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An Overview of Classical Deformation Theory

Edoardo Sernesi

1 Generalities

Deformation theory is closely related to the problem of classification in algebraic geometry.
If we have a class M of algebro-geometric objects, e.g.

M = {projective nonsingular curves of genus g}/(isomorphism)
M = {closed subschemes of P

r with given Hilbert polynomial}
M = {vector bundles of given rank and Chern

classes on a smooth projective variety X}

the problem is: to describeM.
The interest and the difficulty of this problem come from the existence of families. Roughly

speaking, the existence of families of objects in M implies that M is not just a set but has
some kind of “structure”, hopefully will be a scheme, which will be the moduli space of the
classification problem. In most cases M is not a scheme but has a weaker structure.

In order to make this statement more precise we have to specify the notion of family. This
notion is different for every different classM but in each case it is related to the natural fact
that all objects of algebraic geometry can be “deformed” by varying the coefficients of their
defining equations.

If for example we want to consider a class M of algebraic varieties (curves, varieties of
given dimension and numerical characters, etc.) a family will be a morphism:

X
π

��
S

whose fibres X (s) = π−1(s), s ∈ S, are elements of M and with at least the extra technical
condition of being flat; if the class M consists of projective and/or nonsingular varieties,
then π will be also required to be proper and/or smooth. Here X and S are called the total
space and the parameter space of the family. If S is connected then π is called a family of
deformations of X (s0) for any s0 ∈ S.

If X and S are complex manifolds with S connected, and π is proper and smooth then
all fibres X (s) are diffeomorphic and we are just considering a family of compact complex
structures on a fixed differentiable manifold.

If instead we want to consider a class M of closed subschemes of a given scheme Y a
family will be a commutative diagram:

X � � ��

π

��

S × Y

S
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where π is the restriction of the first projection, the inclusion is closed, and all fibres of π are
inM.

Typically, a family of hypersurfaces of degree d in P
r parametrized by an affine space

A
n = Spec(k[t1, . . . , tn]), k a field, will be a hypersurface H ⊂ A

n×P
r defined by a polynomial

P (t,X) ∈ k[t1, . . . , tn, X0, . . . , Xr] homogeneous of degree d in X0, . . . , Xr.
A less ambitious goal is the study of local deformations of a given object m ∈ M. This

means to consider deformations of m parametrized by spectra of local rings so that m is the
fibre over the closed point. This will lead to the understanding of the local structure ofM at
m. This was the point of view of Kodaira-Spencer who initiated modern deformation theory
in a series of papers published in 1958 on Annals of Mathematics, where they studied local
deformations of compact complex manifolds, i.e. local deformations of complex structures on
a fixed compact differentiable manifold.

In each different case the notion of family has the fundamental property of being funtorial.
Let’s consider, to fix ideas, the case of a classM of isomorphism classes of projective varieties
defined over a fixed algebraically closed field k, and families of objects inM. For each scheme
S we call two different such families over S

X
π

��
S

and X ′

π′

��
S

isomorphic if there is an isomorphism ϕ : X → X ′ such that π = π′ ◦ ϕ. We can define a
contravariant functor

F : (Schemes/k) −→ (Sets)

by
F (S) = {isomorphism classes of families of objects of M over S}

For each morphism f : T → S we have an induced

F (f) : F (S) −→ F (T )

by pulling back families with f :

F (f)([X → S]) = [T ×S X → T ]

where [−] denotes the isomorphism class of − and

T ×S X ��

��

X
π

��
T

f
�� S

is the induced pullback diagram.
This observation was the starting point of the development of deformation theory under

the influence of Grothendieck. According to his point of view we may ask whether this functor
is represented by a scheme M , namely if there is an isomorphism of functors:

µ : Hom(·,M) −→ F

Such an isomorphism will be induced by pulling back a uniquely determined family ξ : Y →
M , called the universal family (Infact [ξ] = µ(M)(idM ) ∈ F (M)). If this is the case M will
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be a moduli space for M in the strongest sense. In particular its closed points will be in
one-to-one correspondence with the element of M by the chain of bijections:

M←→ {families parametrized bySpec(k)} ←→
←→Hom(Spec(k),M)←→ {closed points of M}

Such a moduli space very seldom exists. Most of the time M will have a weaker structure
corresponding to a property of the functor F weaker than representability. But let’s suppose
for a moment that M exists in our case. Then in principle all informations concerning its
structure and all its properties are encoded in the functor F . In particular we can investigate
its infinitesimal, local and formal properties around a point m ∈ M by looking at various
special families of deformations of the fibre Y(m) of the universal family. For example the
tangent space TM,m can be recovered considering “first order deformations”.

A first order deformation of a scheme X is a commutative diagram:

X ��

��

X
π

��
Spec(k) � � �� Spec(k[ε])

where π is a flat morphism, Spec(k[ε]) = Spec(k[t]/(t2)), and such that the induced morphism

X −→ Spec(k)×Spec(k[ε]) X

is an isomorphism. First order deformations can be viewed as derivatives of Y(m) along a
tangent vector of M at m. Infact we have the following chain of bijections:

TM,m ←→ Homm(Spec(k[ε]),M)←→
←→ {first order deformations of Y(m)}/(isomorphism)

where we have denoted by Homm(Spec(k[ε]),M) the set of morphisms

Spec(k[ε]) −→M

mapping the unique closed point of Spec(k[ε]) to m, and where the last bijection is µ(Spec(k[ε])).
More generally an infinitesimal deformation of a scheme X is a commutative diagram

X ��

��

X
π

��
Spec(k) � � �� Spec(A)

(1)

where π is a flat morphism, A is a local artinian k-algebra and the morphism X → Spec(k)×Spec(A)

X induced by the diagram is an isomorphism. Then, in the same vein as above, infinites-
imal deformations of X give informations on the infinitesimal structure of M at the point
m = µ(Spec(k))−1([X]) because we have bijections

Homm(Spec(A),M)←→
←→ {infinitesimal deformations of X parametrized by Spec(A)}.

An infinitesimal deformation (1) is called trivial if X = X × Spec(A).
Deformation theory is the study of infinitesimal deformations as a tool to understand the

local structure of the moduli space. The goal is to be able to describe the restriction of the
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universal family to a small neighborhood of m ∈M, or, more precisely, its restriction to the
germ of M at m.

What is interesting here is that we can study first order and infinitesimal deformations
even though the functor F is not representable or simply we don’t yet know it is. This is
the most frequent case. Such an investigation will reveal the infinitesimal properties at [X]
of a yet unknown global structure onM which will be hopefully understood at a subsequent
stage of the investigation. In order words it turns out to be possibile and convenient to
separate the global moduli problem from the local moduli problem, and deformation theory
studies the latter, with the purpose of constructing a family of deformations of a given object
parametrized by the spectrum of a local ring, and having properties as close as possible to a
universal property.

2 First order deformations

The first consequence of the local point of view is that, whenever we want to study infinitesi-
mal deformations of some object, we don’t need to specify the global classM, i.e. the global
moduli problem, inside which we are going to move it: all we have to do is to define what we
mean by an infinitesimal deformation of it. Of course our definition will often be tailored to
some specific global problem, but not always.

Let’s apply these ideas to the study of first order deformations. We will only consider
algebraic k-schemes where k is an algebraically closed field. We will see that isomorphism
classes of first order deformations are elements of a cohomology vector space. It is a technical
easy fact to check that this vector space structure coincides with the structure of tangent
space in the corresponding moduli problem (whatever this means).

2.1 Nonsingular affine varieties

Let X = Spec(R) be a nonsingular affine variety. Then every first order deformation of X is
trivial. Infact let

X ��

��

X
π

��
Spec(k) � � �� Spec(k[ε])

be such a deformation. We have a commutative diagram

X
� � ��

� �

��

X
π

��
X × Spec(k[ε]) �� Spec(k[ε])

and the nonsingularity of X implies the existence of a morphism φ : X × Spec(k[ε]) → X
such that the diagram

X
� � ��

� �

��

X
π

��
X × Spec(k[ε]) ��

φ

����������������
Spec(k[ε])

is still commutative. One easily checks that φ is an isomorphism, and this proves that the
given deformation is trivial.
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2.2 Nonsingular varieties.

Lemma 2.1. Let π : X → S be a morphism of schemes, φ : X ⊂ X a closed embedding
defined by a sheaf of ideals J ⊂ OX such that J2 = 0. Then there is a canonical 1-1 corre-
spondence:

{S-automorphisms of X inducing the identity on X} ←→ HomOX
(φ∗Ω1

X/S , J)

Proof. The question is local. Therefore we may assume that everything is affine and we have
a commutative diagram

B �� B/J

A

π̃

��

π̃
�� B

��

Every A-automorphism ψ of B inducing the identity on B/J is of the form ψ = 1B + D,
where D : B → J is A-linear and satisfies

D(b1b2) = (ψ − 1B)(b1b2) = ψ(b1b2)− ψ(b1)b2 + ψ(b1)b2 − b1b2 =
= ψ(b1)(ψ(b2)− b2) + (ψ(b1)− b1)b2 = ψ(b1)D(b2) + D(b1)b2 =
= b1D(b2) + D(b1)b2.

In other words D is an A-derivation of B in J . Therefore the set of A-automorphisms of B
inducing the identity on B/J is in 1− 1 correspondence with

DerA(B, J) = HomB(ΩB/A, J) = HomB/J(ΩB/A ⊗B B/J, J)

Consider now a nonsingular variety X and a first order deformation of X:

X ��

��

X
π

��
Spec(k) � � �� Spec(k[ε])

(2)

Let {Uα} be an affine open cover of X. Then by the previous case there are Spec(k[ε])-
isomorphisms:

θα : X|Uα
∼= Uα × Spec(k[ε])

inducing the identity on the central fibre Uα = Uα × Spec(k). Therefore by the lemma:

θβθ
−1
α ∈ Γ(Uαβ , Hom(Ω1

X/Spec(k[ε]) ⊗OX ,OX)) = Γ(Uαβ ,ΘX)

where we denote, as usual, Uαβ = Uα ∩ Uβ . It follows that the system

{θαβ = θβθ
−1
α }

defines a Čech 1-cocycle in ΘX and this defines an element of H1(X,ΘX). One easily checks
that this element is independent of the chosen affine cover. Therefore we have defined a map

TM,[X] −→ H1(X,ΘX)

which is easily seen to be a bijection.
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Another equivalent way to define this map is the following. To a first order deformation
(2) we can associate the exact sequence:

0 −→ π∗Ω1
Spec(k[ε]) −→ Ω1

X −→ Ω1
X/S −→ 0

which tensored by OX (i.e. restricted to X) gives the exact sequence:

0 −→ OX −→ Ω1
X ⊗OX −→ Ω1

X −→ 0

This is an element of Ext1(Ω1
X ,OX) = H1(X,ΘX) which can be checked to be the same as

the one defined above.
If π : X → S is an infinitesimal deformation of X = π−1(0) then the differential at 0 of

the functorial morphism S →M is a linear map

KS : TS,0 −→ H1(X,ΘX)

called the Kodaira-Spencer map of π, and KS (v) ∈ H1(X,ΘX) is the Kodaira-Spencer class
of v ∈ TS,0.

It follows that if H1(X,ΘX) = (0) then every first order deformation of X is trivial.
It turns out that every infinitesimal deformation of X is trivial as well, i.e. X is rigid. For
example P

r is rigid because H1(Pr,ΘPr ) = (0).

2.3 Line bundles on a fixed nonsingular projective variety

Let L be a line bundle on a nonsingular projective variety X. A first order deformation
of L is a line bundle Lε on X × Spec(k[ε]) which restricts to L on the closed fibre X =
(X×Spec(k[ε]))×Spec(k[ε])Spec(k). Assume that L is given by a system of transition functions
{fαβ} with respect to an open covering {Uα} of X, fαβ ∈ Γ(Uα ∩ Uβ ,O∗X). Then Lε can be
represented, in the same covering {Uα} of X × Spec(k[ε]) by transition functions:

f̃αβ ∈ Γ(Uα ∩ Uβ , O
∗
X×Spec(k[ε]))

such that

f̃αβ f̃βγ = f̃αγ (3)

and wich restrict to the fαβ ’s modulo ε.
Since O∗X×Spec(k[ε]) = O∗X + εOX we can write

f̃αβ = fαβ(1 + εΦαβ)

for suitable Φαβ ∈ Γ(Uα ∩ Uβ ,OX). Identity (3) gives

Φαβ + Φβγ = Φαγ

and therefore the system {Φαβ} defines an element of H1(X,OX). It is easy to check that this
element does not depend on the choices made and that conversely each element of H1(X,OX)
defines a first order deformation of L.

The class of all line bundles on X has the structure of a locally finite type scheme, denoted
Pic(X), and we have computed its Zariski tangent space at L:

TPic(X),L
∼= H1(X,OX)
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3 Higher order deformations – Obstructions

So far we have discovered that we can compute various tangent spaces to deformation prob-
lems as cohomology vector spaces. This is of course only a first step towards the description
of the local structure of our moduli problems. For the next step we need to push the local
point of view a little further.

Suppose that we need to study infinitesimal deformations of a geometrical object X
inside a class M. Let’s assume that a moduli space M for M exists and let ξ ∈ F (M) be
the universal family. Then letting [X] = m ∈ M be the point corresponding to X, to every
infinitesimal deformation of X there corresponds a morphism

ϕ : Spec(A) −→M

closed pt �−→ m

which induces the given deformation by pullback. In turn ϕ corresponds to a homomorphism
of local k-algebras

ϕ̃ : O = OM,m −→ A

Since A is artinian, ϕ̃ factors through the completion O → Ô with respect to the maximal
ideal and therefore the properties of O detected by the study of infinitesimal deformations
will be analytic properties, i.e. properties preserved under completion.

For example, if A = k[ε] then F (Spec(k[ε])) is the Zariski tangent space of O, which
coincides with that of Ô.

We can rephrase all the above by considering the category

A = (local artinian k-algebras with residue field k)

and saying that our deformation problem defines a covariant functor

FA : A −→ Sets

i.e. a functor of Artin rings, defined by

FA(A) = {infinitesimal deformations of X over Spec(A)} = Hom(O, A)

The most important analytic property is nonsingularity. We can investigate the nonsin-
gularity of M at m by means of the functor FA and applying the following

Lemma 3.1. Let O be a local noetherian k-algebra with residue field k. The following con-
ditions are equivalent:

1. O is a regular local ring.

2. Ô is a regular local ring.

3. There is an isomorphism
Ô ∼= k[[X1, . . . , Xd]]

where d is the Krull dimension of O, and X1, . . . , Xd are indeterminates.

4. For every commutative diagram:

k ��

��

A′

��
O �� A
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where the right vertical arrow is a surjection of local artinian k-algebras, there is a
k-algebra homomorphism O → A′ keeping the diagram

k ��

��

A′

��
O ��

���������
A

commutative.

Condition 4 of the Lemma states that Hom(O, A′) → Hom(O, A) is surjective for all
surjections A′ → A in A. This condition has an immediate translation into a property of the
functor FA:

Proposition 3.2. M is nonsingular at m if and only if for every surjection A′ → A in A
the corresponding map

FA(A′) −→ FA(A)

is surjective. If this condition is satisfied the functor FA is said to be smooth.

The condition of the Proposition has the following deformation-theoretic interpretation.
Given a surjection A′ → A in A and any deformation (1) there is a deformation

X ��

��

X ′

π

��
Spec(k) � � �� Spec(A′)

(4)

extending (1), i.e. such that (1) is induced by (4) by pulling it back via Spec(A)→ Spec(A′). If
the extension (4) exists for each surjection A′ → A the deformation (1) is called unobstructed;
otherwise it is obstructed.

If all infinitesimal deformations of X are unobstructed then X is called unobstructed;
otherwise X is obstructed.

It turns out that in order to check (un)obstructedness it suffices to consider surjections
q : A′ → A in A such that ker(q) ∼= k (called small extensions).

Let’s denote by tR the Zariski tangent space (mR/m2
R)∨ of a local ring (R,mR). We have

the following

Definition 3.3. Let (R,mR) be a complete local k-algebra with residue field k. Write R =
k[[X1, . . . , Xn]]/J where J ⊂ (X)2. Then the k-vector space

o(R) := (J/(X)J)∨

is called the obstruction space of R.

Clearly o(R) = 0 if and only if R ∼= k[[X1, . . . , Xn]]. We have the following inequalities:

dim(tR) ≥ dim(R) ≥ dim(tR)− dim(o(R))

Moreover for each A in A and for each ϕ : R → A there is a map which associates to each
small extension q : A′ → A an element v(q) ∈ o(R) which is 0 if and only if ϕ can be lifted
to ϕ′ : R→ A′.

If we have a “sufficiently well behaved” deformation functor FA then it is possible to define
the obstruction to find an extension in FA(A′) of a given η ∈ FA(A); this obstruction is usually
an element of a cohomology vector space H. The deformation η will then be unobstructed
precisely if the obstruction vanishes for each small extension q. If the deformation functor

8



is FA = Hom(O,−) where O = OM,m as above, then it follows by general nonsense that
o(Ô) ⊂ H. This implies that M is nonsingular at m if the vector space H vanishes and, more
generally, that

dim(O) ≥ dim(tO)− dim(H) = dim(FA(k[ε])− dim(H)

Let’s illustrate this principle with an example.

Nonsingular varieties

Assume that we have a class M of nonsingular varieties for which the moduli space M
exists. Let X be inM. Assume that we have a small extension A′ → A and an infinitesimal
deformation (1) of X. We want to find conditions for the extendability to a deformation of
X over Spec(A′).

Let {Uα} be an affine open cover of X, θα : X|Uα
∼= Uα×Spec(A) be Spec(A)-isomorphisms

inducing the identity on Uα, and let

θαβ = θαθ
−1
β : Uαβ × Spec(A) −→ Uαβ × Spec(A)

be the induced Spec(A)-automorphisms. Then the existence of a deformation π′ : X ′ →
Spec(A′) extending (1) is equivalent to the existence of a system of automorphisms

θ′αβ : Uαβ × Spec(A′) −→ Uαβ × Spec(A′)

which restrict to the automorphisms θαβ on Uαβ × Spec(A), and such that

θ′αβθ
′
βγ = θ′αγ (5)

on Uαβγ . Let’s choose arbitrarily automorphisms θ′αβ which extend the θαβ ’s (they exist by
the nonsingularity of the affine varieties Uαβ), and let’s consider the Spec(A′)-automorphisms
of Uαβγ × Spec(A′):

θ′αβγ := θ′αβθ
′
βγ(θ′αγ)−1

Each of these restricts to the identity on Uαβγ ×Spec(A) and therefore, by the Lemma, is an
element of Γ(Uαβγ ,ΘX). The system {θ′αβγ} is therefore a 2-cocycle with coefficients in ΘX

and defines an element θ ∈ H2(X,ΘX).
Another choice of the automorphisms θ′αβ is of the form

θ̄′αβ = θ′αβδαβ

for some δαβ ∈ Γ(Uαβ ,ΘX). Therefore:

θ̄′αβγ = θ′αβγδαβδβγ(δαγ)−1

and therefore {θ′αβγ} and {θ̄′αβγ} define the same cohomology class in H2(X,ΘX).
The class θ ∈ H2(X,ΘX) is the obstruction to extend the deformation (3) to Spec(A′).

In particular we see that if H2(X,ΘX) = 0 then M is nonsingular at [X]. For example,
nonsingular projective curves are unobstructed.

4 Versal and universal formal families

We have seen how one can study the infinitesimal properties of a moduli space M at a point
m using functorial methods and cohomological techniques. We now want to consider a local
moduli problem and see whether it is possible to study its infinitesimal properties and to give
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it a local structure of some kind. From an infinitesimal point of view a local moduli problem
corresponds to a (covariant) functor of Artin rings

F : A −→ Sets

such that F (k) consists of one element. In the best possible case there will be a local k-algebra
O with residue field k and an isomorphism of functors

Hom(O, ·) = Hom(Ô, ·) −→ F

(the equality on the left is because, as we observed already, A = Â for every A inA). Since Ô is
not in A, such a functor is not quite representable: it is called prorepresentable. Representable
functors of Artin rings are not so interesting in this context, but prorepresentable ones are,
and prorepresentability is the reachest structure such a functor can have.

Weaker structures can be introduced by requiring that there exists a morphism of functors
(a “natural transformation”)

f : Hom(R, ·) −→ F

for some complete local k-algebra R with residue field k, which is not quite an isomorphism,
but has some weaker property. Before discussing these properties let’s see for a moment how
a morphism f as above can be interpreted.

Let’s denote by Â the category of complete local k-algebras with residue field k. Every
functor of Artin rings F : A → Sets can be extended to a functor

F̂ : Â −→ Sets

by letting, for every (R,m) in Â:

F̂ (R) = lim
←−

F (R/mn+1)

and for every ϕ : (R,m)→ (S, p):

F̂ (ϕ) : F̂ (R) −→ F̂ (S)

to be the map induced by the maps F (R/mn)→ F (S/pn), n ≥ 1.
An element û ∈ F̂ (R) is called a formal element of F . By definition û can be represented

as a system of elements {un ∈ F (R/mn+1)}n≥0 such that for every n ≥ 0 the map

F (R/mn+1) −→ F (R/mn)

induced by the projection R/mn+1 → R/mn sends

un �−→ un−1 (6)

If for example F is the functor of infinitesimal deformations of a nonsingular variety X, each
un is an infinitesimal deformation of X parametrized by Spec(R/mn+1). The compatibility
condition (6) is that un pulls back to un−1 under the closed embedding

Spec(R/mn) ⊂ Spec(R/mn+1)

In this case the formal element û is also called a formal family of deformations of X.
If f : F → G is a morphism of functors of Artin rings then it can be extended in an

obvious way to a morphism of functors f̂ : F̂ → Ĝ.

Lemma 4.1. Let R be in Â. There is a 1-1 correspondence between F̂ (R) and the set of
morphisms of functors

Hom(R, ·) −→ F (7)
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Proof. To a formal element û ∈ F̂ (R) there is associated a morphism of functors (6) in the
following way. Each un ∈ F (R/mn+1) defines a morphism of functors Hom(R/mn+1, ·)→ F .
The compatibility conditions (6) imply that the following diagram commutes:

Hom(R/mn, ·) ��

������������������ Hom(R/mn+1, ·)

��
F

for every n. Since for each A in A

Hom(R/mn, A) −→ Hom(R/mn+1, A)

is a bijection for all n� 0 we may define

Hom(R,A) −→ F (A)

as
lim

n→∞
[Hom(R/mn+1, A) −→ F (A)]

Conversely each morphism (7) defines a formal element û ∈ F̂ (R), where un ∈ F (R/mn+1)
is the image of the canonical projection R→ R/mn+1 via the map

Hom(R,R/mn+1) −→ F (R/mn+1)

If û ∈ F̂ (R) is such that the induced morphism (7) is an isomorphism, then F is prorep-
resentable, and we say that F is prorepresented by the pair (R, û). In this case û is called a
universal formal element for F , and (R, û) is a universal pair.

If for example F is the functor of infinitesimal deformations of a nonsingular variety X
belonging to a class M which has a moduli space M , then the universal family Y → M
induces by restriction to the schemes Spec(Ô/mn+1) a universal formal element for F (or a
universal formal family).

Note that all prorepresentable functors have the following property:

N0) F (k) contains exactly one element.

All functors we will consider will have property N0 and from now on this will be implicitly
assumed unless otherwise specified.

Definition 4.2. Let f : F → G be a morphism of functors of Artin rings. f is called smooth
if for every surjection µ : B → A in A the natural map:

F (B) −→ F (A)×G(A) G(B)

induced by the diagram:
F (B) ��

��

G(B)

��
F (A) �� G(A)

is surjective.

11



Note that the smoothness condition applied to the surjection k[ε] → k states that the
map

F (k[ε]) −→ G(k[ε])

is surjective. This map is denoted df and called the differential of f .
Let F be a functor of Artin rings. A formal element û ∈ F̂ (R), for some R in Â, is called

versal if the morphism Hom(R, ·)→ F defined by û is smooth; û is called semiuniversal if it
is versal and moreover the differential Hom(R,k[ε])→ F (k[ε]) is an isomorphism.

We will call the pair (R, û) a versal pair (respectively a semiuniversal pair, a universal
pair) if û is versal (respectively semiuniversal, universal).

It is clear from the definitions that:

û universal =⇒ û semiuniversal =⇒ û versal

but none of the inverse implications is true.
What does it mean that a functor F has a versal pair (R, û)? From the definition of

smoothness it follows easily that the map

Hom(R,S) −→ F̂ (S) (8)

induced by û is surjective for every S in Â. This means that every formal element v̂ ∈ F (S) is
induced by û ∈ F (R) by pullback. So we see that this is a property, weaker than universality,
which is a sort of “completeness” of the formal element û, in the sense that it induces every
other by pullback.

Semiuniversality is stronger than versality: the bijectivity of the differential implies a sort
of minimality among all possible versal pairs.

A theorem of Schlessinger gives conditions, easy to verify in practice, for the existence
of a formal semiuniversal element for a functor F . It turns out that most functors of Artin
rings arising in deformation theory satisfy Schlessinger’s conditions, even though they seldom
have a universal formal element; therefore all such functors have a structure weaker than
prorepresentability, but very close to it.

Examples of functors satisfying Schlessinger conditions are:

• F = Pic(X)L = deformations of a line bundle L on a fixed scheme X (the local Picard
functor of X at L)

• F = deformations of a projective scheme X

• F = deformations of an affine variety with isolated singularities

• F = HilbY
X = the local Hilbert functor of a closed embedding X ⊂ Y of proj. schemes

• F = QuotF
G = the local Quot scheme of a quotient F → G of sheaves on a projective

scheme X

5 Algebrization

Suppose we know that a functor of Artin rings F has a (semi)universal pair (R, û), and that
F extends to the category A∗ of local noetherian k-algebras. Then we should ask if there is
a pair (S, u), where u ∈ F (S), having the following properties:

1. S is in A∗, and has some finiteness properties (e.g. it is essentially of finite type, it is
henselian, etc.).

2. Ŝ = R.

12



3. u induces û.

This question is an abstract version of a natural problem in local deformation theory.
Consider for example a projective nonsingular variety X. We can consider local deformations
of X, i.e. families of the form

ξ : X
π

��
Spec(S)

where (S,mS) is in A∗, and with an isomorphism X ∼= X (mS). Then we want to know if
there is a (semi)universal such family ξ, i.e. a family which induces every other by pullback,
and has a (semi)universal property. Applying the theory outlined before to the functor of
Artin rings defined by X we obtain a formal (semi)universal pair (R, û), and we now want
to see if we can lift this pair to a pair (S, u) as above.

This is an algebraic version of the original problem studied and solved by Kodaira, Nirem-
berg, Spencer and Kuranishi in the analytic case. Their final result is the following.

Theorem 5.1. Let X be a compact complex manifold. Then there is a germ of complex space
(B, 0), with dim(B) ≥ h1(X,ΘX)− h2(X,ΘX) and a smooth and proper family

ξ : X
π

��
B

such that X ∼= X (0), which is a semiuniversal family of deformations of X. If H2(X,ΘX) = 0
then B is nonsingular of dimension h1(X,ΘX). If H0(X,ΘX) = 0 then ξ is universal.

In the algebraic case there is no such general result. The most general algebrizability
result is due to M. Artin. It gives sufficient conditions for the existence of a pair (S, u) as
above with S an henselian ring, i.e. the local ring of an algebraic space (for an exposition see
[1]).
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Deformations of singularities via differential graded Lie

algebras

Marco Manetti

1 Introduction

Let K be a fixed algebraically closed field of characteristic 0, X ⊂ A
n = A

n
K

a closed
subscheme. Denote by Art the category of local artinian K -algebras with residue field K .

Definition 1.1. An infinitesimal deformation of X over A ∈ Art is a commutative diagram
of schemes

X
i ��

��

XA

fA

��
Spec(K ) �� Spec(A)

such that fA is flat and the induced morphism X → XA×Spec(A) Spec(K ) is an isomorphism.

It is not difficult to see (cf. [1]) that XA is affine and more precisely it is isomorphic to a
closed subscheme of A

n×Spec(A). Two deformationsX i−→XA
fA−→Spec(A),X

j−→X̃A
gA−→Spec(A)

are isomorphic if there exists a commutative diagram of schemes

X
i ��

j

��

XA

fA

��θ�����������

X̃A gA

�� Spec(A)

It is easy to prove that necessarily θ is an isomorphism (cf. [5]). Since flatness commutes with
base change, for every deformations X i−→XA

fA−→Spec(A) and every morphism A → B in
the category Art, the diagram

X ��

��

XA ×Spec(A) Spec(B)

��
Spec(K ) �� Spec(B)

is a deformation of X over Spec(B); it is then defined a covariant functor DefX : Art → Set,

DefX(A) = { isomorphism classes of deformations of X over A }.

The set DefX(K ) contains only one point.
In a similar way we can define the functor HilbX : Art → Set of embedded deformations

of X into A
n: HilbX(A) is the set of closed subschemes XA ⊂ A

n × Spec(A) such that the
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restriction to XA of the projection on the second factor is a flat map XA → Spec(A) and
XA ∩ (An × Spec(K )) = X × Spec(K ).

In these notes we give a recipe for the construction of two differential graded Lie algebras
H, L together two isomorphism of functors

DefL =
MCL
gauge

→ DefX , DefH =
MCH
gauge

→ HilbX .

The DGLAs L, H are unique up to quasiisomorphism and their cohomology can be computed
in terms of the cotangent complex of X. For the notion of differential graded Lie algebra,
Maurer-Cartan functors and gauge equivalence we refer to [3], [5], [2].

Moreover we can choose H as a differential graded Lie subalgebra of L such that Hi = Li

for every i > 0.

2 Flatness and relations

In this section A ∈ Art is a fixed local artinian K -algebra with residue field K .

Lemma 2.1. Let M be an A-module, if M ⊗A K = 0 then M = 0.

Proof. If M is finitely generated this is Nakayama’s lemma. In the general case consider a
filtration of ideals 0 = I0 ⊂ I1 ⊂ . . . ⊂ In = A such that Ii+1/Ii = K for every i. Applying
the right exact functor ⊗AM to the exact sequences of A-modules

0−→K =
Ii+1

Ii
−→A
Ii
−→ A

Ii+1
−→0

we get by induction that M ⊗A (A/Ii) = 0 for every i.

The following is a special case of the local flatness criterion [6, Thm. 22.3]

Theorem 2.2. For an A-module M the following conditions are equivalent:

1. M is free.

2. M is flat.

3. TorA
1 (M,K ) = 0.

Proof. The only nontrivial assertion is 3) ⇒ 1). Assume TorA
1 (M,K ) = 0 and let F be a

free module such that F ⊗A K = M ⊗A K . Since M → M ⊗A K is surjective there exists
a morphism α : F → M such that its reduction α : F ⊗A K → M ⊗A K is an isomorphism.
Denoting by K the kernel of α and by C its cokernel we have C ⊗A K = 0 and then C = 0;
K ⊗A K = TorA

1 (M,K ) = 0 and then K = 0.

Corollary 2.3. Let h : P → L be a morphism of flat A-modules, A ∈ Art. If h : P ⊗A K →
L⊗A K is injective (resp.: surjective) then also h is injective (resp.: surjective).

Proof. Same proof of Theorem 2.2.

Corollary 2.4. Let 0 →M → N → P → 0 be an exact sequence of A-modules with N flat.
Then:

1. M ⊗A K → N ⊗A K injective ⇒ P flat.

2. P flat ⇒M flat and M ⊗A K → N ⊗A K injective.
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Proof. Take the associated long TorA
∗ (−,K ) exact sequence and apply 2.2 and 2.3.

Corollary 2.5. Let

P
f−→Q g−→R h−→M−→0 (1)

be a complex of A-modules such that:

1. P,Q,R are flat.

2. Q
g−→R h−→M−→0 is exact.

3. P ⊗A K
f−→Q⊗A K

g−→R⊗A K
h−→M ⊗A K−→0 is exact.

Then M is flat and the sequence (1) is exact.

Proof. Denote by H = kerh = Im g and g = φη, where φ : H → R is the inclusion and
η : Q→ H; by assumption we have an exact diagram

P ⊗A K
f �� Q⊗A K

g ��

η

��

R⊗A K
h �� M ⊗A K �� 0

H ⊗A K

φ

��

�� 0

which allows to prove, after an easy diagram chase, that φ is injective. According to Corol-
lary 2.4 H and M are flat modules. Denoting L = ker g we have, since H is flat, that also L
is flat and L⊗A K → Q⊗A K injective. This implies that P ⊗A K → L⊗A K is surjective.
By Corollary 2.3 P → L is surjective.

Corollary 2.6. Let n > 0 and

0−→I−→P0
d1−→P1−→ . . . dn−→Pn,

a complex of A-modules with P0, . . . , Pn flat. Assume that

0−→I ⊗A K−→P0 ⊗A K
d1−→P1 ⊗A K−→ . . . dn−→Pn ⊗A K

is exact; then I, coker(dn) are flat modules and the natural morphism I → ker(P0 ⊗A K →
P1 ⊗A K ) is surjective.

Proof. Induction on n and Corollary 2.5.

3 Differential graded algebras, I

Unless otherwise specified by the symbol ⊗ we mean the tensor product ⊗K over the field
K . We denote by:

• G the category of Z-graded K -vector space; given an object V = ⊕Vi, i ∈ Z, of G and
a homogeneous element v ∈ Vi we denote by v = i its degree.

• DG the category of Z-graded differential K -vector space (also called complexes of
vector spaces).
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Given (V, d) in DG we denote as usual by Z(V ) = ker d, B(V ) = d(V ), H(V ) = Z(V )/B(V ).
Given an integer n, the shift functor [n] : DG → DG is defined by setting V [n] = K [n]⊗V ,

V ∈ DG, f [n] = IdK [n] ⊗ f , f ∈ MorDG, where

K [n]i =
{

K if i+ n = 0
0 otherwise

More informally, the complex V [n] is the complex V with degrees shifted by n, i.e. V [n]i =
Vi+n, and differential multiplied by (−1)n.

Given two graded vector spaces V,W , the “graded Hom” is the graded vector space

Hom∗
K

(V,W ) = ⊕n Homn
K

(V,W ) ∈ G,

where by definition Homn
K

(V,W ) is the set of K -linear map f : V → W such that f(Vi) ⊂
Wi+n fore every i ∈ Z. Note that Hom0

K
(V,W ) = HomG(V,W ) is the space of morphisms in

the category G and there exist natural isomorphisms

Homn
K

(V,W ) = HomG(V [−n],W ) = HomG(V,W [n]).

A morphism in DG is called a quasiisomorphism if it induces an isomorphism in homology.
A commutative diagram in DG

A ��

g

��

B

f

��
C �� D

is called cartesian if the morphism A → C ×D B is an isomorphism; it is an easy exercise
in homological algebra to prove that if f is a surjective (resp.: injective) quasiisomorphism,
then g is a surjective (resp.: injective) quasiisomorphism.

Definition 3.1. A graded (associative, Z-commutative) algebra is a graded vector space A =
⊕Ai ∈ G endowed with a product Ai ×Aj → Ai+j satisfying the properties:

1. a(bc) = (ab)c.

2. a(b+ c) = ab+ ac, (a+ b)c = ac+ bc.

3. (Koszul sign convention) ab = (−1)a bba for a, b homogeneous.

The algebra A is unitary if there exists 1 ∈ A0 such that 1a = a1 = a for every a ∈ A.

Let A be a graded algebra, then A0 is a commutative K -algebra in the usual sense;
conversely every commutative K -algebra can be considered as a graded algebra concentrated
in degree 0. If I ⊂ A is a homogeneous left (resp.: right) ideal then I is also a right (resp.:
left) ideal and the quotient A/I has a natural structure of graded algebra.

Example 3.2. Polynomial algebras. Given a set {xi}, i ∈ I, of homogeneous indeterminates
of integral degree xi ∈ Z we can consider the graded algebra K [{xi}]. As a K -vector space
K [{xi}] is generated by monomials in the indeterminates xi. Equivalently K [{xi}] can be
defined as the symmetric algebra

⊕
n≥0

⊙n
V , where V = ⊕i∈IKxi ∈ G. In some cases, in

order to avoid confusion about terminology, for a monomial xα1
i1
. . . xαn

in
it is defined:

• The internal degree
∑

h xih
αh.

• The external degree
∑

h αh.
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In a similar way it is defined A[{xi}] for every graded algebra A.

Definition 3.3. A dg-algebra (differential graded algebra) is the data of a graded algebra A
and a K -linear map s : A→ A, called differential, with the properties:

1. s(An) ⊂ An+1, s2 = 0.

2. (graded Leibnitz rule) s(ab) = s(a)b+ (−1)aas(b).

A morphism of dg-algebras is a morphism of graded algebras commuting with differentials;
the category of dg-algebras is denoted by DGA.

In the sequel, for every dg-algebra A we denote by A� the underlying graded algebra.

Exercise 3.4. Let (A, s) be a unitary dg-algebra; prove:

1. 1 ∈ Z(A).

2. 1 ∈ B(A) if and only if H(A) = 0.

3. Z(A) is a graded subalgebra of A and B(A) is a homogeneous ideal of Z(A).

4. If A is local with maximal ideal M then s(M) ⊂M if and only if H(A) �= 0.

�

A differential ideal of a dg-algebra (A, s) is a homogeneous ideal I of A such that s(I) ⊂ I;
there exists an obvious bijection between differential ideals and kernels of morphisms of dg-
algebras.

On a polynomial algebra K [{xi}] a differential s is uniquely determined by the values
s(xi).

Example 3.5. Let t, dt be inderminates of degrees t = 0, dt = 1; on the polynomial algebra
K [t, dt] = K [t] ⊕ K [t]dt there exists an obvious differential d such that d(t) = dt, d(dt) = 0.
Since K has characteristic 0, we haveH(K [t, dt]) = K . More generally if (A, s) is a dg-algebra
then A[t, dt] is a dg-algebra with differential s(a ⊗ p(t)) = s(a) ⊗ p(t) + (−1)aa ⊗ p′(t)dt,
s(a⊗ q(t)dt) = s(a) ⊗ q(t)dt.

Definition 3.6. A morphism of dg-algebras B → A is a quasiisomorphism if the induced
morphism H(B) → H(A) is an isomorphism.

Given a morphism of dg-algebras B → A the space Dern
B(A,A) of B-derivations of degree

n is by definition

Dern
B(A,A) = {φ ∈ Homn

K
(A,A) |φ(ab)=φ(a)b+ (−1)naaφ(b), φ(B)=0}.

We also consider the graded vector space

Der∗B(A,A) =
⊕
n∈Z

Dern
B(A,A) ∈ G.

There exists a structure of differential graded Lie algebra on Der∗B(A,A) with differential

d : Dern
B(A,A) → Dern+1

B (A,A), dφ = dAφ− (−1)nφdA

and bracket

[f, g] = fg − (−1)f ggf.
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Exercise 3.7. Verify that d[f, g] = [df, g] + (−1)f [f, dg]. �

Exercise 3.8. Let A be graded algebra: if every a �= 0 is invertible then A = A0 is a field. �

Exercise 3.9. Let A be a graded algebra and let I ⊂ A be a left ideal. Then the following
conditions are equivalent:

1. I is the unique left maximal ideal.

2. A0 is a local ring with maximal ideal M and I =M ⊕i �=0 Ai.

�

4 The DG-resolvent

Let X ⊂ A
n be a closed subscheme, R0 = K [x1, . . . , xn] the ring of regular functions on A

n,
I0 ⊂ R0 the ideal of X and OX = R0/I the function ring of X.

