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0. Introduction

The Chow rings of smooth projective varieties with trivial canonical bundle have special properties.

We will discuss K3 surfaces and more generally Hyperkähler varieties. For results on Abelian varieties

see [2, 5], for results on Calabi-Yau varieties see [30, 12].

0.1. Conventions. The base field is C. Unless we specify differently a point of a scheme X is a closed

point. A variety is an integral and separated scheme of finite type over C. A curve is a variety of

dimension 1, a surface a variety of dimension 2, etc. A rational curve is a projective curve whose

normalization is isomorphic to P1. Let X be a smooth projective variety and F a coherent sheaf on X:

we denote by ci(F ) the Chern classes of F in the Chow ring of X and by chom
i (F ) the Chern classes of

F in the singular cohomology ring of X.

1. The Beauville-Voisin ring and splittings of the Bloch-Beilinson filtration

We will present the result of Beauville and Voisin [7] on intersection of divisors on K3 surfaces and

the conjectural generalization to Hyperkähler varieties of arbitrary dimension.

1.1. Rational curves on K3 surfaces. The key point is that every complete linear system on a

K3 surface contains divisors whose support is the union of rational curves. The following is a result

attributed to Bogomolov and Mumford.

Theorem 1.1 (Bogomolov and Mumford [23]). Let X be a K3 surface and L an ample line-bundle

on X. There exists D ∈ |L| whose support is the union of rational curves.

There are also results motivated by the question: are there rational curves D ∈ |L| ? First we

introduce some notation. Let X be a K3 surface and L a line-bundle on X. We let

g(L) := χ(L)− 1 =
1

2
deg(L · L) + 1. (1.1)

If D is a divisor on X we let g(D) := g(OX(D)). Let C ⊂ X be an integral curve: then g(C) is the

arithmetic genus of C. Now assume that L is ample. Let 0 ≤ δ ≤ g(L). We let Vδ(X,L) ⊂ |L| be the

(Severi) variety parametrizing integral curves whose geometric genus is (g(L) − δ) - thus Vδ(X,L) is

locally closed. If Vδ(X,L) is non-empty then it has pure dimension

dimVδ(X,L) = dim |L| − δ = g(L)− δ.

By results of X. Chen and Bogomolov - Hassett - Tschinkel we know that Vδ(X,L) is non-empty if

(X,L) is generic. Let us be more precise. Let

π : X −→ Tg (1.2)

be a complete family of K3 surfaces with a polarization of degree (2g − 2) i.e. the following hold:

(1) π is a projective and smooth map, we let M be “the”relatively ample line-bundle.
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(2) Let t ∈ Tg: then Xt = π−1(t) is a K3 surface.

(3) Let t ∈ Tg and Mt :=M|Xt
: then chom

1 (Mt) is indivisible and g(Mt) = g.

(4) if X is a K3 surface equipped with an indivisible ample line-bundle M with g(M) = g there

exist t ∈ Tg and an isomorphism f : X
∼−→ Xt such that f∗Mt

∼= M .

Such a family exists, moreover we may assume that Tg is irreducible by the Global Torelli Theorem for

K3 surfaces. Below is the result that we mentioned (see Ch. 11 of [16] for a detailed treatment of the

proof by Bogomolov - Hassett - Tschinkel).

Theorem 1.2 (Chen [9], Bogomolov - Hassett - Tschinkel [8]). Keep notation as above. Let n > 0 be

an integer. There exists an open dense Ug(n) ⊂ Tg such that the following holds. Let 0 ≤ δ ≤ g(M⊗nt )

and t ∈ Ug(n): then Vδ(Xt,M
⊗n
t ) is non-empty.

1.2. Intersection of divisors on K3 surfaces.

Proposition 1.3. Let X be a projective K3 surface. Let C1, C2 ⊂ X be rational curves. Let pi ∈ Ci
for i = 1, 2. Then p1 ≡ p2.

Proof. Since X is projective there exists an ample line-bundle L on X. By Theorem 1.1 there exists

D ∈ |L| whose support is the union of rational curves. Since D is ample there exists qi ∈ D ∩ Ci, and

pi ≡ qi because Ci is rational. On the other hand D is connected because it is ample, and since every

component of D is rational q1 ≡ q2. Thus p1 ≡ p2. �

By Proposition 1.3 the following definiton makes sense.

