DG (co)algebras, DG Lie algebras and
L, algebras

Michele Grassi

1 DG Algebras, DG Coalgebras and DG Lie Al-
gebras

Definition 1.1 A graded complex over the field k is a graded k-vector space
C. = @,z Ci, together with a differential do of degree +1 (i.e. dc(C;) C
Cit1). A morphism from the graded complex (Cy,d¢) to the graded complex
(Ds,dp) (over k) is a homogeneous k-linear map ¢ : C,. — D, such that
dp¢ = ¢de. The category of graded complexes over k is indicated with C(k) .

We first recall some operations on graded vector spaces and graded complexes.
The base field k is assumed to be fixed unless otherwise stated.

Definition 1.2 1) Given two graded complezes of vector spaces V. = (V,d,,)
and W = (W,,d,,), their tensor product (over the base field) is defined as
follows:

Vew), = @ V,ew,

ptqg =71
and the differential is expressed as the sum of its graded components as:
ForxzeV,yeW, d,,,(z2®y) = d,(v)®y + (-1)Pz®d, (y)
2) Given a graded complex of vector spaces V. = (V,,d, ), the Twisting map
T: VeV - VeV
1s defined as the linear extension of the map defined on homogeneous vectors by

TRy = (—1)%9@des)y g 4

Remark 1.3 As a rule of thumb to “get the signs right” is formulas like the
ones above, which appear frequently when dealing with graded objects, one could
use the following: “whenever an object of degree r passes on the other side of
an object of degree s, a sign (—1)"° must be inserted”.

The proof of the following proposition is elementary, and omitted.



Proposition 1.4 1) Given three graded complexes V, W, Z there is a canonical
natural isomorphism

VeaW)eZ = Ve (WeZ)

2) For an integer i, let k[i] be the graded differential vector space having zero
differential, and with

Ky = () if p# —i. (kli))—i =

We identify as customary k with k[0]. For any object V' of C(k) we then have a
canonical isomorphisms

Veok =2 keV =2V

For any integer i, and any object V., we write V[i] = k[{| @ V.
3) There is a canonical isomorphism for any two objects V,W and any integers
i J

VijeWl[j] = (VeW)li+ /]
obtained by sending x ® y, with v € Vi, y € Wi, (and hence x @y € (V[i] ®
W[j])nerfifj) to (_]—)jmx QY

From now on we will work in the category C(k) of differential graded k-vector

spaces, with differential of degree +1, and with maps defined accordingly (in
particular they are homogeneous of degree 0). Given an object V, we denote
with Id,, its identity map.

Definition 1.5 A differential graded algebra (briefly DG Algebra) over the field
k is an object A = (A,d,) of C(k), together with a morphism of C(k)

o AR A — A
such that, using the canonical identification (A A) @ A =2 AR (A® A),
pedd,®p) = pe(peld,)

A morphism of DG algebras over k from (A, pa) to (B,up) is a morphism
¢ € C(k) from A to B, such that

UBG ® P = dpa
We indicate with DGA(k) the category of DG algebras over k
Definition 1.6 A € DGA(k)

1) is said to be with unit if it is given a morphism in C(k)

1, : k£t — A

A

such that, using the canonical identifications A =2 kR A = ARk,

pa(l,®Id,) = pa(ld, ®1,) = Id,



2) is said to be commutative if
paT = pa
where T is the twisting map of the category.

Example 1.7 1) Given a manifold M, the algebra of differential forms on it,
with the natural grading and the exterior differential, is a DG Algebra.

2) The cohomology of a manifold M, together with the product induced by the
wedge product on forms, the natural grading and zero differential, is a DG Al-
gebra.

Note that the category of vector spaces (without grading or differential) is a full
sub category of the category of graded differential vector spaces, and that if we
consider the DG algebras (resp. with unit, commutative) which lie in the image
of the immersion, we simply recover the notion of an Algebra (resp with unit,
commutative).

We now come to the concept of a DG coalgebra, which can be viewed as the
dual to the notion of a DG Algebra, in a sense which will be made precise later.

Definition 1.8 A differential graded coalgebra (briefly DG coalgebra) over the
field k is an object C = (Cy,d,) of C(k), together with a morphism of C(k)

Ac : C — C®C
such that, using the canonical identification (C @ C)®C = C® (C® (),
(AC ® Idc) QAc = (Idc X Ac) ® Ao

A morphism of DG coalgebras from (C, A¢) to (D, Ap) is a morphism ¢ : C —
D of C(k) such that
PR PAc = Apo

We indicate with DGcoA(k) the category of DG coalgebras over k

Definition 1.9 (C,A¢) € DGcoA(k)
1) is said to be with counit if it is given a morphism in C(k)

e, : C — k
such that, using the canonical identifications C = ke C = C®k,
(. 91d.)Ac = (Id.®¢)Ac = Id,
2) is said to be cocommutative if

TAc = Ac

where T is the twisting map of the category.