Our aim is to construct a dg-algebra (R, d) and a quasiisomorphism R → OX such that
R = R0[y1, y2, . . . ] is a countably generated graded polynomial R0-algebra, every indeter-
minate yi has negative degree and, if R = ⊕i≤0Ri, then Ri is a finitely generated free R0

module.
Choosing a set of generators f1, . . . , fs1 of the ideal I0 we first consider the graded-

commutative polynomial dg-algebra

R(1) = K [x1, . . . , xn, y1, . . . , ys1 ] = R0[y1, . . . , ys1 ], xi = 0, yi = −1

with differential d defined by dxi = 0, dyj = fj . Note that (R(1), d), considered as a complex
ofR0 modules, is the Koszul complex of the sequence f1, . . . , fs1 . By construction the complex
of R0-modules

. . .−→R(1)−2
d−→R(1)−1

d−→R0
π−→OX−→0

is exact in R0 and OX . If (R(−1), d) → OX is a quasiisomorphism of dg-algebras (e.g. ifX is a
complete intersection) the construction is done. Otherwise let fs1+1, . . . , fs2 ∈ ker d∩R(1)−1

be a set of generators of the R0 module (ker d ∩R(1)−1)/dR(1)−2 and define

R(2) = R(1)[ys1+1, . . . , ys2 ], yj = −2, dyj = fj , j = s1 + 1, . . . , s2.

Repeating in a recursive way the above argument (step by step killing cycles) we get a chain
of polynomial dg-algebras

R0 = R(0) ⊂ R(1) ⊂ . . . ⊂ R(i) ⊂ . . .

such that (R(i), d) → OX is a quasiisomorphism in degree > −i. Setting

R = ∪R(i) = K [x1, . . . , xn, y1, . . . , ym, . . . ] =
⊕
i≤0

Ri,

the projection π : R→ OX is a quasiisomorphism of dg-algebras; in particular

. . .
d−→R−i

d−→ . . . d−→R−2
d−→R−1

d−→R0
π−→OX−→0

is a free resolution of the R0 module OX .
We denote by:

1. Zi = ker d ∩Ri.
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2. L = Der∗
K

(R,R).

3. H = Der∗R0
(R,R) = {g ∈ L | g(R0) = 0}.

It is clear that, since gRi ⊂ Ri+j for every g ∈ Lj , Li = Hi for every i > 0 and then
the DGLAs L, H have the same Maurer-Cartan functor MCH =MCL. Moreover R is a free
graded algebra and then Lj is in bijection with the maps of “degree j” {xi, yh} → R.

Consider a fixed η ∈ MCH(A). Recalling the definition of MCH we have that η =∑
ηi ⊗ ai ∈ Der1R0

(R,R) ⊗mA and the A-derivation

d+ η : R⊗A→ R⊗A, (d+ η)(x⊗ a) = dx⊗ a+
∑
ηi(x) ⊗ aia

is a differential. Denoting by OA the cokernel of d + η : R−1 ⊗ A → R0 ⊗ A we have by
Corollary 2.5 that (R⊗A, d+η) → OA is a quasiisomorphism, OA is flat and OA⊗K = OX .
Therefore we have natural transformations of functors

MCH =MCL → HilbX → DefX .

Lemma 4.1. The above morphisms of functors are surjective.

Proof. Let OA be a flat A-algebra such that OA ⊗A K = OX ; since R0 is a free K -algebra,
the projection R0

π−→OX can be extended to a morphism of flat A-algebras R0 ⊗ A πA−→OA.
According to Corollary 2.3 πA is surjective; this proves that HilbX(A) → DefX(A) is sur-
jective (in effect it is possible to prove directly that HilbX → DefX is smooth, cf. [1]). An
element of HilbX(A) gives an exact sequence of flat A-modules

R0 ⊗A πA−→OA−→0.

Denoting by I0,A ⊂ R0 ⊗ A the kernel of πA we have that I0,A is A-flat and the projection
I0,A → I0 is surjective. We can therefore extend the restriction to R(1) of the differential d
to a differential dA on R(1) ⊗ A by setting dA(yj) ∈ I0,A a lifting of d(yj), j = 1, . . . , s1.
Again by local flatness criterion the kernel Z−1,A of R−1 ⊗ A = R(1)−1 ⊗ A dA−→R0 ⊗ A is
flat and surjects onto Z−1. The same argument as above, with I0,A replaced by Z−1,A shows
that d can be extended to a differential dA on R(2) and then by induction to a differential
dA on R ⊗ A such that (R ⊗ A, dA) → OA is a quasiisomorphism. If a1, . . . , ar is a K -
basis of the maximal ideal of A we can write dA(x ⊗ 1) = dx ⊗ 1 +

∑
ηi(x) ⊗ ai and then

η =
∑
ηi ⊗ ai ∈MCH(A).

If ξ ∈ Der0R0
(R,R) ⊗ mA, A ∈ Art, then eξ : R ⊗ A → R ⊗ A is an automorphism

inducing the identity on R and R0 ⊗ A. Therefore the morphism MCH(A) → HilbX(A)
factors through DefH(A) → HilbX(A). Similarly the morphismMCL(A) → DefX(A) factors
through DefL(A) → DefX(A).

Theorem 4.2. The natural transformations

DefH → HilbX , DefL → DefX

are isomorphisms of functors.

Proof. We have already proved the surjectivity. The injectivity follows from the following
lifting argument. Given dA, d′A : R⊗A→ R⊗A two liftings of the differential d and f0 : R0⊗
A → R0 ⊗ A a lifting of the identity on R0 such that f0dA(R−1 ⊗ A) ⊂ d′A(R−1 ⊗ A) there
exists an isomorphism f : (R ⊗ A, dA) → (R ⊗ A, d′A) extending f0 and the identity on R.
This is essentially trivial because R ⊗ A is a free R0 ⊗ A graded algebra and (R ⊗ A, d′A) is
exact in degree < 0. Thinking f as an automorphism of the graded algebra R ⊗ A we have,
since K has characteristic 0, that f = eξ for some ξ ∈ L0 and ξ ∈ H0 if and only if f0 = Id.
By the definition of gauge action d′A − d = exp(ξ)(dA − d); the injectivity follows.

21



Proposition 4.3. If I ⊂ R0 is the ideal of X ⊂ A
n then:

1. Hi(H) = Hi(L) = 0 for every i < 0.

2. H0(H) = 0, H0(L) = DerK (OX ,OX).

3. H1(H) = HomOX
(I/I2,OX) and H1(L) is the cokernel of the natural morphism

DerK (R0,OX) α−→HomOX
(I/I2,OX).

Proof. There exists a short exact sequence of complexes

0−→H−→L−→Der∗
K

(R0, R)−→0.

Since R0 is free and R is exact in degree < 0 we have:

Hi(Der∗
K

(R0, R)) =
{

0 i �= 0,
DerK (R0,OX) i = 0.

Moreover DerK (OX ,OX) is the kernel of α and then it is sufficient to compute Hi(H) for
i ≤ 1.

Every g ∈ Zi(H), i ≤ 0, is a R0-derivation g : R → R such that g(R) ⊂ ⊕i<0Ri and
gd = ±dg. As above R is free and exact in degree < 0, a standard argument shows that g is
a coboundary. If g ∈ Z1(H) then g(R−1) ⊂ R0 and, since gd+ dg = 0, g induces a morphism

g :
R−1

dR−2
= I−→ R0

dR−1
= OX .

The easy verification that Z1(H) → HomR0(I,OX) induces an isomorphism H1(H) →
HomR0(I,OX) is left to the reader.

References

[1] M. Artin: Deformations of singularities. Tata Institute of Fundamental Research, Bom-
bay (1976).

[2] W.M. Goldman, J.J. Millson: The deformation theory of representations of fundamental
groups of compact kähler manifolds Publ. Math. I.H.E.S. 67 (1988) 43-96.

[3] M. Manetti: Deformation theory via differential graded Lie algebras. In Seminari di
Geometria Algebrica 1998-1999 Scuola Normale Superiore (1999).

[4] M. Manetti: The cotangent complex in characteristic 0. In this volume.

[5] M. Manetti Lectures on deformations of complex manifolds. Dispense corso di Dottorato
Roma I (2001).

[6] H. Matsumura: Commutative Ring Theory. Cambridge University Press (1986).

[7] V.P. Palamodov: Deformations of complex spaces. Uspekhi Mat. Nauk. 31:3 (1976) 129-
194. Transl. Russian Math. Surveys 31:3 (1976) 129-197.

[8] V.P. Palamodov: Deformations of complex spaces. In: Several complex variables IV.
Encyclopaedia of Mathematical Sciences 10, Springer-Verlag (1986) 105-194.

[9] E. Sernesi: An overview of classical deformation theory. In this volume.

22



Obstruction Calculus in Deformation Theory

Alberto Canonaco

Introduction and notation

The study of functors of Artin rings is a classical subject of deformation theory (see [6]).
On the other hand, although it was well known that for functors coming from deformation
problems a (vector) space of obstructions nearly always exists, even a precise definition of
obstruction space has been unclear for a long time. This gap has been recently filled by B.
Fantechi and M. Manetti in [1]. In this paper, after reviewing the basic facts about functors
of Artin rings, we present the main results of their work. In particular, for every morphism
of functors of Artin rings, an obstruction theory is defined, which consists of an obstruction
space (which is in general only a pointed set) together with some obstruction maps. It can
be proved that, under mild hypotheses, there exists an obstruction theory which is complete
(every obstruction map vanishes on an element if and only if that element can be lifted) and
linear (the obstruction space is a vector space). In the last part of the paper we determine a
complete linear obstruction theory in some examples of deformation problems.

Set and Set∗ will be the categories of sets and of pointed sets, respectively, and Group
the category of groups. By abuse of notation we will always denote by ∗ the chosen point in
a set S ∈ Set∗, unless S is a group, in which case the chosen point will be the identity. The
kernel of a morphism in Set∗ is the inverse image of ∗. A sequence S

f−→ T
g−→ U in Set∗ is

exact if ker(g) = im(f).
If C is a category, then C◦ is the opposed category. If ν : F → G is a natural transforma-

tion of functors (say from C to D) and A is an object of C, we will usually write ν instead
of ν(A).

Unless otherwise stated K is an arbitrary fixed field. Fvs will be the category of finite
dimensional K–vector spaces. If V,W are vector spaces, we will write V ⊗ W instead of
V ⊗K W ; V ∨ will be the K–dual of V .

If A is a local ring, mA will denote its maximal ideal, πA : A → A/mA the natural
projection and Â the completion of A (with respect to the mA–adic topology). K[ε] will be
the artinian ring K[x]/(x2).

If {U i | i ∈ I} is a covering of a topological space, U i1,...,in := U i1 ∩ · · · ∩ U in .
If f : X → Y is a morphism of schemes, f# : f−1OY → OX will be the associated

morphism of sheaves of rings on X.

1 Functors of Artin rings

A is the category of noetherian local K–algebras with residue field K (with local homomor-
phisms of K–algebras as morphisms). Art (respectively, Ârt) is the full subcategory of A
consisting of those rings which are artinian (respectively, complete). Notice that Art ⊂ Ârt
and that, given A ∈ A, A ∈ Art if and only if mA is a nilpotent ideal, if and only if
dimK(A) < ∞. Observe moreover that if πi : Ai → A are morphisms in A for i = 1, 2, then

A1 ×A A2 := {(a1, a2) ∈ A1 ×A2 |π1(a1) = π2(a2)}
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represents the fibre product of π1 and π2 in A, and that A1 ×A A2 is an object of Art
(respectively, Ârt) if π1 and π2 are morphisms of Art (respectively, Ârt).

Definition 1.1. A functor of Artin rings (or simply a functor, if no confusion is possible)
is a functor F : Art → Set such that F (K) = {∗}. The collection of all such functors with
natural transformations as morphisms forms a category, which will be called Fun.

Remark 1.2. A functor of Artin rings F can be considered as a functor F : Art → Set∗
(denoting, for A ∈ Art, by iA : K → A the structure morphism, the chosen point in F (A) is
F (iA)(∗)).

Remark 1.3. A functor F : Art → Set extends naturally to a functor which will be denoted
by F̂ : Ârt → Set (see [5]). Similarly, a natural transformation ν : F → G extends to a
natural transformation ν̂ : F̂ → Ĝ.

Example 1.4. If R ∈ A, hR := HomA(R,−) is a functor of Artin rings. Clearly hR ∼= hR̂.
In particular, hK is the trivial functor (i.e., hK(A) = {∗} ∀A ∈ Art) and will be denoted by
∗.

Definition 1.5. A functor of Artin rings is prorepresentable if it is isomorphic to hR for
some R ∈ Ârt.

Obviously the map R �→ hR extends to a functor h : A◦ → Fun.

Lemma 1.6. (See [5]) ∀R ∈ Ârt and ∀F ∈ Fun the natural map

HomFun(hR, F ) −→ F̂ (R), ν �→ ν̂(idR)

is a bijection. In particular, if F =hS for some S ∈ Ârt, then HomFun(hR,hS) ∼= ĥS(R) =
Hom

Ârt
(S,R), whence h embeds Ârt

◦
as a full subcategory of Fun.

Definition 1.7. A small extension e in Art (respectively, Ârt) is a short exact sequence

e : 0 �� J �� B
f �� A �� 0

where f is a morphism in Art (respectively, Ârt) and J is an ideal of B such that mBJ = (0)
(hence J is a finite dimensional K–vector space). Given such a small extension, we will often
denote J by K(e), B by S(e) and A by T (e).

A small extension e is called principal if K(e) ∼= K.
A morphism of small extensions α : e1 → e2 is a commutative diagram

e1 : 0 �� J1

K(α)

��

�� B1

S(α)

��

�� A1

T (α)

��

�� 0

e2 : 0 �� J2
�� B2

�� A2
�� 0

where S(α), T (α) are morphisms in Ârt.
We will denote by Smex (respectively, Ŝmex) the category of small extensions in Art

(respectively, Ârt).

In the following we will often say that a morphism f : B → A in Ârt is a small extension,
meaning that 0 → ker(f) → B

f−→ A → 0 is a small extension.
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Remark 1.8. Since a morphism f in Ârt is a principal small extension if and only if it is
surjective and dimK(ker(f)) = 1, it is easy to prove that every surjective morphism in Art
can be expressed as the composition of a finite number of principal small extensions.

Given A ∈ Ârt and J ∈ Fvs, we define the set of small extensions of A by J in the
following way:

Ex(A, J) := {e ∈ Ŝmex |K(e) = J, T (e) = A}/ ∼

where e1 ∼ e2 if and only if there exists a morphism (necessarily an isomorphism) α : e1 → e2

in Ŝmex such that K(α) = idJ , T (α) = idA.
Let A⊕ J be the element of Ârt with multiplication defined by

(a, v) · (a′, v′) := (aa′, πA(a)v′ + πA(a′)v)

and let p : A⊕ J → A be the natural projection. Then a small extension of A by J is called
trivial if it represents the same element as p in Ex(A, J). It is straightforward to prove that
a small extension f : B → A is trivial if and only if there exists s : A → B in Ârt such that
f ◦s = idA.

Given e in Ŝmex by abuse of notation we will denote by e (and call small extension)
also its equivalence class in Ex(T (e),K(e)). ε will be the (trivial) principal small extension
0 → K

·ε−→ K[ε] → K → 0.

Lemma 1.9. ∀A ∈ Ârt and ∀J ∈ Fvs the set Ex(A, J) has a natural structure of K–vector
space (of finite dimension: see 2.15) such that 0 is the trivial extension.

Morphisms f : A′ → A in Ârt and ϕ : J → J ′ in Fvs induce linear maps

f∗ : Ex(A, J) −→ Ex(A′, J) and ϕ∗ : Ex(A, J) −→ Ex(A, J ′).

This determines a functor Ex(−,−) : Ârt
◦
× Fvs → Fvs,1 which is additive in the second

argument. Moreover, given a morphism α : e1 → e2 in Ŝmex, K(α)∗(e1) = T (α)∗(e2) ∈
Ex(T (e1),K(e2)).

Proof. Given e1, e2 ∈ Ex(A, J) represented by

ei : 0 �� J
ji �� Bi

pi �� A �� 0 ,

the sum e1 + e2 is represented by

e1 + e2 : 0 �� J
j �� B

p �� A �� 0 ,

where B := (B1 ×A B2)/{(j1(x),−j2(x)) |x ∈ J}, j(x) := [(j1(x), 0)] = [(0, j2(x))] and
p([(b1, b2)]) := p1(b1) = p2(b2). If e ∈ Ex(A, J) is represented by

e : 0 �� J
j �� B

p �� A �� 0

and λ ∈ K \ {0}, then λ · e is represented by

λ · e : 0 �� J
λ−1j �� B

p �� A �� 0

(of course, 0 ·e is defined to be the trivial extension). It is easy to prove that these operations
are well defined and endow Ex(A, J) with a structure of K–vector space.

1This implies, in particular, that f∗ ◦ϕ∗ = ϕ∗ ◦ f∗ : Ex(A, J) → Ex(A′, J ′).
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Given e : 0 → J
j−→ B

p−→ A → 0 in Ex(A, J), f∗e is represented by

f∗e : 0 �� J
j′ �� B ×A A′ p′ �� A′ �� 0 ,

where j′(x) := (j(x), 0) and p′((b, a′)) := a′. ϕ∗e is represented by

ϕ∗e : 0 �� J ′ j′′ �� B
∐
J J ′ p′′ �� A �� 0 ,

where B
∐
J J ′ := (B⊕J ′)/{(j(x),−ϕ(x)) |x ∈ J}, j′′(x′) := [(0, x′)] and p′′([(b, x′)]) := p(b).

Again, we leave as exercise to check that f∗ and ϕ∗ are well defined and have the required
properties.

Given F ∈ Fun and πi : Ai → A in Art for i = 1, 2, let

η : F (A1 ×A A2) −→ F (A1) ×F (A) F (A2) (1)

be the natural map.

Definition 1.10. F is called left–exact if η is always bijective.
F is called homogeneous if η is bijective whenever π2 is surjective.

Remark 1.11. It follows from the universal property of fibre product that a prorepresentable
functor is left–exact.

Now we introduce some conditions, weaker than prorepresentability, that a functor may
satisfy. Conditions (H1) to (H4) are called Schlessinger conditions (see [6]), whereas condi-
tions (H2′) and (L) (introduced in [1]) will be useful when dealing with obstruction theories.

(H1) η is surjective if π2 is a principal small extension.

(H2) η is bijective if A = K and A2 = K[ε].

(H2′) η is bijective if A = K.

(H3) F satisfies (H1), (H2) and dimK(tF ) is finite (see 1.15).

(H4) η is bijective if π1 = π2 is a principal small extension.

(L) For every principal small extension 0 → J → B → A → 0, let

C := B ×K B/{(b, b) | b ∈ J}

and let p, q be the natural maps

F (C)
p−→ F (A×K A)

q−→ F (A) × F (A).

Then q−1({(x, x) |x ∈ F (A)}) ⊂ p(F (C)).

Lemma 1.12. If F ∈ Fun satisfies (H2′), then it satisfies (L), too.

Proof. If y ∈ F (A ×K A) is such that q(y) = (x, x) for some x ∈ F (A), then by (H2′)
y = F (δ)(x), where δ : A → A ×K A is the diagonal morphism. Then the statement follows
from the fact that δ factors through C.

Remark 1.13. It follows easily from 1.8 that if F satisfies (H1) then η is surjective whenever
π2 is surjective.

If F satisfies (H2) then η is bijective whenever A = K and π2 is a small extension (this
is a consequence of the fact that every small extension e with T (e) = K is trivial).

It can be proved that if F satisfies (H2) and (H4), then η is bijective when π1 = π2 is a
small extension.
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We will denote by Gdt (“good deformation theory”) the full subcategory of Fun whose
objects satisfy (H1) and (H2), and by Gdot (“good deformation and obstruction theory”)
the full subcategory of Gdt whose objects satisfy (L). As we will see, in many concrete cases
one can verify that a functor is in Gdot by proving that it satisfies (H1) and (H2′).

Definition 1.14. The tangent space to F ∈ Fun is the pointed set tF := F (K[ε]). Given
ν : F → G in Fun, the relative tangent space to ν is tν := ker(ν : tF → tG). Notice that if
G = ∗, then tν = tF .

Proposition 1.15. Assume that F ∈ Fun satisfies (H2).

1. tF has a natural structure of vector space (with 0 = ∗) such that if ν : F → G is a
morphism in Fun with G also satisfying (H2), then ν : tF → tG is linear. Moreover,
∀V ∈ Fvs the pointed set F (K ⊕ V ) is canonically in bijection with tF ⊗ V (and so it
also has a natural structure of vector space).

2. For every 0 → J → B
f−→ A → 0 in Smex there is a natural action of tF ⊗ J on each

fibre of F (f) : F (B) → F (A). These actions are compatible with morphisms of small
extensions and with morphisms of functors.

3. If F satisfies (H1) then the actions are transitive.

4. The actions are transitive and free if and only if F satisfies (H4).

Proof. 1. Given v1, v2 ∈ tF , consider vi as an element of F (K[εi]) and let v := η−1((v1, v2)),
where η : F (K[ε1, ε2]) → F (K[ε1]) × F (K[ε2]) is an isomorphism by (H2). Given
λ1, λ2 ∈ K, let φ : K[ε1, ε2] → K[ε] be the morphism of Art defined by φ(εi) := λiε.
Then it is easy to see that λ1v1 + λ2v2 := F (φ)(v) gives tF a structure of vector space
with the required properties. The last statement follows by induction on dimK(V ), since
(always by (H2)) F (K ⊕ V1 ⊕ V2)

∼−→ F (K ⊕ V1) × F (K ⊕ V2).

2. Consider the morphism of small extensions

0 : 0 �� J ��

id

��

B ⊕ J
p ��

q

��

B ��

f

��

0

e : 0 �� J �� B
f �� A �� 0

where p is the projection and q((b, c)) := b + c. Since B ⊕ J ∼= B ×K (K ⊕ J), by (H2)
and by 1 there is a natural isomorphism F (B ⊕ J) ∼−→ F (B) × (tF ⊗ J), whence we
obtain a commutative diagram

F (B) × (tF ⊗ J) π ��

τ

��

F (B)

F (f)

��
F (B)

F (f)
�� F (A)

(where π is the projection). It is not difficult to prove that τ defines an action of tF ⊗J
on F (B), which clearly restricts to an action on each fibre of F (f). It is straightforward
to check that these actions are compatible with morphisms of small extensions and with
morphisms of functors.

3. By the last statement of 1.9, 0 = f∗e ∈ Ex(B, J), so that B ⊕ J ∼= B ×A B. Since
F (B ×A B) → F (B) ×F (A) F (B) is surjective by (H1) (taking into account 1.13), the
claim follows.
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4. The proof is completely analogous to that of 3.

Example 1.16. It is easy to see that if F = hR for some R ∈ Ârt, then tF ∼= tR := (mR

m2
R

)∨.

More generally, if ν : hR → hS is induced by f : S → R in Ârt, then tν ∼= tf := ( mR

m2
R+mSR

)∨.

Corollary 1.17. If F ∈ Gdt, then F = ∗ if and only if tF = (0).

Proof. Let F ∈ Gdt be such that tF = (0): ∀A ∈ Art we prove that F (A) = {∗} by
induction on dimK(A). The case dimK(A) = 1 being obvious, we can assume that there is
a principal small extension π : A → B and that F (B) = {∗}. Then F (A) = {∗} because
tF = (0) acts transitively on the unique fibre F (A) of F (π).

Corollary 1.18. F ∈ Fun is homogeneous if and only if it satisfies (H1), (H2), (H4).

Proof. The other implication being trivial, we assume that F satisfies (H1), (H2), (H4), and
we have to prove that η as in (1) is bijective if π2 is surjective. As usual, using 1.8 we can
assume that π2 is a principal small extension, and, since (H1) holds, it remains to show that
η is injective. Setting A′ := A1 ×A A2, consider the morphism in Smex

π∗
1e : 0 �� K ��

id

��

A′ p1 ��

p2

��

A1
��

π1

��

0

e : 0 �� K �� A2
π2 �� A �� 0

and let y, y′ ∈ F (A′) be such that η(y) = η(y′) := (x1, x2). Since tF acts transitively and
freely on the fibres of F (p1), ∃! v ∈ tF such that y′ = v · y (here · denotes the action). As the
actions are compatible with morphisms of small extensions, it follows that x2 = v · x2. On
the other hand, the action on the fibres of F (π2) is also free, whence v = 0 and y = y′.

2 Obstruction theories

If ν : F → G is a morphism in Fun and f : B → A is a morphism in Art, we define ν̃(f) to
be the pointed set F (A)×G(A)G(B) (notice that, if G = ∗, then ν̃(f) = F (A)). In particular,
ν̃ is defined on small extensions, and it clearly determines a functor ν̃ : Smex → Set∗.

Definition 2.1. A morphism ν : F → G in Fun is smooth if the natural map F (B) → ν̃(f)
is surjective for every surjective morphism f : B → A in Art (it follows from 1.8 that it is
enough to check this condition when f is a principal small extension).

A functor F ∈ Fun is smooth if the morphism F → ∗ is smooth (which is true if and
only if F preserves surjective morphisms).

Remark 2.2. If ν : F → G is a smooth morphism, then ν(B) : F (B) → G(B) is surjective
∀B ∈ Art (to see this, it is enough to take A = K in the above definition).

Definition 2.3. A hull for F ∈ Fun is a morphism ν : H → F in Fun such that H is
prorepresentable and ν is smooth and bijective on tangent spaces.

It is not difficult to prove that if a functor admits a hull, then it is unique up to (non
canonical) isomorphism.

Definition 2.4. Let ν : F → G be a morphism in Fun. A relative obstruction theory (V, ve)
for ν consists of an obstruction space V ∈ Set∗ and, ∀ e ∈ Smex, of an obstruction map
ve : ν̃(e) ×K(e)∨ → V , subject to the following conditions:
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1. vε(∗, id) = ∗;

2. (base change) ∀α : e1 → e2 in Smex the diagram

ν̃(e1) ×K(e2)∨
ν̃(α)×id ��

id×K(α)∨

��

ν̃(e2) ×K(e2)∨

ve2

��
ν̃(e1) ×K(e1)∨ ve1

�� V

commutes.

A morphism (V, ve) → (V ′, v′e) of relative obstruction theories for ν is a map α : V → V ′

such that v′e = α ◦ve ∀ e ∈ Smex.
An obstruction theory for F is just a relative obstruction theory for the morphism F → ∗.

Examples 2.5. 1. V = {∗} is a relative obstruction theory (called trivial) for ν.

2. If (V, ve) is a relative obstruction theory for ν and f : V → W is a morphism in Set∗,
then (W, f ◦ve) is a relative obstruction theory for ν, too.

3. If (V, ve) is an obstruction theory for G, then (V, ve ◦ν) is an obstruction theory for F .

Definition 2.6. Let ν : F → G be a morphism in Fun. A relative obstruction theory (V, ve)
is universal if for every other relative obstruction theory (V ′, v′e) there is a unique morphism
(V, ve) → (V ′, v′e).

Proposition 2.7. For every morphism ν : F → G in Fun there exists a unique (up to
isomorphism) universal relative obstruction theory (Oν , obe). Every element of Oν is of the
form obe(x, ϕ) for some principal small extension e, some x ∈ ν̃(e) and some 0 �= ϕ ∈ K(e)∨.

Proof. Uniqueness follows from the universal property. Let

Oν := (
⊔

e∈Smex

ν̃(e) ×K(e)∨)/ ≈

where ≈ is the equivalence relation generated by the direct relation ∼ induced by the base
change axiom. More precisely, if (xi, yi) ∈ ν̃(ei)×K(ei)∨ for i = 1, 2, then (x1, y1) ∼ (x2, y2)
if and only if there is a morphism α : e1 → e2 in Smex such that x2 = ν̃(α)(x1) and
y1 = K(α)∨(y2). The maps obe are defined in the obvious way, and then it is easy to prove
that (Oν , obe) has the claimed properties.

Of course, OF→∗ will be denoted by OF .

Remark 2.8. A morphism ν : F → G in Fun induces a morphism ν : OF → OG in Set∗,
defined by ν(obe(x, ϕ)) = obe(ν(x), ϕ) ∀ e ∈ Smex and ∀x ∈ F (T (e)).

The name obstruction theory is (partially) justified by the following result ([1, prop. 3.3]).

Proposition 2.9. Let ν : F → G be a morphism in Fun, with G ∈ Gdt, and let (V, ve) be
a relative obstruction theory for ν. If e ∈ Smex and x ∈ ν̃(e) is contained in the image of
F (S(e)), then ve(x, ϕ) = ∗ ∀ϕ ∈ K(e)∨. In particular, if ν is smooth then all the maps ve
are trivial.

Of course the converse does not hold in general, so we are lead to give the following
definition.
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Definition 2.10. A relative obstruction theory (V, ve) for ν : F → G (with G ∈ Gdt)
is complete if ∀ e ∈ Smex an element x ∈ ν̃(e) can be lifted to F (S(e)) if and only if
ve(x, ϕ) = ∗ ∀ϕ ∈ K(e)∨.

Remark 2.11. If (V, ve) is a complete relative obstruction theory for ν, then (Oν , obe) is
also complete and ker(Oν → V ) = {∗}. Moreover, Oν = {∗} if and only if ν is smooth.

In general the universal relative obstruction theory is not complete, but it is with some
assumptions. For instance, one can prove the following result ([1, cor. 4.13]).

Proposition 2.12. Let ν : F → G be a morphism in Gdt. If either ν : tF → tG is surjective
or G satisfies (H4), then Oν is complete. In particular, OF is complete ∀F ∈ Gdt.

Definition 2.13. An obstruction theory (V, ve) for ν : F → G (with G ∈ Gdt) is linear if
V is a vector space and ∀ e ∈ Smex, ∀x ∈ ν̃(e) the map ve(x,−) : K(e)∨ → V is linear. In
this case ve can be regarded as a map ve : ν̃(e) → V ⊗K(e), and ve(x) ∈ V ⊗K(e) is called
the obstruction of x ∈ ν̃(e).

Remark 2.14. It is not difficult to prove that if OF and OG are linear, then a morphism
ν : F → G induces a linear map ν : OF → OG.

Example 2.15 (Universal obstruction theory of a prorepresentable functor). Every
R ∈ Ârt can be written as R = P/I, where P = K[[x1, . . . , xn]] (n = dimK(tR)) and I ⊂ m2

P .
It is easy to see that the small extension

ξ : 0 −→ I/mP I −→ P/mP I −→ R = P/I −→ 0

is universal in the sense that every other small extension e with T (e) = R can be obtained
from ξ by a unique push–forward. More precisely, ∀J ∈ Fvs the map

HomFvs(I/mP I, J) −→ Ex(R, J), ϕ �−→ ϕ∗ξ

is a linear isomorphism. It is not difficult to prove that OhR
:= Ex(R,K) ∼= (I/mP I)∨ is

the universal linear complete obstruction theory for hR, with the obstruction maps defined
∀ e ∈ Smex by

obe : hR(T (e)) −→ OhR
⊗K(e) ∼= Ex(R,K(e)), f �−→ f∗e.

Proposition 2.16 (Standard smoothness criterion). ([1, lemma 6.1]) Let ν : F → G
be a morphism in Gdt. Then ν is smooth if and only if

tF −→ tG −→ ∗ −→ OF −→ OG

is an exact sequence in Set∗.

Remark 2.17. It can be proved easily that if ν : F → G is a smooth morphism in Gdt, then
ν : OF → OG is surjective (and then bijective if OF and OG are linear).

Corollary 2.18. Let ν : F → G be a morphism in Gdt and let (V, ve), (W,we) be obstruc-
tion theories for F and G respectively, with V complete. If φ : V → W is a morphism of
obstruction theories compatible with ν (meaning that we ◦ν = φ ◦ve ∀ e ∈ Smex) and if

tF �� tG �� ∗ �� V
φ �� W

is an exact sequence in Set∗, then ν is smooth.
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Theorem 2.19 (Factorization theorem). ([1, thm. 6.2]) 2 Let ν : G → F be a morphism

in Gdt with G prorepresentable. Then there exists a factorization G
µ−→ H

ξ−→ F of ν such
that:

1. H is prorepresentable and µ : tG → tH is bijective;

2. ker(ξ : OH → OF ) = {∗}.

If in addition F satisfies (H4) and ν : tG → tF is injective, then ξ is injective.

Corollary 2.20. ([6, thm. 2.11])

1. F ∈ Fun has a hull if and only if it satisfies (H3).

2. F ∈ Fun is prorepresentable if and only if it satisfies (H3) and (H4).

Proof. 1. If F has a hull it is easy to prove (without using 2.19: see [6]) that it satisfies
(H1) and (H2), and then obviously it satisfies also (H3). Conversely, if F satisfies
(H3), let A := K ⊕ t∨F ∈ Art. By 1.6 and 1.15 HomFun(hA, F ) ∼= F (A) ∼= tF ⊗ t∨F ,
and it is easy to see that the morphism ν : hA → F corresponding to id ∈ tF ⊗ t∨F
induces an isomorphism on tangent spaces. Then by 2.19 ν factors through a morphism
ξ : H → F in Fun with H prorepresentable and such that ξ : tH → tF is bijective and
ker(ξ : OH → OF ) = {∗}. Therefore ξ is a hull by 2.16.

2. Obviously if F is prorepresentable it satisfies (H3) and (H4). Conversly, if F satisfies
(H3) and (H4), let ξ : H → F be a hull obtained as in 1: by the last statement of 2.19
ξ is injective. On the other hand, ξ is surjective by 2.2, and so F is prorepresentable.

Using 2.19 it is also possible to prove the following result ([1, thm. 6.6 and 6.11]), which
justifies the name Gdot.

Proposition 2.21. Let F ∈ Gdt.

1. If F has a complete linear obstruction theory V , then OF is also linear and the natural
map OF → V is linear and injective.

2. OF is linear if and only if F satisfies (L).

Definition 2.22. G ∈ Fun is called a group functor of Artin rings if it factors through the
forgetful functor Group → Set∗.

Given F,G ∈ Fun with G a group functor, an action of G on F is a morphism τ :
G× F → F in Fun such that ∀A ∈ Art τ(A) is an action of G(A) on F (A).

Given an action of a group functor G on F ∈ Fun, there is an obvious way to define the
quotient functor F/G, together with a (surjective) morphism F → F/G in Fun.

Proposition 2.23. ([1, prop. 7.5]) Let F,G ∈ Gdt with G a smooth group functor.3 If G
acts on F , then F/G ∈ Gdt, the projection π : F → F/G is smooth and π : OF → OF/G is
bijective. Moreover, if F satisfies (L) or (H2′), the same holds for F/G.

2This is the correct version (communicated to us by M. Manetti) of the factorization theorem (in [1],
instead of condition 1, it is required that µ : tG → tH is surjective and ξ : tH → tF is injective); the proof is
similar. Also, the other results of [1] which use the factorization theorem remain true with the same proofs,
except for [1, cor. 6.3 (II)], stating that a functor is left–exact if and only if it satisfies (H1), (H2) and (H4)
(we don’t know if this fact is true) and for [1, cor. 6.12], stating that a functor which satisfies (H1), (H2)
and (H4) is in Gdot (this is true, however, as it follows from 1.18 and 1.12).

3It can be proved that G is always smooth if the characteristic of K is zero ([1, thm. 7.19]).
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3 Examples

Most of the functors coming from deformation problems satisfy conditions (H1) and (H2′)
(hence they are in Gdot by 1.12). In order to prove this in many common cases (for instance,
deformations of algebras, of modules, of schemes, of sheaves, . . . ) the following results are
useful.

Lemma 3.1. ([6, lemma 3.4]) Let πi : Ai → A (for i = 1, 2) be morphisms in Art with π2 a
small extension, and let B := A1×AA2. Let moreover M (respectively Mi) be a flat A–module
(respectively Ai–module), and assume that pi : Mi → M are morphisms (compatible with πi)
which induce isomorphisms Mi⊗Ai

A
∼−→ M . Then N := M1 ×M M2 is a flat B–module and

N ⊗B Ai
∼= Mi.

Lemma 3.2. ([6, lemma 3.3]) Let f : M → N be a morphism of A–modules (A ∈ Art),
and let I ⊂ A be an ideal such that the morphism M/IM → N/IN induced by f is an
isomorphism. If N is flat over A, then f is an isomorphism, too.

We are going to determine the tangent space and a complete linear obstruction theory (it
is in general much more difficult to find the universal one) for some morphisms of functors
coming from deformation problems.

3.1 Deformations of submodules

Let R be a K–algebra; ∀A ∈ Art we denote by RA the A–algebra R ⊗ A and, for every
R–module P , by PA the RA–module P ⊗ A. Given M ⊂ N R–modules, we are going to
compute tangent and obstruction spaces for the functor G := GrassM/N defined ∀A ∈ Art
by

G(A) := {M ⊂ NA RA–submodule |M A–flat, M⊗A K = M}.

Observe that if M ⊂ NA is A–flat, then the natural map M ⊗A K → NA ⊗A K = N is
injective (and so the condition M ⊗A K = M makes sense): this is a consequence of the
following lemma.

Lemma 3.3. Let 0 → Q → P be an exact sequence of A–modules (A ∈ Art) with P flat
over A. Then Q is flat over A if and only if 0 → Q⊗A K → P ⊗A K is exact.

Using 3.1 and 3.2 it is easy to prove that G is a homogeneous functor. We will also need
the following results on flatness.

Lemma 3.4. Given 0 → J → B → A → 0 in Smex, let M ∈ G(A) and let M′ ⊂ NB be
an RB–submodule such that there is a commutative diagram with exact rows

0 �� M ⊗ J ��

��

M′

��

ρ �� M

��
0 �� N ⊗ J �� NB

�� NA
�� 0

(where the vertical arrows are the inclusions). Then M′ ∈ G(B) (i.e. M′ is B–flat and
M′ ⊗B K = M) if and only if ρ is surjective.

Lemma 3.5. Given 0 → J → B → A → 0 in Smex, let M′ ∈ G(B) be a lifting of
M ∈ G(A), and let f : NA → IA be an RA–morphism such that ker(f) = M, where I is an
injective R–module. Then there exists an RB–morphism g : NB → IB such that ker(g) = M′

and g ⊗B A = f .
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Proposition 3.6. tG ∼= HomR(M,N/M) and Ext1R(M,N/M) is a complete linear obstruc-
tion space for G.

Proof. Given M ∈ tG, M ⊂ NK[ε] = N ⊕ εN is K[ε]–flat, hence tensoring with ε yields a
commutative diagram of RK[ε]–modules with exact rows

0 �� M ��

��

M ��

��

M ��

��

0

0 �� N
·ε �� N ⊕ εN �� N �� 0

(where the vertical arrows are the inclusions). Given x ∈ M ⊂ N , a lifting of x in M ⊂ N⊕εN
is of the form x + εy (y ∈ N). Since two such liftings differ by an element of the form εz
with z ∈ M , the image y of y in N/M is independent of the choice made. So α(M)(x) := y
defines a map α(M) : M → N/M , which is clearly R–linear. It is not difficult to prove that
α : tG → HomR(M,N/M) is a linear isomorphism.