Definition 1.4. Let X be a projective K3 surface. The Beauville-Voisin class in CH0(X) is the class

cX represented by a point on an arbitrary rational curve in X.

Theorem 1.5. Let X be a projective K3 surface and D1, D2 ∈ CH1(X): then

D1 ·D2 = (degD1 ·D2)cX . (1.3)

Proof. Since every divisor is linearly equivalent to the difference of ample divisors we may assume that

D1, D2 are ample. By Theorem 1.1 we may further assume that each of D1, D2 is a sum of rational

curves (with suitable positive coefficients), and then the statement is obvious. �

Remark 1.6. One may ask for which projective surfaces the image of

CH1(X)× CH1(X) −→ CH0(X)

(D1, D2) 7→ D1 ·D2
(1.4)

is a subgroup of rank 1. By considering the blow-up of a surface with pg > 0 we see that the image

of (1.4) does not always have rank 1. See 1.4 of [12] for examples of smooth surfaces in P3 for which

the image of (1.4) does not have rank 1.

1.3. The Chow ring of HK varieties. A compact Käbler manifold X is hyperkähler (HK) if it is

simply connected and H2,0(X) is spanned by the class of a holomorphic symplectic form. Notice that

a HK manifold has trivial canonical bundle and is of even dimension. A HK manifold of dimension 2

is a K3 surface. Higher-dimensional HK manifolds behave like K3 surfaces in many respects, see [3,

14, 15, 25, 21]. An example (of Beauville [3]) of HK manifold of dimension 2n is the Douady space

S[n] parametrizing length-n analytic subsets of a K3 surface S. Let n > 1: the generic deformation

of S[n] has no non-zero divisor, since S[n] contains the non-zero divisor ∆n parametrizing non-reduced

subsets it follows that the generic deformation of S[n] is not isomorphic to (K3)[n]. Suppose that S

is a projective K3 surface and hence S[n] is the (projective) Hilbert scheme parametrizing length-n

subschemes of S. Then h1,1
Z (S[n]) ≥ 2 because the classes of ∆n and an ample divisor H are linearly

independent. On the other hand deformation theory gives that a very generic projective deformation

of S[n] keeping H of type (1, 1) will have h1,1
Z = 1: thus it is not isomorphic to (K3)[n]. Beauville and

Donagi [4] have shown that one gets a locally complete family of projective HK 4-folds by considering

the variety of lines of a smooth cubic 4-folds. Other explicit locally complete families of projective

deformations of K3[2] are constructed in [19, 20, 24, 10].

Let X be a smooth projective variety. We let D(X) ⊂ CH•(X) be the subring generated by

divisor classes and D(X)Q ⊂ CH•(X)Q its tensor-product with Q. Beauville [6] proposed the following

conjecture.
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Conjecture 1.7 (Beauville). Let X be a HK variety. The restriction of the cycle-class map

D(X)Q −→ H•(X;Q)

Z 7→ cl(Z)
(1.5)

is injective.

Remark 1.8. (1) Let X be a HK variety of dimension 2n and assume that (1.5) is injective. Then

there exists a unique cX ∈ CH0(X) of degree 1 such that

D1 ·D2 · . . . ·D2n = deg(D1 ·D2 · . . . ·D2n)cX (1.6)

for arbitrary D1 · D2 · . . . · D2n ∈ CH1(X). In fact let Z be the left-hand side of (1.6). If

degZ = 0 then Z = 0 by injectivity of (1.5). Next suppose that degZ 6= 0. Then Z is

rationally equivalent to (degZ)Z1 where Z1 ∈ CH0(X) has degree 1 (represent Z by a 0-cycle

supported on a smooth curve), and such a Z1 is unique by a celebrated Theorem of Roitman

(if V is a complex smooth projective variety the restriction of the Albanese map to the torsion

of CH0(V ) is injective). Injectivity of (1.5) gives that Z1 is independent of Z.

(2) If X is a K3 surface the statement of Conjecture 1.7 reduces to the statement of Theorem

1.5.