Example 1.10 1) The algebra of polynomial functions on a vector space V,
k[V*], with zero differential, and A given by

Aw) = v®1 + 1Qu, veV”

extended to all of k[V*] by requiring it to be multiplicative with respect to the
natural algebra structures on k[V*] and k[V*] ® k[V*]. Here the space V* is
considered in degree 0, and therefore the whole coalgebra lives in degree zero.
We will elaborate this example more extensively in a proposition later.

2) If A € DGA(k), with dimy(A) < oo,then the space (€D, Azlal,d%), with
A induced by the adjoint to the multiplication, gives a DG coalgebra structure
(with zero differential).

One is tempted to say that a DG coalgebra (resp. with counit, cocommuta-
tive) is simply the dual of a DG algebra (resp. with unit, commutative). There
however a fundamental obstruction to making this statement rigorous. Namely,
unless the algebra A is finite dimensional over k, (A® A)* % A* ® A*, and
hence there is no natural way to induce a comultiplication from the multiplica-
tion. This problem can be overcome in some interesting situations in the way
that is best explained by the second example above. We will also see that in
some situations arising from geometry one can replace the DG Algebra at hand
with one (called its “minimal model”) satisfying the a condition regarding di-
mensions that is enough to guarantee that (A ® A)* = A* ® A* (taking * to
be the graded dual).

Definition 1.11 A Differential graded Lie algebra (briefly DGLA) over the
field k is an object g = (g,d_) of C(k), together with a morphism of C(k)

g

[, - 808 — 8
(called the bracket) such that,
1)

[ I ]gT = - [ ’ ]g

~

2) Using the canonical identification (gRg)Rg = gR(g®g),
[, Ad, @[, ],) + [, dd, o[, ],)dd, ® T)(T®Id,) +

+ [, @d, o[, | )(Teld,)Id, ® T) = 0 (the zero map)

A morphism of DG Lie algebras from (g,[ , |,) to (h,[, ],) s a morphis
¢ : g—h of C(k), such that

[, lo®o = ¢[, ],
We indicate with DGLA (k) the category of DG Lie algebras over k.

Remark 1.12 If one writes what condition 2) above means when applied to
a,b, c of degrees «, 3, respectively, one finds

[av [b,c]] + (_1)(aﬁ+a7)[b7 [C7a]] + (_1)(,3’Y+04’Y)[07 [b,a]] =0

which is the usual Jacobi identity when o = 8 = v = 0. Therefore, the degree
zero part of a DG Lie Algebra is a Lie Algebra in the usual sense.



Example 1.13 1) If M is a manifold, g is a smooth bundle of DG Lie algebras
on it, then the space Q¥*(M,g) is a DG Lie algebra, with the bracket defined on
homogeneous elemesnt as

[0®g.8@h,. 0, = (D19 (anB) @ [g,h]g
Note that it is essential here to consider graded differential forms, i.e. finite
sums of differential forms with values in homogeneous components of g. We
will come back to graded vector bundles in the lecture on Q-manifolds.
2) (See [K], page 9) If A is an associative algebra, the complex of Hoschild
cochains with coefficients in A (and shifted in degree by one) is a DG Lie alge-
bra, with the Hoschild differential and the Gerstenhaber bracket. See the refer-
ence for details.

The category of graded vector spaces (without a differential) is in a natural way
a full sub category of C(k), with the map defined by taking the differential on
a graded object to be zero. In this way, restricting the definitions above to this
sub category, we get the notions of Graded Algebras, Graded Coalgebras, and
Graded Lie Algebras. There is also a forgetful functor from DGA (k) (resp.
DGcoA(k), DGLA(k)) to their graded counterparts. There is also a forgetful
functor from DGA(k) (resp. DGcecoA(k), DGLA(k)) to C(k) . In the next
section we will build adjoints to some of these forgetful functors.

Remark 1.14 Instead of Z-graded vector spaces we could consider, more gen-
erally, vector spaces graded over an abelian group T', C' = @ger Cy, together
with an assigned homomorphism | | : T' — Z and an endomorphism of degree +1
with respect to this group homomorphism, dc(C,) C EBh:Ih\ZlgH-l Ch, d% = 0.
In this setting we may build different twisting maps T, and therefore we can
have different notions of (graded) commutativity.