As for the obstruction theory, for every e : 0 → J → B → A → 0 in Smex we have
to define a map ve : G(A) → Ext1R(M,N/M) ⊗ J . Let’s choose a morphism of R–modules
φ : N → I such that I is injective and ker(φ) = M . It follows from 3.5 and 1.8 that, given
M ∈ G(A), we can find f : NA → IA such that ker(f) = M and f ⊗A K = φ. The choice
of a lifting g : NB → IB of f (which can be made because Ext1RB

(NB , I) ∼= Ext1R(N, I) = 0)
determines a commutative diagram with exact rows and columns

0

��

0

��

0

��
0 �� M ⊗ J ��

��

N ⊗ J
φ⊗J ��

��

I ⊗ J
p ��

i

��

P ⊗ J �� 0

0 �� M′ ��

ρ

��

NB
g ��

��

IB

��
0 �� M �� NA

f ��

��

IA

��
0 0

where M′ := ker(g) and P := coker(φ). By 3.5 and 3.4 it is clear that M can be lifted to
G(B) if and only if it is possible to choose g in such a way that ρ is surjective. Now, by snake
lemma, the above diagram induces a map

δg ∈ HomRB
(M, P ⊗ J) ∼= HomR(M,P ⊗ J)

such that M′ ρ−→ M δg−→ P ⊗ J is exact (whence M lifts to G(B) if and only if there exists
g such that δg = 0). Moreover, if g′ is another lifting of f , then g′ − g = i ◦ψ for some
ψ ∈ HomRB

(NB , I ⊗ J) ∼= HomR(N, I ⊗ J), and it is easy to see that δg′ − δg = p ◦ψ|M .
Therefore, defining V by the exact sequence

HomR(N, I) σ �� HomR(M,P ) �� V �� 0 ,

we see that the image δg of δg in V ⊗ J is independent of g. Since σ factors through the
natural maps

HomR(N, I)
j �� HomR(M, I) l �� HomR(M,P )
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and j is surjective (because I is injective), we obtain that V ∼= coker(l). On the other hand,
the short exact sequence of R–modules

0 −→ N/M −→ I −→ P −→ 0

yields an exact sequence

HomR(M, I) l−→ HomR(M,P ) → Ext1R(M,N/M) → Ext1R(M, I) = 0 ,

so that V ∼= Ext1R(M,N/M). One can prove that ve(M) := δg ∈ V ⊗ J is well defined (it
doesn’t depend on the choice of I, of φ : N → I and of the lifting f), and that (V, ve) is
indeed a complete linear obstruction theory for G.

3.2 Deformations of an isolated singularity

Let X be a scheme over K; ∀A ∈ Art XA will be the scheme X ×Spec K SpecA. The functor
Def X of deformations of X is defined as follows: ∀A ∈ Art

Def X(A) := {X ι−→ X π−→ SpecA |π flat, X
∼−→ X ×SpecA Spec K}/ ∼

where (X ι−→ X π−→ SpecA) ∼ (X ι′−→ X ′ π′
−→ SpecA) if and only if there is an isomorphism

s : X → X ′ such that π′ ◦s = π and ι′ = s ◦ ι (we will call compatible such an isomorphism).
In the following we will often denote simply by X an object of the form X

ι−→ X π−→ SpecA.
Using 3.1 and 3.2 it is easy to prove that Def X satisfies (H1) and (H2′) (but not (H3) and
(H4) in general).

Assume that K is algebraically closed and that X is a variety over K which is nonsingular
everywhere except (possibly) at a point p, and let Def p be the functor of deformations of the
singularity p. This can be defined to be Def U , where p ∈ U ⊂ X is an open affine subset (it
can be proved that if p ∈ V ⊂ U is another open affine subset, then the natural morphism
Def U → Def V is an isomorphism, so that Def p is well defined).

Proposition 3.7. (see [7, prop. 6.4]) Let ν : Def X → Def p be the natural morphism. Then
tν ∼= H1(X,ΘX) and H2(X,ΘX) is a complete linear obstruction space for ν.

Remark 3.8. 1. If H2(X,ΘX) = 0, then ν is smooth and in particular surjective, whence
every deformation of p can be extended to a deformation of X.

2. If p is smooth, then Def p = ∗. Therefore we obtain in particular that if X is a nonsin-
gular variety, then tDef X

∼= H1(X,ΘX) and ODef X
⊂ H2(X,ΘX) (see [5]).

Proof. Let U = {U i | i ∈ I ′ = I
⊔
{0}} be an open affine covering of X such that p ∈ U0 and

p /∈ U i ∀ i ∈ I. We will consider ν as a morphism from Def X to Def U0 .
Let ξ ∈ tν be represented by X . ∀ i ∈ I ′ there is a compatible isomorphism φi : X|Ui

∼−→
U i

K[ε]: this is true by hypothesis if i = 0, whereas if i ∈ I it follows from the fact that every
deformation of a nonsingular affine variety is trivial (see [5]). Then ∀ i, j ∈ I ′

φi,j := φi ◦φ
−1
j : U i,j

K[ε]

∼−→ U i,j
K[ε]

is a lifting of idUi,j and clearly determines a cocycle (φi,j ◦φj,k ◦φk,i = idUi,j,k).4 Moreover,
each φi,j corresponds to a derivation (see [5]) θi,j ∈ Γ(U i,j ,ΘX) (which also satisfies the
cocycle condition θi,j + θj,k + θk,i = 0), hence it determines an element θ ∈ H1(U,ΘX) ∼=
H1(X,ΘX). It is easy to see that θ is well defined (it does not depend on the choice of the

4Here and in the following we avoid to write explicitly that functions like φi and φi,j are restricted to a
suitable open subset, which should always be clear from the context.
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φi and of the covering U) and that the map tν → H1(X,ΘX) thus obtained is a linear
isomorphism.

Now we compute the obstructions. As usual, given e : 0 → J → B → A → 0 in Smex,
we have to define a map

ve : ν̃(e) = Def X(A) ×Def U0 (A) Def U0(B) −→ H2(X,ΘX) ⊗ J.

Let (ξ, η′) ∈ ν̃(e) with ξ represented by X and η′ by U ′0. Then the common image η ∈
Def U0(A) of ξ and η′ is represented by U0 := U ′0 ×SpecB SpecA, and there is a compatible
isomorphism φo : X|U0

∼−→ U0. Also, as before, ∀ i ∈ I there are compatible isomorphisms
φi : X|Ui

∼−→ U i := U i
A. Again,

φi,j := φi ◦φ
−1
j : Uj |Ui,j

∼−→ U i|Ui,j

is a lifting of idUi,j and {φi,j} satisfies the cocycle condition. Clearly (ξ, η) can be lifted to
some ξ′ ∈ Def X(B) if and only if there are liftings

φ′
i,j : U ′j |Ui,j

∼−→ U ′i|Ui,j

(where U ′i := U i
B for i ∈ I) of φi,j such that {φ′

i,j} satisfies the cocycle condition.
Let’s choose liftings φ′

i,j of φi,j (they exist because U i,j is affine and nonsingular) with
φ′
j,i = (φ′

i,j)
−1 and let’s define ∀ i, j, k ∈ I ′

φ′
i,j,k := φ′

i,j ◦φ′
j,k ◦φ′

k,i : U ′i|Ui,j,k −→ U ′i|Ui,j,k .

Since φ′
i,j,k is a lifting of idUi|

Ui,j,k
, it corresponds to a derivation θi,j,k ∈ Γ(U i,j,k,ΘX) ⊗ J .

Lemma 3.9. {θi,j,k | i, j, k ∈ I ′} ∈ Z2(U,ΘX) ⊗ J .

Proof. Given i, j, k, l ∈ I ′, we have to show that

θj,k,l − θi,k,l + θi,j,l − θi,j,k = 0 .

∀α, β, γ ∈ {i, j, k, l} let σα : U ′α|Ui,j,k,l
∼−→ U i,j,k,l

B be a compatible isomorphism such that
σα = idUi,j,k,l

B
if α �= 0. Then

ψα,β := σα ◦φ′
α,β ◦σ−1

β : U i,j,k,l
B

∼−→ U i,j,k,l
B

is a lifting of idUi,j,k,l and

ψα,β,γ := ψα,β ◦ψβ,γ ◦ψγ,α = σα ◦φ′
α,β,γ ◦σ−1

α : U i,j,k,l
B

∼−→ U i,j,k,l
B

is a lifting of idUi,j,k,l
A

. Therefore there are B–linear maps

dα,β := ψ#
α,β − id : OUi,j,k,l ⊗B −→ OUi,j,k,l ⊗ mB ,

dα,β,γ := ψ#
α,β,γ − id : OUi,j,k,l ⊗B −→ OUi,j,k,l ⊗ J .

Obviously dα,β,γ(OUi,j,k,l ⊗ mB) = 0, and it is clear that the induced map OUi,j,k,l →
OUi,j,k,l ⊗ J is a derivation, which is just θα,β,γ . So it is enough to prove that

d := dj,k,l − di,k,l + di,j,l − di,j,k = 0.
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As ψ#
α,β,γ = ψ#

γ,α ◦ψ#
β,γ ◦ψ#

α,β and since (ψγ,α)−1 = ψα,γ , we obtain

(id + dα,γ) ◦ (id + dα,β,γ) = ψ#
α,γ ◦ψ#

α,β,γ = ψ#
β,γ ◦ψ#

α,β = (id + dβ,γ) ◦ (id + dα,β) ,

which implies (taking into account that dα,γ ◦dα,β,γ = 0 because mBJ = (0))

dα,β,γ = dα,β + dβ,γ − dα,γ + dβ,γ ◦dα,β . (2)

It follows that

d = dk,l ◦dj,k − dk,l ◦di,k + dj,l ◦di,j − dj,k ◦di,j =
= dk,l ◦ (dj,k − di,k) + (dj,l − dj,k) ◦di,j

and using (2) again we obtain

d = dk,l ◦ (di,j,k − di,j − dj,k ◦di,j) + (dk,l − dj,k,l + dk,l ◦dj,k) ◦di,j =
= dk,l ◦di,j,k − dj,k,l ◦di,j ,

whence d = 0 (again because mBJ = (0)).

End of proof of 3.7. If φ̃′
i,j are other liftings of φi,j , determining another cocycle {θ̃i,j,k},

then (φ′
i,j)

−1 ◦ φ̃′
i,j (being a lifting of idUj |Ui,j

) corresponds to a derivation δi,j ∈ Γ(U i,j ,ΘX)⊗
J . It is easy to prove that

θ̃i,j,k − θi,j,k = δi,j + δj,k + δk,i ,

and so the element θ ∈ H2(U,ΘX)⊗J ∼= H2(X,ΘX)⊗J defined by {θi,j,k} does not depend
on the chosen liftings of φi,j . It is also not difficult to check that θ does not depend on the
choice of the isomorphisms φi and of the covering U. Hence ve(ξ, η) := θ is well defined and it
is easy to see that (H2(X,ΘX), ve) is indeed a complete linear obstruction theory for ν.

3.3 Deformations of maps with fixed smooth target

Let f : X → Y be a morphism of schemes over K. The functor Def f/Y of deformations of f
with fixed target Y is defined ∀A ∈ Art by

Def f/Y (A) := {(X ι−→ X π−→ SpecA,ϕ : X → Y ) |
π flat, X ∼−→ X ×SpecA Spec K, ϕ ◦ i = f}/ ∼

where (X ι−→ X π−→ SpecA,ϕ : X → Y ) ∼ (X ι′−→ X ′ π′
−→ SpecA,ϕ′ : X ′ → Y ) if and only if

there is an isomorphism s : X → X ′ such that π′ ◦s = π, ι′ = s ◦ ι and ϕ′ ◦s = ϕ. As usual,
one can prove that Def f/Y satisfies (H1) and (H2′).

Proposition 3.10. (see [4, thm. 2]) Let f : X → Y be a morphism of schemes of finite type
over an algebraically closed field K, with X separated and Y smooth. Then the natural mor-
phism ν : Def f/Y → Def X has tν ∼= coker(H0(X,ΘX) → H0(X, f∗ΘY )) and H1(X, f∗ΘY )
is a complete linear obstruction space for ν.

Proof. Let ξ ∈ tν be represented by ϕ : XK[ε] → Y : clearly |ϕ| = |f | and ϕ# : f−1OY →
OXK[ε] = OX ⊕ εOX can be written as ϕ# = f# + εδ with δ : f−1OY → OX a derivation,
which can be considered as an element δ ∈ H0(X, f∗ΘY ). If ϕ′ : XK[ε] → Y also represents
ξ, there is a compatible isomorphism s : XK[ε] → XK[ε] such that ϕ′ = ϕ ◦s, and since s# is
of the form id + εd for some d ∈ H0(X,ΘX), we obtain

ϕ′# = f# + εδ′ = s# ◦ϕ# = (id + εd) ◦ (f# + εδ) ,
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whence δ′ = d ◦f# + δ. The statement about tν follows easily.
∀ e : 0 → J → B → A → 0 in Smex we have to define an obstruction map

ve : ν̃(e) = Def f/Y (A) ×Def X(A) Def X(B) −→ H1(X, f∗ΘY ) ⊗ J .

Let (ξ, η′) ∈ ν̃(e) and let η ∈ Def X(A) be the common image of ξ and η′: if η′ is represented
by X ′, then η is represented by X := X ′ ×SpecB SpecA, and we can assume that ξ is
represented by some ϕ : X → Y . Clearly (ξ, η′) lifts to some ξ ∈ Def f/Y (B) if and only if
there is a lifting ϕ′ : X ′ → Y of ϕ, i.e. if and only if there is a lifting ϕ′# : f−1OY → OX ′ of
ϕ# : f−1OY → OX .

First, one can prove that if X is affine a lifting of ϕ# always exists (here one uses the
hypothesis Y smooth) and two liftings differ by an element of the form α ◦θ, where α :
OX ⊗ J → OX ′ is the inclusion induced by J → B and θ ∈ Γ(X, f∗ΘY ) ⊗ J . Then, in the
general case, let U = {U i | i ∈ I} and V = {V i | i ∈ I} be open affine coverings of X and
Y respectively, such that f(U i) ⊂ V i ∀ i ∈ I. We can choose liftings ρi of ϕ#|Ui and then
∀ i, j ∈ I there exists θi,j ∈ Γ(U i,j , f∗ΘY ) ⊗ J such that ρi − ρj = α ◦θi,j . Clearly {θi,j} is a
cocycle and its class θ ∈ H1(X, f∗ΘY ) is easily seen to be independent of the choice of the
ρi and of the coverings. It is also straightforward to prove that ve(ξ, η′) := θ is well defined
and that (H1(X, f∗ΘY ), ve) is a complete linear obstruction theory for ν.

Given p1, . . . , pn ∈ X smooth points, it is possible to define the functor Def X,{pi} of
deformations of the n–pointed scheme (X, {pi}): denoting by π∗

A : Spec K → SpecA the
natural map, ∀A ∈ Art

Def X,{pi}(A) := {X ι−→ X π−→ SpecA
qi−→ X |

π flat, X
∼−→ X ×SpecA Spec K, qi ◦π

∗
A = ι ◦pi}/ ≈

where (X ι−→ X π−→ SpecA
qi−→ X ) ≈ (X ι′−→ X ′ π′

−→ SpecA
q′i−→ X ′) if and only if there is an

isomorphism s : X → X ′ such that π′ ◦s = π, ι′ = s ◦ ι and q′i = s ◦ qi for i = 1, . . . , n. In a
similar way one can define the functor Def f/Y,{pi}, and it is easy to see that 3.10 extends to
this more general situation, so that we obtain, in particular, the following result.

Proposition 3.11. If the pointed scheme (X, {pi}) has no infinitesimal automorphisms and
H1(X, f∗ΘX) = 0, then the natural morphism ν : Def f/Y,{pi} → Def X,{pi} is smooth and
tν ∼= H0(X, f∗ΘX).

From this one can prove (see [4, thm. 1]) the following theorem.

Theorem 3.12. ([2, thm. 2]) Let Y be a smooth projective convex variety over C, let (C, {pi})
be an n–pointed quasi–stable curve of arithmetic genus g with N ≥ 0 nodes, let µ : (C, {pi}) →
Y be a stable map (i.e., without infinitesimal automorphisms), and let β := µ∗[C] ∈ H2(Y,Z).
Then the base space B of the universal deformation of the data (C, {pi}, µ) which leave Y
fixed is smooth of dimension dim(Y ) +

∫
β
c1(ΘY ) + n− 3.

Moreover, denoting by Bj ⊂ B the subvariety corresponding to curves with at least j nodes,
B1 is a normal crossing divisor (provided N > 0) and, ∀ j ≤ n, Bj is of pure codimension j.

3.4 Deformation functor associated to a DGLA

Here we assume that the characteristic of K is zero. Let

L = (⊕i∈ZL
i, [ , ], d)

be a DGLA (= differential graded Lie algebra), and notice that if R is a commutative K–
algebra (possibly without unit), then L ⊗ R is also a DGLA in a natural way, and we will
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denote again by [ , ] and by d the bracket and the differential of L⊗R. The Maurer–Cartan
equation of L is

da +
1
2
[a, a] = 0 , a ∈ L1 .

Then one can define the Maurer–Cartan functor of L by

MCL(A) := {x ∈ (L⊗ mA)1 = L1 ⊗ mA | dx +
1
2
[x, x] = 0}

∀A ∈ Art. MCL is clearly left–exact. Denoting by NLA the category of nilpotent Lie
algebras, there is a functor exp : NLA → Group, which, composed with the forgetful
functor Group → Set∗ is just the forgetful functor NLA → Set∗.5 If L is a DGLA such
that every element of L0 is ad–nilpotent in L, then exp(L0) acts on L by

exp(a) · x := x +
∑
n≥0

(ad a)n

(n + 1)!
([a, x] − da)

∀ a ∈ L0, ∀x ∈ L. It is not difficult to prove that this action preserves the solutions of the
Maurer–Cartan equation. Therefore the gauge functor defined ∀A ∈ Art by

GL(A) := exp(L0 ⊗ mA)

(which is clearly a smooth and left–exact group functor) acts on MCL. The quotient functor
Def L := MCL/GL is called the deformation functor associated to L. By 2.23 Def L ∈ Gdot
and it also satisfies (H2′) (but in general not (H4)).

Proposition 3.13. (see [3]) Let L be a DGLA. Then tDef L
∼= H1(L) and H2(L) is a com-

plete linear obstruction space for Def L.

Proof. By definition

tMCL
= {x ∈ L1 ⊗ (ε) | dx +

1
2
[x, x] = 0} = Z1(L) ⊗ (ε) ∼= Z1(L)

and tGL
= exp(L0⊗(ε)) ∼= L0. Since the action tGL

×tMCL
→ tMCL

is given by (a, x) �→ x−da,
we obtain tDef L

∼= Z1(L)/B1(L) = H1(L).
By 2.23 OMCL

∼= ODef L
, so that it is enough to prove that H2(L) is a complete linear

obstruction space for MCL. ∀ e : 0 → J → B → A → 0 in Smex we have to define a map

ve : MCL(A) −→ H2(L) ⊗ J ∼= H2(L⊗ J) .

Given x ∈ MCL(A), let x̃ ∈ L1 ⊗ mB be a lifting of x. Then

h := dx̃ +
1
2
[x̃, x̃] ∈ L2 ⊗ mB

is a lifting of dx + 1/2[x, x] = 0, and so h ∈ L2 ⊗ J . As

dh = d2x̃ + [dx̃, x̃] = [h, x̃] − 1
2
[[x̃, x̃], x̃]

and since [h, x̃] = 0 because [L2⊗J, L1⊗mA] = 0 and [[x̃, x̃], x̃] = 0 by Jacobi identity, we see
that h ∈ Z2(L⊗ J). Moreover, every other lifting of x is of the form x̃′ = x̃ + y, y ∈ L1 ⊗ J ,
whence

h′ := dx̃′ +
1
2
[x̃′, x̃′] = h + dy .

It follows that the class h of h in H2(L ⊗ J) is well defined, and it is very easy to see that
defining ve(x) := h, (H2(L), ve) is a complete linear obstruction theory for MCL.

5Multiplication in exp(N) (N ∈ NLA) is given by the Baker–Campbell–Hausdorff formula.
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The cotangent complex in characteristic 0

Marco Manetti

We use the same notation and conventions of [8]; in particular K will be a fixed field of
characteristic 0.

1 Homotopy of differential graded algebras

Let A be a graded algebra, if A→ B is a morphism of graded algebras then B has a natural
structure of A-algebra. Given two A-algebras B,C it is defined their tensor product B ⊗A C
as the quotient of B ⊗K C = ⊕n,mBn ⊗K Cm by the ideal generated by ba ⊗ c − b ⊗ ac for
every a ∈ A, b ∈ B, c ∈ C. B ⊗A C has a natural structure of graded algebra with degrees
b⊗ c = b + c and multiplication (b ⊗ c)(β ⊗ γ) = (−1)c βbβ ⊗ cγ. Note in particular that
A[{xi}] = A⊗K K [{xi}].

Given a dg-algebra A and h ∈ K it is defined an evaluation morphism eh : A[t, dt] → A,
eh(a⊗ p(t)) = ap(h), eh(a⊗ q(t)dt) = 0.

Lemma 1.1. For every dg-algebra A the evaluation map eh : A[t, dt] → A induces an iso-
morphism H(A[t, dt]) → H(A) independent from h ∈ K .

Proof. Let ı : A → A[t, dt] be the inclusion, since ehı = IdA it is sufficient to prove that
ı : H(A) → H(A[t, dt]) is bijective. For every n > 0 denote Bn = Atn ⊕ Atn−1dt; since
d(Bn) ⊂ Bn and A[t, dt] = ı(A)

⊕
n>0Bn it is sufficient to prove that H(Bn) = 0 for every

n. Let z ∈ Zi(Bn), z = atn + nbtn−1dt, then 0 = dz = datn + ((−1)ia + db)ntn−1dt which
implies a = (−1)i−1db and then z = (−1)i−1d(btn).

Definition 1.2. Given two morphisms of dg-algebras f, g : A → B, a homotopy between f
and g is a morphism H : A → B[t, dt] such that H0 := e0 ◦ H = f , H1 := e1 ◦ H = g. We
denote by [A,B] the quotient of HomDGA(A,B) by the equivalence relation ∼ generated by
homotopy. If B → C is a morphism of dg-algebras with kernel J , a homotopy H : A→ B[t, dt]
is called constant on C if the image of H is contained in B ⊕j≥0 (Jtj+1 ⊕ Jtjdt). Two dg-
algebras A,B are said to be homotopically equivalent if there exist morphisms f : A → B,
g : B → A such that fg ∼ IdB, gf ∼ IdA.

According to Lemma 1.1 homotopic morphisms induce the same morphism in homology.

Lemma 1.3. Given morphisms of dg-algebras,

A

f
��

g
�� B

h ��

l

�� C ,

if f ∼ g and h ∼ l then hf ∼ lg.

Proof. It is obvious from the definitions that hg ∼ lg. For every a ∈ K there exists a
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commutative diagram

B ⊗ K [t, dt]
h⊗Id ��

ea

��

C ⊗ K [t, dt]

ea

��
B

h �� C

.

If F : A → B[t, dt] is a homotopy between f and g, then, considering the composition of F
with h⊗ Id, we get a homotopy between hf and hg.

Example 1.4. Let A be a dg-algebra, {xi} a set of indeterminates of integral degree and
consider the dg-algebra B = A[{xi, dxi}], where dxi is an indeterminate of degree dxi = xi+1
and the differential dB is the unique extension of dA such that dB(xi) = dxi, dB(dxi) = 0
for every i. The inclusion i : A → B and the projection π : B → A, π(xi) = π(dxi) = 0 give
a homotopy equivalence between A and B. In fact πi = IdA; consider now the homotopy
H : B → B[t, dt] given by

H(xi) = xit, H(dxi) = dH(xi) = dxit+ (−1)xixidt, H(a) = a, ∀a ∈ A.

Taking the evaluation at t = 0, 1 we get H0 = ip, H1 = IdB .

Exercise 1.5. Let f, g : A → C, h : B → C be morphisms of dg-algebras. If f ∼ g then
f ⊗ h ∼ g ⊗ h : A⊗K B → C. �

Remark 1.6. In view of future geometric applications, it seems reasonable to define the
spectrum of a unitary dg-algebra A as the usual spectrum of the commutative ring Z0(A).

If S ⊂ Z0(A) is a multiplicative part we can consider the localized dg-algebra S−1A with
differential d(a/s) = da/s. Since the localization is an exact functor in the category of Z0(A)
modules we have H(S−1A) = S−1H(A). If φ : A→ C is a morphism of dg-algebras and φ(s)
is invertible for every s ∈ S then there is a unique morphism ψ : S−1A → C extending φ.
Moreover if φ is a quasiisomorphism then also ψ is a quasiisomorphism (easy exercise).

If P ⊂ Z0(A) is a prime ideal, then we denote as usual AP = S−1A, where S = Z0(A)−P.
It is therefore natural to define Spec(A) as the ringed space (X, Ã), where X is the spectrum
of A and Ã is the (quasi coherent) sheaf of dg-algebras with stalks AP , P ∈ X.

2 Differential graded modules

Let (A, s) be a fixed dg-algebra, by an A-dg-module we mean a differential graded vector space
(M, s) together two associative distributive multiplication maps A×M →M , M ×A→M
with the properties:

1. AiMj ⊂Mi+j , MiAj ⊂Mi+j .

2. am = (−1)amma, for homogeneous a ∈ A, m ∈M .

3. s(am) = s(a)m+ (−1)aas(m).

If A = A0 we recover the usual notion of complex of A-modules.
If M is an A-dg-module then M [n] = K [n]⊗K M has a natural structure of A-dg-module

with multiplication maps

(e⊗m)a = e⊗ma, a(e⊗m) = (−1)nae⊗ am, e ∈ K [n], m ∈M, a ∈ A.
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The tensor product N ⊗A M is defined as the quotient of N ⊗K M by the graded sub-
modules generated by all the elements na⊗m− n⊗ am.

Given two A-dg-modules (M,dM ), (N, dN ) we denote by

Homn
A(M,N) = {f ∈ Homn

K
(M,N) | f(ma) = f(m)a, m ∈M,a ∈ A}

Hom∗A(M,N) =
⊕

n∈Z

Homn
A(M,N).

The graded vector space Hom∗A(M,N) has a natural structure of A-dg-module with left
multiplication (af)(m) = af(m) and differential

d : Homn
A(M,N) → Homn+1

A (M,N), df = [d, f ] = dN ◦ f − (−1)nf ◦ dM .

Note that f ∈ Hom0
A(M,N) is a morphism of A-dg-modules if and only if df = 0.

A homotopy between two morphism of dg-modules f, g : M → N is a h ∈ Hom−1
A (M,N)

such that f − g = dh = dNh + hdM . Homotopically equivalent morphisms induce the same
morphism in homology.

Morphisms of A-dg-modules f : L → M , h : N → P induce, by composition, morphisms
f∗ : Hom∗A(M,N) → Hom∗A(L,N), h∗ : Hom∗A(M,N) → Hom∗A(M,P );

Lemma 2.1. In the above notation if f is homotopic to g and h is homotopic to l then f∗

is homotopic to g∗ and l∗ is homotopic to h∗.

Proof. Let p ∈ Hom−1
A (L,M) be a homotopy between f and g, It is a straightforward veri-

fication to see that the composition with p is a homotopy between f∗ and g∗. Similarly we
prove that h∗ is homotopic to l∗.

Lemma 2.2. Let A → B be a morphism of unitary dg-algebras, M an A-dg-module, N a
B-dg-modules. Then there exists a natural isomorphism of B-dg-modules

Hom∗A(M,N) � Hom∗B(M ⊗A B,N).

Proof. Consider the natural maps:

Hom∗A(M,N)
L �� Hom∗B(M ⊗A B,N)
R

�� ,

Lf(m⊗ b) = f(m)b, Rg(m) = g(m⊗ 1).

We left as exercise the easy verification that L,R = L−1 are isomorphism of B-dg-modules.

Given a morphism of dg-algebras B → A and an A-dg-module M we set:

DernB(A,M) = {φ ∈ Homn
K

(A,M)|φ(ab)=φ(a)b+ (−1)naaφ(b), φ(B)=0}

Der∗B(A,M) =
⊕

n∈Z

DernB(A,M).

As in the case of Hom∗, there exists a structure of A-dg-module on Der∗B(A,M) with product
(aφ)(b) = aφ(b) and differential

d : DernB(A,M) → Dern+1
B (A,M), dφ = [d, φ] = dMφ− (−1)nφdA.

Given φ ∈ DernB(A,M) and f ∈ Homm
A (M,N) their composition fφ belongs to Dern+m

B (A,N).
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Proposition 2.3. Let B → A be a morphisms of dg-algebras: there exists an A-dg-module
ΩA/B together a closed derivation δ : A→ ΩA/B of degree 0 such that, for every A-dg-module
M , the composition with δ gives an isomorphism

Hom∗A(ΩA/B ,M) = Der∗B(A,M).

Proof. Consider the graded vector space

FA =
⊕

Aδx, x ∈ A homogeneous, δx = x.

FA is an A-dg-module with multiplication a(bδx) = abδx and differential

d(aδx) = daδx+ (−1)aaδ(dx).

Note in particular that d(δx) = δ(dx). Let I ⊂ FA be the homogeneous submodule generated
by the elements

δ(x+ y) − δx− δy, δ(xy) − x(δy) − (−1)x yy(δx), δ(b), b ∈ B,

Since d(I) ⊂ I the quotient ΩA/B = FA/I is still an A-dg-module. By construction the map
δ : A→ ΩA/B is a derivation of degree 0 such that dδ = dΩδ−δdA = 0. Let ◦δ : Hom∗A(ΩA/B ,M) →
Der∗B(A,M) be the composition with δ:

a) L is a morphism of A-dg-modules. In fact (af) ◦ δ = a(f ◦ δ) for every a ∈ A and

d(f ◦ δ)(x) = dM (f(δx)) − (−1)ffδ(dx) =

= dM (f(δx)) − (−1)ff(d(δx)) = df ◦ δ.

b) ◦δ is surjective. Let φ ∈ DernB(A,M); define a morphism f ∈ Homn
A(FA,M) by the rule

f(aδx) = (−1)naaφ(x); an easy computation shows that f(I) = 0 and then f factors
to f ∈ Homn

A(ΩA/B ,M): by construction f ◦ δ = φ.

c) ◦δ is injective. In fact the image of δ generate ΩA/B .

When B=K we denote for notational simplicity Der∗(A,M)=Der∗
K

(A,M), ΩA = ΩA/K .
Note that if C → B is a morphism of dg-algebras, then the natural map ΩA/C → ΩA/B is
surjective and ΩA/C = ΩA/B whenever C → B is surjective.

Definition 2.4. The module ΩA/B is called the module of relative Kähler differentials of A
over B and δ the universal derivation.

By the universal property, the module of differential and the universal derivation are
unique up to isomorphism.

Example 2.5. If A� = K [{xi}] is a polynomial algebra then ΩA = ⊕iAδxi and δ : A → ΩA

is the unique derivation such that δ(xi) = δxi.

Proposition 2.6. Let B → A be a morphism of dg-algebras and S ⊂ Z0(A) a multiplicative
part. Then there exists a natural isomorphism S−1ΩA/B = ΩS−1A/B.

Proof. The closed derivation δ : A → ΩA/B extends naturally to δ : S−1A → S−1ΩA/B ,
δ(a/s) = δa/s, and by the universal property there exists a unique morphism of S−1A mod-
ules f : ΩS−1A/B → S−1ΩA/B and a unique morphism of A modules g : ΩA/B → ΩS−1A/B .
The morphism g extends to a morphism of S−1A modules g : S−1ΩA/B → ΩS−1A/B . Clearly
these morphisms commute with the universal closed derivations and then gf = Id. On the
other hand, by the universal property, the restriction of fg to ΩA/B must be the natural
inclusion ΩA/B → S−1ΩA/B and then also fg = Id.
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3 Projective modules

Definition 3.1. An A-dg-module P is called projective if for every surjective quasiisomor-
phism f : M → N and every g : P → N there exists h : P →M such that fh = g.

M

qisf
����

P g
�� N

⇒

⇒

M

qisf
����

P g
��

h

����������
N

.

Exercise 3.2. Prove that if A = A0 and P = P0 then P is projective in the sense of 3.1 if
and only if P0 is projective in the usual sense. �

Lemma 3.3. Let P be a projective A-dg-module, f : P → M a morphism of A-dg-modules
and φ : M → N a surjective quasiisomorphism. If φf is homotopic to 0 then also f is
homotopic to 0.

Proof. We first note that there exist natural isomorphisms Homi
A(P,M [j]) = Homi+j

A (P,M).
Let h : P → N [−1] be a homotopy between φf and 0 and consider the A-dg-modules M ⊕
N [−1], M ⊕M [−1] endowed with the differentials

d : Mn ⊕Nn−1 →Mn+1 ⊕Nn, d(m1, n2) = (dm1, f(m1) − dn2),

d : Mn ⊕Mn−1 →Mn+1 ⊕Mn, d(m1,m2) = (dm1,m1 − dm2).

The map IdM⊕f : M⊕M [−1] →M⊕N [−1] is a surjective quasiisomorphism and (φ, h) : P →
M⊕N [−1] is morphism of A-dg-modules. If (φ, l) : P →M⊕M [−1] is a lifting of (φ, h) then
l is a homotopy between φ and 0.

Lemma 3.4. Let f : M → N be a morphism of A-dg-modules, then there exist morphisms
of A-dg-modules π : L→M , g : L→ N such that g is surjective, π is a homotopy equivalence
and g is homotopically equivalent to fπ.

Proof. Consider L = M ⊕N ⊕N [−1] with differential

d : Mn ⊕Nn ⊕Nn−1 →Mn+1 ⊕Nn+1 ⊕Nn, d(m,n1, n2) = (dm, dn1, n1 − dn2).

We define g(m,n1, n2) = f(m) + n1, π(m,n1, n2) = m and s : M → L, s(m) = (m, 0, 0).
Since gs = f and πs = IdM it is sufficient to prove that sπ is homotopic to IdL. Take
h ∈ Hom−1

A (L,L), h(m,n1, n2) = (0, n2, 0); then

d(h(m,n1, n2)) + hd(m,n1, n2) = (0, n1, n2) = (IdL − sπ)(m,n1, n2).

Theorem 3.5. Let P be a projective A-dg-module: For every quasiisomorphism f : M → N
the induced map Hom∗A(P,M) → Hom∗A(P,N) is a quasiisomorphism.

Proof. By Lemma 3.4 it is not restrictive to assume f surjective. For a fixed integer i we
want to prove that Hi(Hom∗A(P,M)) = Hi(Hom∗A(P,N)). Replacing M and N with M [i]
and N [i] it is not restrictive to assume i = 0. Since Z0(Hom∗A(P,N)) is the set of morphisms
of A-dg-modules and P is projective, the map

Z0(Hom∗A(P,M)) → Z0(Hom∗A(P,N))

is surjective. If φ ∈ Z0(Hom∗A(P,M)) and fφ ∈ B0(Hom∗A(P,N)) then by Lemma 3.3 also φ
is a coboundary.

44



A projective resolution of an A-dg-module M is a surjective quasiisomorphism P → M
with P projective. We will show in next section that projective resolutions always exist. This
allows to define for every pair of of A-dg-modules M,N

Exti(M,N) = Hi(Hom∗A(P,N)),

where P →M is a projective resolution.

Exercise 3.6. Prove that the definition of Ext’s is independent from the choice of the pro-
jective resolution. �

4 Semifree resolutions

From now on K is a fixed dg-algebra.

Definition 4.1. A K-dg-algebra (R, s) is called semifree if:

1. The underlying graded algebra R is a polynomial algebra over K K[{xi}], i ∈ I.

2. There exists a filtration ∅ = I(0) ⊂ I(1) ⊂ . . . , ∪n∈NI(n) = I, such that s(xi) ∈ R(n)
for every i ∈ I(n+ 1), where by definition R(n) = K[{xi}], i ∈ I(n).

Note that R(0) = K, R(n) is a dg-subalgebra of R and R = ∪R(n).

Let R = K[{xi}] = ∪R(n) be a semifree K-dg-algebra, S a K-dg-algebra; to give a
morphism f : R → S is the same to give a sequence of morphisms fn : R(n) → S such
that fn+1 extends fn for every n. Given a morphism fn : R(n) → S, the set of extensions
fn+1 : R(n+ 1) → S is in bijection with the set of sequences {fn+1(xi)}, i ∈ I(n+ 1)− I(n),
such that s(fn+1(xi)) = fn(s(xi)), fn+1(xi) = xi.

Example 4.2. K [t, dt] is semifree with filtration K ⊕ K dt ⊂ K [t, dt]. For every dg-algebra
A and every a ∈ A0 there exists a unique morphism f : K [t, dt] → A such that f(t) = a.

Exercise 4.3. Let (V, s) be a complex of vector spaces, the differential s extends to a unique
differential s on the symmetric algebra

⊙
V such that s(

⊙n
V ) ⊂

⊙n
V for every n. Prove

that (
⊙

V, s) is semifree. �

Exercise 4.4. The tensor product (over K) of two semifree K-dg-algebras is semifree. �

Proposition 4.5. Let (R = K[{xi}], s), i ∈ ∪I(n), be a semifree K-dg-algebra: for every
surjective quasiisomorphism of K-dg-algebras f : A → B and every morphism g : R → B
there exists a lifting h : R → A such that fh = g. Moreover any two of such liftings are
homotopic by a homotopy constant on B.

Proof. Assume by induction on n that it is defined a morphism hn : R(n) → A such that
fhn equals the restriction of g to R(n) = K [{xi}], i ∈ I(n). Let i ∈ I(n + 1) − I(n), we
need to define hn+1(xi) with the properties fhn+1(xi) = g(xi), dhn+1(xi) = hn(dxi) and
hn+1(xi) = xi. Since dhn(dxi) = 0 and fhn(dxi) = g(dxi) = dg(xi) we have that hn(dxi) is
exact in A, say hn(dxi) = dai; moreover d(f(ai) − g(xi)) = f(dai) − g(dxi) = 0 and, since
Z(A) → Z(B) is surjective there exists bi ∈ A such that f(ai + bi) = g(xi) and then we may
define hn+1(xi) = ai + bi. The inverse limit of hn gives the required lifting.
Let h, l : R → A be liftings of g and denote by J ⊂ A the kernel of f ; by assumption J is
acyclic and consider the dg-subalgebra C ⊂ A[t, dt],

C = A⊕j≥0 (Jtj+1 ⊕ Jtjdt).
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We construct by induction on n a coherent sequence of morphisms Hn : R(n) → C giving a
homotopy between h and l. Denote by N ⊂ K [t, dt] the differential ideal generated by t(t−1);
there exists a direct sum decomposition K [t, dt] = K ⊕ K t⊕ K dt⊕N . We may write:

Hn(x) = h(x) + (l(x) − h(x))t+ an(x)dt+ bn(x, t),

with an(x) ∈ J and bn(x, t) ∈ J ⊗N . Since dHn(x) = Hn(dx) we have for every x ∈ R(n):

(−1)x(l(x) − h(x)) + d(an(x)) = an(dx), d(bn(x, t)) = bn(dx, t). (1)

Let i ∈ I(n+ 1) − I(n), we seek for an+1(xi) ∈ J and bn+1(xi, t) ∈ J ⊗N such that, setting

Hn+1(xi) = h(xi) + (l(xi) − h(xi))t+ an+1(xi)dt+ bn+1(xi, t),

we want to have

0 = dHn+1(xi) −Hn(dxi)

= ((−1)xi(l(xi) − h(xi)) + dan+1(xi) − an(dxi))dt+ dbn+1(xi, t) − bn(dxi, t).