(3) Injectivity of (1.5) has been tested on various families of HK varieties [29, 11].

(4) Notice that if X is a HK variety of dimension 2n > 2 there exists no divisor D ⊂ X with rational

desingularization φ : D̃ → D. In fact let σ be a regular symplectic form on X: then π∗σ is a

non-zero regular 2-form on D̃ because the maximum dimension of a lagrangian subspace of a

2n-dimensional symplectic vector-space is equal to n < dimD. Thus the proof of Theorem

1.5 does not lend itself to an immediate generalization.

(5) Let X be the variety of lines on a smooth cubic 4-fold Y ⊂ P5: Voisin [29] has proved that (1.5)

is injective. The class cX (see Item (1) above) is described as follows. Let H ⊂ P5 be a

hyperplane transversal to Y : the variety S := F (Y ∩ H) of lines in Y ∩ H is a lagrangian

surface in X. By degenerating H one gets a degeneration S0 of F (Y ∩H) which has rational

desingularization: then cX is represented by any point of S0. A similar picture holds for the

locally complete family of projective HK 4-folds given by double EPW-sextics [24], this was

proved by Ferretti [11]. In that case the analogue of the surface S0 is an Enriques surface S0.

These examples suggest the following questions:

(a) Let X be a HK 4-dimensional variety and S ⊂ X a Lagrangian surface: among deforma-

tions of S does there exists a surface S0 whose desingularization(s) has vanishing geometric

genus ?

(b) Let S0 be as above and assume the validity of Bloch’s conjecture for surfaces. Then any

two points of S0 are rationally equivalent: one is tempted to conjecture that any such

point represents the class cX whose existence is predicted by Conjecture 1.7.

Beauville [6] derived injectivity of (1.5) from a conjectural splitting of the (conjectural) Bloch-

Beilinson filtration of the Chow ring of X (and called it the weak splitting property). Motivation for

this line of thought comes from what is known to hold for abelian varieties: if there exists a filtration

on the Chow ring of abelian varieties which satisfies the conjecture of Bloch-Beilinson then it is the

filtration associated to a ring graduation of the Chow ring. For some evidence in favour of Beauville’s

splitting conjecture see [27].

2. Decompositions of small diagonals

In [7] Beauville and Voisin proved the following result.

Theorem 2.1. Let X be a projective K3 surface. Then

c2(X) = 24cX . (2.1)

It is amusing to prove (2.1) for particular classes of K3 surfaces. Let S ⊂ P3 be a smooth quartic.

We have an exact sequence of locally-free sheaves

0 −→ TS −→ TP3 |S −→ OS(4) −→ 0. (2.2)

Let h := c1(OS(1)). Since c(TP3) = (1 + h)4 it follows from Whitney’s formula and (1.3) that (2.1)

holds for S. A similar argument works for a K3 surface which is a double covering of P2 or a complete
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intersection. Another class of K3’s for which (2.1) is clearly true is that of elliptic K3’s: considering

an elliptic fibration f : S → P1 we see that c2(S) is represented by a 0-cycle supported on the singular

fibers of f (because KS is trivial away from singular fibers) and since the singular fibers are unions of

rational curves we get (2.1). Equation (2.1) follows from an interesting relation in the Chow ring of

X ×X ×X involving the small diagonal. First we will introduce the relevant cycles, after that we will

sketch the proof of Theorem 2.1.

2.1. Modified diagonals. Let X be a smooth projective variety of dimension n. Fix an integer m > 1

and c ∈ X. Let I ⊂ {1, 2, . . . ,m} be a non-empty subset: we let

∆I(c) := {(x1, . . . , xm) ∈ Xm | xi = xj if i, j ∈ I, xh = c if h /∈ I}. (2.3)

Thus ∆1,2,...,m(c) is the small diagonal ∆1,2,...,m ⊂ Xm (independent of c), and each ∆I(c) is a closed

subset of Xm isomorphic to X. We will consider the n-cycle on Xm

Γm(c) :=
∑

∅6=I⊂{1,2,...,m}

(−1)m−|I|∆I(c) ∈ Zn(Xm). (2.4)