2 Free Graded DG Algebras and DG Coalgebras

Remark 2.1 Let V' be an object of C(k) , and T the twisting map introduced
before. Then, if we indicate V" = V@ (V@ (---®@V)---) (n times), given
any positive integer n, there is a natural action of the symmetric group

Sn — Aut (VO
Note that we need to also use the canonical isomorphism

Ve(VeV) @2 (VeV)eV
to give this action.

Definition 2.2 Let V be an object of C(k). Then we define the following graded
algebras:



1)
(V) = @ver, T(v) = ver
n>0 n>0
with the multiplication defined on T(V) as

#T(U1®"'®Um7w1®"'®wn) = R QU QWL R @ Wy,

and defined on T(V) as the extension of that of T(V) in which the canonical
generator of T°(V) = k[0] acts as unity.

T(V) is called the tensor algebra over V, while T(V') is sometimes called the
reduced tensor algebra over V.

2) Let Is C T(V) C T(V) be the two-sided ideal generated by homogeneous
elements of the form

vw — Twew), v,w € V homogeneous
We define the symmetric algebra over V' to be
S(V) = T(V)/Is, S(V) = T(V)/Is

S(V') is sometimes called the reduced symmetric algebra over V.
ms s the natural surjection from T(V) to S(V). Given vy,...,v, in T(V), we
indicate with the same symbols v; their images under the projection in S(V),
and write

VLU, = WS(Ul®"'®Un)
The image under projection of VO™ is indicated with S™(V).
3) there is a natural injective map (in C(k) , but not preserving the DG algebra
structures)

N : S(V) - T(V)

defined for vy, ...,v, in'V (and then extended linearly) as
N(vl"'vn) — ZO(U1®"'®U7L)
og€eSN

4) Let Iy C T(V) C T(V) be the two-sided ideal generated by homogeneous
elements of the form

vew + Tvew), v,w € V homogeneous
We define the exterior algebra over V' to be
AV) = T(V)/In, A(V) = T(V)/In

A(V) is sometimes called the reduced exterior algebra over V.
7 is the natural surjection from T(V) to A(V). Given vy,...,v, in T(V), we
indicate with the same symbols v; their images under the projection in A(V),
and write

VIA- A, = TA(11 Q@ Quy)

The image under projection of V®" is indicated with A™(V).



Remark 2.3 We omit the verification, necessary to make sense of the above
definitions, that the map pr is a morphism in C(k) , and that the ideals Is and
15 are differential ideals, i.e. are closed with respect to the differentials.

Definition 2.4 Let V be an object of C(k) . There is then a canonical isomor-
phism in C(k)

dec, : S™(V[1]) — A™(V)[n]
called décalage isomorphism, and indicated with dec,. An explicit formula for
decy is, if v; € Vp,,

d@Cn ((1k[1] ® xl) A (1k[1] ® xn)) = (—1)Zi;1(7l—i)(Pi—1)1 ® (xl A A xn)

k[n]

In the following we will use the natural identifications
Vel > (VO 2 v

in order to see V as a subspace of both T(V) and S(V). It is clear that V'
generates both these as unitary algebras (i.e. the smallest unitary subalgebra
of them which contains V' is the whole algebra itself).

Definition 2.5 1) Let V' be an object of C(k) . Then we define the comultipli-
cation Ap on T(V) by giving its value on homogeneous elements:

n

A1 @ @vp) = Y (1@ @) @ (Vg1 @+ @ vy)
r=0

The counit er is defined as the canonical projection onto VE° = k[0] C T(V).
The canonical (split) projection of T(V) onto T(V) can be used to induce a
comultiplication on T(V') which is, however, without counit.

2) We define a comultiplication Ag on S(V) by defining it for v € V, an
extending it as an algebra map, as

Ag(t) = 1®@v + v®1l
Proposition 2.6 Let V be an object of C(k) . Then
(T(V), pr, 1) (S(V), s, 1)
and their reduced counterparts are graded unitary algebras.
(T(V),Ar,er) (S(V),Ag,e€s5)
and their reduced counterparts are graded counitary coalgebras.
Moreover, the map g : T(V) — S(V) is a map of DG algebras, while

N : S(V) — T(V) is a map of DG coalgebras. Both wg and N restrict to the
reduced spaces.



Definition 2.7 ([Q]) Let C be a DG counitary coalgebra. Suppose that there
exists an element 1, of C such that A(l,) = 1, ®1,, ¢.(1,) = 1. We
define subspaces F,.C,r > 0 as follows:

F,C = kl,; F.C = {2€C|A () —2®1,-1,®2z € F.CQF.C}
C is said to be coconnected if

C = UF,.C

r>0

Proposition 2.8 ([Q], pages 282-283) 1) A sub DG counitary coalgebra of
a coconnected coalgebra is coconnected.