Since both J and J ⊗ N are acyclic, such a choice of an+1(xi) and bn+1(xi, t) is possible if
and only if (−1)dxi(l(xi) − h(xi)) + an(dxi) and bn(dxi, t) are closed.
According to Equation 1 we have

d((−1)dxi(l(xi) − h(xi) + an(dxi)) = (−1)dxi(l(dxi) − h(dxi)) + d(an(dxi))

= an(d2xi) = 0,

dbn(dxi, t) = bn(d2xi, t) = 0.

Definition 4.6. A K-semifree resolution (also called resolvent) of a K-dg-algebra A is a
surjective quasiisomorphism R → A with R semifree K-dg-algebra.

By 4.5 if a semifree resolution exists then it is unique up to homotopy.

Theorem 4.7. Every K-dg-algebra admits a K-semifree resolution.

Proof. Let A be a K-dg-algebra, we show that there exists a sequence of K-dg-algebras
K = R(0) ⊂ R(1) ⊂ . . . ⊂ R(n) ⊂ . . . and morphisms fn : R(n) → A such that:

1. R(n+ 1) = R(n)[{xi}], dxi ∈ R(n).

2. fn+1 extends fn.

3. f1 : Z(R(1)) → Z(A), f2 : R(2) → A are surjective.

4. f−1
n (B(A)) ∩ Z(R(n)) ⊂ B(R(n+ 1)) ∩R(n), for every n > 0.

It is then clear that R = ∪R(n) and f = lim
←

fn give a semifree resolution. Z(A) is a
graded algebra and therefore there exists a polynomial graded algebra R(1) = K[{xi}] and a
surjective morphism f1 : R(1) → Z(A); we set the trivial differential d = 0 on R(1). Let vi be
a set of homogeneous generators of the ideal f−1

1 (B(A)), if f1(vi) = dai it is not restrictive
to assume that the ai’s generate A. We then define R(2) = R(1)[{xi}], f2(xi) = ai and
dxi = vi. Assume now by induction that we have defined fn : R(n) → A and let {vj} be a
set of generators of f−1

n (B(A))∩Z(R(n)), considered as an ideal of Z(R(n)); If fn(vj) = daj
we define R(n+ 1) = R(n)[{xj}], dxj = vj and fn+1(xj) = aj .
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Remark 4.8. It follows from the above proof that if Ki = Ai = 0 for every i > 0 then there
exists a semifree resolution R → A with Ri = 0 for every i > 0.

Exercise 4.9. If, in the proof of Theorem 4.7 we choose at every step {vi} = f−1
n (B(A)) ∩

Z(R(n)) we get a semifree resolution called canonical. Show that every morphism of dg-
algebras has a natural lift to their canonical resolutions. �

Given two semifree resolutions R → A, S → A we can consider a semifree resolution
P → R×A S of the fibred product and we get a commutative diagram of semifree resolutions

P ��

�� ���
��

��
��

R

��
R �� A.

Definition 4.10. An A-dg-module F is called semifree if F = ⊕i∈IAmi, mi ∈ Z and there
exists a filtration ∅ = I(0) ⊂ I(1) ⊂ . . . ⊂ I(n) ⊂ . . . such that

i ∈ I(n+ 1) ⇒ dmi ∈ F (n) = ⊕i∈I(n)Ami.

A semifree resolution of an A-dg-module M is a surjective quasiisomorphism F → M with
F semifree.

The proof of the following two results is essentially the same of 4.5 and 4.7:

Proposition 4.11. Every semifree module is projective.

Theorem 4.12. Every A-dg-module admits a semifree resolution.

Exercise 4.13. An A-dg-module M is called flat if for every quasiisomorphism f : N → P
the morphism f ⊗ Id : N ⊗M → P ⊗M is a quasiisomorphism. Prove that every semifree
module is flat. �

Example 4.14. If R = K[{xi}] is a K-semifree algebra then ΩR/K = ⊕Rδxi is a semifree
R-dg-module.

5 The cotangent complex

Proposition 5.1. Assume it is given a commutative diagram of K-dg-algebras

R
f ��

p
		�

��
��

��
S

��

R
g��

p


��

��
��

�

A

If there exists a homotopy between f and g, constant on A, then the induced morphisms of
A-dg-modules

f, g : ΩR/K ⊗R A→ ΩS/K ⊗S A

are homotopic.
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Proof. Let J ⊂ S be the kernel of S → A and let H : R → S ⊕j≥0 (Jtj+1 ⊕ Jtjdt) be a
homotopy between f and g; the first terms of H are

H(x) = f(x) + t(g(x) − f(x)) + dt q(x) + . . . .

From dH(x) = H(dx) we get g(x) − f(x) = q(dx) + dq(x) and from H(xy) = H(x)H(y)
follows q(xy) = q(x)f(y) + (−1)xf(x)q(y). Since f(x) − g(x), q(x) ∈ J for every x, the map

q : ΩR/K ⊗R A→ ΩS/K ⊗S A, q(δx·r ⊗ a) = δ(q(x))f(r) ⊗ a,

is a well defined element of Hom−1
A (ΩR/K⊗RA,ΩS/K⊗SA). By definition f, g : ΩR/K⊗RA→

ΩS/K ⊗S A are defined by

f(δx·r ⊗ a) = δ(f(x))f(r) ⊗ a, g(δx·r ⊗ a) = δ(g(x))g(r) ⊗ a = δ(g(x))f(r) ⊗ a.

A straightforward verification shows that dq = f − g.

Definition 5.2. Let R → A be a K-semifree resolution, the A-dg-module LA/K = ΩR/K⊗RA
is called the relative cotangent complex of A over K. By 5.1 the homotopy class of LA/K is
independent from the choice of the resolution. For every A-dg-module M the vector spaces

T i(A/K,M) = Hi(Hom∗A(LA/K ,M)) = ExtiA(LA/K ,M),

Ti(A/K,M) = Hi(LA/K ⊗M)) = TorAi (LA/K ,M),

are called respectively the cotangent and tangent cohomolgy of the morphism K → A with
coefficient on M .

Lemma 5.3. Let p : R → S be a surjective quasiisomorphism of semifree dg-algebras: con-
sider on S the structure of R-dg-module induced by p. Then:

1. p∗ : Der∗(R,R) → Der∗(R,S), f → pf , is a surjective quasiisomorphism.

2. p∗ : Der∗(S, S) → Der∗(R,S), f → fp, is an injective quasiisomorphism.

Proof. A derivation on a semifree dg-algebra is uniquely determined by the values at its
generators, in particular p∗ is surjective and p∗ is injective. Since ΩR is semifree, by 3.5
the morphism p∗ : Hom∗R(ΩR, R) → Hom∗R(ΩR, S) is a quasiisomorphism. By base change
Der∗(R,S) = Hom∗S(ΩR ⊗R S, S) and, since p : ΩR ⊗R S → ΩS is a homotopy equivalence,
also p∗ is a quasiisomorphism.

Every morphism f : A→ B of dg-algebras induces a morphism of B modules LA⊗AB →
LB unique up to homotopy. In fact if R → A and P → B are semifree resolution, then there
exists a lifting of f , R → P , unique up to homotopy constant on B. The morphism ΩR → ΩP

induce a morphism ΩR ⊗R B = LA ⊗A B → ΩP ⊗P B = LB . If B is a localization of A we
have the following

Theorem 5.4. Let A be a dg-algebra, S ⊂ Z0(A) a multiplicative part: then the morphism

LA ⊗A S−1A→ LS−1A

is a quasiisomorphism of S−1A modules.
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Proof. (sketch) Denote by f : R → A, g : P → S−1A two semifree resolutions and by

H = {x ∈ Z0(R) | f(x) ∈ S}, K = {x ∈ Z0(P ) | g(x) is invertible }.

The natural morphisms H−1R → S−1A, K−1P → S−1A are both surjective quasiisomor-
phisms. By the lifting property of semifree algebras we have a chain of morphisms

R
α−→P

β−→H−1R
γ−→K−1P

with γ the localization of α. Since βα and γβ are homotopic to the natural inclusions R →
H−1R, P → K−1P , the composition of morphisms

ΩR ⊗R S−1A
α−→ΩP ⊗P S−1A

β−→ΩH−1R ⊗H−1R S−1A = ΩR ⊗R S−1A,

ΩP ⊗P S−1A
β−→ΩH−1R ⊗H−1R S−1A

γ−→ΩK−1P ⊗K−1P S−1A = ΩP ⊗P S−1A

are homotopic to the identity and hence quasiisomorphisms.

Example 5.5. Hypersurface singularities.
Let X = V (f) ⊂ A

n, f ∈K [x1, . . . , xn], be an affine hypersurface and denote by A = K [X] =
K [x1, . . . , xn]/(f) its structure ring. A DG-resolvent of A is given by R = K [x1, . . . , xn, y],
where y has degree −1 and the differential is given by s(y) = f . The R-module ΩR is
semifreely generated by dx1, . . . , dxn, dy, with the differential

s(dy) = d(s(y)) = df =
∑

i

∂f

∂xi
dxi.

The cotangent complex LA is therefore

0−→Ady
s−→

n⊕
i=1

Adxi−→0.

In particular T i(A/K , A) = Exti(LA, A) = 0 for every i �= 0, 1. The cokernel of s is isomorphic
to ΩA and then T 0(A/K , A) = Ext0(LA, A) = DerK (A,A). If f is reduced then s is injective,
LA is quasiisomorphic to ΩA and then T 1(A/K , A) = Ext1(ΩA, A).

Exercise 5.6. In the set-up of Example 5, prove that the A-module T 1(A/K , A) is finitely
generated and supported in the singular locus of X. �

6 The controlling differential graded Lie algebra

Let p : R → S be a surjective quasiisomorphism of semifree algebras and let I = ker p. By the
lifting property of S there exists a morphism of dg-algebras e : S → R such that pe = IdS .
Define

Lp = {f ∈ Der∗(R,R) | f(I) ⊂ I}.

It is immediate to verify that Lp is a dg-Lie subalgebra of Der∗(R,R). We may define a map

θp : Lp → Der∗(S, S), θp(f) = p ◦ f ◦ e.

Since pf(I) = 0 for every f ∈ Lp, the definition of θp is independent from the choice of e.

Lemma 6.1. θp is a morphism of DGLA.
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Proof. For every f, g ∈ Lp, s ∈ S, we have:

d(θpf)(s) = dpfe(s) − (−1)fpfe(ds) = pdfe(s) − (−1)fpfd(e(s)) = θp(df)(s).

Since pfep = pf and pgep = pg

[θpf, θpg] = pfepge− (−1)f gpgepfe = p(fg − (−1)f ggf)e = θp([f, g]).

Theorem 6.2. The following is a cartesian diagram of quasiisomorphisms of DGLA

Lp
� � ıp ��

θp

��

Der∗(R,R)

p∗

��
Der∗(S, S)

p∗
�� Der∗(R,S)

,

where ıp is the inclusion.

We recall that cartesian means that it is commutative and that Lp is isomorphic to the
fibred product of p∗ and p∗.

Proof. Since pfep = pf for every f ∈ Lp we have p∗θp(f) = pfep = pf = p∗f and the
diagram is commutative. Let

K = {(f, g) ∈ Der∗(R,R) × Der∗(S, S) | pf = gp}

be the fibred product; the map Lp → K, f → (f, θp(f)), is clearly injective. Conversely
take (f, g) ∈ K and x ∈ I, since pf(x) = gp(x) = 0 we have f(I) ⊂ I, f ∈ Lp. Since p is
surjective g is uniquely determined by f and then g = θp(f). This proves that the diagram
is cartesian. By 5.3 p∗ (resp.: p∗) is a surjective (resp.: injective) quasiisomorphism, by a
standard argument in homological algebra also θp (resp.: ıp) is a surjective (resp.: injective)
quasiisomorphism.

Corollary 6.3. Let P → A, Q→ A be semifree resolutions of a dg-algebra. Then Der∗(P, P )
and Der∗(Q,Q) are quasiisomorphic DGLA.

Proof. There exists a third semifree resolution R → A and surjective quasiisomorphisms
p : R → P , q : R → Q. Then there exists a sequence of quasiisomorphisms of DGLA

Lp

θp

������������
ıp

������������ Lq

ıq

������������
θq

����������

Der∗(P, P ) Der∗(R,R) Der∗(Q,Q).

Remark 6.4. If R → A is a semifree resolution then

Hi(Der∗(R,R)) = Hi(HomR(ΩR, R)) = Hi(HomR(ΩR, A)) =

= Hi(HomA(ΩR ⊗R A,A)) = Exti(LA, A).
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Unfortunately, contrarily to what happens to the cotangent complex, the application
R → Der∗(R,R) is quite far from being a functor: it only earns some functorial properties
when composed with a suitable functor DGLA → D.

Let D be a category and F : DGLA → D be a functor which sends quasiisomor-
phisms into isomorphisms of D1. By 6.3, if P → A, Q → A are semifree resolutions then
F(Der∗(P, P )) � F(Der∗(Q,Q)); now we prove that the recipe of the proof of 6.3 gives a
NATURAL isomorphism independent from the choice of P, p, q. For notational simplicity de-
note F(P ) = F(Der∗(P, P )) and for every surjective quasiisomorphism p : R → P of semifree
dg-algebras, F(p) = F(θp)F(ıp)−1 : F(R) → F(P ).

Lemma 6.5. Let p : R → P , q : P → Q be surjective quasiisomorphisms of semifree dg-
algebras, then F(qp) = F(q)F(p).

Proof. Let I = ker p, J = ker q, H = ker qp = p−1(J), e : P → R, s : Q → P sections.
Note that e(J) ⊂ H. Let L = Lq ×Der∗(P,P ) Lp, if (f, g) ∈ L and x ∈ H then pg(x) =
pg(ep(x)) = f(x) ∈ J and then g(x) ∈ H, g ∈ Lqp; denoting α : L → Lqp, α(f, g) = g, we
have a commutative diagram of quasiisomorphisms of DGLA

Lqp

ıqp

��																																					

θqp

��











































L

α

������������� β ��

γ

��

Lp

θp

��

ıp
�� Der∗(R,R)

Lq ıq
��

θq

��

Der∗(P, P )

Der∗(Q,Q)

and then

F(qp) = F(θqp)F(ıqp)−1 = F(θq)F(γ)F(α)−1F(α)F(β)−1F(ıp)−1 =

= F(θq)F(ıq)−1F(θp)F(ıp)−1 = F(q)F(p).

Let P be a semifree dg-algebra Q = P [{xi, dxi}] = P ⊗K K [{xi, dxi}], i : P → Q the
natural inclusion and π : Q → P the projection π(xi) = π(dxi) = 0: note that i, π are
quasiisomorphisms. Since P,Q are semifree we can define a morphism of DGLA

i : Der∗(P, P ) −→ Der∗(Q,Q),
(if)(xi) = (if)(dxi) = 0,
(if)(p) = i(f(p)), p ∈ P.

Since π∗i = π∗ : Der∗(P, P ) → Der∗(Q,P ), according to 5.3 i is an injective quasiisomor-
phism.

Lemma 6.6. Let P,Q as above, let q : Q → R a surjective quasiisomorphism of semifree
algebras. If p = qi : P → R is surjective then F(p) = F(q)F(i).

1The examples that we have in mind are the associated deformation functor and the homotopy class of
the corresponding L∞-algebra
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Proof. Let L = Der∗(P, P ) ×Der∗(Q,Q) Lq be the fibred product of i and ıq; if (f, g) ∈ L
then g = if and for every x ∈ ker p, i(f(x)) = g(i(x)) ∈ ker q ∩ i(P ) = i(ker p). Denoting
α : L→ Lp, α(f, g) = f , we have a commutative diagram of quasiisomorphisms

Der∗(P, P ) i �� Der∗(Q,Q)

Lp

ıp
������������

θp ������������������������ L
α��

���������������

�� �� Lq

ıq
������������

θq������������������������

Der∗(R,R)

and then F(q)F(i) = F(θq)F(ıq)−1F(i) = F(θp)F(ıp)−1.

Lemma 6.7. Let p0, p1 : P → R be surjective quasiisomorphisms of semifree algebras. If p0

is homotopic to p1 then F(p0) = F(p1).

Proof. We prove first the case P = R[t, dt] and pi = ei, i = 0, 1, the evaluation maps. Denote
by

L = {f ∈ Der∗(P, P ) | f(R) ⊂ R, f(t) = f(dt) = 0}.

Then L ⊂ Leα
for every α = 0, 1, θeα

: L→ Der∗(P, P ) is an isomorphism not depending from
α and L ⊂ Leα

⊂ Der∗(R,R) are quasiisomorphic DGLA. This proves that F(e0) = F(e1).
In the general case we can find commutative diagrams, α = 0, 1,

P [{xj , dxj}]
q ��

qα

��������������
R[t, dt]

eα

��
P

i

��

pα

�� R

with q surjective quasiisomorphism. We then have F(p0) = F(q0)F(i)−1 = F(e0)F(q)F(i)−1 =
F(e1)F(q)F(i)−1 = F(q1)F(i)−1 = F(p1).

We are now able to prove the following

Theorem 6.8. Let

R
p ��

q

��

P

��
Q �� A

be a commutative diagram of surjective quasiisomorphisms of dg-algebras with P,Q,R semifree.
Then Ψ = F(p)F(q)−1 : F(Q) → F(P ) does not depend from R, p, q.

Proof. Consider two diagrams as above

R0
p0 ��

q0

��

P

��
Q �� A,

R1
p1 ��

q1

��

P

��
Q �� A.
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There exists a commutative diagram of surjective quasiisomorphisms of semifree algebras

T
t1 ��

t0

��

R1

q1

��
R0 q0

�� Q.

By Lemma 6.5 F(q0)F(t0) = F(q1)F(t1). According to 4.5 the morphisms p0t0, p1t1 : T →
P are homotopic and then F(p0)F(t0) = F(p1)F(t1). This implies that F(p0)F(q0)−1 =
F(p1)F(q1)−1.
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Rational homotopy and deformation theory

Michele Grassi

Introduction

In these notes we provide a brief introduction to some of the results contained in the papers
[7] and [9]. In the firts of these two papers it is shown that for any differential graded algebra
(DGA in what follows) with finite dimensional cohomology one can find an element in its
rational homotopy class via a deformation of a bigraded model of its cohomology algebra.
It is also explained what happens when two such deformations belong to the same rational
homotopy class. In the second paper this result is recast in the language of differential graded
Lie algebras and differential graded coalgebras (respectively DGLA and DGcoA in what
follows), in order to obtain a deformation theoretic statement. The outcome is that the
set of rational homotopy classes of DGA’s with cohomology algebra isomorphic to H can
be described as V/Aut(H), where V is the set of solutions to the Maurer-Cartan equation
modulo gauge equivalence in an explicitely described DGLA. To prove this result the authors
of [9] find it useful (and “philosophically” appealing) to pass tho the language of DGcoA’s.
In this notes, to provide a treatement as elementary as possible, we first state and prove
(following the ideas and methods of [9]) the result in terms of DGLA’s, and only afterwards
we restate it in the language of coalgebras. With this language the main result says that
the set of augmented rational homotopy classes of DGA’s with a fixed cohomology algebra is
described by the path components of an explicitely described DGcoA.

These notes are not intended as a replacement for the original papers (which are respec-
tively 46 and 45 pages long, and contain much more material than we were able to cover).
We have tried instead to go directly to the most central results, unfortunately omitting many
interesting results and, more importantly, all the examples and applications. One possible
use for our work is as a preliminary reading. One can then go on and read the original papers
with a direct knowledge of the main difficulties that lie ahead, and of their solutions. A more
exhaustive treatement of these (and other related) topics can be found in [5].

1 Background of rational homotopy theory

In this section we state without proof some results from rational homotopy theory, to put
the papers [7] and [9] into perspective. This section can be omitted without affecting in any
way the completeness of the following treatement. We refer to [10], [2], to [1] and to [5] for
more details, notations and terminology.

Definition 1.1. Two simply connected CW complexes X,Y have the same rational homo-
topy type if there exist a sequence of simply connected CW complexes Z0, ..., Zn and mor-
phisms f1, ..., fn such that:

1. Z0 = X and Zn = Y .

2. Either fi : Zi−1 → Zi or fi : Zi → Zi−1.

3. All the fi induce isomorphisms in rational cohomology.
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Definition 1.2. Two DGA’s (A, dA) and (B, dB) have the same rational homotopy type if
there exist a sequence of DGA’s (C0, d0), . . . , (Cn, dn) and morphisms φ1, ..., φn such that:

1. (C0, d0) = (A, dA), (Cn, dn) = (B, dB).

2. Either φi : (Ci−1, di−1) → (Ci, di) or φi : (Ci, di) → (Ci−1, di−1).

3. All the φi are DGA morphisms which induce isomorphisms in cohomology.

There is a functorial way to associate an isomorphism class of DGA’s to a simply connected
CW complex, in order to relate the two notions above of rational homotopy equivalence. The
first method was described by Quillen (see [8]), but in a rather indirect way. Afterwards
Sullivan described a more direct construction (see [10]). The following method (which we
took from [1]) is less “computable” than Sullivan’s one, but it has the advantage of being
very direct, and of providing an explicit DGA and not, as in the case of Quillen’s and
Sullivan’s methods, an isomorphism class of DGA’s. It has also the advantage of being defined
and making sense for all topological spaces (actually all simplicial sets) and not just simply
connected CW complexes. Of course, also this construction is (at least by now) very standard,
and in any case all three determine the same rational homotopy class of DGA’s for a given
simply connected CW complex.

Definition 1.3. The category of finite ordinals ∆ is defined by:

Ob(∆) = {[n]|n ∈ N}
Hom∆([n], [m]) = {θ : {0, . . . , n} → {0, . . . ,m}|θ is an order preserving map}

Definition 1.4. A simplicial object (resp. cosimplicial object) in the category C is a con-
travariant (resp. covariant) functor from the category ∆ of finite ordinals to the category C
(See [2]). A morphism of simplicial (or cosimplicial) objects is a natural transformation.

Definition 1.5. 1. The standard simplices

∆n = {x ∈ Rn+1|∀i 0 ≤ xi ≤ 1,
∑

i

xi = 1}

give rise to a covariant functor

∆− : ∆ −→ 


(i.e. a cosimplicial topological space) defined as ∆−([n]) = ∆n, ∆−(θ) = ∆θ, with
∆θ(x)i =

∑
θ(j)=i xj.

2. The simplicial differential graded algebra ∇ =
⊕

p,q ∇([p])q is defined by (see [1], page
1) :

(a)

∇([p]) = S(t0, ..., tp, dt0, ..., dtp)/(t0 + · · · + tp − 1, dt0 + · · · + dtp)

with d(ti) = dti for all i. We also indicate ti ∈ ∇([p]) with ti(p), and dtj ∈ ∇([p])
with dtj(p).

(b) If θ : [m] → [n], then ∇(θ) : ∇([n]) → ∇([m]) is induced by the linear map
ti(n) →

∑
θ(j)=i tj(m), dti(n) →

∑
θ(j)=i dtj(m).

If we think of ∆θ as a smooth map, and of ∇([n]) as a set of smooth differential forms,
then ∇(θ) = (∆θ)∗.
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Definition 1.6. Let X be a topological space.

1. Sing(X) is a simplicial set, defined as

Sing(X) = Hom�( − , X) ◦ ∆−

2. (See [1], page 7) APL(X) is a DGA, defined as

APL(X) = HomSimpSet(Sing(X),∇)

Remark 1.7.

1. Sing(X)([n]) = Hom�(∆n, X) is the set of continuous maps from the standard n-
symplex into X. If θ : [m] → [n], then Sing(X)(θ) is the map induced by the continuous
map ∆θ : ∆m → ∆n.

2. APL(X) is the set of “polynomial differential forms on the simplices in X”, with wedge
multiplication and “deRham” differential.

Theorem 1.8. Let X be a simply connected CW complex.

1. There is a natural morphism (induced by integration) of graded complexes

APL(X) −→ C∗
Sing(X,Q)

inducing a graded algebra isomorphism in cohomology .

2. If X is a smooth manifold, APL(X)⊗R has the same (real) homotopy type as Ω∗
DR(X).

3. If X = Σ is a simplicial complex, and SΣ is the naturally associated simplicial set, then
there is a natural inclusion of simplicial sets SΣ ⊂ Sing(S), and the induced restriction
map APL(Σ) → A∗(Σ) to the “picewise linear forms” on Σ is a DGA map inducing an
isomorphism in cohomology.

References for the Proof. 1. This is the PL deRham Theorem, see [1].

2. This follows from the PL and the smooth de Rham theorems.

3. See [6] and [1].

Theorem 1.9. Let X,Y be two simply connected CW complexes Then the following two
facts are equivalent:

1. X has the same rational homotopy type as Y .

2. APL(X) has the same rational homotopy type as APL(Y ).

Moreover, any simply connected DGA is in the rational homotopy class of some APL(X), for
a simply connected CW complex X.

Sketch of Proof. It is clear that a morphism of topological spaces X1 → X2 induces a (sim-
plicial) morphism between the associated singular sets Sing(X1) → Sing(X2), and therefore a
DGA morphism f∗ : APL(X2) → APL(X1). If moreover f induces an isomorphism in rational
cohomology, from the PL deRham theorem and the naturality of integration if follows that
f∗ induces an isomorphism in cohomology. This proves that 1 implies 2.

Assume conversely 2. Then from point 3 of the previous theorem and the theory developed
in [1] and [10] the minimal models of X and Y are isomorphic. However, the spatial realization
of the minimal model has the same rational homotopy type of the space (see [10]), and
therefore 1 follows.
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The previous theorem provides a strong motivation for the study of the set of rational
homotopy classes of DG algebras with a given cohomology algebra, at least in the simply
connected case. Indeed, such a set will then describe all simply connected CW complexes
with given singular cohomology algebra, up to rational homotopy equivalence.

2 DGA’s as deformations of the model of their cohomol-
ogy

In the previous section we have seen that to study the rational homotopy classes of simply
connected CW complexes it is enough to study the rational homotopy classes of (simply
connected) DGA’s. Here we describe how Halperin and Stasheff in [7] provide a method for
obtaining all rational homotopy classes of DGA’s with a given cohomology algebra. Very
briefly, the idea is that one first constructs a minimal model of the cohomology algebra, with
an extra gradation (the bigraded model). All the rational homotopy classes are then obtained
modifying the differential of this minimal model (in a prescribed way, determined by the
second gradation). The models that one obtains by this method are called filtered models,
and are no longer bigraded or minimal. With this procedure one does not obtain a completely
satisfactory description, because to different deformations can correspond the same rational
homotopy class. This problem is solved in the paper [9], which will be the topic of the next
section.

As mentioned above, the starting point of the considerations of [7] is the construction of
the Tate-Jozefiak (or bigraded) model of a graded algebra (thought of as a DGA whith zero
differential). In this section, whenever we are dealing with a DGA C with a lower gradation
C =

⊕
i Ci, we will use the notation C(n) to indicate the DG subalgebra of C generated by

the elements in C of degree smaller or equal to n.

Theorem 2.1 (Bigraded model, [7], pages 242-244). Let H = H∗ be a graded commu-
tative connected algebra over the field k. Think of H as a DGA with zero differential. There
exist then a bigraded vector space Z = Z∗

∗ together with a differential d on the free (graded
commutative) algebra S(Z) of lower degree −1 and upper degree +1, and a morphism of
DGA’s

ρ : (S(Z), d) −→ (H, 0)

such that:

1. ρ(S(Z)+) = 0;

2. ρ∗ : H0(S(Z), d) → H is an isomorphism of graded algebras;

3. H+(S(Z), d) = 0;

4. (S(Z), d) is minimal (forgetting the lower gradation).

Moreover, any other bigraded differential commutative algebra (C, δ) with a differential δ of
lower degree −1 and upper degree +1, and a morphism of DGA’s σ : (C, δ) → (H, 0) satisfying
properties 1−4 must be isomorphic with (S(Z), d) with an isomorphism which commutes with
ρ.

Proof. In this proof we follow the ideas outlined in [7], with a few formal simplifications here
and there. We first construct Z, d, ρ and afterwards we prove their properties. We will use
the notation Z(n) =

⊕
k≤n Zk. Set

Z0 = H+/H+ ·H+,
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set d = 0 on S(Z0), and define ρ : Z0 → H+ ⊂ H so that it provides a (homogeneous)
left inverse to the projection H+ → H+/H+ ·H+. We extend ρ to all of S(Z0) in the only
possible way. We then have that the ρ thus built is a surjective DGA morphism from S(Z0)
to H. Let K = ker(ρ). Then by connectedness K0 = 0, and K1 = 0 because H+ ·H+ ⊂ H≥2.
Set

Z1 =
(
K/K · S+(Z0)

)
[1]

(with the shift affecting the upper gradation only). As K is concentrated in (upper) degrees
greater or equal to 2, Z1 will be concentrated in (upper) degrees greater or equal to 1. Extend
d to Z1 so that it induces a linear homogeneous map Z1[−1] → K splitting the projection.
Extend then d to all of S(Z(1)) in the only possible way so that it is a differential. Extend
ρ so that it is zero on Z1. Assume inductively that we have constructed Z(n) and d, ρ on
S(Z(n)), for n ≥ 1. Define

Zn+1 =
(
Hn(S(Z(n)), d)/Hn(S(Z(n)), d) ·H+

0 (S(Z(n)), d)
)
[1].

Extend d so that it induces a splitting Zn+1[−1] → (S(Z(n)))n ∩ ker(d) of the projection,
and extend ρ to be zero on Zn+1. Both d and ρ are then to be extended to all of S(Z(n+1))
in the only possible way.
Finally, define Z =

⊕
n≥0 Zn, and define ρ and d on S(Z) as the limits of their restrictions

to the various S(Z(n)). It is clear that the construction is well defined. We have now to prove
that it satisfies the three conditions requested. Observe first that

x ∈ (ker(d))1 =⇒ x = u0 +
k∑

i=1

uivi,

with the ui in Z1 and the vj in S+(Z0). From dx = 0 we deduce then that du0 = −
∑k

i=1 duivi.
The right hand side is however in K · S+(Z0), and is therefore zero in K/K · S+(Z0). As d
is constructed to be bijective when seen from Z1 to K/K · S+(Z0), this implies that u0 = 0,
and therefore x ∈ Z1 · S+(Z0). For general n ≥ 2,

x ∈ (ker(d))n =⇒ x = u0 +
k∑

i=1

uivi + w,

with the ui in Zn, the vj in S+(Z0) and w ∈ S(Z(n))+ · S(Z(n))+ ⊂ S(Z(n−1)). From
dx = 0 we deduce then that du0 = −

∑k
i=1 duivi − dw. Therefore du0 represents a class in

Hn−1(S(Z(n−1)), d) ·H0(S(Z(n−1)))+. As d is constructed to be bijective once seen as a map

Zn −→ Hn−1(S(Z(n−1)), d)/Hn−1(S(Z(n−1)), d) ·H0(S(Z(n−1)))+,

this implies that u0 = 0, and hence x ∈ Zn · S+(Z0) + S(Z(n))+ · S(Z(n))+. The above
considerations prove that

∀n ≥ 1 (ker(d))n ⊂ S+(Z) · S+(Z)

Because d(Zn+1) ⊂ (ker(d))n, from the above it follows that (S(Z), d) is minimal.
Take now x ∈ (ker(d))n, with n ≥ 1. We clearly have x ∈ S(Z(n)). From the construction of
Zn+1, we may therefore write

[x] = [
∑

i

d(si)ti], with si ∈ Zn+1, ti ∈ S(Z0).

This follows from the fact that S(Z0)+ is concentrated in positive degrees, and the following
inductive argument: write [x] = [d(s0)] +

∑
i[x

1
i ][z

1
i ], with [x1

i ] ∈ Hn(S(Z(n)), d) and z1
i ∈
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H0(S(Z(n)), d)+ . Proceding inductively, and using the fact that the (upper) degree of all
the [x1

i ] is lower than that of [x], we may assume that x1
i == [

∑
j d(s

i
j)t

i
j ], with si

j ∈ Zn+1

and tij ∈ S(Z0), which proves the thesis. However,
∑

i d(si)ti = d(
∑

i siti), and therefore
Hn(S(Z), d) = 0 for n ≥ 1.
The map H0(S(Z), d) → H is surjective by construction, and because H+ is concentrated
in positive degrees (the argument is the same as the one above showing H+(S(Z), d) = 0).
Moreover, still the same argument shows that any element of the kernel of the map can be
written as

∑
i pid(zi), with pi ∈ S(Z0) and zi ∈ Z1. However,

∑
i pid(zi) = d(

∑
i pizi), and

therefore the map H0(S(Z), d) → H is also injective.
We have therefore proved the properties (i) − (iv) for the DGA (S(Z), d). Assume now that
we have another DGA (C, δ) together with a morphism of DGA’s

σ : (C, δ) → (H, 0)

with C =
⊕

i,j C
i
j satisfying properties (i) − (iv). It is immediate to verify that there is a

map φ : Z0 → C0 such that σφ = ρ, which implies that there is a morphism S(Z0) → C0

commuting with the maps into H. There is therefore an induced map from ker(ρ) to ker(σ),
which can be used to extend φ to Z1 so that φd = δφ on Z1, as ker(σ) ⊂ δ(C1). We have
therefore a morphism of DGA’s φ : (S(Z(1)), d) → (C(1), δ), inducing an isomorphism at the
level of H0 (because H0(C, δ) is mapped isomorphically onto H by σ). Assume inductively
that we have defined the map

(S(Z(n)), d) −→ (C(n), δ),

for n ≥ 1, such that it induces an isomorphism in cohomology at level 0. The elements of
Zn+1 are mapped by d to elements of S(Z(n)) which are mapped by φ to closed elements
in Cn. As σ induces an isomorphism in cohomology, these elements must be exact. This
guarantees that we can find elements φ(z) for all z ∈ Zn+1 such that δφ(z) = φd(z). From
the algebraic freeness of S(Z) we see that we may extend this φ to a morphism of DGA’s
(S(Z(n+1)), d) → (C, δ). This extended φ will still commute with ρ and σ, as they are zero
on the parts of positive lower degree. Continuing this way, we can extend φ to all of S(Z).
By construction, this φ induces an isomorphism in cohomology, and therefore must be an
isomorphism, because the two DGA’s are minimal.

Theorem 2.2. Let (A, dA) be a connected DGA and let

ρ : (S(Z), d) −→ (H, 0)

be a bigraded model for H(A). Then there are a DGA (S(Z), D) and a morphism π :
(S(Z), D) → (A, dA) such that:

• (E1) (D − d) : Zn → Fn−2(S(Z)) for n ≥ 0;

• (E2) cl(π(z)) = ρ(z) for z ∈ S(Z0);

• (E3) π induces an isomorphism in cohomology.

Any such (S(Z), D) is called a filtered model of (A, dA) relative to the bigraded model
(S(Z), d) of its cohomology. Moreover, suppose that π′ : (S(Z), D′) → (A, dA) satisfies the
same properties E1 − E3. Then there is an isomorphism φ : (S(Z), D) → (S(Z), D′) such
that:

• (U1) φ− Id is filtration-decreasing;

• (U2) H(π′φ) = H(π).
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Proof. Fix a linear map

η : H(A) −→ S(Z0) such that ρη = Id.

We define D and π inductively on Z0, Z1, . . . . Set F−1(S(Z)) = {0}. For n = 0, define
D = 0, and π so that dA(π(Z0)) = 0 and cl(π(z)) = ρ(z) for z ∈ Z0. Here cl indicates
the class in H(A). Both D and π are then extended to all of S(Z)(0) in the only possible
way. It is immediate to verify that E1 and E2 hold, and that D2 = 0. Assume defined π
and D on S(Z)(n) with n ≥ 0, so that E1 holds, E2 holds, D2 = 0 and the induced maps
Fn−1(H(S(Z)(n), D)) → H(A, dA) and F0(H(S(Z)(n), D)) → H(A, dA) are injective. Take
z ∈ Zn+1. Then

Dd(z) = ((D − d) + d)(dz) = (D − d)(dz) ∈ Fn−2(S(Z)) ⊂ S(Z)(n−2)

is a D-cocycle (for n = 0, 1 we are just saying Dd(z) = 0). From the inductive hypothesis
there exist

w ∈ S(Z)(n−1), α ∈ H such that Ddz − η(α) = D(w).

Applying π to this equation gives dAπdz−πηα = dAπw, hence 0 = cl(πηα) = α. This implies
that D(dz − w) = 0. Clearly w can be chosen to depend linearly on z, and to be 0 when
Ddz = 0 (e.g. by fixing a basis for Zn+1 adapted to the subspace ker(Dd)). Extend D to
Zn+1 by defining

Dz = dz − w − η(cl(π(dz − w))) for z ∈ Zn+1

As by construction cl(π(Dz)) = 0, we define π on Zn+1 so that dAπz = πDz (in a linear
manner). We then extend π and D to all of S(Z)(n+1) in the only possible way. For z ∈ Zn+1

we have that

D2(z) = D(dz − w − η(cl(π(dz − w)))) = D(dz − w) − d(η(cl(π(dz − w))))

and therefore D2 = 0 on all of S(Z)(n+1). Notice that by construction D = d on S(Z)(1),
and therefore we have that the induced map π∗ : H0(S(Z)(n+1), D) → H(A, dA) is an
isomorphism. To complete the proof that the induced map in cohomology is an isomorphism
in lower degree ≤ n it is enough to prove that any cocycle in u ∈ Fn(S(Z)(n+1)) with
cl(πu) = 0 is a coboundary with respect to the D just defined (in the case n ≥ 1). Take
therefore such an u, with Du = 0. Write

u =
n∑

j=0

uj , with uj ∈ (S(Z)(n+1))j

Because (d − D)(Zn) ⊂ Fn−2(S(Z)(n+1)), we have that dun = 0. Hence there is vn+1 such
that un = dvn+1. We have therefore that

u−Dvn ∈ Fn−1(S(Z)(n+1)) = Fn−1(S(Z)(n))

satisfies cl(π(u − Dvn)) = cl(πu) = 0 and hence, by the induction hypothesis, there exists
v ∈ S(Z)(n) such that u −Dvn = Dv. We skip the proof of the uniqueness part, which the
reader can find in [7].

3 Deformations and DGLA’s

As we mentioned at the beginning of the previous section, the bigraded/filtered model con-
struciton is not completely satisfactory, as to different filtered models can (and indeed do)
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correspond the same rational homotopy type. In this section we will show how one can de-
scribe the lack of injectivity of the map from filtered models to rational homotopy types
using the language of differential graded Lie algebras and the Maurer-Cartan equation. In a
nutshell, what Shlessinger and Stasheff show in [9] is that the “acceptable” deformations of
the bigraded model are solutions of the Maurer-Cartan equation in a suitably chosen DGLA,
and moreover that two such solutions describe the same rational homotopy type if and only
if they are in the same orbit of the so-called Gauge group of the same DGLA. For the ter-
minology and the notation concerning DGLA’s, the Maurer-Cartan equation and the Gauge
group the reader can consult [5] (or any one of the many sources present in the literature).
The following theorem is obtained combining and adapting results from [9], in the spirit of
Theorem 4.1 on page 11 of that paper. Give a DGLA L we indicate with MC(L) the set of
elements p of L1 (or of L−1 if L is negatively graded) satisfying the Maurer-Cartan equation
dL(p) + 1

2 [p, p] = 0.

Theorem 3.1. Let (A, dA) be a DGA, and let (S(Z), d) be a bigraded model of H = H(A),
with bigraded quasi-isomorphism ρ : (S(Z), d) → H(A). Let L be the DGLA of derivations
of (S(Z), d) which decrease the sum of upper degree and lower degree (“weight”), graded with
respect to the shift that they induce in the upper degree. Then L is complete with respect to
the filtration · · · [L0, [L0, L]] ⊂ [L0, L] ⊂ L. Moreover, there is a canonical bijection from the
first of the following two sets to the second one:

1. DefL = MC(L)/ ∼, where “∼” is exp(L0)-equivalence.

2. {(B, dB , σ)|σ : H(B) → H(A) is a GA isomorphism} / ∼, where we have (B1, dB1 , σ1) ∼
(B2, dB2 , σ2) if they have the same augmented rational homotopy type.

