big(W(u) \Big) dx$$
 e $\mathbb{G}_{\varepsilon}(U) = \int_{I} \pi_h \big(|u(x) - g_{\varepsilon}(x)| \big) dx$

si calcolano col metodo dei trapezi.

< ∃ →

D'altra parte

$$\mathbb{W}(U) = \int_{I} \pi_h \Big(W(u) \Big) dx$$
 e $\mathbb{G}_{\varepsilon}(U) = \int_{I} \pi_h \big(|u(x) - g_{\varepsilon}(x)| \big) dx$

si calcolano col metodo dei trapezi.

Allora occorre risolvere il seguente problema di minimo

$$\min_{\|U\|_{\infty} \leq M} \left(\frac{1}{|\log \varepsilon|} U^{\mathsf{T}} \mathbb{A} U + \frac{1}{\varepsilon |\log \varepsilon|} \mathbb{W}(U) + \mathbb{G}_{\varepsilon}(U) \right)$$

utilizzando un metodo di discesa.
D'altra parte

$$\mathbb{W}(U) = \int_{I} \pi_h \Big(W(u) \Big) dx$$
 e $\mathbb{G}_{\varepsilon}(U) = \int_{I} \pi_h \big(|u(x) - g_{\varepsilon}(x)| \big) dx$

si calcolano col metodo dei trapezi.

Allora occorre risolvere il seguente problema di minimo

$$\min_{\|U\|_{\infty} \leq M} \left(\frac{1}{|\log \varepsilon|} U^{T} \mathbb{A} U + \frac{1}{\varepsilon |\log \varepsilon|} \mathbb{W}(U) + \mathbb{G}_{\varepsilon}(U) \right)$$

utilizzando un metodo di discesa.

• Estensione al caso 2D, vettoriale, anisotropo

Un modello di transizione di fase per le dislocazioni planari nei cristalli

Simone Cacace

Dipartimento di Matematica G.Castelnuovo Università degli Studi di Roma "La Sapienza"

29 Gennaio 2008

< ∃ →

3