2) Let V' be an object of C(k) . Then
(T(V),Ar,er) (S(V),As,€s)
are both coconnected coalgebras.

Proof

1) Let C’ be a sub DG counitary coalgebra of C. We first show that 1o € C'.
Indeed, if not, there is a minimum r, call it g, such that C'NF.C # (0). Note
that the composition of inclusion with the projection map

C — C/melc
is an injective map of coalgebras. If z € C' N F,, C is not zero, then
Alz) = 1@z + Q@1 + p

with p € F,,_1C ® F,,_1C. However, by composing with the projection
mention above, we see that this implies A(z) = 0. On a counitary coalgebra,
this implies z = 0, which is absurd. We have therefore proved that 1o € C'.
It follows clearly that if we define

F.C' = F.C(\C'
we have C" = J,, F:C" and moreover
F.C' = {zeC|A (x)-2z®1, -1, ®z € F,C'®F.C'}

2) For T(V) it is enough to show that taking as 1y the natural one (coming
from the algebra structure),

FT(V) = @Vver

n<r

By induction, assume the thesis true for r > 0, and let € T(V') be such that

Arp(z)—z®1-1Qx € (@STV@)”) ® <EB§TV®”>



From the explicit definition of A, it follows immediately that this holds if and
only if z € @, ., VO™ as desired.

The proof for S(V) follows now from the first point and the existence of the
injective map of counitary coalgebras N : S(V) — T(V).

Proposition 2.9 1) Let ¢ : V — W be a morphism in C(k) . We obtain from
¢ two maps:

T(p) : T(V) — T(W), S(p) : S(V) - S(W)

which preserve the structures of DG algebra and coalgebra introduced before on
these graded complexes, and induce also maps on the reduced spaces.

2) The definitions of T(¢) for all ¢ fit together to provide a functor from the
category C(k) to the category DGA(k) (resp. DGcoA(k)). The definitions of
S(¢) provide a functor from the category C(k) to the categories of commutative
objects of DGA(k) (resp. of cocommutative objects of DGcoA(k)).

3) The functor T (resp. S) gives a right adjoint to the forgetful functor from the
category of coconnected counitary coalgebras (resp. cocommutative) to C(k) (with
some conditions on the maps).

Proof

The proofs of 1) and 2) are straightforward, and are left to the reader.

3) ([Q], Proposition 4.1 page 285). Let V be an object of C(k) , and j
the natural projection from T(V) to V (and from S(V) to V). Let C be a
coconnected DG coalgebra. Then we will show that the map § — j6 provides
a bijection Hompgc (C,T(V)) — Homer,o (C,V), where Home o are the
maps which send 1¢ to zero. Note that due 'to this requirement on the image
of 1¢ the funftor T is not an adjoint to the forgetful functor. The assumption
can be dropped when, for example, V' does not have a part of degree zero.
Going to the proof, define A ¢ — C®™+1) inductively as A = ¢,
A = Id., AL = Ag; AUTY = (1d, ® AU)Ac. Tt follows inductively
that if z € F,.C then Ag (x) is a linear combination of expressions of the form
2o ® -+ ® x,., where at least one x; is 1¢. Therefore, if u : C — V is such
that u(lg) = 0, then u®"A(g71)(a?) = 0 forxz € F,_1C. Tt follows that the
map 0 : C — T(V) given by 0(z) = 3, u®”AgL_l)(x)ST is well defined
in C(k) , because the entries of the infinite sum which defines it are almost all
zero, for any fixed . We now show that 6 is a map of DG coalgebras:

(9@9)A — (Z u®nAgl—1))®(Zu®mAém—l)) A =

n>0 m>0

(Z u® ALY @ u®mA<Cm”> A =

n,m

= > @ e Aol A = 3T 3T (P eu ALY = A
k nt+m=k



We have used the relation (A(C?) ® A(Cm))AC = AgLerJrl). To conclude the
proof, we still have to show that a map 6 is determined by its projection j6 (and
therefore coincides with the image of the right inverse to j just built applied to
j0). This is done showing by induction on the filtration F,.C that j6; = j6s
for two maps 61,65, then #; = 65 on C. The statement is clear for » = 0, as
O(z) = 0 for x € FyC. Assume the thesis true for r — 1 > 0, and let = € F,.C.
Then Aby(z) =61 @01A(x) =010, (2®1 + 1@z + p) =601 ®0:(p). We
know from the definition of F,.C that p € F,_; ® F,._1, therefore by induction
the value of 6; ® 6, on it is the same as the value of 65 ® 5. We can therefore
write Ab(z) = 01 ®61(p) = 02 602(p) = AbO3(z). The last equality is
obtained by reversing the previous chain of equalities with 65 in place of 6.
The induction step is concluded by the observation that A is injective on a
cofree counitary coconnected coalgebra. The proof in the cocommutative case
is exactly the same, with the only minor modification that the 6 built starting
fromauisO(x) = Y, <0 7rnu®”Ag%1) (x) where, if g indicates the projection
from T' (V') to S(V), mp, = %ws‘vm. (]
Remark 2.10 In view of the preceding propositions, the objects obtained ap-
plying the functors T (resp. S) are called free graded (co)algebras (resp. free
(co)commutative graded (co)algebras).