The bijection is induced by the map

p ∈ MC(L) −→ (S(Z), d+ p, σp),

where σp is the unique GA isomorphism from H(S(Z), d+ p) to H such that σp([z]) = ρ([z])
for all z ∈ Z0.

Proof. The map at the level of MC(L) is well defined because if p satisfies the Maurer-Cartan
equation

dLp+
1
2
[p, p] = 0 =⇒ (d+ p)2 = 0,

and therefore d+p is a differential on S(Z). To see that σp exists, first observe that there are
natural GA morphisms S(Z0) → H and S(Z0) → H(S(Z), d+ p), induced respectively by ρ
and by the identity map followed by the quotient by the image of d + p. The kernel of the
first map is d(S(Z)1), as ρ induces an isomorphism in cohomology at the level of H0. The
kernel of the secon map is D(S(Z))∩S(Z0) = d(S(Z)1) because H+(S(Z), d) = 0. Therefore
the two maps have the same kernel. Moreover, they are both easily seen to be surjective,
therefore there are induced GA isomorphisms S(Z0)/d(S(Z)1) → H and S(Z0)/d(S(Z)1) →
H(S(Z), d + p). The induced isomorphism H(S(Z), d + p) → H is what we call σp, and it
clearly satisfies the condition σp([z]) = ρ([z]) for all z ∈ Z0. The argument above shows also
that the previous condition characterizes uniquely σp. Assume that p1 and p2 are exp(L0)-
equivalent. Then by definition

p2 = φ(p1), φ = exp(x), x ∈ L0

It then follows that if we let φ act on S(Z) in the natural way (induced by the action
of UL0), φ becomes a DGA isomorphism of (S(Z), d + p1) onto (S(Z), d + p2). Moreover,
σp2H(φ) = σp1 , because φ is the identity on Z0. This proves that

φ : (S(Z), d+ p1, σp1) −→ (S(Z), d+ p2, σp2)
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is an equivalence, and there is therefore a well defined natural map from the set DefL to the
set described in 2). We have to prove that this map is a bijection. The fact that the map is
surjective follows from the existence part of theorem 2.2. Indeed, let (B, dB) be a DGA with
σ : H(B) → H(A) a GA isomorphism. We then have that

σ−1ρ : (S(Z), d) −→ H(B)

is a filtered model. From the existence part of theorem 2.2 there exist then a derivation
p ∈ MC(L) and a DGA morphism

π : (S(Z), d+ p) −→ (B, dB)

such that cl(πz) = σ−1ρz for z ∈ S(Z)(0), and H(π) is an isomorphism. We then have that
σH(π) = σp, and therefore π determines an identification of augmented homotopy types
between (S(Z), d + p, σp) and (B, dB , σ). For the uniqueness part, assume that there exists
a morphism

π : (S(Z), d+ p1, σp1) −→ (S(Z), d+ p2, σp2)

inducing an isomorphism in cohomology. Then if you call (B, dB) = (S(Z), d+ p2), we have
that

σ−1
p2
ρ : (S(Z), d) −→ H(B, dB)

is a bigraded model. Moreover, from the construction of σp2 it follows that σ−1
p2
ρ([z]) = [z]

for z ∈ Z0, and from the definition of σp1 and the properties of π it follows that

H(π)([z]) = σ−1
p2
σp1([z]) = σ−1

p2
ρ([z])

for all z ∈ Z0. From this we have that both

Id : (S(Z), d+ p2) −→ (S(Z), d+ p2)

and

π : (S(Z), d+ p1) −→ (S(Z), d+ p2)

are filtered models of (B, dB) relative to the bigraded model σ−1
p2
ρ : (S(Z), d) → H(B, dB),

and they satisfy the hypotheses of the uniqueness part of theorem 2.2. It follows that there
exists

φ : (S(Z), d+ p1) −→ (S(Z), d+ p2)

inducing an isomorphism in cohomology and such that φ − Id lowers filtration degree. It is
clear that φ = Id on S(Z0), and therefore σp2H(φ) = σp1 . This implies that

φ : (S(Z), d+ p1, σp1) −→ (S(Z), d+ p2, σp2)

Take b = log(φ − Id), where log is the standard power series expression, and the series
converges once applied to any element of S(Z) due to the fact that φ − Id lowers (strictly)
filtration degree. Then b ∈ L0, and φ = exp(b), and moreover from the fact that φ is a
DGA morphism it follows that exp(b)p1 = p2 (using the adjoing action of L0 on L, and the
completeness to give a meaning to the infinite sum) as desired.

Corollary 3.2. Let (A, dA) be a DGA, and let (S(Z), d) be a bigraded model of H = H(A),
with bigraded quasi-isomorphism

ρ : (S(Z), d) −→ H(A).

The bijection of the previous theorem is equivariant with respect to the natural action of
Aut(H) on the two sets. It follows that MH = DefL/Aut(H) has a natural bijection to the
set of rational homotopy classes of DGA’s with cohomology isomorphic to H.
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4 “Classifying maps” into coalgebras

We now show, following [9], how to translate the results of the previous section in the lan-
guage of coalgebras and coalgebra maps. Although this step is not necessary to understand
the results of the previous section, it provides a slightly different viewpoint. Moreover, the
language of coalgebras is used in many recent papers on rational homotopy and deformation
theory, and it may therefore be useful to see it in action on a classical and well understood
problem. As in the previous section, we used the standard notation and terminology, which
is described in the original paper and also in [5].

Definition 4.1. Let L be a DGLA. With the symbol C(L) we describe the free cocommutative
differential graded coalgebra over L[1], endowed with the coalgebra differential cogenerated as
a coderivation by dL and [· , ·]L. If L if filtered, with Ĉ(L) we describe the completion of C(L)
with respect to the naturally induced filtration.

The idea here is that the set of solutions of the Maurer-Cartan equation in a DGLA L
is in a natural way the set of “points” of the geometric object associated to the coalgebra
C(L). In the spirit of algebraic geometry, a point is an embedding of the geometric point.
i.e. In this case this corresponds to a (nonzero) coalgebra map from the base field k seen
as a coagebra to C(L), as coagebras are covariant objects (not contravariant, as algebras).
This construction is valid independently of the current context, and applies to any DGLA
in which one considers the Maurer-Cartan equation. For technical reasons which we will not
discuss here, it will be necessary to use a completion Ĉ(L) of the coalgebra C(L), instead of
C(L) itself.

Definition 4.2. Let L be a DG Lie algebra, and let C = C(L) be the associated DG coalgebra.
Let x ∈ L1 be an element satistying dx+ 1

2 [x, x] = 0. Let Ĉ be the completion of C with respect
to the tensor degree filtration, and let

χ(x) : k −→ Ĉ

the DG coalgebra map determined by the linear homogeneous map

k � q1k −→ q1k[1] ⊗ x ∈ L[1]

The map χ(x) is the classifying map associated to the element x.

The following proposition and theorem are proved in [9], page 21.

Proposition 4.3. In the hypotheses of the previous definition, and identifying for simplicity
in the notation x with 1k[1] ⊗ x ∈ L[1],

χ(x)(1k) = 1 + x+ x⊗ x+ x⊗ x⊗ x+ · · ·

There is also a converse to the previous results, which says that whenever one has a
filtered coalgebra map k → Ĉ(L), then the projection to L1 of the image of 1k is a solution of
the Maurer-Cartan equation in L. To fix the terminology, we note that the geometric object
associated to a DG coalgebra is often called a “formal DG manifold” or “formal Q-manifold”.
Having established that to any deformation of the bigraded model (or equivalently to any
solution to the Maurer-Cartan equation in the DGLA L) correspond bijectively a point of the
geometric object associated to the coalgebra Ĉ(L), we come to the question of a coalgebra-
theoretic description of when two such points correspond to the same rational homotopy
class. For that, we need the notion of homotopy for coalgebras, which is less intuitive than
the corresponding one for algebras.
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Definition 4.4. The differential graded coalgebra I∗ has as (additive) basis {ti, tis|i = 0, 1, ...}
and comultiplication and differential defined as

∆tn =
∑

i+j=n

ti ⊗ tj ,∆(tns) =
∑

i+j=n

(ti ⊗ tjs+ tis⊗ tj), d(tns) = (n+ 1)tn+1.

We denote also t0 = 1. The coalgebra J is the completion of I∗ with respect to the obvious
filtration. J is also called the coalgebra of formal copower series.

Notice that J could also be defined as the dual DG coalgebra to the (algebraically free
graded commutative) algebra S(t, dt), where t has degree 0 and dt has degree one, and the
differential sends t to dt.

Definition 4.5 ([9], Definition 4.5 page 21). Given two complete filtered cocommutative
differential graded coalgebras C,D, two filtration preserving morphisms fi : C → D are
homotopic if there is a filtration preserving morphism h : C⊗̂J → D such that f0(c) = h(c⊗1)
and f1(c) =

∑
i h(c⊗ ti) for all c ∈ C.

Theorem 4.6 ([9], page 21). Let L be a DGLA. If λ : J → Ĉ(L) is a homotopy or path,
and we associate to it the elements η(t) and ζ(t) in L[[t]], defined as

η(t) =
∑

i

πλ(ti)ti, ζ(t) =
∑

i

πλ(tis)ti,

where π is the projection Ĉ(L) → L, we have that these formal power series satisfy the
following system of differential equations:{

dLη + 1
2 [η, η] = 0

η̇ + dLζ + [η, ζ] = 0

Conversely, for any such pair the coalgebra morphism induced by the graded morphismg J →
L associated to them is a differential coalgebra morphism, i.e. a path in Ĉ(L).

In the second part of this section we cover material contained in section 5 of [9]. There,
the authors prove that the notion of gauge equivalence obtained by imposing a differential
equation and the one obtained by using simply the adjoint action of the Gauge group exp(L0)
coincide. The result is proved for ad(L0)-complete DGLA’s, which happens for example when
L0 is a nilpotent Lie algebra.

Theorem 4.7 ([9], pages 23-24). Let L be a DGLA which is complete with respect to the
filtration · · · [L0, [L0, L]] ⊂ [L0, L] ⊂ L. Assume that there is an element µ(t) of L1[[t]]
satisfying

[µ(t), µ(t)] = 0, , µ̇(t) + [µ(t), ζ(t)] = 0

for some ζ(t) =
∑

k zkt
k ∈ L0⊗̂k[[t]]. Then µ(1) is well defined, and there is an element

b ∈ L0 such that µ(1) = exp(b)µ(0)

Proof. We follow the ideas and (almost completely) the method of proof of [9]. For the pur-
pouses of the proof, we first fix some notation. If we use the notation F1(L) = L,Fk+1(L) =
[L0, Fk(L)], for any element

∑
k αkt

k ∈ L[[t]] we define fn(
∑

k αkt
k) = sup{k|αn ∈ Fk}.

Then fn can also assume the value +∞ (exactly when αn = 0, by completeness), and the
condition Limnfn(

∑
k αkt

k) = +∞ is equivalent to
∑

k αkt
k ∈ L⊗̂k[[t]] (where the comple-

tion on L is with respect to the filtration F∗). For n = 1, define θ1 = z0, and ζ1(t) = z0.
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We then have φ1(t) = exp(tz0), and µ1(t) = exp(tz0)µ(0). It can be easily proved that
fk(µ1(t)) ≥ min{k, fk(ζ(t))} and that µ̇1(t) = ad(z0) (µ1(t)). Define

cm = inf {fk(ζ(t))|k ≥ m} , dm = inf {cm, cm−1 + 1, ..., c0 +m}

Notice that {cm} is a non decreasing sequence with Limmcm = +∞, and a rough estimate
gives dm ≥ min{c[ m

3 ], [m
3 ]}, so that Limmdm = +∞ too. For n > 1, asume inductively that

we have θn ∈ L0 and ζn(t) such that:

1. ζn(t) equals ζ(t) in degree strictly smaller than n;

2. If φn(t) = exp(tnθk) · · · exp(tθ1), then µn(t) = φn(t)µ(0) satisfies

µ̇n(t) + [µn(t), ζn(t)] = 0;

3. ∀k ≥ n fk(ζn(t) − ζ(t)) ≥ dn.

Define

ζn+1(t) = exp(θn+1t
n+1)ζn(t) + (n+ 1)θn+1t

n.

We then have immediately that ζn+1(t) coincides with ζ(t) up to degree n included. Moreover,
the differences between ζn+1(t) and ζn(t) (which are in degree greater or equal to n+ 1) are
by construction obtained via (possibly iterated) adjunction of coefficients of ζn(t) with θn+1.
Therefore, as [L0, Fk(L)] ⊂ Fk+1(F ), and θn+1 ∈ Fdn(F ) by construction, we must have that
the above differences lie in Fdn+1(F ). This shows therefore that for k ≥ n+ 1

fk(ζn+1(t) − ζ(t)) = fk((ζn+1(t) − ζn(t)) + (ζn(t) − ζ(t))) ≥
≥ inf{fk(ζn+1(t) − ζn(t)), fk(ζn(t) − ζ(t))} = inf{dn + 1, cn+1} = dn+1

as required by the inductive process. Let

φn+1(t) = exp(θn+1t
n+1)φn(t), µn+1 = φn+1µ0

It remains to be shown that µn+1 satisfies the required “differential equation”. Therefore, we
must compute:

d

dt

(
exp(θn+1t

n+1)φn(t)µ(0)
)

=

=
d

dt

(
exp(θn+1t

n+1)φn(s)µ(0) + exp(θn+1s
n+1)φn(t)µ(0)

)
|s=t =

=
(
−[exp(θn+1t

n+1)φn(s)µ(0), (n+ 1)θn+1t
n]−

exp(θn+1s
n+1)[φn(t)µ(0), ζn(t)]

)
|s=t =

= − [φn+1(t)µ(0), (n+ 1)θn+1t
n] − [φn+1(t)µ(0), exp(θn+1t

n+1)ζn(t)].

The computations above follow if we observe that exp(A)B (using the adjoint action) trans-
lates into exp(A)B(exp(A))−1 once we work in the (completed) universal enveloping algebra
U(L)⊗̂k[[t]]. These details can be safely left to the interest reader, who is advised to compute
first d

dt (A(t)−1) using (only) the fact that

d

dt
(A(t)B(t)) =

d

dt
(A(t))B(t) +A(t)

d

dt
(B(t)).

Now that we have built the φk for all k, it is easy to prove, using the fact that θk ∈ Fdk−1(L),
that there is a well defined element φ = Limkφk which converges for all t ∈ Q, and that
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ν(t) = φ(t)µ(0) satisfies the differential equation ν̇(t) = [ν(t), ζ(t)], with ν(0) = µ(0). It
follows that

(ν̇ − µ̇)(t) = [ν(t) − µ(t), ζ(t)], (ν − µ)(0) = 0

An easy inductive argument shows that all the coefficients of ν(t) − µ(t) must then be zero,
and therefore µ(t) = φ(t)µ(0). We finally observe that there is an element b ∈ L0 such that
φ(1) = exp(b), and this concludes the proof.

Corollary 4.8. Let p1, p2 be elements of L1 such that dLpi + 1
2 [p1, pi] = 0 for i = 1, 2. Then

the following two facts are equivalent:

1. There is a filtered homotopy from χ(p1) : Q → Ĉ(L) to χ(p2) : Q → Ĉ(L).

2. There is an element φ ∈ exp(L0) such that φ(p1) = p2.

Proof. Assume 1. Then from the theorem 4.6 there are η, ζ satisfying the differential equations
described in that theorem. If we define µ(t) = d+ η(t), we have that

[µ(t), µ(t)] = 0, µ̇(t) + [µ(t), ζ(t)] = 0

Then from theorem 4.7 we obtain that there is an element φ ∈ exp(L0) such that φ(p1) = p2.
Conversely, assume 2. Then if we define ζ(t) = b (with exp(b) = φ) and η(t) = exp(tb)(d +
p1) − d, we obtain that η, ζ satisfy the differential equations of theorem 4.6, and therefore
from the second part of that theorem they define a homotopy from χ(p1) to χ(p2).

While the use of the gauge group is the natural thing to do when using the language
of DGLA’s and the Maurer-Cartan equation, the differential equation approach is natural
when using the language of DGcoA’s and classifying maps. With the above result therefore
the authors prove that the DGLA and the DGcoA approaches to deformation theory are
equivalent, at least for ad(L0) − complete Lie algebras. As a final corollary, we restate the
“Main theorem” of [9] (which is our theorem 3.1) in the language of coalgebras, which is the
one preferred by the authors.

Theorem 4.9 (Main Homotopy Theorem,[9] page 22). Let (A, dA) be a DGA, and let
(S(Z), d) be a filtered model of H = H(A), with filtered quasi-isomorphism ρ : (S(Z), d) →
H(A). Let L be the DGLA of derivations of (S(Z), d) which decrease the sum of upper de-
gree and filtration degree (“weight”), graded with respect to the shift that they induce in the
upper degree. Then L is complete with respect to the filtration · · · [L0, [L0, L]] ⊂ [L0, L] ⊂ L.
Moreover, there is a canonical bijection from the first of the following two sets to the second
one:

1. {χ : Q → Ĉ(L) : χ morphism of DGcoA′s}/filtered homotopy (i.e. the path compo-
nents of Ĉ(L)).

2. {(B, dB , σ)|σ : H(B) → H(A) is a GA isomorphism} / ≡, where we have (B1, dB1σ1) ≡
(B2, dB2 , σ2) if they have the same augmented rational homotopy type.

The bijection is induced by the map

(χ : Q → Ĉ(L)) −→ (S(Z), d+ πχ(1), σπχ(1)),

where σπχ(1) is the unique GA isomorphism from H(S(Z), d+πχ(1)) to H such that σπχ(1)([z]) =
ρ([z]) for all z ∈ Z0.

66



References

[1] A.K. Bousfield, V.K.A.M. Gugenheim, On PL deRham theory and rational homotopy
type, Mem. Amer. Math. Soc 179 (1976)

[2] R. Fritsch, R.A. Piccinini Cellular structures in topology, Cambr. Stud. in Adv. Math.
19 (1990)

[3] W.M. Goldman, J.J. Millson The deformation theory of representations of fundamental
groups of compact Kähler manifolds, Publ. Math. I.H.E.S. 67 (1988), 43-96

[4] M. Grassi, DG (Co)Algebras, DG Lie Algebras and L∞-Algebras, in Seminari di Geome-
tria Algebrica 1998-1999, Scuola Normale Superiore, Pisa (1999), pages 49-66

[5] M. Grassi, Lectures on rational homotopy theory, preprint (2001)

[6] P.A. Griffiths, J.W. Morgan, Rational Homotopy theory and differential forms,
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An Introduction to the Language of Operads

Domenico Fiorenza

“Solo dopo aver conosciuto la superficie delle cose
ci si può spingere a cercare quel che c’è sotto.

Ma la superficie delle cose è inesauribile.”
— Italo Calvino - Palomar

1 Introduction

The aim of this note is to give an informal introduction to the language of operads, which
has lately become ubiquous in both modern abstract algebra and theoretical physics. The
basic idea is that an operad O is a collection O(n) of “spaces” of n-ary operations, where
by the generic word “space” we mean a set or a vector space or a topological space or a
variety (topological, differential, analytic, algebraic), or, in the maximal generality, an object
in a suitable tensor category. An n-ary operation has n inputs and just one output; this
asymmetry makes the combinatorial definition of operads quite obscure at a first sight. To
remedy such an asymmetry, we consider operations with n inputs and m outputs; this leads
to the definition of MacLane’s PROPs1, which are collections P(n,m) of spaces of operations
with n inputs and m outputs. In this more general context, an operad is simply the n-to-1
part of a PROP.

2 What is a PROP?

By definition, a PROP is simply a tensor category whose Hom-spaces have some additional
structure, i.e. are objects of some other category. Before making the somehow colloquial
definition above completely rigourous, let us make some example to show that objects like
these are extremely common in mathematics:

A, B Hom(A,B)
Finite sets Finite set
K-vector spaces K-vector space
Topological spaces Topological space
Metric spaces Metric space
K-algebras K-vector space
Hilbert spaces Banach space
Differential manifolds Frechét manifold

Now observe that for a generic category, Hom is a functor

Hom : Cop × C → Sets

So we can formalize the concept of Hom-sets with structure by saying that a PROP is a couple
of categories Cob (the category of the objects) and CHom (the category of the morphisms)

1PROP is an acronym for PROducts and Permutations category
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together with a functor

P : (Cob)op × Cob → CHom

To look at P(A,B) as a space of morphisms between the object A and B of Cob, we need
some more axioms, generalizing what happens for Hom-spaces of generic categories.

Composition

The composition map

Hom(B,C) × Hom(A,B) → Hom(A,C)

(f, g) �→ f ◦ g
can be seen as a natural transformation

◦A,B,C : Hom(B,C) × Hom(A,B) → Hom(A,C)

It satisfies the following associativity condition: the diagrams

(Hom(C,D) × Hom(B,C)) × Hom(A,B) Hom(B,D) × Hom(A,B)

Hom(C,D) × (Hom(B,C) × Hom(A,B)) Hom(A,D)

Hom(C,D) × Hom(A,C)

∼
��

Id×◦
��

◦×Id ��

◦

�������������������������

◦
��

commute for every choice of A,B,C,D. A blind generalization would be requiring the exis-
tence of a natural transformation

◦A,B,C : P(B,C) × P(A,B) → P(A,C)

such the all diagrams as the one above would commute. But it would not be the right thing
to do. For instance, if A,B,C are K-vector spaces (one of the basic examples above), the
composition

◦A,B,C : Hom(B,C) × Hom(A,B) → Hom(A,C)

is not linear. So ◦A,B,C is not a morphism of vector spaces between Hom(B,C)×Hom(A,B)
and Hom(A,C). But it is bilinear i.e. it is a morphism of vector spaces

◦A,B,C : Hom(B,C) ⊗ Hom(A,B) → Hom(A,C)

So what we really have to ask is that CHom be a tensor category and that ◦ be a natural
transformation

◦A,B,C : P(B,C) ⊗ P(A,B) → P(A,C)

such that all the diagrams

(P(C,D) ⊗ P(B,C)) ⊗ P(A,B) P(B,D) ⊗ P(A,B)

P(C,D) ⊗ (P(B,C) ⊗ P(A,B)) P(A,D)

P(C,D) ⊗ P(A,C)

a

��

Id⊗◦
��

◦⊗Id ��

◦

����������������������

◦
��
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commute, where a denotes the associativity isomorphism of the tensor category CHom. Note
that we are not requiring CHom to have products.

Identity element

The set Hom(A,A) has a distinguished element IdA that is the neutral element respect to
composition. Generalizing this concept requires a generalization of the concept of element
so that we could speak of “elements” of P(A,A) and of the composition of them. A first
attemp could consist in requiring CHom to be a category of sets, i.e. a category endowed with
a faithful functor

π : CHom → Sets

(“forget the structure” functor), but then, to define the composition of f ∈ π(P(B,C)) with
g ∈ π(P(A,B)) via ◦ we would need a natural map

π(P(B,C)) × π(P(A,B)) → π(P(B,C) ⊗ P(A,B)) .

This works very well in many situations (sets, groups, topological spaces, vector spaces . . . ),
but consider the category TopX of topological spaces over a fixed space X (with fibre product
as tensor product). What are the “elements” of ϕ : Y → X? There is no natural answer and,
though π(ϕ : Y → X) �→ Y as a set is a faithful functor from TopX to Sets, there is no
natural map

Y1 × Y2 → Y1 ×X Y2 .

We must seek for an alternative definition. Note that, if S is a set, giving an element of S
is the same thing as giving a morphism j : ∗ → S, where ∗ denotes the set with only one
element, i.e. the functor “elements” is representable. This happens in all the basic examples
we are trying to generalize. We have, in fact we have:

Category of morphisms Elements
Finite sets Hom(∗,−)
K-vector spaces Hom(K,−)
Topological spaces Hom(∗,−)
Metric spaces Hom(∗,−)
Banach spaces Hom(C,−)
Frechét manifolds Hom(∗,−)

This happens also in other tensor categories we could decide to use as categories of
morphisms. Note that in these cases there is no “natural” category having such categories of
morphisms. Anyway these somehow “artificial” PROPs will be important in what follows.

Category of morphisms Elements
Finite sets Hom(∗,−)
K-algebras Hom(K[x],−)
Hilbert spaces Hom(∗,−)
Differential manifolds Hom(∗,−)
Schemes/K Hom(Spec(K),−)

Denote by E the object representing the functor “elements”. In all the examples above,
E is a co-associative co-algebra in CHom i.e. there is a map ∆ : E → E ⊗ E such that the
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diagram

E

E ⊗ E E ⊗ E

(E ⊗ E) ⊗ E E ⊗ (E ⊗ E)

∆

�������������
∆

�������������

∆⊗IdE

��
IdE⊗∆

��
a ��

commutes (the only non completely trivial co-associative co-algebra structure is the one on
K[x] in the category of K-algebras; it is induced by the natural algebraic group structure on
Spec(K[x]) = A1

K
). Having such an E at our disposal we can define the composition of two

elements f : E → P(B,C) and g : E → P(A,B) via ◦ as the composition

E
∆−→E ⊗ E

f⊗g−→P(B,C) ⊗ P(A,B) ◦−→P(A,C)

We write f ◦ g to denote the composition of f and g.
Finally we can give a meaning to the identity element of P(A,A). It will be a natural

map

jA : E → P(A,A)

which is the neutral element respect to the composition. Due to the co-asociativity of ∆, the
composition defined above is associative.

This means that we can define a new category structure on Cob setting:

Homnew(A,B) := Hom(E,P(A,B))

This new category is called the category “underlying” the PROP P (of course the underlying
category depends on E and ∆, but these are data of the PROP). To ease notations wi will
write f ∈ P(A,B) to say that f is an element of P(A,B).
Another completely natural request is that the elements of P(B,C) acts as left operators on
P(A,B) and that the elements of P(A,B) acts as right operators on P(B,C), i.e. that there
are maps

Hom(E,P(B,C)) → Hom(P(A,B),P(A,C))

and

Hom(E,P(A,B)) → Hom(P(B,C),P(A,C))

To have this, we just need two natural trasformations

ϕl
X : X → E ⊗X

ϕr
X : X → X ⊗ E

inducing an E-co-bi-module structure on X. We further require

φl
E = φr

E = ∆

71



and that for any morphism ζ : X → Y , it results

φl
ζ = IdE ⊗ ζ ; φr

ζ = ζ ⊗ IdE .

The maps ϕl’s allow to assign to each element of P(B,C) a morphism between P(A,B) and
P(A,C); since the objects of CHom are left E-co-modules, this defines an action. The same
considerations are valid for the ϕr’s. A further request we make is that jA acts trivially on
both P(X,A) and P(A,X) for every X. Note that in any tensor category C, one can take
the unit object 1C as E. Unless it is explicitely said, we will always assume E = 1C in the
following sections.

Tensor products

In a generic tensor category C, the tensor product is a bi-functor

⊗ : C × C → C

satisfying some associativity constrain. The functoriality of the tensor product means that
there is a natural transform

⊗A,B,C,D : Hom(A,B) × Hom(C,D) → Hom(A⊗ C,B ⊗D)

Transalting this in the setting of PROPs, in which Hom-spaces have some structure, we are
going to ask for a natural transform

⊗A,B,C,D : P(A,B) ⊗ P(C,D) → P(A⊗ C,B ⊗D) ,

satysfying associativity constrains that generalize those of ordianry tensor products. It is
important to remark that, in order to generalize the diagram

(Hom(A,B) ⊗ Hom(F,A)) ⊗ (Hom(C,D) ⊗ Hom(G,C)) Hom(F,B) ⊗ Hom(G,D)

(Hom(A,B) ⊗ Hom(C,D)) ⊗ (Hom(F,A) ⊗ Hom(G,C)) Hom(F ⊗G,B ⊗D)

Hom(A⊗ C,B ⊗D) ⊗ Hom(F ⊗G,A⊗ C)

��

shuffle

��

(−⊗−)⊗(−⊗−)

��

◦⊗◦ ��

◦

		��������������������������

⊗
��

to

(P(A,B) ⊗ P(F,A)) ⊗ (P(C,D) ⊗ P(G,C)) P(F,B) ⊗ P(G,D)

(P(A,B) ⊗ P(C,D)) ⊗ (P(F,A) ⊗ P(G,C)) P(F ⊗G,B ⊗D)

P(A⊗ C,B ⊗D) ⊗ P(F ⊗G,A⊗ C)

��

shuffle

��

(−⊗−)⊗(−⊗−)

��

◦⊗◦ ��

◦

�����������������������

⊗
��

we must require the category CHom to be symmetric. We are finally ready to give the formal
definition of a PROP.
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A formal definition

A PROP is (Cob, CHom,P, ◦, E,∆, j, ϕ,⊗) where

1. Cob is a tensor category, called the category of objects;

2. CHom is a symmetric tensor category, called the category of morphisms;

3. P : (Cob)op × Cob → CHom is a functor, called the Hom-space functor;

4. ◦A,B,C : P(B,C)⊗P(A,B) → P(A,C) is a natural transform, called the composition
map;

5. (E,∆) is a co-associative co-algebra in CHom;

6. j is a functorial map jA : E → P(A,A), called the identity element ;

7. ⊗A,B,C,D : P(A,B) ⊗ P(C,D) → P(A ⊗ C,B ⊗D) is a natural transform inducing a
tensor category structure on the underlying category of the PROP.

Braided and symmetric operads are defined adding the following axiom

8. σA,B : E → P(A⊗B,B ⊗ A) is a natural map inducing a braided (symmetric) tensor
category structure on the category underlying the operad.

3 PROPs over N and Operads

This section is dedicated to PROPs having the natural numbers as category of objects. They
were actually the first structures to be called “PROPs”. For this reason we will completely
restate the definition given above for such PROPs to find back the definition of operad
one commonly finds in literature (see, for instance [Ad]). Let {N,+} be the discrete tensor
category having the natural numbers ( 0 included) as objects and the sum as tensor product,
and let C be a symmetric tensor category. Then the data for a PROP with N as category of
objects and C as category of morphisms (a C-PROP over N for short) reduce to:

1. A map P : N × N → C;

2. For each m,n, k ∈ N, composition maps

◦mnk : P(n, k) ⊗ P(m,n) → P(m, k)

3. For each m,n, k, l ∈ N, a tensor product

⊗mnkl : P(m,n) ⊗ P(k, l) → P(m + k, n + l)

4. For each n ∈ N a distinguished element (identity) jn ∈ P(n, n);

such that all the natural diagrams commute.

Braided and symmetric PROPs are defined by adding

5. For each m,n ∈ N, a distinguished element σm,n ∈ P(m+n, n+m) inducing a braided
(symmetric) tensor category structure on the category underlying the PROP.

Note that the commutativity of diagrams required above implies

jn = j1 ⊗ · · · ⊗ j1 = j⊗n
1
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and that the braid relation tells that the σm,n are generated by the elementary braidings
σ

(n+m)
i defined by

σ
(n)
i := j1 ⊗ · · · ⊗ j1 ⊗ σ1,1 ⊗ j1 ⊗ · · · ⊗ j1 = j

⊗(i−1)
1 ⊗ σ1, 1 ⊗ j

⊗(n−i−1)
1

Moreover, the σ’s induce natural actions of the braid (symmetric) group Bn (Sn) on the
spaces P(n,m) and P(m,n) for each m.

Operads

An operad is simply the n-to-1 part of a symmetric PROP having N as category of the
objects: assume that P be a symmetric C-PROP, and set

O(n) := P(n, 1), n ≥ 1

Then we have a collection {O(n), n ≥ 1} of objects of C equipped with the following set of
data:

1. An action of the symmetric group Sn on O(n) for each n ≥ 1.

2. Morphisms (called compositions)

γm1,...,ml
: O(l) ⊗O(m1) ⊗O(m2) ⊗ · · · ⊗ O(ml) → O(m1 + m2 + · · · + ml)

defined as the composition

O(l) ⊗O(m1) ⊗ · · · ⊗ O(ml) := P(l, 1) ⊗ P(m1, 1) ⊗ · · · ⊗ P(ml, 1)
IdP(l,1)⊗

⊗
−→

IdP(l,1)⊗
⊗

−→ P(l, 1) ⊗ P(m1 + m2 + · · ·ml, l)
◦−→

◦−→P(m1 + m2 + · · ·ml, 1)

=: O(m1 + m2 + · · ·ml)

3. An element j1 of O(1), called the unit, such that γ1,1,...,1(µ, j1, j1, . . . , j1) = µ for any
l and any µ ∈ O(l).

These data satisfy associativity and equivariance respect to the symmetric groups conditions,
so that the collection {O(n), n ≥ 1} is an operad according to the original definition given
by May in [Ma]. Vice versa, if {O(n), n ≥ 1} is an operad, we can define a PROP by the
following construction. Start setting

P(n, 1) := O(n), n ≥ 1

The spaces P(m,n) have to be constructed in such a way that we have natural maps

⊗ : P(m1, n1) ⊗ P(m2, n2) ⊗ · · · ⊗ P(ml, nl) → P(
∑

i

mi,
∑

i

ni)

In particular, we must have

⊗ : P(m1, 1) ⊗ P(m2, 1) ⊗ · · · ⊗ P(ml, 1) → P(
∑

i

mi, l)
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i.e. for every (m1,m2, . . . ,ml) with
∑

l ml = m, a map

⊗ : P(m1, 1) ⊗ P(m2, 1) ⊗ · · · ⊗ P(ml, 1) → P(m, l)

Then set

P(m, l) :=
⊕

(m1,m2,...,ml)|
∑

i mi=m

P(m1, 1) ⊗ · · · ⊗ P(ml, 1)

=
⊕

(m1,m2,...,ml)|
∑

i mi=m

O(m1) ⊗ · · · ⊗ O(ml)

(we are now assuming that C has direct sums). Then the tensor products

⊗mnkl : P(m,n) ⊗ P(k, l) → P(m + k, n + l)

are defined by the inclusion

{
(m1,m2, . . . ,mn)|

∑
i

mi = m

}
×


(k1, k2, . . . , kl)|

∑
j

kj = k


 ↪→

↪→
{

(s1, s2, . . . , sn+l)|
∑

i

si = m + k

}

((m1,m2, . . . ,mn), (k1, k2, . . . , kl)) �→ (m1,m2, . . . ,mn, k1, k2, . . . , kl)

while the compositions

◦mnk : P(n, k) ⊗ P(m,n) → P(m, k)

are defined component-wise as(
O(n1)⊗ · · · ⊗ O(nk)

)
⊗

(
O(m1) ⊗ · · · ⊗ O(mn)

)
� (O(n1) ⊗O(m1) ⊗ · · · ⊗ O(mn1)) ⊗ · · · ⊗

⊗
(
O(nk) ⊗O(m(n1+···+nk−1)+1) ⊗ · · · ⊗ O(mn)

) γ⊗···⊗γ−→
γ⊗···⊗γ−→ O(m1 + · · · + mn1) ⊗ · · · ⊗ O(m(n1+···+nk−1)+1 + · · · + mn)

We refer to the PROP defined above as to the PROP generated by the operad O, and denote
it by the symbol PO.

A basic example: the endomorphisms PROP and Operad

The basic example of a PROP is the following. Let V be a vector space over some fixed base
field K. It’s endomorphisms PROP is by definition the symmetric K-vector spaces PROP
given by

End(V )(m,n) := Hom(V ⊗m, V ⊗n)

According to the definitions above, the endomorphisms operad of V is the operad of vector
spaces

End(V )(n) := Hom(V ⊗n, V ) .
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4 Representations of PROPs (algebras over operads)

Let P1 and P2 be two operads with the same category of morphisms CHom. Then a morphism

ρ : P1 → P2

is simply a tensor functor

ρob : Cob,1 → Cob,2

together with natural trasformations

ρHom,A,B : P1(A,B) → P2(ρobA, ρobB)

satisfying natural conditions so to generalize the concept of tensor funcor between tensor
categories to this setting of “tensor categories with structure on the Hom-spaces”. For in-
stance, we require that the identity element (and the braiding, if the PROPs P1 and P2

are braided) go to the identity element and to the braiding respectively. Morphisms between
operads are defined as morphisms between the PROPs they generate. Now let us stop with
the abstract nonsense an go on concrete examples. Take as P2 the vector space PROP given
by the category of vector spaces over some fixed base field K, and let P be any PROP of
vector spaces over N. Since N is generated as a tensor category by 1, the image of ρob for a
morphism

ρ : P → VectK

will be generated by the vector space V = ρob(1). So the data of our morphism will be a
family of morphisms

ρm,n : P(m,n) → Hom(V ⊗m, V ⊗n) ,

satisfying some comatibility axioms. Note that these data are equivalent to a morphism

ρ : P → End(V )

Elements of P(m,n) acts as multilinear operators on V . A vector space V together with
a morphism ρ : P → End(V ) is called a P-algebra. If O is an operad of vector spaces, an
O-algebra is ,by definition, a PO-algebra. It can be seen as the datum of a collection of
morphisms

ρn : O(n) → Hom(V ⊗m, V ) ,

i.e. as an operad morphism O → End(V ). Elements of O(n) acts as n-ary products on V .

5 Free Operads

¿From now on, we will work with PROPs and operads of vector spaces, i.e. such that their
category of morphisms is the category of K-vector spaces, for some fixed base field K. As usual,
we will use the same symbol to denote a vector space and its underlying set. The problem
we are going to solve in this section is the following: given a collection of sets X = {X(n)},
is there an operad of vector spaces O such that for any operad of vector spaces Õ and any
family of maps of sets

ρn : X(n) → Õ
there is a unique lifting of ρ to an operad morphism O → Õ? It will come out that this operad
exists (and is clearly unique up to isomorphism); it will be called the free operad generated
by the collection X and will be denoted by the symbol F(X). In particular, we obtain that
for any vector space V , any set X(n) of n-ary multiplications on V defines an F(X)-algebra
structure on V .
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Trees and forests

A Reshetikhin-Turaev’s tree is a directed tree embedded in R × [0, 1] in such a way that all
the imputs lie on R×{0}, its only output lies on R×{1}, and the height function is strictly
increasing on each edge in the direction given by the orientation on the edge. Define the
tensor product of two trees T1 and T2 as the object obtained drawing T2 on the right of T1.
Such an object is not a tree anymore (is not connected). Since it’s a disjoint union of trees
it is called a “forest”. Extending the tensor product from trees to forests we get a tensor
category, called the category of forests (the unit object being the void forest). We denote it
by the symbol F . Let F(m,n) be the set of all forests with m inputs and n outputs. Defining
the composition of a forest F1 in F(n, k) with a forest F2 in F(m,n) as the forest F1 ◦ F2 in
F(m, k) obtained putting F1 over F2 one gets a PROP of sets having N as category of the
objects; such a PROP is called the Reshetikhin-Turaev’s forest PROP. The identity element
is represented by the stright line in F(1, 1). It is a symmetric PROP, the braiding given by
two crossing lines in F(2, 2), with an identification of undercrossings and overcrossings. Call
vertex of type (n, 1) a tree with only one n + 1 valent vertex and containing no braiding.
Any forest can be built by composing and taking tensor products of vertices of type (n, 1)
with n ∈ N, the identity element and the braiding. A fundamental result by Reshetikhin and
Turaev (see [RT]) is that F is freely generated as a symmetric PROP by these elementary
pieces. Being F a PROP of sets, we can immediately get from it a PROP of vector spaces,
simply taking the free vector spaces generated by the F(m,n) on some fixed base field K.
When it causes no confusion we will denote the PROP of vector spaces obtained in this way
by the same symbol F .