For m = 2 and m = 3 we get

Γ2(c) = ∆12−∆1(c)−∆2(c), Γ3(c) = ∆123−∆12(c)−∆13(c)−∆23(c)+∆1(c)+∆2(c)+∆3(c). (2.5)

Proposition 2.2. Keep notation as above. Let αi ∈ Hdi(X;Q) for i = 1, . . . ,m and suppose that∑m
i=1 di = 2n and d1 · d2 · . . . · dm = 0. Let πi : X

m → X be the projection to the i-th factor; then

cl(Γm(c)) ∪ π∗1α1 ∪ . . . ∪ π∗mαm = 0. (2.6)

Proof. By the symmetry of Γm(c) we may assume that 0 = d1 = . . . = ds and di > 0 for 0 < s < i ≤ m.

Let ρI : X
∼−→ ∆I be the obvious isomorphism. We must prove that∑

∅6=I⊂{1,2,...,m}

(−1)m−|I|
∫

[X]

ρ∗I(π
∗
1α1 ∪ . . . ∪ π∗mαm) = 0. (2.7)

Clearly we have∫
[X]

ρ∗I(π
∗
1α1 ∪ . . . ∪ π∗mαm) =

{∫
[X]

αs+1 ∪ . . . ∪ αm if I ⊃ {s+ 1, . . . ,m},
0 if I 6⊃ {s+ 1, . . . ,m}.

(2.8)

It follows that the left-hand side of (2.7) is equal to
s∑
i=0

(−1)s−i
(
s

i

)
·
∫

[X]

αs+1 ∪ . . . ∪ αm = (1− 1)s
∫

[X]

αs+1 ∪ . . . ∪ αm = 0. (2.9)

�

Corollary 2.3. Let X be a smooth projective variety of dimension n. If m > 2n then the homology

class of Γm(c) is torsion. If H1(X;Q) = 0 then the homology class of Γm(c) is torsion as soon as

m > n.

Proof. By the Künneth decomposition it suffices to prove that (2.6) holds for any choice of αi ∈
Hdi(X;Q), where 1 ≤ i ≤ m. Our hypotheses ensure that at least one of the di’s vanishes and

hence (2.6) holds by Proposition 2.2. �

B. Gross and C. Schoen have studied Γ3(c) for X a curve, see [13]. The key result that we will need

is the following.

Proposition 2.4 (Gross-Schoen [13]). Let E be a curve of genus 1 and c ∈ E. Then 6Γ3(c) = 0.

Proof. The symmetric group on 3 elements S3 acts on E3 with quotient the symmetric product E(3). We

will identify E(3) with the variety parametrizing effective divisors of degree 3 on E. Let π : E3 → E(3)

be the quotient map. The cycle Γ3(c) is invariant under S3; since deg π = 6 it follows that

π∗(π∗Γ3(c)) = 6Γ3(c). (2.10)

Thus it suffices to prove that

0 = π∗Γ3(c) = {3x | x ∈ E} − 3{c+ 2x | x ∈ E}+ 3{2c+ x | x ∈ E}. (2.11)

The tautological map

ρ : E(3) → Pic3(E) ∼= E (2.12)
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is the projectivization of a rank-3 vector-bundle. In order to simplify notation we choose an isomorphism

Pic3(E)
∼→ E. Let h ∈ Pic(E(3)) be a divisor which restricts to OP2(1) on the fibers of ρ: then

CH1(E(3)) = {ah2 + h · ρ∗η | a ∈ Z, η ∈ Pic(E)}. (2.13)

By Corollary 2.3 the class of π∗Γ3(c) in H4(E(3);Q) is zero: it follows that

π∗Γ3(c) = h · ρ∗η, deg η = 0. (2.14)

Thus it suffices to prove that

0 = η = ρ∗(h · π∗Γ3(c)). (2.15)

Let p ∈ E; as h we choose the class represented by the divisor

D := {A ∈ E(3) | A− p ≥ 0}. (2.16)

We have

ρ∗(D · π∗Γ3(c)) = 3[3p]− 6[c+ 2p] + 3[2c+ p]. (2.17)