3 L. Algebras

Definition 3.1 1) A Lo, Algebra is a pair (g, Q), where g is a graded k-vector
space, and Q is a graded coalgebra differential of degree +1 on the graded coal-
gebra S(g[1]).

2) Given two Ly algebras (g1,Q1) and (g1,Q1), a morphism of L., algebras
between them is a morphism of DG coalgebras

(5@l1):@0) By ) — (5201 Q2). A )

Remark 3.2 [t is customary to write C(g) instead of S(g[1]) for a graded
vector space g. Note that there is no a priori differential on C(g). We adopt
the notation from [K], in which C(g) is a coalgebra without counit.

The above definition provides us with a category (as L, morphism can be clearly
composed, and there is an identity morphism for any object). There is also a
morphism from the category of L., algebras to the category of DG coalgebras,
which factors through the subcategory of cofree cocommutative (coconnected)

coalgebras without counit: (g,Q) — ((S'(g[l]),Q) A ) (the functor on

7 T S(gl1])
maps is defined in the obvious way).

Definition 3.3 Given a Lo, algebra (g, Q), we indicate with Q' the composition
of Q with the canonical projection S=(g[1])[1] — S*(g[1])[1]. We also indicate
with Q% = S7(g[1]) — S'(g[1])[1] the restriction of Q" to S7(g[1]).

10



The QL can be thought of as multilinear symmetric operators on g[1]. More
generally, with the help of the décalage isomorphism we can define a map
(decy [-n+1]) (@ [-n])(decn[—n]) ™" : A™(g) — A™(g)lm—n+1] (n > 1)

A commonly used notation is
[Jn = (deci[-n+1])(@Qn[-n])(deca[-n])'mr : g°" — g[2—n]

Recall the definition of j as the canonical projection S(V) — V. We use the
same notation for the map C(g) — gl1].

Proposition 3.4 Let (g, Q) be a Lo, algebra. We then have the explicit formula
Q" = ﬁﬂs (Ql ®j®n71) Al Cg) — S™M(g)[]

Proof
Define Q = ng Zn21 ﬁ (Ql ®j®”*1) A= We must first verify that

AQ = (Q I + sgn-1® @) A, where sgn is the (integer valued) sign func-
tion on g[1].

AQ(UI cevp) = Amg Z ﬁ (Ql ®j®n—1) A(n—l)(vl cewp) =
n>1 :

= Z (n i 1)! Z Ty @ Ty Z o (Ql ®j®nf1) A(nil)(vl .. -vp) —

n>1 " kitke =n ocES,
1 -
Z (n—1)! Z Ty @ Ty Z g (QlﬂpfnJrl ®I% 1) +
n>1 ki+ke =n c€S,,0(1)<ky
Z o (Q'p—pir @ I"7T) Z (P11 ®---Qup)) =
€Sy, 0(1)>k1+1 PES,
1
> S0 T @ (ki ke = DIQ Ty @ 1% @ 124
(n—1)!
n>1 ki+ks = n
ko (ky + by — 1)lsgn(I®*) 1% @ Q'my_pyy @ I 71) Y~ (p(v1 @+ @) =
PES,
> (ke (@' ks ko1 @ TEFTY) @ i, +
ki+ke > 1
ﬂ_klsgn(]@lﬂ) ® ko, (Qlﬂ'pfn+1 ® I®k2—1)) Z (p('Ul R ® Up)) =
PES),
> (klmﬂ Q'@ ™) ATy p, @ mp,+
ki+ks > 1
ﬂklsgn(l®k1) ® kgﬂ'k,z (Ql ® I®k271) A(szl)ﬂ.p_kl) Z (,0('01 R ® vp)) —
PESy

11



> (@mpr @ mict

k

mesgn(I%) @ Qmyi) D (o1 @+ @ vy)) =
pPESp

(a1 + sgn-10Q) Apvr -+ v,)

as desired. To conclude the proof, we must show that if two maps satisfy this
property, and have the same projection (via j), then they coincide. This is
left as an easy exercise to the reader. One needs to do an induction using the
standard filtration on C(g). (]

Corollary 3.5 1) Q", = 0 forn > m
2) Q = g Zn21 ﬁ (Ql ®j®n71) A(nfl)

4 Quillen’s construction and Homotopy Lie al-
gebras

Quillen (see for example [Q]) introduced a way to pass from a DG Lie Algebra
to a Ly algebra. In this section we will show that this is a special case of a
more general correspondence between Homotopy Lie Algebras (which generalize
DG Lie Algebras) and L, algebras. However, because Quillen’s construction is
much easier to handle than the general one, it is worth to treat it separately.