Coloured forests

Now consider the elements of the set X(n) as a set of colours for the n + 1-valent vertices
of the trees in the forests; this way we obtain a new PROP, called the PROP of X-coloured
forests and denoted by F(X). Note that non-coloured forests can therefore be thought as
being coloured with just one colour for each valency. If X(n) = ∅ we mean that there are
no vertices of valence n + 1 in the forests of F(X). The PROP F(X) is freely generated
as a symmetric PROP by vertices of type (n, 1) (coloured with all its possible colorations),
the identity element and the braiding. Again we can consider the PROP of vector spaces
generated by F(X) over K (and we will denote it by the same symbol). Since F(X) is freely
generated by the vertices, the braidings and the identity element, the datum of a morphism
of symmetric PROPs of vector spaces

ρ : F(X) → P̃

reduces to the datum of a family of maps of sets

ρn :
{

Vertices of type (n, 1)
}
→ P̃(n, 1)

(for any morphism of symmetric PROPs, the images of the identity element and of the
braiding of the source PROP are prescribed to be the identity element and the braiding of
the target PROP). But, by construction, there is a bijection

X(n) ↔
{

Vertices of type (n, 1)
}
.

This shows that the n-to-1 part of the PROP F(X) is the free operad we were looking for;
we will denote this opeard by the same symbol F(X). More explicitely, an element of the
free operad F(X) is a linear combination of Reshetikhin-Turaev’s trees with the vertices
decorated by the elements of X.
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6 Ideals and quotients

Let P be a PROP of vector spaces. An ideal of P is a collection I = {I(n,m)} of subspaces
of P(n,m) which is closed with respect to composition and tensor products with P. It is
immediate to check that, if I is an ideal of P, then the collection of vector spaces

(P/I)((n,m) := P(m,n)/I(n,m)

defines a PROP P/I, that will be called the qouotient PROP of P by I. If O is an operad,
and I is an ideal of the PROP PO, then the n-to-1 part of the quotient PROP PO/I will be
called the quotient operad of O by I and will be denoted by mathcalO/I. If I = {I(n,m)}
is a collection of subsets of P(n,m), the smallest ideal of P containing I is called the ideal
generated by I.

As in standard algebra representation theory, if I is an ideal of the PROP P there is a
canonical isomorphism

HomPROP(P/I, P̃) �
{
ρ ∈ HomPROP(P, P̃) such that ρ(I) = 0

}

In particular, if I is an ideal of F(X), a representation

F(X)/I → End(V )

is the same thing as defining on V a set of multiplications which satisfy the relations pre-
scribed by I.

7 Examples

The operad Assoc

Let X(2) =
{ •

❅�
}

and X(n) = ∅ for n �= 2. The operad F(X) is simply the operad of
trivalent trees; its representations are algebras with one binary operation. Let now I be the
ideal of F(X) generated by

−
•

•
•
•

�
❅

❅�
�❅

❅❅
�

�
(associativity)

and let Assoc be the quotient operad

F
(

•
❅�

)
/


 −

•
•

•
•

�
❅

❅�
�❅

❅❅
�

�




Then Assoc-algebras are exactly associative algebras.

The operad Comm

It is the quotient operad of F
(

•
❅�

)
by the ideal generated by

−
••

✑
✑

❅�
◗

◗

❏
❏

❏❏

✡
✡

✡✡

(commutativity)

Clearly, Comm-algebras are exactly commutative associative algebras.
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The operad Lie

It is the quotient operad of F
(

•
❅�

)
by the ideal generated by

+
••

✑
✑

❅�
◗

◗

❏
❏

❏❏

✡
✡

✡✡

(anticommutativity)

and

−
•

•
•
•

�
❅

❅�
�❅

❅❅
�

�

+
•

•
✏✏❅

❅✏
�
◗

(Jacobi)

As the name says, Lie-algebras are exactly Lie algebras.

The operad Poisson

We end this short introduction to the language of operads with an example of an operad
describing Poisson algebras. These are algebras with two binary operations: a commutative
associative multiplication · and a Lie braket { , } (Poisson bracket) which satysfy the com-
patibility realtion

{f, gh} = {f, g}h + g{f, h}

Since there are two binary operations, let X(2) =
{ •

❅� , ◦
❅�

}
and X(n) = ∅ for n �= 2.

Let I be the ideal of F generated by

−
••

✑
✑

❅�
◗

◗

❏
❏

❏❏

✡
✡

✡✡

(commutativity)

−
•

•
•
•

�
❅

❅�
�❅

❅❅
�

�
(associativity)

+
◦◦

✑
✑

❅�
◗

◗

❏
❏

❏❏

✡
✡

✡✡

(anticommutativity)

−
◦

◦
◦

◦

� ❅
❅

�
�❅

❅❅�
�

+
◦

◦
✘✘ ❅
❅

✘
�
◗

(Jacobi)

−
•

◦
◦

•

� ❅
❅

�
�❅

❅❅�
�

+
◦

•
✘✘ ❅
❅

✘
�
◗

(compatibility)

and let Poisson be the quotient operad of F(X) by I. Then Poisson-algebras are exactly
Poisson algebras.
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Introduction to A∞ and L∞ algebras

Riccardo Murri

March 15, 2002

“Ti accorgi di come vola bassa la mia mente?
È colpa dei pensieri associativi

se non riesco a stare adesso qui”
— F. Battiato

These notes aim to be an introduction to the A∞ and L∞ structures, through their
operadic formulations. The accent is on generalizing the well-known results for associative
and Lie algebras; there is not much in here, save for definitions and a few easy propositions:
the presentation is a diluted version of sections 1–3 in [HS93].

1 Preliminaries on notation

For the most part of this note we shall be concerned with objects and morphisms from the
category of differential graded modules over a fixed associative differential graded k-algebra
R.

The degree i component of an object M will be denoted M i; the grading group will always
be Z. Elements of a graded object appearing as exponents to a number will stand for their
degree, i.e., (−1)a = (−1)deg a; therefore, (−1)ab = (−1)deg a+deg b.

Precise definitions of objects in this category are as follows.

Definition 1.1. A dg-algebra R is the data of a graded vector space R# over k, a k-bilinear
associative product, and a k-linear map d : R→ R such that:

1. Ri ·Rj ⊂ Ri+j ;

2. d(Ri) ⊂ Ri+1;

and, for all homogeneous a, b:

3. ab = (−1)abba (graded commutativity);

4. d(a · b) = d(a) · b+ (−1)aa · d(b) (graded Leibniz rule).

Furthermore, we shall always assume that a dg-algebra has a unit 1 ∈ R0 such that 1 · a =
a · 1 = a for all a ∈ R.

Any dg-algebra is (graded) associative commutative algebra; write # for the underlying
functor that “forgets the differential”.

Definition 1.2. An R-dg-module M is an R-bimodule such that:

1. RiM j ⊂M i+j , M iRj ⊂M i+j ;

2. λx = (−1)λxxλ, for all homogeneous x ∈M , and λ ∈ R;

3. d(λx) = d(λ)x+ (−1)λλd(x).
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There is an obvious underlying functor # from the category of R-dg-modules to the
category of R-modules.

Definition 1.3. For every two R-dg-modules M , N we define the module of degree p mor-
phisms

Homp
R(M,N) :=

{
f ∈

∏
i Homk(M i, N i+p) : f(xλ) = f(x)λ

∀x ∈M,∀λ ∈ R
}
,

and the graded module of morphisms

Hom∗
R :=

⊕
p∈Z Homp

R(M,N)[−p],

that is, Homp
R(M,N) is the degree p component of Hom∗

R(M,N).

Hom∗
R(M,N) is made into an R-dg-module by the differential:

df := dN ◦ f + (−1)p+1f ◦ dM , f ∈ Homp
R(M,N)

The term “morphism” will denote any element of Hom∗
R, while “dg-morphism” will be applied

only to those such that df = 0.

1.1 Signs

Recall that the symmetric monoidal category of graded modules has a non-trivial (yet invo-
lutive) twisting isomorphism T(12) : M1 ⊗M2 3 x1 ⊗ x2 7→ (−1)x1x2x2 ⊗ x1 ∈ M2 ⊗M1, for
all objects M1, M2. For any σ ∈ Sn, there’s an isomorphism Tσ between M1⊗ · · · ⊗Mn and
Mσ1 ⊗ · · ·⊗Mσn

made up of twists T(ij); since the category of graded modules is symmetric,
any two such compositions are equal, that is, Tσ depends only on σ ∈ Sn.

Now, suppose M1 = · · · = Mn = M , a fixed object: x1 ⊗ · · · ⊗ xn and Xσ(x1 ⊗ · · · ⊗ xn)
differ only by the sign; therefore we define ε(σ;x1, . . . , xn) so that the following holds:

ε(σ;x1, . . . , xn)x1 ⊗ · · · ⊗ xn = Tσ(x1 ⊗ · · · ⊗ xn), σ ∈ Sn. (1.1)

Also define χ(σ;x1, . . . , xn) by:

χ(σ;x1, . . . , xn)x1 ⊗ · · · ⊗ xn = (−1)σTσ(x1 ⊗ · · · ⊗ xn), σ ∈ Sn. (1.2)

We shall omit x1, . . . , xn from the above when it will be clear from the context which elements
ε or χ are being applied to.

Definition 1.4. A map f : M⊗n → N is graded symmetric iff

f(x1, . . . , xn) = ε(σ)f(xσ1 , . . . , xσn
) ∀x1, . . . , xn ∈M

It is graded antisymmetric iff

f(x1, . . . , xn) = χ(σ)f(xσ1 , . . . , xσn) ∀x1, . . . , xn ∈M.

Since permutation of factors in a tensor product may change the sign, the contraction
map

c :
⊗

i Hom(Mi, Ni)⊗
⊗
Mi →

⊗
iNi

is well-defined only up to a sign. In search of a remedy, we fix an ordering of the factors which
gives “unsigned” contraction, and then define contraction of any permutation of the factors
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{Hom(Mi, Ni),Mi}i∈I by first applying a twist Xσ to get the fixed “standard” ordering, and
then the contraction before. Formally, let:

evMN : Hom(M,N)⊗M → N, (1.3)
f ⊗ x 7→ f(x);⊗

i evMiNi
:
⊗

i

(
Hom(Mi, Ni)⊗Mi

)
→
⊗
Ni, (1.4)

(f1 ⊗ x1)⊗ · · · ⊗ (fk ⊗ xk) 7→ f1(x1)⊗ · · · ⊗ fk(xk);

then let W2i−1 := Hom(Mi, Ni), W2i := Mi, for i = 1, . . . , k; define the contraction⊗2k
j=1Wσj

→
⊗k

i=1Ni

by the composite ⊗2k
j=1Wσj

Tσ−−→
⊗2k

j=1Wj

⊗
i ev

−−−−→
⊗k

i=1Ni.

Infact, this boils down to the rule: “change the sign by (−1)pq when interchanging objects of
degree p and q”.

2 A∞-algebras

A∞-algebras are a generalization of homotopy associative algebras, that is, algebras where
a(bc)− (ab)c = `(a, b, c) for some “homotopy” `; for this reason they are also called “strongly
homotopy associative algebras.”

Let A be a k-vector space.

Definition 2.1. A structure of Ap-algebra on A is given by a collection of k-linear maps
{mn ∈ Homn−2

k (A⊗n, A)}16n<p+1 that satisfy the following set of relations (1 6 n < p+ 1):

∑
i+j=n+1

i−1∑
s=0

±mi(a1, . . . , as,mj(as+1, . . . , as+j), as+j+1, . . . , an) = 0, (An+1)

the ± sign being:
± = (−1)j+s+js+j(a1+···+as).

An A∞-algebra structure on A is given by k-linear maps {mn}n>1 such that {mn}16n<p+1

defines a structure of Ap-algebra on A for every p > 1.

Let us spell out the first three (An+1) relations:

0 = m2
1 (A2)

0 = m1(m2(a1, a2))−m2(m1(a1), a2)− (−1)a1m2(a1,m1(a2)) (A3)

0 = −m1(m3(a1, a2, a3)) +m2(m2(a1, a2), a3)−m2(a1,m2(a2, a3))
−m3(m1(a1), a2, a3)− (−1)a1m3(a1,m1(a2), a3)

− (−1)a1+a2m3(a1, a2,m1(a3))

(A4)

The first one tells us that ∂ := m1 is a differential on A, compatible with the multiplication
m2 : A⊗2 → A by (A3). If we rewrite (A4) as

m2(m2(a1, a2), a3)−m2(a1,m2(a2, a3)) =
∂ ◦m3(a1, a2, a3) +m3(∂a1, a2, a3) + (−1)a1m3(a1, ∂a2, a3)+

+ (−1)a1+a2m3(a1, a2, ∂a3), (A′4)
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then we see that m2 is associative up to an homotopy given by m3; we get a truly associative
algebra if m3 ≡ 0, but the converse needs not be true: i.e., the right-hand side of A′4 can be
0 without m3 being trivial—see for instance the example in section 2.1.

Summing up, an A1 algebra is just a k-dg-module, an A2-algebra is a k-dg-algebra (not
necessarily associative), an A3-algebra is a homotopy associative k-dg-algebra.

Example 2.1. Any differential graded associative algebra is an A3-algebra with m3 = 0.
Any graded associative algebra is an A3-algebra with m1 = m3 = 0.

Example 2.2 ([Kha, p. 5]). Given an A∞-algebra (A,m∗) and an associative algebra B
(concentrated in degree 0) define a new A∞-algebra (A⊗B,m′) by (A⊗B)p := Ap ⊗B and

m′
n(a1 ⊗ b1, . . . , an ⊗ bn) := mn(a1, . . . , an)⊗ (b1 · · · bn).

Example 2.3. Given an associative k-algebra A, graded over Z/2Z and concentrated in
degree 0, pick µ2, µ4, . . . , µ2t ∈ k and define:

m2i+1(a1, . . . , a2q+1) := 0 q = 0, 1, . . . ;
m2r(a1, . . . , a2r) := µ2r · a1 · · · a2r 1 6 r 6 t;
m2s(a1, . . . , a2s) := 0 s > t;

Then (A,m′
∗) is an A∞-algebra.

Note that we may rewrite An+1 as

∑
i+j=n+1
i,j>2

i−1∑
s=0

±mi(a1, . . . , as,mj(as+1, . . . , as+j), as+j+1, . . . , an)

= [mn, ∂](a1, . . . , an), (A′n+1)

where ∂ = m1 and [·, ·] is the Lie bracket on the Hochschild complex:

[mn, ∂](a1, . . . , an) :=
n−1∑
s=0

(−1)a1+···+asmn(a1, . . . , as, ∂as+1, as+2, . . . , an)+

+ (−1)n+1∂mn(a1, . . . , an).

The right-hand side of (A′n+1) vanishes on passing to ∂-cohomology: therefore,H∂(A) inherits
a structure of Ap-algebra with trivial differential.

2.1 A less trivial example

In [Zho00], J. Zhou adapted a construction by S. A. Merkulov to give an A∞-structure on
the space of harmonic forms on a Riemannian manifold. Here’s a sketch of their construction.

Let V be a DGA over k with differential d; let W be a vector subspace of V such that
dW ⊂ V ; let Q : V → V be an odd operator such that P := (Id−[d, Q]) has range lying in
W . Define k-linear maps λn : V ⊗n → V by

λ2(v1, v2) := v1 · v2
where · is the ordinary multiplication in V , and then, recursively, for n > 3:

λn(v1, . . . , vn) := (−1)n−1
(
Qλn−1(v1, . . . , vn)

)
· vn+

−
∑

k+l=n+1
k,l>2

(−1)k+(l−1)(v1+···+vk)Qλk(v1, . . . , vk) ·Qλl(vk+1, . . . , vn)+

− (−1)nv1v1 ·
(
Qλn−1(v2, . . . , vn)

)
Then a longish, yet direct, computation proves the following statement.
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Proposition 1 (Merkulov, [Mer99]). The k-linear maps mn : A⊗n → A defined by

m1 : = d,
mn : = P ◦ λn, n > 2,

define a structure of A∞-algebra on W .

As an immediate corollary, we get an A∞-algebra structure on the space of harmonic
forms on a Riemannian manifold X: take V = E∗(X), the DGA of differential forms with
multiplication given by the wedge product, W = H∗(X) the space of harmonic forms, and
Q = Gd∗ where d∗ = −∗ ◦d ◦ ∗ and G is the Green operator. Then P = Id−Gd∗d− dGd∗ is
the projector on the space H∗(X), and the multiplication m2 : H∗(X) → H∗(X) takes two
forms to the harmonic part of their wedge product. It can be shown (see [Zho00]) that m2 is
associative; therefore, by (A′4), [d,m3] = 0, yet this does not imply that m3 = 0.

Passing to homology with respect to d, we get an A∞-structure on

Hd(H∗(X)) = H∗
dR(X)

with trivial differential; so the left-hand side of (A′n+1) vanishes, in particular, m2 is an
associative multiplication—indeed it is the usual cup product.

Similarly, one can define A∞-algebra structures on the Dolbeault cohomology of any
complex manifold X; for this and other examples, see [Zho00, Mer99].

3 L∞-algebras

L∞-algebras arise as a generalization of homotopy Lie algebras, i.e., algebras which satisfy
the Jacobi identity only up to an homotopy: this homotopy is in turn required to satisfy
“higher” Jacobi identities up to “higher” homotopies, etc. Hence, L∞-algebras are also called
“strongly homotopy Lie algebras”.

Let L be a graded k-vector space. Say that σ ∈ Sn is a (j, n− j)-shuffle iff σ1 < · · · < σj
and σj+1 < · · · < σn; name Sj,n−j the set of (j, n− j)-shuffles.

Definition 3.1. An L∞-algebra structure on L is a system {lk}k>1 of graded antisymmetric
k-linear maps lk : L⊗k → L with deg lk = k − 2, that satisfy the following set of identities:∑

i+j=n+1

∑
σ∈Sj,n−j

(−1)j(i−1)χ(σ)li(lj(aσ1 , . . . , aσj
), aσj+1 , . . . , aσn

) = 0 (Ln+1)

An L∞-algebra structure on L is given by k-linear maps {ln}n>1 such that {ln}16n<p+1

defines a structure of Lp-algebra on L for every p > 1.

Let us spell out the first three (Ln) relations:

0 = l21, (L2)
0 = l1(l2(a1, a2))− l2(l1(a1), a2)− (−1)a1 l2(l1(a2), a1), (L3)

0 = l1(l3(a1, a2, a3))− l2(l2(a1, a2), a3)− (−1)a2a3+1l2(l2(a1, a3), a2)+

− (−1)a2(a1+a3)l2(l2(a2, a3), a1) + l3(l1(a1), a2, a3)+

+ (−1)a1a2+1l3(l1(a2), a1, a3) + (−1)a3(a1+a2)l3(l2(a3), a1, a2),

(L4)

The first one tells us that ∂ := l1 is a differential on L, compatible with the bracket [·, ·] := l2
by L3. Rewriting (L4) as:

l2(l2(a1, a2), a3) + (−1)a1a2+1l2(a2, l2(a1, a3)) + (−1)a1(a2+a3)l2(a1, l2(a2, a3))
= l3(l1(a1), a2, a3) + (−1)a1 l3(a1, l1(a2), a3)

+ (−1)a1+a2 l3(a1, a2, l2(a3))− l1(l3(a1, a2, a3)) (L′4)

85



we see that l2 satisfies the Jacobi identity up to an homotopy l3; if l3 = 0, we recover a true
Lie algebra.

Example 3.1. Any DGLA L is an L∞-algebra with l3 = l4 = · · · = 0. Any Lie algebra is
an L∞-algebra with l1 = l3 = · · · = 0.

Note that we may rewrite Ln+1 as∑
i+j=n+1
i,j>2

∑
σ∈Sj,n−j

(−1)j(i−1)χ(σ)li(lj(aσ1 , . . . , aσj
), aσj+1 , . . . , aσn

)

= (−1)n[ln, ∂](a1, . . . , an), (L′n+1)

where ∂ = l1 and [·, ·] is the bracket:

[ln, ∂](a1, . . . , an) :=
∑

06s6n−1

(−1)a1+···+as ln(a1, . . . , as, ∂as+1, as+2, . . . , an)+

− (−1)n∂ln(a1, . . . , an).

The right-hand side of L′n+1 vanishes if ln commutes with the differential ∂; this happens in
particular when ln is a dg-morphism or when ∂ = 0. Therefore, any L∞-algebra induces a
Lie algebra structure on its ∂-homology.

Every A∞-algebra structure {mn} on a k-vector space X induces an L∞-structure {ln}
on X by antisymmetrization:

ln(x1, . . . , xn) :=
∑
σ∈Sn

χ(σ)mn(x1, . . . , xn),

similarly to an associative algebra inducing a Lie structure through the bracket [x, y] :=
xy − yx.

Example 3.2. Recall that, given an A∞-algebra X and an associative algebra Y , we can
form a new A∞-algebra X ⊗ Y : in particular, when Y is the algebra of n× n matrices with
entries in k, we get an A∞-algebra Mn(X). By antisymmetrization, we define an L∞-algebra
structure gln(X) on Mn(X).

Other constructions of ordinary Lie algebra theory generalize to the L∞ case: tensor
algebra, enveloping algebra, homology. These will be better described using the language of
operads.

4 Operads

Fix a differential graded k-algebra R; the category of R-dg-modules and their morphisms
(not necessarily commuting with the differential) is Abelian and symmetric monoidal with
the tensor product ⊗ := −⊗R −. In this section, we mainly follow [KM95] for the definition
of an operad.

Definition 4.1. An operad O is a collection of R-modules {O(n)}n>0 together with

i) a unit map η : R→ O(1);

ii) a right action of the symmetric group Sn on O(n), for all n > 0;

iii) composition maps O(n)⊗O(k1)⊗· · ·⊗O(kn)
γn;k1,...,kn−−−−−−−→ O(k) for all n > 0 and k =

∑
ks;

deg γ = 0 as a map of graded modules.
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These data are required to satisfy the following compatibility relations.

1. The following associativity diagrams commute, for all n > 0, ks > 0, and jsr > 0:

O(n)⊗
( n⊗
s=1

O(kn)
)
⊗
( n⊗
s=1

ks⊗
r=1

O(jsr)
)

O(k)⊗
( n⊗
s=1

ks⊗
r=1

O(jsr)
)

O(j)

O(n)⊗
( n⊗
s=1

O(js)
)

O(n)⊗
( n⊗
s=1

(
O(ks)⊗

ks⊗
r=1

O(jsr)
))

OO

signed
reordering

��

γn;k1,...,kn⊗id

((QQQQQQQQQQQQQ

id⊗
⊗n

s=1 γks;js1,...,jsks

66mmmmmmmmmmmmm

γk;j11,...,jnkn

��

γn;j1,...,jn

OO

(4.1)

where

k :=
∑
s

ks, jr :=
ks∑
r=1

jsr,

and the “signed reordering” acts as the appropriate composition of commutators in the
symmetric category.

2. The following unit diagrams commute.

O(n)⊗R⊗n

O(n)

O(n)⊗ O(1)⊗n

id⊗η⊗n

��

&&NNNNNNNNNNN

γn;1,...,1

88ppppppppppp

R⊗ O(n)

O(n)

O(1)⊗ O(n)

η⊗id

��

&&LLLLLLLLLL

γ1;n

88rrrrrrrrrr

(4.2)

3. The following equivariance diagrams commute, for σ ∈ Sn and τs ∈ Sks
, the permuta-

tion σ(k1, . . . , kn) ∈ Sk permutes blocks of lengths k1, . . . , kn like σ permutes letters;
τ1 ⊕ · · · ⊕ τn permutes letters in the s-th block as τs does:

O(n)⊗ O(k1)⊗ · · · ⊗ O(kn) O(n)⊗ O(kσ1)⊗ · · · ⊗ O(kσn
)

O(k) O(k)

σ⊗Tσ−1 //

γn;k1,...,kn

��
γn;kτ1 ,...,kτn

��σ(kσ1 ,...,kσn )
//

(4.3)
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and

O(n)⊗ O(k1)⊗ · · · ⊗ O(kn) O(k)

O(n)⊗ O(k1)⊗ · · · ⊗ O(kn) O(k)

γn;k1,...,kn //

γn;k1,...,kn

//

id⊕(τ1⊗···⊗τn)

��
τ1⊕···⊕τn

��

(4.4)

Operads may be defined in any symmetric tensor category. For our purposes, it will suffice
to always restrict to the category of R-dg-modules.

The prototypical operad is the endomorphism operad EM of some R-dg-module M , which
is defined by:

EM (n) := Hom(M⊗n,M).

The unit is given by the identity map idM ∈ Hom(M,M) = EM (1); the Sn-action is the
(signed) permutation of tensor product factors, and, finally, the maps γn;k1,...,kn are given by

Hom(M⊗n,M)⊗Hom(M⊗k1 ,M)⊗ · · · ⊗Hom(M⊗kn ,M)

Hom(M⊗n,M)⊗Hom(M⊗k,M⊗n)

Hom(M⊗k,M)

id⊗(n-fold tensor product of maps)

��

◦
��

It is trivial to verify that EM is an operad.
A morphism of operads φ : O ′ → O ′′ is a collection of R-dg-modules morphisms {φn :

O ′(n) → O ′′(n)} satisfying the obvious compatibility conditions coming from diagrams (4.1)–
(4.4).

4.0.1 Signs in operads

The “signed reordering” of diagram (4.1) may appear as to introduce an unnatural sign:
infact it is not so, the reason being that a Koszul sign is hidden into the γ’s, as the following
example shows.

LetM be anR-dg-module,A ∈ Hom(M⊗2,M),B1 ∈ Hom(M,M) andB2 ∈ Hom(M⊗2,M).
According to the definition of operad, γ2;1,2(A ⊗ B1 ⊗ B2) ∈ Hom(M⊗3,M), so we pick
x1 ⊗ x2 ⊗ x3 ∈M⊗3 and reckon:

y := (A⊗B1 ⊗B2)(x1 ⊗ x2 ⊗ x3) = A⊗
(
(B1 ⊗B2)(x1 ⊗ x2 ⊗ x3)

)
,

so, by the Koszul sign convention,

y = A⊗
(
(−1)x1B2B1(x1)⊗B2(x2 ⊗ x3)

)
= (−1)x1B2A

(
(−1)x1B2B1(x1)⊗B2(x2 ⊗ x3)

)
.

Therefore,

γ(A⊗B1 ⊗B2)(x1 ⊗ x2 ⊗ x3)

= (−1)x1B2A
(
(−1)x1B2B1(x1)⊗B2(x2 ⊗ x3)

)
. (4.5)

88



Let us apply this to a particular case of (4.1): pick C1, C2, C3 ∈ Hom(M,M), then use
(4.5) to walk (4.1) in two ways. First, top-down:

A
(
B1

(
C1(x1)

)
, B2

(
C2(x2), C3(x3)

))
= (−1)(x1+C1)B2γ(A⊗B1 ⊗B2)

(
C1(x1)⊗ C2(x2)⊗ C3(x3)

)
= (−1)C1B2+x1B2+x1(C2+C3)+x2C3×

γ
(
γ(A⊗B1 ⊗B2)⊗ C1 ⊗ C2 ⊗ C3

)
(x1 ⊗ x2 ⊗ x3);

then, bottom-up:

A
(
B1

(
C1(x1)

)
, B2

(
C2(x2), C3(x3)

))
= (−1)x2C3A

(
γ(B1 ⊗ C1)(x1), γ(B2 ⊗ C2 ⊗ C3)(x2 ⊗ x3)

)
= (−1)x2C3+x1(B2+C2+C3)×

γ
(
A⊗ γ(B1 ⊗ C1)⊗ γ(B2 ⊗ C2 ⊗ C3)

)
(x1 ⊗ x2 ⊗ x3).

Now we see that the sign (−1)B2C1 coming from the reordering

T(34) : A⊗B1 ⊗B2 ⊗ C1 ⊗ C2 ⊗ C3 7→ (−1)B2C1A⊗B1 ⊗ C1 ⊗B2 ⊗ C2 ⊗ C3

is the one needed to make diagram (4.1) commute.

4.1 Algebras over operads

The concept of “algebra over an operad” is the right one needed to introduce operads into
our discussion of A∞ and L∞ algebras.

Let X be an R-dg-module, and O a fixed operad.

Definition 4.2. A structure of O-algebra on X is an operad morphism O → EX of O into
the endomorphism operad of X.

So, elements in O(n) are interpreted as maps X⊗n → X, that is, they are n-ary operations
on X. In the sequel we shall see how to give a operadic formulation of common algebraic
structures.

The following proposition encodes many well-known structure transfer theorems.

Proposition 2. Any morphism O → O ′ induces an O-algebra structure on every O ′-algebra
X, by means of the composition O → O ′ → EX .

In an equivalent manner, an O-algebra structure on X, is given by maps

φn : O(n)⊗X⊗n → X,

which satisfy associativity, unit and equivariance conditions coming from diagrams (4.1)–
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(4.4), that we can express by requiring the following diagrams to commute:

O(n)⊗ O(k1)⊗ · · · ⊗ O(kn)⊗X⊗k O(k)⊗X⊗k

X

O(n)⊗
(
O(k1)⊗X⊗k1)⊗ · · · ⊗

(
O(kn)⊗X⊗kn) O(n)⊗X⊗n

OO

signed
reordering

��

γ⊗id //

φk

��

φn

OO

id⊗φ⊗k

//

(4.6)

O(n)⊗X⊗n O(n)⊗X⊗n

O(n)⊗X⊗n X

id⊗ε(σ) //

σ⊗id⊗n

��
φn

��

φn

//

(4.7)

X O(1)⊗X X
η⊗id // φ1 //

idX

55 (4.8)

Example 4.1 (Free algebras over an operad). Fix an operad O, and an R-dg-module
V . Define the free O-algebra X := FO(V ) by:

Xp := O(p)⊗ V.

In order to define the structure maps φ, observe that(
O(n)⊗X⊗n)p = O(p)⊗

⊕
p1+···+pn=p

(
(O(p1)⊗Xp1)⊗ · · · ⊗ (O(pn)⊗Xpn)

)
'
(
O(p)⊗

⊕
p1+···+pn=p

(O(p1)⊗ · · · ⊗ O(pn))
)
⊗ (X⊗n)p,

so a direct sum of the maps γn;p1,...,pn will do the job.

4.1.1 The operad of associative algebras

If X is an associative algebra, then a map m : X⊗2 → X is defined, which satisfies the
constraint

m(x1,m(x2, x3)) = m(m(x1, x2), x3). (4.9)

Let us define an operad A which governs associative algebras; we need an element µ ∈ A (n)
for every n-ary operation on X. Now, the product of two elements x1 ⊗ x2 7→ m(x1, x2) =:
x1x2 is a binary operation, but also the product in reverse order (x1⊗x2 7→ m(x2, x1) =: x2x1)
is; moreover, we can form n-ary operations by composing product maps (e.g., x1⊗x2⊗x3⊗
x4 7→ m(m(x1, x2),m(x4, x3)) = (x1x2)(x3x4)). The associativity relation (4.9) tells us that
any monomial xσ1xσ2 · · ·xσn defines a n-ary operation by composition of binary products,
independently of the way we put parentheses in it. Therefore, we can state that A (n) is
the R-module freely generated by the set of all possible products of symbols x1, . . . , xn with
every xj appearing once and once only; for example,

A (1) := R, A (2) := 〈x1x2, x2x1〉R , A (3) := 〈xσ1xσ2xσ3 : σ ∈ S3〉R .

The Sn-action on A (n) consists in permuting the xj ’s. The structure maps γn;k1,...,kn
:

A (n)⊗A (k1)⊗ · · · ⊗A (kn) → A (k1 + · · ·+ kn) replace the xj in µ ∈ A (n) by a monomial
µj ∈ A (kj), simultaneously replacing xl in µj with xk1+···+kj−1+l.
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1 2

•�����

/////

1

2 3

•�����

/////

•�����

77777

1 3

•�����

/////

2 4

•�����

/////

•�����

77777

x1x2 x1(x2x3) (x1x3)(x2x4)

Figure 1: Binary trees correspond to meaningful ways of inserting parentheses into a product.

The operad A is most easily described using a graphical notation. Depict an element of
A (n) as a binary tree having n leaves (inputs) and one root (the output); the leaves are
numbered, and Sn acts by permuting numbers on leaves. Such trees can be easily seen to
correspond to the meaningful insertion of n−2 pairs of parentheses into a monomial µ ∈ A (n)
(see Figure 4.1.1 on page 91). The structure map γn;k1,...,kn

simply grafts the tree tj ∈ O(kj)
onto the j-th input of t ∈ O(n) and renumbers the leaves of tj ; for instance,

γ

 1 2

•�����

///// ⊗

2 3

•�����

///// 1

•�����

/////

⊗

1 3

•�����

/////

2 4

•�����

/////

•�����

77777

 =

2 3

•�����

///// 1

•�����

/////

4 6

•�����

/////

5 7

•�����

/////

•�����

77777

•{{{{{{

CCCCCC

(4.10)

The whole family of numbered binary trees is generated by elements in A (2) via the
composition maps γ; infact,

A (2) =

〈
1 2

•�����

///// ,
2 1

•�����

/////

〉
.

What is more, the associativity relation (4.9) can be rewritten as:

1

2 3

•�����

/////

•�����

77777
=

1 2

•�����

///// 2

•�����

/////

(4.11)

So, the operad A is the quotient of the family of binary trees by relations of the form:

γ

T0 ⊗

 1

2 3

•�����

/////

•�����

77777
−

1 2

•�����

///// 3

•�����

/////

⊗ T1 ⊗ T2 ⊗ T3


where T0, T1, T2 and T3 are arbitrary binary trees. It is easy to check that these relations imply
that any tree in A has a representative such that left-wing branches have no ramification;
such trees will be called regular trees in the sequel.

Definition 4.3. The space A (n) is the R-linear span of the set of regular binary trees. It is
a dg-module with the trivial differential D = 0.

The collection {A (n)} forms an operad with the structure maps given by the grafting
operation γ and the obvious Sn action.

It is an easy exercise to check the following.

Proposition 3. Any associative algebra is an algebra over A , and vice-versa.
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4.1.2 The operad of Lie algebras

In a similar way, one can construct an operad governing Lie algebras. This turn, we have
binary operations x1 ⊗ x2 7→ [x1, x2] and x1 ⊗ x2 7→ [x2, x1] which are related by

[x1, x2] = −[x1, x2].

So, we have the graphical presentation

L (2) :=

〈
1 2

•�����

///// ,
2 1

•�����

/////

〉/〈
1 2

•�����

///// −
2 1

•�����

/////

〉
,

that is to say, L (2) is a 1-dimensional R-module endowed with the sign representation of
S2.

Higher-order operations in a Lie algebra are compositions of binary operations. However,
since the binary operation [−,−] is alternating, the action of Sn on L (n) is not as easy as
in the case of associative algebras. More over, the Jacobi equation,

[x1, [x2, x3]] + [[x1, x3], x2] = [[x1, x2], x3],

which expresses relations among ternary operations [−, [−,−]] translates into:

1

2 3

•�����

/////

•�����

77777
+

1 3

•�����

///// 2

•�����

/////

=

1 2

•�����

///// 3

•�����

/////

. (4.12)

So we have yet one more relation to take into account for L (n). We quote the following from
[GK94].

Lemma 4.1. The space L (n) is (isomorphic to) the target space of the representation in-
duced on Sn by any non-trivial character of the cyclic group Cn.

When describing the operad structure, it is easier to picture the space L (n) as the space
of all binary trees with n leaves, modulo the relations given by (4.12) and the alternation of
signs when swapping two branches of a tree. L (n) is a dg-module with the trivial differential
D = 0.

Definition 4.4. The collection {L (n)} forms an operad with the structure maps given by
the grafting operation γ.

Hinich and Schechtman [HS93] have called L the “trivial Lie operad”.

Proposition 4. Any DGLA is an algebra over L , and vice-versa.

4.2 Modules over an operad algebra

Fix an operad O and an O-algebra X, and an R-module M .

Definition 4.5. A structure of (O, X)-module on M is given by a collection of maps ψn :
O(n+ 1)⊗X⊗n ⊗M →M which satisfy the following compatibility relations.
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O(n)⊗ O(k1)⊗ · · · ⊗ O(kn)⊗X⊗k−1 ⊗M O(k)⊗X⊗k−1 ⊗M

O(n)⊗
⊗n−1

j=1

(
O(kj)⊗X⊗kj )⊗ O(kn)⊗X⊗kn−1 ⊗M

O(n)⊗X⊗n−1 ⊗M X

OO
signed

reordering ��

γ⊗id⊗k−1
X ⊗ idM//

ψk

��

ψn

//

id⊗φ⊗k−1⊗ψkn−1

��

(4.13)

O(n)⊗X⊗n−1 ⊗M O(n)⊗X⊗n−1 ⊗M

O(n)⊗X⊗n−1 ⊗M X

idO ⊗ε(σ)⊗idM //

σ⊗id⊗n−1
X ⊗ idM

��
ψn

��

ψn

//

(4.14)

M O(1)⊗M M
η⊗idM // ψ1 //

idM

33 (4.15)

It is easy to check that modules over an A -algebra are the usual modules over an asso-
ciative algebra, and modules over an L -algebra are Lie modules.

Furthermore, one can define a notion of “universal enveloping algebra” in an operadic
context; the category of modules over an O-algebra X is naturally equivalent to that of
modules over the universal enveloping algebra UO(X). As one would expect, for A and L
algebras one gets the same standard notions of enveloping algebras.

5 Operads of A∞ and L∞ algebras

The operadic approach to infinity algebras was started by Hinich and Schechtman in [HS93];
it became very popular and has thenceforth been adopted by many authors; let us just
mention [GK94], [Mara], [Mar00], which most directly relate with the contents of this notes.

5.1 The A∞ operad

We can build an operad A∞ which governs A∞-algebras, paralleling the construction of the
A operad of associative algebras.

Recall from Section 2 that an A∞-algebra has multiplicationsmi related by (An+1). Let us
use the same graphical notation of Section 4.1.1; we still depict the multiplication m2(x1, x2)
by the two-branched tree

1 2

•�����

/////

However, higher-order operations are no longer compositions of binary multiplications: we
have primitive n-ary maps, for any n > 1; therefore, it is natural to associate the homotopy
mn with the n-corolla

1 2 . . . n

•ttttttt

�����

JJJJJJJ
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Define the composition γ(t ⊗ t1 ⊗ . . . ⊗ tn) of trees t, with n leaves, and tj , with kj leaves
each, to be the tree in which tj has been grafted onto the j-th leaf of t:

γ(t⊗ t1 ⊗ . . .⊗ tn) =
t1 t2

. . .
tn

ttttttt
���

JJJJJJ

By repeated composition of corollas, we can form any tree. These trees have numbered leaves;
define the action of Sn on the set of n-leaved trees by permutation of numbers on leaves.

We know from (A2) that m1 is a differential on any A∞-algebra X; therefore, a standard
calculation shows that ad(m1) := [m1,−] is a differential in the Hochschild complex of X.
Since A∞ ought to be an operad in the category of R-dg-modules, we define a differential D
on A∞(n) by D := ad(m1); the fundamental relation (A′n+1) translates into:

D

(
1 . . . n

•������

??????