Here [3p], [c+ 2p], [2c+ p] are the points of Pic3(E) represented by 3p, c+ 2p and 2c+ p respectively -

the coefficients are given by a straightforward multiplicity computation. Notice that the degree of the

right-hand side of (2.17) is zero, as expected. The map

Pic0(Pic3(E))
σ−→ Pic0(E)∑

i ri[Ai] 7→
∑
i riAi

(2.18)

is an isomorphism. Applying σ to the right-hand side of (2.17) we get 0: it follows that (2.15) holds. �

2.2. Decomposition of the small diagonal for K3 surfaces.

Theorem 2.5 (Beauville-Voisin [7]). Let X be a projective K3 surface and cX ∈ CH0(X) the Beauville-

Voisin class. Then Γ3(cX) is a torsion class.

Sketch of proof. Let H be an ample primitive divisor on X. If (X,H) is generic there exists an

irreducible 1-dimensional family, say E → B of curves on X whose generic member is a curve of

geometric genus 1 i.e. its normalization is a smooth curve of genus 1. Let R ⊂ X be a rational curve: by

base change B → B we get an elliptic surface ρ : E → B with a section σ : B → E and a regular surjective

map f : E → X such that f(σ(B)) = R. One obtains the result for X by applying Proposition 2.4 to

the cycle on the triple fiber-product E ×ρ E ×ρ E which restricts to Γ3(σ(b)) on Eb×Eb×Eb for regular

values b. (A toy-model is that of X an elliptic fibration with a section.) The result for arbitrary X

follows from the result for a generic polarized X. �

Now let’s show that Theorem 2.1 follows from Theorem 2.5. Let τ : X3 → X be the projection to

the third factor. Let

Ω := [{(x, x, y)}] ∈ CH2(X ×X ×X). (2.19)

In order to simplify notation we will denote ∆I(cX) (see (2.3)) by ∆I . Theorem 2.5 gives that in the

rational Chow ring CH(X)Q we have the following equality:

0=τ∗(Γ3(cX)·Ω)=τ∗(∆123·Ω)−τ∗(∆12·Ω)−τ∗(∆13·Ω)−τ∗(∆23·Ω)+τ∗(∆1·Ω)+τ∗(∆2·Ω)+τ∗(∆3·Ω). (2.20)

We claim that

τ∗(∆123·Ω)=c2(X), τ∗(∆12·Ω)=24cX , τ∗(∆13·Ω)=cX , τ∗(∆23·Ω)=cX , τ∗(∆1·Ω)=cX , τ∗(∆2·Ω)=cX , τ∗(∆3·Ω)=0.

(2.21)

In fact the first and second equalities are computed as follows. Since ∆123,∆12 ⊂ Ω the cycles ∆123 ·Ω,

∆12 ·Ω are the push-forward of c2(NΩ/X3)|∆123
and c2(NΩ/X3)|∆12

respectively. On the other hand both

∆123 and ∆12 are naturally identified with X and via this identification NΩ/X3 |∆123 and NΩ/X3 |∆12 are

identified with the tangent bundle of X; the first and second equalities follow. The other intersections

are transverse with the exception of the last. Since we may represent ∆3 as a sum of cycle of the form

{(dj , ej , x) | x ∈ X} with dj 6= ej we get the last equality. Plugging the equalities of (2.21) into (2.20)

we get that (c2(X) − 24cX) is a torsion class in CH0(X). On the other hand a celebrated Theorem

of Roitman asserts that on a regular projective smooth complex variety V the group CH0(V ) has no

torsion: that proves Theorem 2.1.
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2.3. Voisin’s conjecture on the Chow ring of HK’s. Let X be a Hyperkäbler variety. We let

E(X) ⊂ CH•(X) be the subring generated by divisor classes and the Chern classes of X and E(X)Q ⊂
CH•(X)Q its tensor-product with Q. (Notice that the odd Chern classes of X are 2-torsion and hence

they do not contribute to E(X).) Voisin [29] formulated the following conjecture.

Conjecture 2.6 (Voisin). Let X be a HK variety. The restriction of the cycle-class map

E(X)Q −→ H•(X;Q)

Z 7→ cl(Z)
(2.22)

is injective.

Evidence in favour of the above conjecture has been given by Voisin [29] and by Ferretti [11].