Proposition 4.1 (Quillen’s construction) Let(g,d,,[, ],) be a DG Lie Al-

gebra. Then there exists a QQ giving on g the structure of a Lo algebra, and such

that if [..]; are the products associated to Q, [..]y = d,, [.]2 = [, ],, [.]Ji = 0 fori>
2.

Proof

The plan is to use the products [..]; to give @', to use the explicit formulas
above to obtain a Q from this Q', and then to verify that QQ = 0. This will
be enough, because we already verified that any @ defined using the explicit
formulas above behaves correctly with respect to the coproduct. The proof is
straightforward, but the signs introduced by the décalage isomorphism must be
tracked carefully. If « € g, we will indicate with @ its canonical image in gl[1].
Define Q1 (@) = d, (o), Q3(@B) = (—1)'“"1[a,ﬁ]g. The actual computation
of Q? = 0 is straightforward once we obtain the general formula

g’

P
Q(CTloTp) = Zm.....dg(ai).....yp +
i=1

+ Z (,1)Uij+|ai\fl[ai,aj]g.afl ..... Oﬁ~~~-aﬁ ..... a,
1<4,5<p
where o;; is the sign of the permutation of the product @y - - - - - @, which sends
lttOWOTLOTJOTP J

12



We now recall the notion of homotopy category. See also [H, Page 25] for
more details.

Definition 4.2 Let k be a vector space. We indicate with K (k) the category,
called Homotopy category of complexes, which has as objects the objects of C(k) ,
and as morphisms the homotopy equivalence classes of morphisms from C(k) .
If € Mor(C(k)), we use the same symbol ¢ to indicate its class as an element

of Mor(K(k)).

Definition 4.3 A Homotopy Lie Algebra is a Lie algebra in the category K(k) ,
namely it is an object (g,d,) of K(k) , together with a morphism [ , |, :
gg — gin K(k) such that

[ ldd, @ ]) + [, L.dd, @[, |,)Id, @ T)(T@1d,) +

+ [, @, o[, | )N(Teld,)Id, ®T) = 0 (in K(k))

A morphism of Homotopy Lie algebras from (g, [, |,) to (h,[, ],) is a morphis
¢ : g—h of K(k) , such that

[, he®eo = o, |, (in K(k))
We indicate with HLA(k) the category of homotopy Lie algebras over k.

Remark 4.4 Another way to give the definition of the objects of HLA(k) is
that there exists a morphism pg : gRg®g — g[—1] of graded k-vector spaces
such that

[l Ad @[, ]) + [ 4, @[, 1,)dd, @ T)(T©1d,) +

+ [7 ]g(Idg ®[7 ]g)(T®Idg)(Idg®T) = dgpg + pgdg®g®g

When pg = 0, we recover the notion of a DGLA. Note however that even
when we have two HLA’s coming from DGLA’s, the morphisms between them
in HLA(k) are different from the morphisms in DGLA (k).

Proposition 4.5 Let (g, Q) be a Lo algebra. The mapsd, = []1, [, ], = [, ]2
give to g the structure of a homotopy Lie algebra.

Proof

Given a, b, c homogeneous elements of g, let us write explicitely QQ(afy) = 0,

where «, 3, are the objects in g[1] corresponding to a, b, c. First, observe that,
if we indicate with j lower script the projection on the “tensors” of degree j,
the condition Q% = 0 implies the equations

0 = (QQ)i(e) = Q'QY(w),
0 = (QQ)1(aB) = Q'Q'(aB) + Q'Q*(ap),
0 = (QQ)1(aBy) = Q'QY(aBy) + Q'Q*(aBy) + Q'Q*(apy),
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0 = (QQ)2(af) = Q*QY(aBy) + Q°Q°(afy),
0 = (QQ)2(afy) = Q*Q'(afy) + Q*Q*(afy) + Q°Q°(apy),
0 = (QQ)s(aBy) = Q°Q*(aBy).