)
=

∑
i+j=n+1
i,j>2

i−1∑
s=0

± a1
. . . as

as+1
. . .as+j+1

•������

??????
. . . an

•iiiiiiiiiiiii

}}}}}}

AAAAAA

UUUUUUUUUUUUU
, (5.1)

for all n > 3. The Leibniz rule (A3) now becomes:

D

(
1 2

•�����

/////

)
= 0. (5.2)

Summing up, we can give the following definition.

Definition 5.1. The A∞-operad is defined by the collection {A∞(n)}, where A∞(n) is the R-
dg-module freely generated by set of all trees with n leaves, numbered from 1 to n, equipped
with the differential defined on generators by (5.1) and (5.2). The structure maps are R-
multilinear extensions of the grafting operation γ (see Definition 4.1 and Equation (4.10)).
Finally, Sn acts on A∞(n) by permuting the numbers on leaves.

It is important to note that, in contrast with the associative operad A , there no longer
is any relation among the trees in A∞(n), that is, A∞ is a free operad (generated by the set
of corollas) and all relations are encoded into the differential. (This has been singled out by
Markl as a characteristics of “homotopy algebras” operads, see [Mar00, Marb].)

The relation between the associative and the A∞ operad is summarized in the following.

Proposition 5. There is a surjective morphism A∞ → A in the category of differential
graded R-operads.

Proof. Define a morphism φ : A∞ → A on the generators by

φ

(
1 2

•�����

/////

)
=

1 2

•�����

///// ,

φ

(
1 . . . n

•������

??????

)
= 0, n > 2,

and extend it to be R-linear and a morphism of operads.
Compatibility with the differential D requires

φ ◦D = D ◦ φ,
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which again needs only be checked on generators. Now, D of a n-corolla is given by (5.1);
observe that, for n > 3 on RHS we always see the 2-corolla paired with some other (> 2)-
corolla — since φ is an operad morphism, this dooms it to be zero.

So we are left with verifying compatibility only for 2- and 3- corollas. Apply φ to both
sides of

DA∞

(
1 2 3

•������

??????

)
= 1

2 3

•�����

/////

•�����

77777
±

1 2

•�����

///// 3

•�����

/////

to get

φ ◦DA∞

(
1 2 3

•������

??????

)
= 1

2 3

•�����

/////

•�����

77777
±

1 2

•�����

///// 3

•�����

/////

= 0,

because the 2-corolla satisfies the associativity relation (4.11). On the other hand,

DA ◦ φ

(
1 2 3

•������

??????

)
= DA (0) = 0.

The remaining verification is trivial.

As an immediate corollary to the above and the structure transfer theorem 2, we get the
following.

Corollary 1. Every associative algebra is an A∞-algebra.

5.2 The L∞ operad

Imitate the construction of the A∞ operad: an L∞-algebra has a differential l1 and multilinear
brackets l2, l3, l4, . . .; assign to the n-ary bracket ln the n-corolla, define the structure maps γ
by means of tree-grafting, define the unit η by the identification L (1) = R, define the action
of Sn on L (n) by requiring it to be the sign representation on the subspace spanned by the
n-corolla (i.e., the n-corolla stands for an antisymmetric operation).

There is a unique minimal operad satisfying all these requirements; name it L∞. The
space L (n) is the R-module freely generated by trees with n leaves, numbered from 1 to n;
as in the L operad, it is difficult to describe explicitly the action of Sn on L (n).

Again, ad(l1) is a differential on the endomorphism operad of any L∞ algebra (and, a
fortiori, on its Hochschild complex), so we require the differential D on L∞ to satisfy the
same relations. These are given by equations (L′n+1) and (L3):

D

(
1 . . . n

•������

??????

)
=

∑
i+j=n+1
i,j>2

∑
σ∈Sj,n−j

±
aσ1

. . . aσj

•������

??????
aσj+1

. . . aσn

•ooooooooo

OOOOOOOOO
, (5.3)

D

(
1 2

•�����

/////

)
= 0, (5.4)

where the sign in (5.3) is given by ± = (−1)n+j(i−1)χ(σ).
Also in this case, it is important to point out that L∞ is a free operad: all relations

defining the structure of a L∞-algebra are encoded in the differential and the action of the
permutation group. The relation of L∞ to L is given by the following theorem, whose proof
is analogous to 5.
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Proposition 6. There is a surjective morphism L∞ → L in the category of R-dg-operads.

5.3 From A∞ to L∞

If X is an associative algebra, [x, y] := xy − yx defines a Lie bracket on X; a parallel result
holds with respect to A∞ and L∞ algebras, which seems to have first been proved in [LM95].

Proposition 7. There is an embedding of operads L∞ ↪→ A∞.

Proof. Since L∞ is a free operad, we need only define the embedding map on generators; let
ln ∈ L∞(n) be the n-corolla corresponding to the n-place bracket, and mn ∈ A∞(n) be the
n-corolla corresponding to the n-ary multiplication. Define a map φ : L∞ → A∞ by:

φ : ln 7→
∑
σ∈Sn

χ(σ) ·mn ◦ Tσ,

and then extend it to be a morphism of operads.
Since A∞ is freely generated by the mn’s and L∞ is freely generated by the ln’s, then φ

is an injective map.
In order to conclude, we only need to show that φ commutes with the differential D. From

relation (5.1) we get:

φ ◦D(ln) = φ


∑

i+j=n+1

∑
σ∈Sj,n−j

(−1)j(i−1)χ(σ)

σ1
. . . σj

lj
����

????

σj+1
. . . σn

liooooooo

OOOOOOO



=
∑

i+j=n+1

∑
σ∈Sj,n−j

ρ∈Sj

τ∈Si

(−1)j(i−1)χ(σ)χ(ρ)χ(τ)

(ρσ)1
. . .

(ρσ)j

mj
����

????
(τσ)j+1

. . .
(τσ)n

miooooooo

OOOOOOO

.

The real cumbersome part here is getting the sign right. Let us focus on the map Sj,n−j×
S′
i ×Sj 3 (σ, τ, ρ) 7→ σ ◦ (τ ◦1 ρ) ∈ Sn, where:

i) S′
i is the subgroup of all τ ∈ Si such that τ1 = 1;

ii) the composition (τ ◦1 ρ) ∈ Sn is defined by:

(τ ◦1 ρ)(p) :=

{
ρp 1 6 p 6 j,

j + τp−j j < p 6 n.

Given any η ∈ Sn, there exists one (and one only) ρ ∈ Sj such that (η ◦ ρ)1 < (η ◦ ρ)2 <
. . . < (η ◦ ρ)j , and, likewise, there exists one (and only one) τ̌ ∈ Sn such that (η ◦ τ̌)j+1 <
. . . < (η ◦ τ̌)n and τ̌h = h for all h = 1, . . . , j. Then, ρ ◦ τ̌ = τ̌ ◦ ρ = τ ◦1 ρ for some τ ∈ Sn−j
with τ1 = 1, so η ◦ (τ ◦1 ρ) = σ ∈ Sj,n−j , therefore, η = σ ◦ (τ ◦1 ρ)−1 = σ ◦ (τ−1 ◦τ1 ρ−1).
Thus, (σ, τ, ρ) 7→ σ ◦ (τ ◦1 ρ) is a bijection between Sj,n−j ×Si ×Sj and Sn.

Now, let us show that χ(σ)χ(ρ)χ(t) = (−1)jτ1χ(η). From the definition (1.2), it is clear
that χ is multiplicative, so

χ(η) = χ(σ) · χ(τ−1 ◦τ1 ρ−1).

96



If τ1 = 1, take α, β ∈ Sn to be such that α leaves 1, . . . , j pointwise fixed and permutes
j + 1, . . . , n like τ−1 does on 1, . . . , n − j; similarly, β permutes 1, . . . , j in the same way as
ρ−1 and leaves j + 1, . . . , n pointwise fixed. Then,

χ(τ−1 ◦τ1 ρ−1) = χ(α ◦ β) = χ(α) ◦ χ(β) = χ(τ) · χ(ρ).

If τ1 6= 1, then we get τ−1 ◦τ1 ρ−1 from some τ ′−1 ◦1 ρ by τ1 transpositions of the whole (j
elements long) block on which τ−1 acts nontrivially — these jτ1 transpositions contribute a
(−1)jτ1 sign.

Summing up,

φ ◦D(ln) =
∑

i+j=n+1

i−1∑
s=0

∑
η∈Sn,
η1=s+1

(−1)j(n−j)+j(s+1)χ(η) ·

η1 . . . ηj

mj
����

????

ηj+1
. . . ηn

miooooooo

OOOOOOO

=
∑
η∈Sn

χ(η)D(mn) = D
(
φ(mn)

)

By Proposition 2, we get the following.

Corollary 2. Let X be an A∞-algebra with multiplications mn. The maps ln :=
∑
σ χ(σ)mn◦

Xσ define a structure of L∞-algebra on X.

6 Enveloping algebras

Let O be an operad and X an R-module.

Definition 6.1 (cf. [HS93]). The tensor algebra TO(X) is the graded algebra over R defined
by

TO(X)p :=
(
O(p+ 1)⊗X⊗p)

Sp
, n > 0.

The action of Sp on O(p+ 1)⊗X⊗p is given by σ ⊗ ε(σ−1), that is, it acts on O(p+ 1) by
the inclusion Sp ↪→ Sp+1 and on X⊗p by the Koszul sign.

The multiplication in TO(X) is induced by the composition(
O(p+ 1)⊗X⊗p)⊗ (O(q + 1)⊗X⊗q) η⊗p⊗sign−−−−−−→

O(p+ 1)⊗ O(1)⊗p ⊗ O(q + 1)⊗X⊗p+q γ−→ O(p+ q + 1)⊗X⊗p+q.

A graphical description is more suggestive. Elements in O(p+1) can be depicted as trees
with p+ 1 numbered leaves, therefore, elements of TO(X)p can be depicted as trees with all
leaves except the last one decorated by xi ∈ X:

x1

x2 x3

•�����

/////
∗

•yyyyyyy

'''''

EEEEEEE
∈ TO(X)p.

Such elements multiply by grafting the second tree onto the last branch of the first:

x1 x2 ∗

•������

?????? ·
y1 ∗

•�����

///// = x1 x2

y1 ∗

•�����

/////

•yyyyyy

�����

EEEEEE
.
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It is now evident that this multiplication is well-defined and associative.
Of course, in the well-known cases of Lie and associative algebras, we get the same notion.

Proposition 8. If Y is a Lie algebra, then TL (Y ) is the tensor algebra (free associative
algebra) of Y .

Proof. For any y ∈ Y , put

dy :=
y ∗

•�����

///// .

Call “regular trees” the products

dy1 · · · dyn =
y1

. . .

yn ∗

•�����

/////

•�����

66666

•������

>>>>>>

.

The subalgebra of TL (Y ) spanned by {dy} is free associative; let us prove that any element
of TL (Y ) is a linear combination of dy’s.

Any t ∈ TL (Y ) is a linear combination of binary trees with the rightmost leaf marked by
∗ and the other decorated by y1, . . . , yn ∈ Y — call such trees “almost regular”. It clearly
suffices to prove our claim only for almost regular trees.

By induction on the number k of leaves, we prove that any almost regular tree t is a linear
combination of regular trees: the Jacobi identity (4.12) settles the case k = 3; for k > 3 we
can write

t =
t1 t2

•�����

///// =
t1 ∗

•�����

///// · t2,

so we conclude, by applying the induction hypothesis to t1 and t2.

Proposition 9. If X is an associative algebra, TA (X) is the graded symmetric algebra on
X.

Proof. Every element in A (n) has a representative which is a combination of regular binary
trees, by the associative relation (4.11). On any regular tree,

x1

. . .

xn ∗

•�����

/////

•�����

66666

•������

>>>>>>

the action of σ ∈ Sn will merely change the sign by ε(σ;x1, . . . , xn), which is exactly the
sign rule characterizing the graded symmetric algebra SX.

6.1 The enveloping algebra

Let O be an operad, and X an O-algebra.
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Definition 6.2 (cf. [HS93]). The enveloping algebra UO(X) is the quotient of the tensor
algebra TO(X) by the ideal generated by the relations

γ(ω ⊗ ω1 ⊗ · · · ⊗ ωn)⊗ x1
1 ⊗ · · ·x1

p1 ⊗ x2
1 ⊗ · · · ⊗ xn1 ⊗ · · · ⊗ xnpn−1

=
(
ω ⊗ ψp1(ω1 ⊗ x1

1 ⊗ · · · ⊗ x1
p1)⊗ · · ·⊗

⊗ ψpn−1(ωn−1 ⊗ xn−1
1 ⊗ · · · ⊗ xn−1

pn−1
)
)
×
× (ωn ⊗ xn1 ⊗ · · · ⊗ xnpn−1),

where ω ∈ O(n), ωi ∈ O(pi), p = p1 + · · ·+ pn, γ is the composition map of O and ψ is the
O-algebra structure on X.

Once again, a graphical representation may clarify things: according to Definition 6.1,
TO(X) is generated by trees having all leaves decorated by some element of X, save for
the rightmost, which is “an empty plug” (therefore marked by a “∗” sign). The enveloping
algebra UO(X) is the quotient of TO(X) by the relations:

x1
1

. . .
x1
p1

•������

??????

x2
1

. . .
x2
p2

•������

??????
. . .

xn1
. . .
xnpn−1

∗

•ttttttt

/////

JJJJJJJ

•kkkkkkkkkkk

�����

SSSSSSSSSSS

=
x1 . . .

xn−1

•������

?????? ·
xn1

. . .
xnpn−1

∗

•ttttttt

/////

JJJJJJJ ,

where xi := ψpi(ωi ⊗ xi1 ⊗ · · · ⊗ xipi
) ∈ X. The associativity of the product in TO(X) implies

that UO(X) is associative too.

Proposition 10. If Y is a Lie algebra, UL (Y ) is the usual enveloping algebra.

Proof. By Proposition 8 we already now that TL (Y ) is the free associative algebra on Y ; we
only need to check that relations (6.1) together with the Jacobi equation generate the ideal
({xy − yx− [x, y] : x, y ∈ Y }) in TL (Y ).

Now, L is the quotient of a free operad by the (operadic) ideal J generated by the Jacobi
equation (4.12); its elements share the form:

t1

t2 t3

•�����

/////

t0
���

777
+

t1 t3

•�����

/////
t2

t0
���

///
−

t1 t2

•�����

/////
t3

t0
���

///
.

In UL (Y ), because of relation (6.1), this can be rewritten as:

t0 ·

 t̄1

t2 ∗

•�����

/////

•�����

66666

+

t̄1 ∗

•�����

///// t̄2

•�����

/////

−
[t̄1, t̄2] ∗

•�����

/////

 · t3,

where t̄1, t̄2 are the elements of Y gotten by evaluation of trees t1, t2. Therefore, the image
of J in UL (Y ) is exactly ({xy − yx− [x, y] : x, y ∈ Y }).

Using similar methods, one can prove the following.

Proposition 11. If X is an associative algebra, then UA (X) is isomorphic to the algebra
Xop ⊗X.
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DG-schemes and Derived Parameter Spaces (after

Ciocan-Fontanine and Kapranov)

Andrea Bruno

1 Introduction

In recent times the following two ideas have received particular attention:

• Every reasonable deformation problem in characteristic zero is governed by a differential
graded Lie algebra;

• Moduli spaces are always smooth in an appropriate sense, i.e. obstructions should be
considered as tangent vectors of some objects more complicated than schemes.

While the first of the above ideas, somehow of a local nature, is rapidly finding solid
foundations and is getting used in many contexts, the scope of this lecture is to show the
state of the art on the second, and especially on its global part, as the local one is now
understood (see [8]). A typical problem in algebraic geometry is to overcome phenomena like
nonsmoothness of naturally defined schemes or non transverse intersection of cycles; as said
above, a way to solve this kind of problems is suggested by the language of dg-manifolds.
The idea of using these objects, already suggested by Deligne, Drinfeld, Feigin and others,
has the first published appearance in the notes [7] of Kontsevich and in the paper [6] of
the same author (where the author says: “It was recently spelled out clearly in a letter
of P. Deligne to H. Esnault, together with a proposal to apply it to the algebro-geometric
formulation of Mirror Symmetry.”) and has found applications in works on quantization of
Poisson structures and in Generalized Mirror Symmetry by Barannikov. The prehistory of
the subject is in [9] (see also [4]), where supermanifolds are studied, which are manifolds
together with a Z2-grading of the structure sheaf.

Kapranov ([5]), and later Ciocan-Fontanine and Kapranov ([1, 2]), started the project to
put on firm basis Kontsevich’s suggestion of systematically studying moduli spaces together
with additional structures which give smoothness. Roughly speaking the datum of a dg-
manifold is the datum of a smooth scheme X together with a sheaf of differential graded
commutative algebras which, as a sheaf of graded algebras, is free. For these objects it makes
perfect sense to extend the usual constructions of schemes, like tangent and cotangent sheaves,
fiber products, etc., if one agrees to work in the derived category, where everything is up to
homotopy and where quasisomorphisms are inverted.

In this paper we will almost faithfully follow [1] and [2], to describe their construction of
the derived version of the Quot and Hilbert schemes: these schemes are the basic ingredients
in all constructions of moduli spaces in geometry. First we will give the basic definitions,
examples and features of dg-schemes and of the category DSch, the right derived category
of schemes. The spaces we construct are in fact smooth spaces in this category with two
properties: their restriction to the ordinary category of schemes is given by the classical Quot
and Hilbert schemes in the scheme-theoretic sense, their tangent spaces are complexes whose
homology in low degrees consists of tangent vectors and obstructions to the classical Quot and
Hilbert schemes; by virtue of a “Whitehead Theorem” (see proposition 3.7), in the derived
category two objects are isomorphic if there is a map which induces isomorphism on the
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ordinary underlying schemes and on the “tangent spaces” (see paragraph 5.5), so that the
spaces constructed by Ciocan-Fontanine and Kapranov seem quite natural objects to study.
An important feature of these objects is that they are almost functorial (see paragraph
5.6), in the sense that they represent functors from affine objects to sets but only up to
quasiisomorphism, while in order to have them representing a functor in DSch the authors
suggest to construct an even larger category in which objects have affine charts given by
dg-schemes which are glued together via quasiisomorphisms.

2 Differential graded schemes

Definition 2.1. A dg-scheme is a pair X = (X0,O·
X), where X0 is a scheme and O·

X is
a sheaf of (Z−)-graded commutative dg-algebras on X0 such that O0

X = OX0 and such that
O−n
X , for every n ≥ 0, is quasicoherent as an OX0-module. With the above notations we will

say that X0 is the support of X. A morphism f : X → Y of dg-schemes is a morphism of
the underlying supports together with a morphism of sheaves of dg-algebras f∗

0 : O·
Y → O·

X .
A dg-scheme X = (X0,O·

X) is said of finite type if its support is of finite type and if each
O−i
X is coherent on X0. We will denote by dgSch the category of dg-schemes.

If X is any scheme, X has a natural realization as a dg-scheme X̂ with support X and with
trivial differential and grading, i.e. as a (trivially) graded scheme. Conversely, to a dg-scheme
(X0,O·

X) we usually associate two graded schemes:

X� = (X0,O·
X�

) and Xh = (π0(X),H·(O·
X)),

where the scheme π0(X) is defined as SpecOX0
H0(O·

X). The ordinary scheme π0(X) associ-
ated to X is the degree 0 truncation of X and has the following property:

for S ∈ Ob(Sch), HomSch(S, π0(X)) = HomdgSch(Ŝ,X).

By definition, if f : X → Y is a morphism of dg-schemes, f commutes with the differentials,
so that it induces a map fh : Xh → Yh of the associated graded schemes.

Definition 2.2. A morphism f : X → Y of dg-schemes is a quasiisomorphism if the induced
morphism of graded schemes fh : Xh → Yh is an isomorphism. The (right) derived category
of schemes DSch is the category obtained from dgSch by inverting all quasiisomorphisms.

Examples

1. If A· is a Z−graded commutative dg-algebra, the associated affine dg-scheme is the
scheme SpecA·, whose support is the affine scheme SpecA0 and whose structure sheaf
is Ã· (i.e. Ã−i is the the quasicoherent sheaf associated to A−i for each i ≥ 0). Note
that in this example, coordinates in even degree commute and coordinates in odd degres
anticommute.

2. In particular, if E· is a Z+-graded dg-vector space, E· supports the affine scheme
structure given by Spec Sym(E·)∨, where the symmetric algebra is taken in the graded
sense.

3. If X is an ordinary scheme and if X has an embedding into a scheme of finite type X0

as a complete intersection, the dg-scheme X̂ is isomorphic in DSch to the dg-scheme
Y defined as follows:

(a) the support of Y is X0;
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(b) if E is the locally free OX0-module of generators of the ideal of the embedding of
X into X0, we define O−i

Y := ∧iE∨, for i ≤ 0. The graded sheaf O·
Y so defined

inherits a structure of (graded-)commutative algebra from the exterior algebra
structure and the differential is given by the Koszul differential, which makes the
complex

OX0 ←− O−1
Y ←− O−2

Y ←− . . .

into the Koszul resolution of the ideal of X.

Definition 2.3. A quasicoherent dg-sheaf on a dg-scheme X is a sheaf F · of dg-modules
over O·

X such that each F−i is quasicoherent on X0.
A dg-bundle on X is a locally free dg-sheaf on X, i.e. a dg-sheaf whose associated graded
sheaf F ·

� is locally isomorphic to a sheaf of the form E· ⊗O·
X , for E· a graded vector space.

A useful fact is the following standard:

Lemma 2.4. Let X be a quasiprojective dg-scheme (its support is quasiprojective). If F · is
quasicoherent (resp. coherent), it is quasiisomorphic to a flat (locally free) dg-sheaf E ·.

Proof. The lemma follows by induction arguments based on the case of ordinary sheaves in
which it is easily true that a quasicoherent (resp. coherent) sheaf on a quasiprojective scheme
is (by definition) the quotient of a flat (resp. locally free) sheaf.

The above lemma allows us to define the tensor product of two quasicoherent sheaves on a
dg-scheme by means of flat resolutions. The result is unique in the derived category DCoh(X)
of quasicoherent sheaves where morphisms are taken up to homotopy and quasiisomorphisms
are inverted.

3 Differential graded manifolds

Definition 3.1. A dg-scheme X = (X0,O·
X) is said smooth (or a dg-manifold) if its support

X0 is a smooth algebraic variety and if its structure sheaf O·
X is isomorphic as a graded

algebra to Sym(Q·
X), where Q·

X =
⊕

i≥1 Q
−i
X is a graded vector bundle. The dimension of a

dg-manifold is the sequence {di(X)|i ≥ 0}, where

d0(X) = dimX0 and di(X) = rkQ−i
X .

Remark 3.2. A dg-manifold is then an algebraic variety which is a closed subscheme of a
smooth algebraic variety embedded as the zero section of a “skew” vector bundle. This notion
is quite subtle and is analogous to smoothness for formal schemes, even though here there
is the differential which is not taken into consideration. This notion is not even invariant for
quasiisomorphisms: consider for instance the dg-scheme Y of example 3 above: considering
the vector bundle E on X0 as a trivial Z+ graded dg-bundle concentrated in degree zero,
we have that Y has for structure sheaf O·

Y = Sym(E∨[−1]) so that every scheme X (not
necessarily nonsingular, think about a very singular projective hypersurface) which can be
embedded into a smooth scheme as a complete intersection has an associated graded scheme
X̂ which is quasiisomorphic to a dg-manifold . More generally, every quasiprojective scheme
has an associated graded scheme which is quasiisomorphic to a dg-manifold: it suffices to
embed the scheme in projective space, to consider the vector bundle on projective space
of its generators and then a quasifree resolution of it. We will see a generalization of this
construction in Lemma 3.3

If f : X → Y is a morphism of dg-schemes we will say that f is a closed embedding if it
so at the level of supports and if the induced morphism f∗ : O·

Y → O·
X is surjective.

The flexibility of the above notion is contained also in the following:
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Lemma 3.3. Any quasiprojective dg-scheme X is a quasiisomorphic closed subscheme of a
dg-manifold M and any two closed embeddings X → M , X → N can be extended with
commutative embeddings M → L and N → L to a dg-manifold L.

Proof. For the second part, once we have X → M and X → N , it will be enough to embed
M ∪X N into a dg-manifold. The first part is done by considering first an embedding into
projective space and then resolving the sheaf O·

X by a quasi-free dg-algebra, by the technique
of “imitating the procedure of attaching cells to kill homotopy groups”. We will leave details
to [?], but the starting point is to first consider the open part Y ⊂ P where X is closed
and then construct the symmetric algebra over the bundle of generators of the ideal of the
embedding X → Y . We then consider a bundle of cycles representing the −1st homology of
this algebra and we consider the symmetric algebra over this; this does not affect homology
on larger degrees and we go on.

The tangent space to a dg-manifold X is defined as in the ordinary sense: there exists a
dg-sheaf Ω1·

X and a derivation δ : O·
X → Ω1·

X which are universal.

Lemma 3.4. Ω1·
X is a dg-vector bundle of rank {di(X)|i ≤ 0}.

Definition 3.5. The tangent bundle T ·X of a dg-manifold X is the Z+graded dg-bundle
Hom(Ω1·

X ,O·
X). If x ∈ X the tangent space to X at x is the complex of vector spaces T ·

xX =
T ·X ⊗Kx, where Kx is the dg-algebra of the point x.

Let us consider for instance the example of an ordinary scheme X which is a complete
intersection in projective space PN and let us consider the quasiisomorphic dg-manifold
X̂ considered in example 3. Let E be the bundle on PN such that E|X = NX and that
O·
X̂

= Sym(E∨[−1]). Then T ·X̂ is the dg-bundle

TPN −→ E,

where the differential restricted to X is given by the Jacobian matrix . This shows that even
if X is singular, X can be thought of as “smooth in an appropriate sense”. Notice that in
this example the kernel of the restriction (after truncation) of the above map is intrinsic (it
is TX) and does not depend on the chosen embedding.

For the cohomology groups of the tangent space at a point of a dg-manifold X the following
suggestive “topological” notion is used:

πi(X,x) := H−i(T ·
xX), i < 0.

The notation reminds us of two topological theorems:

Proposition 3.6. Given a dg-manifold X there are natural bilinear maps (the Whitehead
products)

πi(X,x)⊗ πj(X,x) −→ πi+j−1(X,x)

which make π·+1(X,x) into a graded Lie algebra. For any morphism f : X → Y , the induced
morphism π·(X,x)→ π·(Y, f(x)) is a Lie algebra homomorphism.

Proposition 3.7. Let f : X → Y be a morphism of dg-manifolds. Then f is a quasiisomor-
phism if and only if π0(f) : π0(X) → π0(Y ) is an isomorphism and the differential induces
isomorphisms πi(X,x)→ πi(Y, f(x)) for all x ∈ X and i < 0.

Sketch of proofs. For both statements we look at the completion Ô·
X,x which is in a natu-

ral way the completion of a graded free algebra; moreover, we have by definition that any
choice of a coordinate system at x corresponds to an isomorphism between Ô·

X,x and the
completion of the Symmetric algebra on the vector space Ω1·

X,x. As for proposition 3.6, the
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differential on the completion Ô·
X,x induces a differential on the completed symmetric algebra

Ŝym(Ω1·
X,x) = Ŝym(T ·

xX[−1])∨[−1]. Now, (see [10]), if g is a graded vector space, a differential
on Sym(g∨[−1]) corresponds to an L∞ structure on g and the cohomology of an L∞ algebra
is a differential graded Lie algebra. As for proposition 3.7, isomorphisms as those indicated
induce isomorphisms on the symmetric powers of the cotangent spaces, which are the quo-
tients of the filtrations of the completions of the local rings. They induce isomorphisms of
the completions because the sheaves are bounded above.

Definition 3.8. A morphism f : X → Y is smooth if the following hold:

1. the underlying morphism f0 : X0 → Y 0 of supports is smooth;

2. locally on X we have an isomoprphism O·
X� � f0∗O·

Y � ⊗ Sym(Q·), where Sym(Q·) is
free as a commutative graded algebra.

We have a relative analog of lemma 3.3:

Proposition 3.9. Let f : X → Y be a morphism of quasiprojective dg-schemes. Then there
exists a factorization X → X̃ → Y where X → X̃ is a quasiisomorphic closed embedding and
f̃ : X̃ → Y is smooth.

Proof. The proof is as in 3.3, but here we embed X into Y × P.

The above proposition makes it easy to give the following

Proposition-Definition 3.10. Let f : X → Y be a morphism of quasiprojective dg-schemes
and let i : X → X̃ be a quasiisomorphic closed embedding which factorizes f . The relative
cotangent sheaf L·

X/Y := Ω1·
X̃/Y

is the sheaf of relative differentials of the smooth morphism

f̃ and it does not depend on f̃ up to quasisomorphism.

Especially important is the following

Definition 3.11. If fi : Xi → S are morphisms of quasiprojective schemes the derived fiber
product is defined as follows: we fix a factorization f̃1 : X̃1 → Y and we consider the dg-
scheme with support X̃0

1 ×Y 0 X0
2 and structure sheaf (g̃0

1)−1OX̃·
1
⊗(f1g1)−1O·

Y
(g2

0)−1OX2
· ,

where maps are as in the diagram:

X̃1 ×S X2

g2 ��

g̃1

��

X2

f2

��
X̃1

f̃1

�� S

The construction does not depend on any choice.

Notice that via derived fiber products it is possible to define fibers of morphisms, inter-
sections and many other constructions which are ubiquous.

Examples

1. If X and Y are quasiprojective ordinary schemes contained in Z, and if we consider
them as graded schemes we can compute their derived intersection X ∩D Y by taking
the fiber product with respect to the embeddings X → Z and Y → Z. The resulting
scheme has for cohomology of the structure sheaf the sheaves TorOZ

i (OX ,OY ) (see the
introduction).
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2. If f : X → Y is a smooth morphism, we can consider the Kodaira-Spencer map

Rk : T ·
yY −→ RΓ(Rf−1, T ·(X/Y )).

In this setting this is also a map of graded Lie algebras; moreover the cohomology groups
of the base act on the hypercohomology of the fiber in a way remindful of monodromy.

4 Ordinary Quot and Hilbert schemes

Let X be a projective scheme, let OX(1) be a very ample sheaf on X, let F be a coherent
sheaf on X and let hF (t) = χ(F(t)) ∈ Q[t]. For any fixed h ∈ Q[t], and for any scheme S,
the Quoth(F) scheme is defined as the scheme representing the functor

Quoth(F)(S) =
= {OS flat subsheaves of π∗

XF with relative Hilbert polynomial h(t)}.

In particular, if F = OX , Quoth(OX) = Hilbh(X). The infinitesimal study of the Quot-
scheme shows that if [K] is a closed point of Quoth(F) (i.e K ⊂ F and hK = h), then

T[K]Quoth(F) = HomOX
(K, FK ) and obstructions live in Ext1OX

(K, FK ).

Notice that in the case of the Hilbert scheme, where K is the sheaf of ideals of a subscheme of
X with given Hilbert polynomial, that, if the subscheme associated to K is locally a complete
intersection, the sheaf HomOX

( K
K2 ,OX) = N is locally free (the normal bundle) and we have

identifications

HomOX
(K, FK ) = H0(X,N ), Ext1OX

(K, FK ) = H1(X,N ).

The basic idea of the construction of the Quot scheme is that for r � 0, any subsheaf of F
with Hilbert polynomial h is r-regular in the sense of Castelnuovo-Mumford. In particular,
the map that associates K to the linear subspace H0(X,K(r)) ⊂ H0(X,F(r)) determines an
embedding of Quoth(F) into the Grassmannian G(h(r), H0(X,F(r))).
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Let us now consider the following data:

1. An associative algebra A.

2. A finite-dimensional (left) A-module M .

3. A positive integer k ≤ dimM .

Definition 4.1. The A-Grassmannian is the subscheme GA(k,M) of G(k,M) parametrizing
subspaces of M which are in fact (left) A-submodules of M .

One can define GA(k,M) as a scheme in the following way: if [V ] ∈ GA(k,M) the natural
action A⊗M →M , restricts to an action A⊗ V with values in V . This means that we can
describe GA(k,M) as the zero scheme of the natural section s ∈ H0(G(k,M),Hom(Ṽ , (M ⊗
OG)/Ṽ ) induced by the A-module structure on M , where Ṽ ⊂ M ⊗ OG is the universal
inclusion over the Grassmannian. From this description it is easy to check that

T[V ]GA(k,M) = Hom0
A(V,

M

V
).

In the formula above Hom0 stands for degree zero homomorphisms in case A and M are
graded. Ciocan Fontanine and Kapranov apply the above construction to the following data:

1. A =
⊕

nH
0(X,OX(n)).

2. M[p,q] :=
M≥p
M≥q

, where M =
⊕

nH
0(X,F(n)).

3. k = h(i) for i = p, . . . , q, with 0� p� q.

We define GA(k,M[p,q]) as
∏

iGA(h(i),Mi) and we have the following

Theorem 4.2. The natural morphism Quoth(F)→ GA(k,M[p,q]) is an isomorphism.

The idea of the proof is quite basic and elementary, since in order to reconstruct a sheaf of
OX -modules it is enough to determine finitely many graded pieces of the associated graded
modules. In [2] the theorem is extended in the following way: if M = A we denote GA(k,A)
by J(k,A), the scheme of (left) ideals of A of dimension k.

Theorem 4.3. The natural morphism Hilbh(X)→ J(k,A[p,q]) is an isomorphism.

The non trivial part of the above statement is to invert the obvious inclusion GA(k,A[p,q])→
J(k,A[p,q]). In order to understand the dg-generalisation of the construction we have to un-
derstand the following two constructions:

Definition 4.4. Let V be a finite-dimensional vector space and let A be an associative al-
gebra. The space of actions Act(A, V ) is the subscheme of the affine scheme Hom(A⊗ V, V )
consisting of all A-actions.

Proposition 4.5. If f ∈ Act(A, V ), then TfAct(A, V ) = Z1(C ·), where C · is the complex
Hom·(BA(V ), V ) computing Ext·A(V, V ) and BA(V ) is the bar resolution of V as an A-
module.

Proof. If f ∈ Hom(A ⊗ V, V ) then f is in Act(A, V ) if and only if the associativity rule
f(a1 · (a2 · v)) = f(a1a2 · v). Differentiating the expression we get that for f ∈ Act(A, V ) the
map δf : A⊗A⊗ V → V defined by

δf(a1 ⊗ a2 ⊗ v) = f(a1a2 ⊗ v)− f(a1 ⊗ f(a2 ⊗ v))

vanishes, i.e if an donly if f ∈ Z1(C ·).
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Remark 4.6. If we consider the quotient stack Act(A, V )/GL(V ), we have as tangent spaces
the first two spaces of cohomology ExtiA(V, V ) for i = 0,−1.

Definition 4.7. Let S be a scheme, letM and N be two vector bundles with fiberwise (left)
A-action (they are OS ⊗ A-modules which are locally OS-sheaves and let φ :M→ N be an
(OS)-morphism. The linearity locus LinA(φ) is the scheme

LinA(φ) := {s ∈ S |φs :M⊗ k(s)→ N ⊗ k(s) is A−linear}.

Proposition 4.8. LinA(φ) is the fiber product

LinA(φ) ��

��

S

φ

��
|HomA⊗OS

(M,N )| �� |HomOS
(M,N )|

Proof. Obvious.

An important construction

Let Ṽ ⊂M⊗OG be the universal inclusion over G(h,M). We construct the scheme Act(A, Ṽ )
fiberwise as the subscheme of |Hom(A ⊗ Ṽ , Ṽ )| fiberwise satisfying associativity equations.
We have the projection q : Act(A, Ṽ )→ G(h,M) and a natural morphism φ : q∗Ṽ →M ⊗O.
Then

Theorem 4.9. GA(h,M) is isomorphic to the linearity locus of the morphism φ constructed
above.

5 Derived Quot and Hilbert schemes

We will construct a dg-manifold RQuoth(F) such that:

1. π0(RQuoth(F)) = Quoth(F);

2. if [K] ∈ RQuoth(F), πi(RQuoth(F), [K]) = ExtiOX
(K, FK ), for i > 0.

5.1 The bar resolution

In this section we recall the principal definitions on the bar resolution of an associative
algebra; this is in fact a very special case of a much more general construction: if O is an
operad which satisfies some finiteness conditions (admissibility, see [3]), the bar-construction
of the cobar construction of the operad O is a free operad D(O) which is quasiisomorphic to
O. The operads Ass and Comm satisfy this property so that for algebras over these operads,
i.e. associative and commutative algebras there is a natural quasifree resolution given by the
bar resolution. For associative algebras this is constructed in the following way: if A is an
associative Z−-graded algebra, let V be the graded vector space

F =
∞⊕
n=1

A⊗n[n− 1].

Then the bar resolution of A is the free associative algebra BarA(A) on F . Let us denote ∗
the multiplication on BarA(A); we put a differential structure on BarA(A) in the following
way:

d = d′ + d′′,
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where d′ is the natural tensor differential on A⊗n inherited by the differential on A and d′′

is defined by

d′′(a0, . . . , an) =
n−1∑
i=0

(−1)ia0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an −

−
n−1∑
i=0

(−1)i(a0 ⊗ . . .⊗ ai) ∗ (ai+1 ⊗ . . .⊗ an).

Proposition 5.1. 1. The map d defined above is a differential (d2 = 0).

2. The projection BarA(A)→ F → A , where the last map is given by inner multiplication
on the summands, is a quasiisomorphism of associative algebras.

Analogously, if V is an A-module, we consider the free left A�−module

BarA(V ) =
∞⊕
n=1

A⊗n ⊗ V [n− 1].

Let µn : A⊗n ⊗ V → V be the nth component of the projection BarA(V ) → V . We put on
BarA(V ) a structure of dg-module over A by defining the differential:

d(a0 ⊗ . . .⊗ an ⊗m) =
n∑
i=0

(−1)i−1a0 ⊗ . . .⊗ dai ⊗ . . .⊗ an ⊗m +

+
n−1∑
i=0

(−1)ia0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an ⊗m +

+
n∑

p=0

(−1)p(n−p)a0 ⊗ . . .⊗ ap ⊗ µn−p(ap+1 ⊗ . . .⊗ an ⊗m).

Proposition 5.2. 1. The map d defined above is a differential (d2 = 0) and makes
BarA(V ) a free left dg-module over A.

2. The projection BarA(V )→ V is a quasiisomorphism of dg-modules over A.

5.2 The derived space of actions

We start with a finite dimensional K-vector space V (considered as a graded vector space
in degree zero) and with a Z−-graded associative K-algebra A. We construct, as in the non-
graded case, the space of actions in the following way: the complex HomK(A ⊗ V, V ) is a
Z+-graded complex and we have already defined the affine scheme |HomK(A ⊗ V, V )| =
SpecSym(HomK(V,A ⊗ V )); in the scheme |HomK(A ⊗ V, V )| we consider the subscheme
Act(A, V ) as the one defined by the dg-ideal of Sym(HomK(V,A ⊗ V )) generated by the
associativity conditions. Consider next the case in which A = F (E) is a tensor algebra
on a Z−-graded vector space E. Then, by definition, to give an action of A on V is the
same as to specify the action of generators so that Act(A, V ) = |HomK(E ⊗ V, V )|. The
algebras of our interest will be quasifree associative algebras, i.e. dg-algebras A such that
A� = F (E) is a free algebra; in this case the scheme Act(A, V ) has the obvious property
that Act(A, V )� is an affine dg-scheme, identified with |HomK(E ⊗ V, V )|. The definition
and the construction of Act(A, V ) is trivially functorial in A in each of the above cases:
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if f : A1 → A2 is a morphism of algebras it is then defined a morphism of dg-schemes
f∗Act(A2, V )→ Act(A1, V ), satisfying functoriality conditions.