3. Moduli of sheaves on K3 surfaces and the Chow ring

Throughout the present section X is a complex projective K3 surface. The main result asserts

essentially that the set whose elements are c2(F ) for F varying among (semi)stable sheaves on X

parametrized by a moduli space of sheaves with fixed topological Chern classes depends only on the

dimension of the moduli space. Before formulating the main result we will introduce a filtration of

CH0(X) by subsets and we will recall notation and results valid for semistable sheaves on X.

3.1. A filtration on CH0(K3).

Definition 3.1. Let Sg(X) ⊂ CH0(X) be the set of classes [Z] + acX where Z = p1 + . . . + pg is an

effective 0-cycle of degree g and a ∈ Z.

Notice that S0(X) = ZcX .

Claim 3.2. Let C be an irreducible smooth projective curve of genus g and f : C → X be a non-constant

map. Then f∗CH0(C) ⊂ Sg(X).

Proof. There exists p ∈ C such that f∗[p] = cX . In fact let H be a primitive ample divisor on X,

by [23] there exists D ∈ |H| whose irreducible components are rational curves. Since f is not constant

and D is ample f(C)∩D 6= ∅: if p ∈ f−1(D) then i∗[p] = cX . Now let z ∈ CH0(C). By Riemann-Roch

there exists an effective cycle p1 + . . . + pg on C such that z = [p1 + . . . + pg] + (deg z − g)p: thus

f∗z = ([f(p1) + . . .+ f(pg)] + (deg z− g)cX) ∈ Sg(X). �

Multiplication by Z maps Sg(X) to itself and hence we may say that Sg(X) is a cone. On the other

hand Sg(X) is a subgroup of CH0(X) only if g = 0. We have a filtration

S0(X) ⊂ S1(X) ⊂ . . . ⊂ Sg(X) ⊂ Sg+1(X) ⊂ . . . ⊂ CH0(X). (3.1)

In fact let z = ([p1 + . . .+ pg] +acX) ∈ Sg(X). Let pg+1 ∈ X be a point lying on a rational curve: then

[pg+1] = cX and hence z = ([p1 + . . .+ pg + pg+1] + (a− 1)cX) ∈ Sg+1(X). This proves (3.1). We also

have that
∞⋃
g=0

Sg(X) = CH0(X). (3.2)

In fact let z ∈ CH0(X). There exist a smooth curve ι : C0 ↪→ X of genus g and a cycle D0 ∈ Z1(C0)

such z = [ι∗D0]. By Claim 3.2 we get that z ∈ Sg(X); this proves (3.2).

3.2. Moduli of sheaves on a K3-surface. The Mukai pairing on H•(X;Z) is the symmetric bilinear

form defined by

〈α, β〉 := −
∫
X

α∨ ∪ β, (α0 + α2 + α4)∨ := α0 − α2 + α4, αp ∈ Hp(X;Z). (3.3)

Let

v = (r, `, s) ∈ H•(X;Z). (3.4)

(We identify H4(X;Z) with Z via the orientation class.)

Definition 3.3. A Mukai vector (for X) is a v as in (3.4) such that the following hold:

(1) r ≥ 0,

(2) ` ∈ H1,1
Z (X),

(3) if r = 0 then ` is effective.
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Given a coherent sheaf F on X the Mukai vector of F is

v(F ) := (chhom
0 (F ) + chhom

1 (F ) + chhom
2 (F )) ∪

√
TdX (3.5)

where chom
p (F ) ∈ H2p(V ;Z) is the topological p-th Chern class of F . Suppose that X is projective and

H is an ample divisor on X. Let v ∈ H•(X;Z) be a Mukai vector and Mv(X,H) be the moduli space of

S-equivalence classes of pure H-semistable sheaves on X with v(F ) = v, see [18, 28]. Thus Mv(X,H)

is a projective complex scheme. Let Mv(X,H)st be the open subscheme of Mv(X,H) parametrizing

isomorphism classes of pure H-stable sheaves. Suppose that Mv(X,H)st is not empty: then it is

smooth of pure dimension given by

dimMv(X,H)st = 2 + v2 = 2d(v). (3.6)

(We let v2 := 〈v, v〉.) Notice that d(v) is an integer because the Mukai pairing is even. We let

Mv(X,H)st be the closure of Mv(X,H)st in Mv(X,H). Let

c2(v) := r +
` · `
2
− s. (3.7)

Thus c2(v) is the degree of c2(F ) where F is a coherent sheaf such that v(F ) = v.