Once translated in terms of the [ ];, ¢ > 1, the relations above are exactly what
one needs to see that [, , ]3 induces the homotopy of a homotopy Lie algebra
with respect tod, = []1, [, ], = [, |2 d

There is also a partial converse to the previous proposition. We omit the
proof, which is contained in [HS].

Proposition 4.6 Let (g,[, ],) be a Homotopy Lie Algebra. Then there exists
a Q giving the structure of Lo, algebra on g, and such that if [..]1,]..]2 are the
first two products associated to Q, d, = []1 and [, ]2 represents the homotopy
class of [, ],

Note that in going from a L, algebra to a homotopy Lie algebra the process
is uniquely determined. However, in going from a homotopy Lie algebra to a
L algebra we have some freedom in choosing the successive products. We
cannot therefore say that a L., algebra is a homotopy Lie algebra. Perhaps this
is the reason why some authors call L., algebras Strong homotopy Lie algebras:
the structure of a L., algebra contains more information, namely the choice of
a “model”.

5 From connected DG Algebras to Minimal mod-
els

In this section we prove a theorem which is an analogue for DG algebras graded
over Z of the usual minimal model construction for N-graded algebras (see
[S] for this). It is useful for example in the study of the homotopy type of
Q-manifolds (see [G] for @-manifolds), where the classical minimal model con-
struction does not apply.

Definition 5.1 We say that a unitary commutative DG Algebra A is connected
if there is a map of DG algebrase : A — k[0] such that:
1)e(ls) =1
2) Let At = Ker(e). Then we have that the natural map of unitary DG
algebras

A — Limy, (A/(AN))
18 1njective.
We sometimes write (A, ea) if we want to single out one such €, and we call it
a connecting augmentation.

Remark 5.2 1) Let M be a smooth manifold. Then A = (Q*(M),dpr) is a
connected DGA over R if and only if M is a connected manifold.
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2) Condition 2) of the definition of connectedness is clearly equivalent to

NA* = ()

k

3) The map € in the definition of connectedness is not necessarily unique. Take
for example the polynomial ring k[x] in one wvariable in degree 0. Then any
element X of k identifies a map € given by the quotient map

klx] — klz]/(x—X) = K
Because they all have different kernels, all these maps are different.

Definition 5.3 1) A unitary commutative connected non-negatively graded DG
algebra (A, ea) with A = 0 is said to be minimal (with respect to ea) if it is
free as a graded unitary connected commutative algebra, and its differential da

has the property that
da(AT)yc ATAT

for AT = Ker(ea).
2) A unitary commutative connected DG algebra (S(V),d) (with V a graded
vector space) is said to be contractible if its differential d has the property that

d(s'(v)) c SH(V)
and moreover the induced differential on SY(V) = V is acyclic.
3) A unitary commutative connected DG algebra (A,ea) is said to be almost
minimal (with respect to €4) if there exist a graded vector space V', a differential
dr on S(V) and an ascending filtration F;, i € Z, (i < 0= F; = (0)) of V (in
the category of graded vector spaces) such that:
a) (S(V),dr),es) is a connected unitary DG algebra, isomorphic to (A, €ea);
b) dp(Fiv1) C SZY(F) for alli.

Theorem 5.4 Let (A,ea) be a connected unitary commutative DG algebra.
Then there exist an almost minimal DG algebra F = (F,dF) and a mor-
phism of unitary connected DG algebras ¢ : (F,dr) — (A,ea) inducing an
isomorphism in cohomology.

Definition 5.5 Any F satisfying the conditions of the theorem is called an
almost minimal model of (A,€e4).

Proof

In the following argument whenever we encounter a pair of spaces V and V, the
space V is an isomorphic copy of V. We will write Iy V — V for the map
which identifies V with V.

Let Wy be a complementary subspace of I'm(d) inside Ker(d‘ﬁ), and let
Fo = Wy, with |,V = WO, do = 0. The lower index numbers a sequence
of DG algebras which we will build. Put dy = 0. We clearly have a map of
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DG algebras ¢y : (S(Fp),dp) — A inducing a surjective map in cohomology.
Moreover, the kernel of the map S(Fy) — H(A) is included in the kernel of the
natural map S(Fp) — k, because this last one can be obtained as a composition
S(Fo) — H(A) — k, where H(A) — k is induced by €4. Therefore, there is a set
of homogeneous representatives in SZ1(V}) for the kernel. Assume inductively
that we have built 7; = @,-; Vi, d; on S(F;), as an extension (as DG algebras)
of (S(F;-1),di—1), such that d; (S=1(F;)) C SZ'(F;) together with a map of
DG algebras ¢; : ((S(Fi),d;i),es) — (A, €a) inducing a surjective map in coho-
mology, commuting with the inclusion ((S(F;—1),di—1),es) C ((S(Fi),di), €s)
(when ¢ > 0), and such that d;(F;) C S(F;—1) and we have that the space
di(F3)/ (di—1(S(Fi—1))Ndi(F;)) < H(S(Fi—1)) generates the kernel of the
map in cohomology H(F;—1) — H(A). This last condition is assumed to be
vacuously true when ¢ = 0. We want to build a F;4;. To do that, let W; 1 be
a homogeneous complementary subspace inside Ker(d;) (0 (S >1(.7:2)) C S(F)
of the space {x € Ker(d;) | #(x) € Im(da)} Write W; = K,; ® A; with
K, = Ker(qﬁ” ). Let H~ C A be a subspace such that there is a vector space