Let now A be a finite dimensional ungraded associative algebra and let V be a finite
dimensional K-vector space; if needed, we will consider A and V as graded with trivial
grading.

Definition 5.3. The derived space of actions of A on V , RAct(A, V ) is defined as Act(B, V )
where B → A is any quasifree resolution.

In order to show that the definition is well posed, Kapranov and Ciocan-Fontanine prove:

Theorem 5.4. If f : B1 → B2 is a quasiisomorphism of quasifree associative Z−-graded
algebras the induced morphism f∗Act(B2, V ) → Act(B1, V ) is a quasiisomorphism of dg-
schemes.

As a corollary we have that:

Corollary 5.5. Let A be an associative algebra.

1. The scheme RAct(A, V ) is well defined up to quasiisomorphism.

2. If A = F (E) is a free associative dg-algebra ( with trivial differential) then RAct(A, V )
is quasiisomorphic to Act(A, V ) = |HomK(E ⊗ V, V )|.

3. If every graded piece of A is finite dimensional, RAct(A, V )� is quasiisomorphic to an
affine linear dg-manifold.

4. If A is concentrated in degree zero π0(RAct(A, V )) = Act(A, V ).

Sketch of proof. The first two parts are corollaries 3.7.1 and 3.7.2 of [2]. We will discuss
the last two points, which are the relevant ones for our purposes. Since the construction
of RAct(A, V ) is, up to quasiisomorphism, independent of the resolution we choose we will
use the bar resolution BarA(A) to compute RAct(A, V ); the nth graded piece of the bar
resolution BarA(A) is A⊗n which is finite dimensional because A is finite dimensional, so
that the coordinate ring of RAct(A, V ) is the symmetric algebra on the matrix elements of
indeterminate linear operators φn : A⊗n⊗ V → V , which is quasifree and with finitely many
generators in each degree. As for the last point, if A has trivial grading, always considering
the model of RAct(A, V ) built upon the bar resolution BarA(A), π0(RAct(A, V )) is the
closed subscheme of the affine ordinary scheme |HomK(A ⊗ V, V )| whose defining ideal in
SymHomK(V,A⊗ V ) is the image of the differential

δ :HomK(V,BarA(V )−1) = HomK(V,A⊗A⊗ V ) −→
−→ HomK(V,BarA(V )0) = HomK(V,A⊗ V ).

Now, by construction, the image of the above map is dual to the kernel of the map δ∨ :
HomK(A ⊗ V, V ) → HomK(A ⊗ A ⊗ V, V ) defined by δ∨(φ)(a1 ⊗ a2 ⊗ v) = φ(a1a2 ⊗ v) −
φ(a1 ⊗ (φ(a2)v)).

5.3 The derived linearity locus

Let S be a Z−-graded dg-scheme, letM and N∨ be two quasicoherent dg-sheaves such that
M� and N∨

� are OS� locally free; we assume there is a fiberwise (left) A-action on M and
N∨. Let φ :M → N be an OS-morphism. In order to construct the derived version of the
linearity locus of the morphism φ, we proceed as follows:

1. we choose a resolution P →M such that P is quasicoherent and P� is OS�⊗A�-locally
projective;
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2. we define:

Definition 5.6. The derived linearity locus RLinA(φ) is the derived fiber product

RLinA(φ) ��

��

S

φ

��
|HomA⊗OS

(P,N )|
ψ

�� |HomOS
(M,N )|

Proposition 5.7. If P is a resolution of M satisfying property 1 above and such that the
morphism ψ in definition 5.6 above is flat, the scheme RLinA(φ) is independent, up to quasi-
isomorphism on the choice of P. The bar resolution BarA(M) satisfies the above properties
and in particular the derived product in definition 5.6 coincides with the usual fiber product.

Proposition 5.8. The model of RLinA(φ) built on the bar resolution BarA(M) is the total
space of a vector bundle and π0(RLinA(φ)) = LinA(φ).

Sketch of proof. The proposition is a consequence of the fact that to give anOS×A-morphism
of BarA(M) into N is equivalent to give an OS morphism of BarA(M) into N with one shift
in degrees, so that, if RLinA(φ, bar) denotes this particular model for RLinA(φ),

RLinA(φ, bar) = |Cone{f : OS −→ HomOS
(BarA(M),N )}[1]|,

where the degree zero part of f defines in HomOS
(A⊗M,N ) the map a⊗m $→ φ(a⊗m)−

aφ(m). This way a point of RLinA(φ, bar) is identified with a point s ∈ S together with a
collection of maps (φ, f1, f2, fn, . . . ) at the point s ∈ S, with fi : A⊗i ⊗M|s → N|s, such
that (φ, f1, f2, fn, . . . ) is an A∞ morphism (see below). The degree zero truncation of this is
by definition LinA(φ).

5.4 The derived A-Grassmannian

Let us be given a finite dimensional associative K-algebra, a finite dimensional A−module
and a positive integer k. The scope of this paragraph is to define a dg-scheme RGA(k,M)
with π0(RGA(k,M)) = GA(k,M) as defined in section 4. Having already constructed the
derived version of the schemes Act(A, V ) and LinA(φ), we will just parallel the construction
above. Let G = G(k,M) be the Grassmannian of k−dimensional subspaces of M and let
V ⊂ M ⊗ OG be the universal subbundle on G; we can easily construct RAct(A,V) which
is a flat family of schemes RAct(A, V ) on the fibers V ⊂ V. We can choose a model for
RAct(A,V) such that RAct(A,V) is a dg-manifold and such that the natural projection
p : RAct(A,V) → G is a smooth morphism: it suffices to choose a resolution B → A with
finitely many generators in each degree. Consider next the pullback morphism

φ : p∗V →M ⊗ p∗OG.

The morphism φ is an ORAct(A,V )-morphism of locally free sheaves with a B-action on the
fibers. It then applies the construction of paragraph 5.3: we choose, as we can, a good reso-
lution P → V and we construct RLinB(φ).

Definition 5.9. The derived A-Grassmannian RGA(k,M) is the derived linearity locus RLinB(φ).

Theorem 5.10. The dg-scheme RGA(k,M) is independent, up to a quasiisomorphism, of
the resolutions B → A and P → V, satisfying the hypotheses of 5.7. There is a model of it
which is a dg-manifold and π0(RGA(k,M)) = GA(k,M).

Proof. The result follows from 5.5 and 5.7.
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5.5 Infinitesimal computations

In this paragraph we will compute tangent complexes for the spaces RAct(A, V ), RLinA(φ)
and RGA(k,M) constructed above; we will do so up to quasiisomorphism, so that we will in
fact perform all our computations using the particular models obtained using bar resolutions.
The complete result for this section is:

Theorem 5.11. We have the following:

1. If µ ∈ Act(A, V ), then HiT ·RAct(A, V ) = Exti+1
A (V, V ) if i > 1 and H0T ·RAct(A, V ) =

TµAct(A, V ).

2. If s ∈ ST ·
sRLinA(φ) = Cone{T ·

sS → T ·
s|HomOS

(BarA(M),N )|}[1] up to quasiisomor-
phism.

3. If V ⊂M is any A-submodule, HiT ·
V RGA(k,M) = ExtiA(V, MV ).

Proof. As for the first result, we go back to paragraph 5.2 for notations and in particular
we use the bar resolution for A in order to make computations. In this case, we have, by
definition:

TµRAct(A, V, bar) = HomA(Bar≤−1
A (V ), V )[1]

and the cohomology of this complex computes the Ext’s for i ≥ 1; for i = 0 we have already
shown that π0(RAct(A, V ) = Act(A, V ). The second result is trivial, considering the result
of Proposition 5.8. As for the third result, from the exact sequence 0 → V → M → M

V → 0
it follows that in the derived category we have an identification

RHomA(V,
M

V
) = Cone{RHomA(V, V ) −→ RHomA(V,M)}[1].

Using the model for RGA(k,M) with bar resolutions, we get:

T ·
V RGA(k,M) =Cone{T ·

(V,µ)RAct(A,V) −→
−→ T ·

(V,µ)|HomORAct(A,V )(BarA(p∗V),M ⊗ORAct(A,V ))|.

Since RAct(A, V ) and |HomORAct(A,V )(BarA(p∗V),M⊗ORAct(A,V ))| are fibrations over G(k,M)
we have two exact sequences:

0 −→ HomA(BarA(V )≤−1(V ), V ) −→ T ·
(V,µ)RAct(A,V) −→ TVG(k,M) −→ 0

and

0 −→ HomA(BarA(V ),M) −→
−→ T ·

(V,µ)|HomORAct(A,V )
(BarA(p∗V),M ⊗ORAct(A,V )) −→ TVG(k,M)→ 0.

Taking the cone the last part in the two exact sequences cancel out and, taking into consid-
eration the first observation we made, we get

T ·
V RGA(k,M) = RHomA(V,

M

V
),

which means that the cohomology of the first complex is as stated.
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5.6 Functorial properties

We recall the principal definitions regarding A∞-structures.

Definition 5.12. Let A be an associative dg-algebra. A left A-module over A is a graded
vector space V together with a collection of linear maps

µn : A⊗n+1 ⊗ V → V, n ≥ 0, degµn = 1− n,

satisfying the conditions:

n∑
i=1

(−1)a1+...+ai−1µn(a1, . . . , dai, . . . , an,m) =

=
n−1∑
i=1

(−1)iµn−1(a1, . . . , aiai+1, . . . , an,m)−

−
p+q=n∑
p+q≥0

(−1)q(a1+...+ap)+p(q−1)+q(p−1)µp(a1, . . . , ap, µq(ap+1, . . . , an,m)).

In particular dM = µ0 is a differential and , if µn = 0 for n ≥ 2, an A∞- module over A is
the same as an ordinary dg A-module.

Definition 5.13. Let A be an associative dg-algebra, let M be an A∞-module over A and
let N be an A-module. An A∞ morphism φ : M → N is a collection of linear maps

φn : A⊗n ⊗M → N, n ≥ 0, deg φn = −n,

satisfying the conditions:

dφn(a0, . . . , an,m)−
n∑
i=1

(−1)iφn(a1, . . . , dai, . . . , an,m) =

=
n−1∑
i=0

(−1)iφn−1(a1, . . . , aiai+1, . . . , an,m)

+
n∑

p=0

(−1)p(n−p)φp(a0, . . . , ap, µn−p(ap+1, . . . , an,m)).

As before, φ0 is a morphism of complexes and, if M is in fact an A-module and if φn = 0
for n ≥ 2, the morphism φ is an A-morphism.

As a consequence of the definitions we have:

Proposition 5.14. Let A be an associative algebra and let V be a graded vector space.

1. An A∞−action of A on V is the same as a dg-action of BarA(A) on V .

2. Let N be any dg-module over A. An A∞−morphism φ : M → N is the same as a
morphism of dg-modules BarA(M)→ N .

For all the rest of this section, we will consider the model for RGA(k,M) obtained by
taking the bar resolution of A for the construction of RAct(A, V ) and the bar resolution of
M in the construction of RLin(φ), always with notations of paragraphs 5.1, 5.2 and 5.3.

Proposition 5.15. Let R be any commutative dg-algebra. We have:
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1. Homdg−alg(K[RAct(A, V,bar)], R) is naturally identified with the set of R-multilinear
A∞-actions of A⊗R into V ⊗R.

2. Homdg−alg(K[RLin(φ,bar)], R) is naturally identified with the set of data (g, h1, . . . , hn, . . . )
where g : Spec(R)→ S is a morphism of dg-schemes and hn : A⊗n ⊗ g∗M → g∗N are
such that (g∗φ, h1, . . . ) is an A∞-morphism g∗M → g∗N .

3. Homdg−alg(K[RGA(k,M,bar)], R) is naturally identified with the union of the above
sets of data.

5.7 From the A-Grassmannian to the derived Quot scheme

In previous paragraphs we constructed, for a given finite dimensional K-algebra and for a
given finite dimensional A-module a dg-manifold RGA(k,M). In this paragraph we will show
how to use this construction in order to construct derived Quot schemes. The case of interest
in geometry is the following:

1. X is a projective scheme;

2. F is a coherent sheaf on X;

3. A =
⊕

i≥0 H
0(X,OX(i));

4. M =
⊕q

i=pH
0(X,F(i)).

So the main difference with the case we have analysed in the last paragraphs is that A is no
more finite dimensional, although each graded piece of A is.

Convention 5.16. Given two graded left A-modules M and N, we define the Exti,0A (M,N)
as the derived functors of Hom0

A(M,N), which consists of degree zero A-morphisms from M
into N .

Now the construction of paragraph 5.4 can be repeated verbatim if we consider everywhere
morphisms of degree zero with respect to this new (projective) grading and we replace the
functor Hom with the functor Hom0; the resulting dg-scheme will be indicated by RG0

A(k,M).

Proposition 5.17. Let A be an infinite dimensional (Z+)-graded associative algebra with
dimK Ai < ∞ for every i ≥ 0 and let M be a finite dimensional graded A-module. The
(graded version of the) derived A-Grassmannian RG0

A(k,M) is a dg-manifold with:

1. π0(RG0
A(k,M)) = G0

A(k,M);

2. HiT ·
V RG0

A(k,M) = Exti,0A (V, MV ).

Proof. The only fact to be proved is that RG0
A(k,M) is a dg-manifold. In order to prove this

it is enough to prove that the corresponding graded version RAct0(A, V ) of RAct(A, V ) is
a dg-manifold, i.e. that its coordinate sheaf has finitely many generators in each degree; for
RAct(A, V ) this is a consequence of the finiteness of A which implies finitely many generators
in each degree for the bar resolution. But this holds also in our case: RAct0(A, V, bar),
by its very definitions has generators of given degree t given by morphisms of degree zero
A⊗n⊗V → V and since V is finite dimensional, there are only finitely many possibilities for
maps

Ai1 ⊗ . . .⊗Ain Vj → Vi1+...+in+j .
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Definition 5.18. Let X be a projective scheme, F be a coherent sheaf on X and let h(t) ∈
Q[t] be a polynomial. Let A = ⊕i≥0H

0(X,OX(i)) and let M = ⊕qi=pH
0(X,F(i)) with 0 �

p� q. The derived Quot scheme is defined as

RQuoth(F) := RG0
A(h,M[p,q]).

This definition is well posed in the derived category of dg-schemes: in order to prove this
we finally only need to prove independence up to quasiisomorphism on the choice of p and q.

Theorem 5.19. The following hold true:

1. For 0� p� p′ � q′ � q the natural projection RG0
A(h,M[p,q])→ RG0

A(h,M[p,q]) is a
quasiisomorphism of dg-manifolds.

2. π0(RQuoth(F)) = Quoth(F);

3. if K⊂F has Hilbert polynomial h, then HiT ·
V RQuoth(F) = ExtiOX

(K, FK ).

Sketch of proof. The second result is a consequence of theorem 4.2. The first part is a conse-
quence of the other two, because of the ”Whitehead Theorem” (proposition 3.7). So we need
to prove the third part. This is a consequence of the next proposition and of standard relations
between sheaves and associated garded modules, given by Serre’s correspondence.

Proposition 5.20. Let X be a projective scheme, let F , G,K be coherent sheaves on X
and let A =

⊕
i≥0 H

0(X,OX(i)), M =
⊕

i≥0 H
0(X,F(i)), N =

⊕
i≥0 H

0(X,G(i)), V =⊕
i≥0 H

0(X,K(i)).

1. ExtiOX
(F ,G) = lim→ Exti,0A (M≥p, N≥p);

2. there exists p such that

ExtiOX
(K, FK ) = Exti,0A (V≥p,

M≥p
V≥p

).

5.8 Derived Hilbert schemes

In the category of schemes, if we choose on a projective as coherent sheaf F = OX , as we
have already noticed Quoth(OX) = Hilbh(X), where Hilbh(X) is the scheme parametrizing
subschemes of X with Hilbert polynomial h. In fact, as we sketched in section 4, we can
construct Hilbh(X) as a Quot scheme, parametrizing subspaces of A[p,q] of given dimensions
which are also A-modules, see theorem 4.3 , where this scheme is defined as J(k,A[p,q]).
The point here is that A-submodules of A are in fact ideals of A: we can also construct a
derivation of the Hilbert scheme in the derived category, whose end is to derive the property
to be an ideal in a commutative algebra, i.e. the property, for a subspace of a given vector
space to be a commutative algebra. If we perform this construction in the derived category
we end up with a dg-manifold whose degree zero truncation is Hilbh(X), but which is not
quasiisomorphic to the derived Quot scheme. In this paragraph we give the main ingredients
of the construction of the derived Hilbert scheme. We give it in steps:

First step: reduction to a finite-dimensional model

Exactly as in paragraph 5.6 we reduce the problem to construct Hilbh(X) to the following
problem:

1. A is a finite dimensional commutative algebra (possibly without unit) and h is an
integer.
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2. Construct a dg-manifold RJ (k,A) such that π0(RJ (k,A) = J(k,A), where J(k,A)
parametrizes ideals in A.

As in the case of the Quot scheme, we subdivide the problem into two steps, since giving an
ideal structure to a subspace V of A is equivalent to giving a commutative algebra structure to
V and to making the natural inclusion a homomorphism of commutative algebras. Then the
problem is in fact reduced to construct, for every V ⊂ A of desired dimension, the following:

1. A dg-manifold RCA(V ) such that π0(RCA(V ) = CA(V ), the space of commutative
algebra structures on V .

2. A dg-manifold RHom(φ) such that π0(RHom(φ) = Hom(φ), the homomorphicity locus
of a morphism between two commutative algebras.

As in the Quot case, once one has the above dg-schemes, one constructs RJ (k,A) by con-
sidering the relative construction RCA(V) for the universal subsheaf of a Grassmannian
G, and considering the scheme RHom(φ) over p : RCA(V) → G, referred to the natural
p∗V → A⊗ORCA(V).

Second step: construction of the derived space of commutative algebra structures

In order to do so, as in the case of the Quot-scheme, we consider the bar resolution Com(A)→
A and we perform a parallel construction to the one given in 5.2: we derive the space of
commutative algebra structures on V by considering the space of algebra structures on V
given by the structure of an operad over Com, i.e ” Com∞”-algebras. One finds a model for
the space so constructed which is a dg-manifold and has functorial properties analogous to
those in paragraph 5.5.

Third step: construction of the derived space of homomorphicity

This construction is the same as in paragraph 5.3 and it is a derived fiber product. There are
two differences with the case of the Quot-scheme:

1. it is not possible to prove a theorem like theorem 5.20 in the general case, so that one
has independence of the result on p and q only in special cases, like for instance if we
choose to parametrise only locally complete intersection (LCI) subschemes of X.

2. if h = 1 we have RQuoth(OX) )= X, as one can see by computing tangent spaces in
Theorem 5.19, while RHilbh(X) = X. We have in fact:

Theorem 5.21. There exists a dg-manifold RHilbLCI
h (X) such that:

1. π0(RHilbLCI
h (X)) = HilbLCI

h (X),

2. for any LCI subscheme Z ⊂ X of Hilbert polynomial h HiT ·
ZRHilbh(X) = Hi(Z,NZ/X).

References

[1] I. Ciocan-Fontanine, M. Kapranov, Derived Quot schemes, math.AG/9905174, Ann. Sci.
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Deformations of algebras and cohomology

Domenico Fiorenza

“forse di Irene ho già parlato sotto altri nomi;
forse non ho parlato che di Irene.”

— Italo Calvino - Le città invisibili

1 Introduction

In this short note we show how each algebra deformation problem is described by a suitable
cohomology theory. The language of operads allows us to describe such a cohomology theory in
an universal way (i.e. independent of the particular algebra we are studying). As an example
we will show how this general theory specializes, in the case of associative algebras, to the well
known Hochshild cohomology. All ideas and tecniques used in this note are taken from the
beautiful paper “Cotangent cohomology of a category and deformations” by Martin Markl.

Let us start in a naive way. Let V be a K-vector space and let

ϕ : V ⊗n → V ⊗m

A formal deformation of ϕ will be

ϕ
�

= ϕ+ �ϕ1 + �
2ϕ2 + · · ·

where

ϕi : V ⊗n → V ⊗m

and the deformation parameter � is to be thought so little to ensure the convergence of the
series. Actually, we are not interested at all in the convergence of the series defining ϕ

�
, but

we treat it simply as a formal series (this is the reason why ϕ
�

was called formal). If we now
write

Hom(V ⊗n, V ⊗m)[[�]] := Hom(V ⊗n, V ⊗m)⊗K[[�]]

and by

mod � : Hom(V ⊗n, V ⊗m)[[�]]→ Hom(V ⊗n, V ⊗m)

the canonical projection, we can restate what we have written above by sayng that the formal
deformations of an element ϕ ∈ Hom(V ⊗n, V ⊗m) are{

ϕ
�
∈ Hom(V ⊗n, V ⊗m)[[�]] such that ϕ

�
= ϕ mod �

}
We can make one more step further: if 〈∗n,m〉 denotes the one-dimensional K-vector space
generated by the element ∗n,m, then we have a canonical isomorphism

Hom(V ⊗n, V ⊗m)=̃Hom(〈∗n,m〉,Hom(V ⊗n, V ⊗m))
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so that we can think of ϕ as

ϕ : 〈∗n,m〉 → Hom(V ⊗n, V ⊗m)

Thus, the deformations of ϕ can be seen as liftings:

Hom(V ⊗n, V ⊗m)[[�]]

〈∗n,m〉

Hom(V ⊗n, V ⊗m)

ϕ
�

��������������
mod �

��
ϕ

��������������

2 O-algebras and their deformations.

Recall that, if O is an operad of vector spaces, then an O-algebra is simply an operad
morphism

A : O → End(V )

where V is some vector space on a fixed base field K and End(V ) is its endomorphisms
operad. Let now C be any PROP of K-vector spaces. By C[[�]] we denote the PROP defined
as follows:

1. The objects of C[[�]] are the same as the objects of C

2. HomC[[�]](X,Y ) := HomC(X,Y )⊗K[[�]]

Note that the essential here is that the morphisms are K-vector spaces (whatever the objects
are). In particular End(V ) is an operad of vector spaces, so we can consider the operad
End(V )[[�]]. The reduction modulus � is a functor

mod � : C[[�]]→ C

Then, formal deformations of an algebra A are the liftings

End(V )[[�]]

O

End(V )

A
�

������������
mod �

��A ������������

Since

K[[�]] = lim
←
n

K[[�]]/(�n) = lim
←
n

K[�]/(�n)
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A formal deformation of A can be thought as a projective limit

End(V )[[�]]

...

End(V )[[�]]/(�3)

O End(V )[[�]]/(�2)

End(V )

A
�

�������������������������������

A2

������������������ A1 		

A 

����������������

��

��

mod �
2

��

mod �

��

The deformations An are called infinitesimal deformations of A. In particular, An is said
to be a nth order infinitesimal deformation of A. Then we can try to solve the problem of
describing formal deformations of A by a step-by-step approach: starting from A, describe the
1st order deformations of A; given a 1st order deformation of A, try to lift it to a 2nd order
deformation, and so on (notice that the problem of the existence of formal deformations is
trivial: the trivial deformation A

�
= A + � · 0 + �

2 · 0) + . . . works. What we are interested
in is describing the space of all formal deformations of A.). For any n, given an nth order
deformation An, there are two questions we have to answer:

1. Does An lift to a (n+ 1)th order deformation An+1?

2. If yes, which are these liftings?

In the next section we will show how the obstruction to the answer yes in the first question
is given by an element in the second cohomology group of a certain complex, and that, when
this obstruction vanishes, the liftings are parametrized by elements in the first cohomology
group of that complex. Such a cohomological theory is called the cotangent cohomology of A.
Describing it is the aim of the next section.

3 Resolutions of operads and cotangent cohomology.

As we have seen in [Fi], any operad over N can be realized as a quotient of a free operad:

0←− O π←−F(X)←− I ←− 0

The kernel I of the natural projection π : F(X) → O is an ideal of F . In particular it
is an F(X)-bi-module. Since any F(X)-bi-module can be realized as the quotient of a free
F(X)-bi-module, the short exact sequence above can be extended to a resolution

R : 0←− O π←−F(X) α←−F(X)〈Y 〉 β←−F(X)〈Z〉 ←− · · ·

of F(X)-bi-modules (O is a F(X)-bi-module via π). Let now M be an O-bi-module. Then
M is an F(X)-bi-module via π. Denote by

Der(F(X),M)
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the space of derivations of F(X) with values inM , i.e. the set of all linear maps θ : F(X)→M
such that

θ(ϕ ◦ ψ) = θ(ϕ) · ψ + ϕ · θ(ψ)
θ(ϕ⊗ ψ) = θ(ϕ)⊗ ψ + ϕ⊗ θ(ψ)

Since Der(F(X),M) is a subspace of the space Hom(F(X),M) of all linear maps from F(X)
to M , the composition with α defines a morphism

α∗ : Der(F(X),M)→ HomVect(F(X)〈Y 〉,M)

What is crucial here is that the image of α∗ is actually contained in the subspace HomF(X)(F(X)〈Y 〉,M)
of F(X)-bi-module homomorfisms from F(X)〈Y 〉 to M . In fact, if θ ∈ Der(F(X),M),
ϕ ∈ F(X) and ψ ∈ F(X)〈Y 〉, we have

(α∗θ)(ϕ ◦ ψ) = θ (α(ϕ ◦ ψ)) =

by F(X)-linearity of α

= θ (ϕ ◦ α(ψ)) =
θ(ϕ) · α(ψ) + ϕ · θ (α(ψ)) =

since F(X) acts on M via π

= θ(ϕ) · π (α(ψ)) + ϕ · (α∗θ)(ψ) =
ϕ · (α∗θ)(ψ)

(the proof for the tensor product is completely analogue). Since β is an homomorphism of
F(X)-bi-modules, it induces (by composition) a map

β∗ : HomF(X)(F(X)〈(Y 〉,M)→ HomF(X)(F(X)〈(Z〉,M)

Finally, being R a resolution, is β∗ ◦ α∗ = 0, so the sequence

0→ Der(F(X),M) α∗
−→HomF(X)(F(X)〈(Y 〉,M)

β∗
−→HomF(X)(F(X)〈(Z〉,M) (1)

is a cohomological complex. We set

E1(R,M) := Der(F(X),M)

E2(R,M) := HomF(X)(F(X)〈(Y 〉,M)

E3(R,M) := HomF(X)(F(X)〈(Z〉,M)

δ1 := α∗; δ2 := β∗

so that we can rewrite (1) as

0 −→ E1(R,M) δ1

−→E2(R,M) δ2

−→E3(R,M) (2)

The relosution of the operad O is not unique (it depends, among other things, on a choiche of
the set of generatorsX). But the usual arguments show that the cohomology of {E∗(R,M), δ∗}
does not depend on the particular resolution chosen. So we can define

T ∗(O,M) := H∗(E∗(R,M), δ∗)
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It is called the cotangent cohomology of O with coefficients in the O-module M . Directly
from the definition of the complex, it follows that T 1(O,M) = Der(O,M). Notice that, if
A : O → End(V ) is an algebra, then End(V ) is in a natural way an O-module via A, so the
cohomology groups

T ∗(O,End(V ))

are defined.

4 First order deformations.

The algebra A clearly lifts to a first order deformation, since the trivial deformation provides
such a lifting. Since A is the unique 0th order deformation of A, the answer to the first of our
questions is trivially yes. To describe all the possible first order deformation, notice that, if
A1 is a first order deformation of A, we can write

A1 = A+ �A(1) mod �
2

The condition “A1 : O → End(V )[[�]]/(�2) is a morphism” is equivalent to

(A+ �A(1))(ϕ ◦ ψ) = (A+ �A(1))(ϕ) ◦ (A+ �A(1))(ψ) mod �
2,

(A+ �A(1))(ϕ⊗ ψ) = (A+ �A(1))(ϕ)⊗ (A+ �A(1))(ψ) mod �
2, ∀ϕ,ψ ∈ O

We can rewrite this as

A(ϕ ◦ ψ) + �A(1)(ϕ ◦ ψ) =
(
A(ϕ) + �A(1)(ϕ)

)
◦

(
A(ψ) + �A(1)(ψ)

)
mod �

2

= A(ϕ ◦ ψ) + �
(
A(1)(ϕ) ◦ ψ + ϕ ◦A(1)(ψ)

)
mod �

2

This gives

A(1)(ϕ ◦ ψ) = A(1)(ϕ) ◦ ψ + ϕ ◦A(1)(ψ)

(exactly the same argument works for ⊗ in place of ◦), so A(1) is a derivation of O with values
in End(V ). Vice versa, the argument above shows that if A(1) is a derivation of O with values
in End(V ), the map A1 := A+ �A(1) is an homomorphism A1 : O → End(V )[[�]]/(�2), and
is clearly a lifting of A. Then we have proved

{First order deformations of A} ↔ Der(O,End(V )) = T 1(O,End(V ))

5 Higher order deformations.

Assume now An : O → End(V )[[�]]/(�n+1) is a nth order deformation. We wonder if it lifts
to a (n+ 1)th order deformation An+1. This time there is no section

End(V )[[�]]/(�n+1)→ End(V )[[�]]/(�n+2)
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so we have no trivial answer as in the case n = 0. Here we use the power of free objects.
Being F(X) free, we can lift An to Ãn+1 : F(X)→ End(V )[[�]]/(�n+2). This way we have

F(X)〈Y 〉

F(X) End(V )[[�]]/(�n+2)

O End(V )[[�]]/(�n+1)

mod �
n+1

��
An 		

Ãn+1 		

α

��

π

��

In particular Ãn+1 ◦ α maps all F(X)〈Y 〉 to 0 mod �
n+1. This means

α∗Ãn+1 : F(X)〈Y 〉 → ker{mod�
n+1 : End(V )[[�]]/(�n+2)→ End(V )[[�]]/(�n+1)}

� End(V )

We denote this composition as

Ω(Ãn+1) : F(X)〈Y 〉 → End(V )

The map Ω((̃An+1) is an homomorphism of F(X)-modules (Ãn+1 and α are), so Ω((̃An+1)
is an element of E2(R,End(V )). We have δ2Ω((̃An+1) = ι◦ Ãn+1 ◦α ◦β = 0 (where ι denotes
the isomorphism between ker{ mod �

n+1 : End(V )[[�]]/(�n+2) → End(V )[[�]]/(�n+1)} and
End(V )); so Ω(Ãn+1) is a 2-cocycle. The element Ω(Ãn+1) depends on the lifting Ãn+1. But,
if we chose another lifting Ã′n+1, we have

Ã′n+1 = Ãn+1 + �
n+1A(n+1) mod �

n+2

Since both Ã′n+1 and Ãn+1 are homomorphisms mod �
n+2, A(n+1) is a derivation of F(X)

with values in End(V ). We have

Ω(Ã′n+1) = ια∗Ãn+1 + ι
(
�

n+1α∗A(n+1)

)
= Ω(Ãn+1) + α∗A(n+1)

= Ω(Ãn+1) + δ1A(n+1)

i.e. Ω(Ã′n+1) and Ω(Ãn+1) differ by a coboundary. This means that the cohomology class
[Ω(Ãn+1)] is independent of the particular lifting chosen. We write

[Ω(An)]

to denote it. Assume now that An has a lifting An+1 : O → End(V )[[�]]/(�n+2). Then
π∗An+1 is a lifting of An from F(X) to End(V )[[�]]/(�n+2). We have that α∗(π∗An+1) = 0,
so [Ω(An)] = [Ω(π∗An+1)] = 0. This means that, if An lifts to a (n + 1)th deformation,
then the obstruction class [Ω(An)] vanishes. The converse is true: assume [Ω(An)] = 0. Then
there exists a lifting Ãn+1 : F(X)→ End(V )[[�]]/(�n+2) and a derivation A(n+1) : F(X)→
End(V ) such that

Ω(Ãn+1) = δ1A(n+1)
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We can rewrite this equation as

ια∗Ãn+1 = ι�n+1δ1A(n+1) = ι�n+1α∗A(n+1)

that is

ι
(
α∗(Ãn+1 − �

∗A(n+1))
)

= 0

Since ι is an isomorphism, this gives

α∗(Ãn+1 − �
∗A(n+1)) = 0

Let nowAn+1 := Ãn+1−�
n+1A(n+1) mod �

n+2. Since Ãn+1 is an homomorphism mod �
n+2

and A(n+1) is a derivation, An+1 is an homomorphism

An+1 : F(X)→ End(V )[[�]]/(�n+2)

and lifts An. Moreover α∗An+1 = 0, so An+1 defines an homomorphism An+1 : O →
End(V )[[�]]/(�n+2) which lifts An. This way we have proved that the cohomology class
[Ω(An)] is a complete obstruction to the lifting of An to an (n+ 1)th order deformation, i.e.
the answer to the first of our two questions is given by an element in the secon cohomology
group

T 2(O,End(V ))

Assume now that a lift An+1 exists. Then all the others are of the form An+1 + �
n+1A(n+1)

mod �
n+2, with A(n+1) derivation of O with values in End(V ) (the proof of this statement is

completely analogue to the one given for the case n = 0). This means that, when the answer
to the first question is yes, the answer to the second is: T 1(O,End(V )).

6 Deformations of associative algebras.

We must find a resolution (at least the first three terms) of the operad Assoc governing
associative algebras. We already know that Assoc can be presented as the quotient

F
(
•
❅�

)
/


 −

•
•

•
•

�
❅

❅�
�❅

❅❅
�

�




So the kernel of the canonical projection can be generated by a single element, which is an
element with 3 inputs and one output. Thus, if we set

Y :=


 •

❅�




and define α : F(X)〈Y 〉 → F(X) as

α : F
(
•
❅�

) 〈
•
❅�

〉
→ F

(
•
❅�

)

•
❅�

�→


 −

•
•

•
•

�
❅

❅�
�❅

❅❅
�

�
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the sequence

0←− Assoc π←−F
(
•
❅�

)
α←−F

(
•
❅�

) 〈
•
❅�

〉

is a resolution of Assoc. We need one more term. To describe the kernel of α we use McLane
coherence theorem. If we denote by a the move

a : −→ •
•

•
•

�
❅

❅�
�❅

❅❅
�

�

then we have the well known pentagon relation:

•
•
•
❅

❅
❅�

�
�

� �
�

••

•
❅

❅
❅�

�
�

�❅
•
•
•
❅

❅
❅❅

�
�

� �
�

•
•
•

❅

❅
❅

❅

�
�

�
❅

❅
•
•
•

�

❅
❅

❅

�
�

�
❅

❅

a 		

a

��

a

��												

a

��

a

��
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This gives: 
 •

•
•

�

❅
❅

❅

�
�

�
❅

❅
− •

•
•

❅

❅
❅

❅

�
�

�
❅

❅


 +

+


 •

•
•
❅

❅
❅❅

�
�

� �
� − •

•
•

�

❅
❅

❅

�
�

�
❅

❅


 +

+


 •

•
•
❅

❅
❅�

�
�

� �
� − •

•
•
❅

❅
❅❅

�
�

� �
�


 =

=


 ••

•
❅

❅
❅�

�
�

�❅
− •

•
•

❅

❅
❅

❅

�
�

�
❅

❅


 +

+


 •

•
•
❅

❅
❅�

�
�

� �
� − ••

•
❅

❅
❅�

�
�

�❅




that can be rewritten as:

α


 •

•
❅

❅
❅

�
�

+ •
•
❆
❅

❅
�

� ✁
+ •

•
�
❅

❅
�

�


 =

= α


 •

•
✁

❅
❅

�
�

✄
✄

+ •
•

❆
❅

❅
�

�
❈
❈




that is

α


 •

•
❅

❅
❅

�
�

− •
•

✁
❅

❅
�

�
✄
✄

+

+ •
•
❆
❅

❅
�

� ✁
− •

•
❆

❅
❅

�
�

❈
❈

+ •
•
�
❅

❅
�

�


 = 0

The McLane coherence theorem tells us that the pentagon generates all possible relations
among the a moves. This implies that the element

•
•

❅
❅

❅
�

�
− •

•
✁

❅
❅

�
�

✄
✄

+ •
•
❆
❅

❅
�

� ✁
− •

•
❆

❅
❅

�
�

❈
❈

+ •
•
�
❅

❅
�

�

generates kerα. Thus, if we set

Z :=


 •

❅�❆✁
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and define

β : F
(
•
❅�

) 〈
•
❅�❆✁

〉
−→F

(
•
❅�

) 〈
•
❅�

〉

•
❅�❆✁

�−→


 •

•
❅

❅
❅

�
�

− •
•

✁
❅

❅
�

�
✄
✄

+

•
•
❆
❅

❅
�

� ✁
− •

•
❆

❅
❅

�
�

❈
❈

+ •
•
�
❅

❅
�

�




then

R : 0← Assoc π←−F
(
•
❅�

)
α←−F

(
•
❅�

) 〈
•
❅�

〉
β←−F

(
•
❅�

) 〈
•
❅�❆✁

〉

is a resolution of Assoc. We can now compute the complex E∗(R,End(V )) for an associative

algebra {V, µ}. Since F (X) is free on •❅� , to assign a derivation θ, we just have to assign the
value

m := θ

(
•
❅�

)

Then θ is completely determined by the Leibnitz rule. Since m can be arbitrarly chosen in
Hom(V ⊗2, V ), we have a canonical isomorphism

E1(R,End(V )) = Hom(V ⊗2, V )

In the same way, F(X)-module maps ϕ : F (X)〈Y 〉 → End(V ) are completely detrmined by
the image

f := ϕ


 •

❅�




which is an element of Hom(V ⊗3, V ) (the element •❅� is forced to act as µ since ϕ is an F(X)-
modules map, and F(X) acts on End(V ) via π). Thus we have a canonical isomorphism

E2(R,End(V )) = Hom(V ⊗3, V )

A completely analogue argument gives

E3(R,End(V )) = Hom(V ⊗4, V )

This means that, at the level of cochain spaces, we have

E∗(R,End(V )) = C∗(V, V )[1]

where the latter is the cochain space of the well known Hochshild complex. Now we come to

the differentials. Let m ∈ Hom(V ⊗2, V ). Then there exists θ such that m = θ

(
•
❅�

)
. We
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have

δ1m = (δ1θ)


 •

❅�




= θ


α


 •

❅�







= θ


 −

•
•

•
•

�
❅

❅�
�❅

❅❅
�

�




= µ(m⊗ Id)− µ(Id⊗ Id) +m(µ⊗ Id)−m(Id⊗ µ)

= d1
Hoch m

For f ∈ Hom(V ⊗3, V ), results

δ2f =(δ2ϕ)


 •

❅�❆✁




=ϕ


β


 •

❅�❆✁







=ϕ


 •

•
❅

❅
❅

�
�

− •
•

✁
❅

❅
�

�
✄
✄

+

•
•
❆
❅

❅
�

� ✁
− •

•
❆

❅
❅

�
�

❈
❈

+ •
•
�
❅

❅
�

�




=µ(f ⊗ Id)− f(Id⊗2 ⊗ µ) + f(Id⊗ µ⊗ Id)− f(µ⊗ Id⊗2) + µ(Id⊗ f)

=d2
Hoch f

Then also the differentials coincide with the Hochshild ones, and we have proved that the
complex {E∗(R,End(V )), δ∗} is canonically isomorphic to the Hochshild complex:

{E∗(R,End(V )), δ∗} = {C∗(V, V )[1], d∗Hoch}

In particular we have found again the well known result that the obstruction to the lifting
for an infinitesimal deformation of an associative algebra (V, µ) lies in H2

Hoch(V, V ) and that,
when this obstruction vanishes, the liftings are parametrized by H1

Hoch(V, V ).
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