Remark 3.4. Let [F ] ∈Mv(X,H) with F not H-stable i.e. properly H-semistable. The same point of

Mv(X,H) is represented by any H-semistable pure sheaf G which is S-equivalent to F i.e. such that

grJH(F ) ∼= grJH(G) where grJH(F ), grJH(G) are the the direct-sums of the successive quotients of

Jordan-Holder filtrations of F and G. It follows that although F , G may not be isomorphic the Chern

classes c2(F ) and c2(G) are equal. Thus we may associate to [F ] ∈ Mv(X,H) a well-defined class

c2(F ) ∈ CH0(X).

3.3. The main result.

Theorem 3.5 (Huybrechts, O’Grady, Voisin). Let X be a complex projective K3 surface and H an

ample divisor on X. Let v = (r, `, s) be a Mukai vector. Suppose that Mv(X,H)st is not empty. Then

{c2(F ) | [F ] ∈Mv(X,H)st} = {z ∈ Sd(v)(X) | deg z = c2(v)}. (3.8)

(Here deg : CH0(X)→ Z is the degree homomorphism.)

Huybrechts [17] proved the result for v2 = −2 under additional hypotheses on v or X; essentially

either that ` is indivisible or the Picard number of X is at least 2. O’Grady [26] introduced Filtra-

tion (3.1) and proved the result under additional hypotheses on v or X: the conditions are similar to

those of Huybrechts or one may assume that r ≤ 2 (plus an epsilon). The proof of O’Grady is an

improved version of the proof of Huybrechts. Voisin proved the result without additional assumptions -

the key step in her proof is a very interesting characterization of Filtration (3.1), more precisely of the

subset of Sg(X) consisting of 0-cycles of degree greater than g. Actually Voisin showed that simplicity

of the sheaves (as opposed to stability) is the key property (as conjectured in [26]) - see Subsection

3.5.

3.4. Voisin’s characterization of the filtration. Let Z be a 0-cycle on X such that [Z] ∈ Sg(X)

and suppose that

d := degZ > g. (3.9)

Then Z ≡ (p1 + . . . + pg + (d − g)cX). Now let R ⊂ X be a rational curve: since any point in R

represents cX we get that every 0-cycle p1 + . . .+pg +x1 + . . .+xd−g with x1, . . . , xd−g ∈ R is effective

and rationally equivalent to Z. Thus

dim{Y ∈ X [d] | γ(Y ) ≡ Z} ≥ (d− g)}. (3.10)

(We recall that γ : X [d] → X(d) is the Hilbert-Cow morphism.)

Theorem 3.6 (Voisin, Thm. 2.1 of [31]). Let d > g ≥ 0 and V ⊂ X [d] be a closed irreducible subset

such that the following hold:

(1) dimV ≥ (d− g).

(2) If Z1, Z2 ∈ V then γ(Z1) ≡ γ(Z2).

Then [γ(Z)] ∈ Sg(X) for every Z ∈ V .

Remark 3.7. If g = 0 and d = 1 then Theorem 3.6 follows from (1.3).
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Remark 3.8. We give the initial idea in the proof of Theorem 3.6. For simplicity we assume that

dim γ(V ) ≥ (d− g). Let R ⊂ X be a rational ample curve and

ΣR := {Z ∈ X(d) | Z ∩R 6= ∅}. (3.11)

Since dimV > 0 and V is closed the intersection V ∩ ΣR is not empty. (The divisor ΣR is ample on

X(d).) Thus V ∩ΣR is closed of dimension at least (dimV − 1). By a dimension count we expect that

{Z ∈ V | deg(Z ∩R) ≥ 2} (3.12)

has dimension at least (d− 2), and so on. This argument by itself is not sufficient: think of the closed

V := {p0 + p | p ∈ X} (3.13)

and suppose that R does not contain p0. Then there is no Z ∈ V which is supported on R, contrary

to what is suggested by a dimension count. Thus one must use the hypothesis that γ(Z1) ≡ γ(Z2) for

arbitrary Z1, Z2 ∈ V : that is what Voisin does in [31].