isomorphism d4 : H; — ¢;(A;) We define V;;; = K;[1 1 ]EBfI The map ¢; 1
is defined to be 0 on K;, I £, o0 H;, and is extended multiplicatively to the rest of
S(Fit1)s where Fiv1 = F;®Viq1. The differential d; 1, is defined to be Ik, on
K; (1], and ¢; dAIH on H;, and is extended to all of S(Fi+1) in the unique way
compatible with the Leibnitz rule and the fact that it extends d; on S(F;). We
now verify that the map and differential satisfy the inductive hypotheses. First,
it is clear from the construction that d; 41 (Viy1) € SZYF;) C SZY(Fiiq1) and
hence also dit1 (S21(Fi41)) C S=H(Fiy1). Moreover, still by construction,
((S(Fit1),dit1), €s) is an extension of ((S(F;),d;),€s) (as connected DG alge-
bras). To verify that ¢;;1 is a map of DG algebras, we show it for “monomials”,
and proceed by induction on the number k of terms coming from V; ;. If £ =0,

the statement is true by induction on i and the fact that ¢, extends ¢;. For
k=1, writev = (21 +x2)y, with 21 € K and x5 € H homogeneous elements
of the same degree (with respect to the grading) and v € S(F;). We have then

Git1 (dit1 ((x1 +22)y)) =

bit1 (di+1(l‘1)y + digi(z2)y + (-1 (@ + m)di“(y)) -
biv1 (I, (1) + &7 'dalpy,(x2)) i1 (y) +
+ (1)@ gy (21 + @2) Gia (dig1(y) =
0 + daly,(z2)piv1(y) +
+ (=1)%E G (21 + 2)da(di(y) =
da(pit1(z1) + dip1(z2)) it (y) +
+ (—1)%9@) gy (21 + @2)da (i (y) =
A ((Pir1(21) + dir1(22)) i1 (¥)) = da(dita (21 + 22)y))
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For £ > 1 the argument is easier: write x+ = yz with both y and z with lower
k. Then the equality ¢;y1(dit1(x)) = da(dit1(x)) follows immediately from
the inductive hypotheses, and the fact that ¢;;1 is a map of graded algebras,
and d;1q is a differential (of a graded algebra). The last properties, namely
that ¢;11 commutes with the inclusion S(F;) C S(F;+1) and the map ¢;, the
fact that ¢;11 induces a surjective map in cohomology, and finally the fact that
dit1(Vit1) C S(F) and dip1(Vig1)/di(F;) Ndip1(Vigr) C H(F;) generates
the kernel of the map in cohomology H(F;) — H(A) are all clear from the
construction. We have therefore complete the inductive step in the construction
of the (S(Fit1),diy1) and of ¢j41. Take V. = J; Fi, dr = Lim;d;. We have
a map of DG algebras ¢ = Lim;¢; : S(V) — A which is surjective
in cohomology because all the ¢; are. Assume z € S(V), dg(z) = 0, and
¢(xz) = da(y) for some y € A. Tt must be that « € S(F;) for some 4, from the
definition of V. Therefore we know that there is an element z € F;41 for which
di+1(z) —x € Im(d;) and hence x € Im(ds) as desired. This shows that, ¢ is
injective in cohomology, and therefore induces an isomorphism in cohomology.
Moreover, dr (S721(V)) C S5721(V) because this is true at each step of the
inductive construction of F. By construction, dz(F;+1) C S(F;), which was
the last thing to check to show almost minimality. U
As a final remark, note that the proof of this theorem can be extended to
provide almost minimal models for connected DG algebras graded over more
general groups (see Remark 1.14).
There is an analogue of the notion of minimal model also for coalgebras, at
least when they are free of algebraic relations. This subject is treated more
extensively in [C]. See also the Lemma of section 4.5.1. in [K], page 13.
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