3.5. Proof of the main result. The key result is the following.

Theorem 3.9 (Voisin). Let F be a simple locally-free sheaf on X. Let v := v(F ) and g := d(v). Then

c2(F ) ∈ Sg(X).

Proof. Tensorizing F by a sufficiently ample divisor we may assume (because of Theorem 1.5) that

F is globally generated and has no higher cohomology. Let v(F ) = (r, chom
1 (OX(H)), s). Let

g = d(v) = 1 +
v2

2
= 1 +

H ·H
2
− rs. (3.14)

Let

d := deg c2(F ) = c2(v) = r +
H ·H

2
− s. (3.15)

Clearly d > g (we may assume that r > 1 because if r = 1 then c2(F ) = 0). Choosing a generic

U ∈ Gr(r − 1, H0(F )) we get an exact sequence

0 −→ U ⊗OX
evU−→ F −→ IZU

(D) −→ 0 (3.16)

where ZU ⊂ X is a 0-dimensional subscheme of X. By Whitney’s formula c2(F ) is represented by the

cycle γ(ZU ) associated to ZU . Let Gr(r − 1, H0(F ))0 ⊂ Gr(r − 1, H0(F )) be the open dense subset

such that evU : U ⊗OX → F has cokernel which is torsion-free of rank 1. We have a regular map

Gr(r − 1, H0(F ))0 ρ−→ X [d]

U 7→ ZU
(3.17)

We claim that ρ is injective. In fact this amounts to proving that for Z ∈ Im ρ we have

dim Hom(F, IZ(H)) = 1. (3.18)

The above equation follows from simplicity of F (apply the functor Hom(F, ·) to Exact Sequence (3.16).)

Let V := Im ρ. Then V is an irreducible closed subset of X [d] and if Z1, Z2 ∈ V then γ(Z1) ≡ γ(Z2).

By injectivity of ρ

dimV = dim Gr(r−1, H0(F )) = (r−1)(h0(F )− r+1) = (r−1)(r+s− r+1) = (r−1)(s+1). (3.19)

On the other hand (3.14) and (3.15) give that

d− g = r − s− 1 + rs = (r − 1)(s+ 1). (3.20)

By Theorem 3.6 we get that γ(Z) ∈ Sg(X). �

Theorem 3.5 follows from Theorem 3.9 and the existence of a regular (holomorphic) symplec-

tic form on Mv(X,H)st - see Proposition 1.3 of [26]. Actually Voisin proves also a result similar

to Theorem 3.5 in which stable sheaves are replaced by simple locally-free sheaves, see Corollary 1.11

of [31].
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3.6. Generalized Franchetta conjecture. Let g ≥ 3. Let Fg be the moduli space of K3 surfaces

with a polarization of degree (2g − 2). Let F0
g ⊂ Fg be the open dense subset parametrizing polarized

K3 surfaces with trivial automorphism group (of the polarized K3). There is a tautological family

of K3 surfaces ρ : Xg → F0
g. Given t ∈ F we let Xt := ρ−1(t) and Ht ∈ Pic(Xt) be the class of the

polarization. The following question is quite natural:

Question 3.10. Let Z ∈ CH2(Xg). Let t ∈ F0
g and Zt = Z|Xt

. Is it true that there exist a, b ∈ Z such

that Zt = ac2(Xt) + b ?

The statement of the above question is similar to Franchetta’s conjecture on rationally defined

line-bundles on the tautological family of curves on Mg - now a Theorem, see [1, 22] (there is also a

version for families of curves embedded by linear systems other than the canonical one). Franchetta’s

conjecture may be proved for very low values of g by a simple direct argument. The proof may be

adapted in order to give an affirmative answer to Question 3.10 for those values of g such that the

generic K3 surface of genus g is a complete intersection in projective space i.e. g = 3, 4, 5 (I thank

Daniel Huybrechts for bringing that to my attention). Notice that Question 3.10 implies Theorem

3.5 for v2 = −2.
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