F. J. Silva

Université de Limoges

Joint work with A. R. Mészáros (UCLA).

Mean Field Games and related topics - 4, Rome, June 15, 2017

Outline

1 Introduction

- 2 Some references
- 3 The variational problems and the MFG systems
- 4 A simple application to multipopulations MFGs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

5 Comments and perspectives

Introduction

Mean Field Game PDE system

Model introduced by J.-M. Lasry and P.-L. Lions (2006)

$$\begin{cases} -\partial_t v(x,t) - \sigma^2 \Delta v(x,t) + H(x, \nabla v(x,t)) = f(x,m(t)), & \mathbb{R}^d \times (0,T), \\ \partial_t m(x,t) - \sigma^2 \Delta m(x,t) - \operatorname{div} \left(\partial_p H(x, \nabla v(x,t)) m(x,t) \right) = 0, & \mathbb{R}^d \times (0,T), \\ v(x,T) = g(x,m(T)) & \text{for } x \in \mathbb{R}^d, & m(0) = m_0 \in \mathcal{P}_1. \end{cases}$$

- $H(x, \cdot)$ is convex.
- In the first line we have a Hamilton-Jacobi-Bellman (HJB) equation backward in time.
- In the second line we have a Fokker-Planck equation forward in time.

In this talk we will focus on coupling terms f which are local, i.e. "f(x, m(t)) = f(x, m(x, t))".

Introduction

The stationary version is given by

$$\begin{split} & \left(-\sigma^2 \Delta v(x) + H(x, \nabla v(x)) + \lambda = f(x, m), \quad \mathbb{R}^d \times (0, T), \\ & -\sigma^2 \Delta m(x) - \operatorname{div} \left(\partial_p H(x, \nabla v(x))m(x)\right) = 0, \quad \mathbb{R}^d \times (0, T), \\ & \left(m \ge 0, \quad \int_{\mathbb{R}^d} u \mathrm{d}x = 0, \quad \int_{\mathbb{R}^d} m \mathrm{d}x = 1. \end{split} \end{split}$$

- The previous system corresponds to the long time average¹ of the time-evolving system.
- In some cases, the time-evolving and the stationary problems correspond to the optimality condition of some associated variational problems.
- Under density constraints, existence of solutions of a variation of the previous system is shown in A. Mészáros and S. '15.

¹When $H(x,p) = \frac{1}{2}|p|^2$ a rigorous proof is provided in P. Cardaliaguet, J.-M. Lasry, P.-L. Lions, A. Porretta (2013). Some references

Some references

Some references on the existence of solutions of stationary MFGs:

- J.-M. Lasry and P.-L. Lions, "Jeux à champ moyen I. Le cas stationnaire". C. R. Math. Acad. Sci. Paris, 2006.
- J.-M. Lasry and P.-L. Lions, "Mean Field Games". Jpn. J. Math., 2007.
- M. Cirant. "Multi-population mean field games systems with Neumann boundary conditions", J. Math. Pures Appl., 2015.
- D.-A. Gomes and H. Mitake, "Existence for stationary mean-field games with congestion and quadratic Hamiltonians", *NoDEA Nonlinear Differential Equations Appl.*, 2015.
- D.-A. Gomes, S. Patrizi and V. Voskanyan, "On the existence of classical solutions for stationary extended mean field games", *Nonlinear Anal.*, 2014.
- M. Bardi and E. Feleqi, "Nonlinear elliptic systems and mean-field games". NoDEA Nonlinear Differential Equations Appl., 2016.

Some references

- M. Cirant, "Stationary focusing mean-field games". Comm. Partial Differential Equations, 2016.
- R. Ferreira and D.-A. Gomes, "Existence of weak solutions to stationary mean-field games through variational inequalities", Preprint, 2016.
- E.-A. Pimentel and V. Voskanyan, "Regularity for second order stationary mean-field games". Preprint, 2016.

Some references on the variational approach in MFGs:

- J. D. Benamou and Y. Brenier, "A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem", *Numer. Math.* 2000.
- P. Cardaliaguet, G. Carlier, B. Nazaret. "Geodesics for a class of distances in the space of probability measures", *Calculus of Variations* and Partial Differential Equations, 2013.
- P. Cardaliaguet, "Weak solutions for first order mean field games with local coupling", in *Analysis and geometry in control theory and its applications*, Springer INdAM Ser., 2015.

Some references

- P. Cardaliaguet and P. J. Graber "Mean field games systems of first order", ESAIM: COCV, 2015.
- P. Cardaliaguet, J. Graber, A. Porretta and D. Tonon, "Second order mean field games with degenerate diffusion and local coupling", *NoDEA*, 2015.
- J.-D. Benamou and G. Carlier, "Augmented Lagrangian Methods for Transport Optimization, Mean Field Games and Degenerate Elliptic Equations", JOTA, 2015.
- A. R. Mészáros, F.-J. S., "A variational approach to second order mean field games with density constraints: the stationary case", JMPA, 2015.
- P. Cardaliaguet, A. R. Mészáros and F. Santambrogio, "First order Mean Field Games with density constraints: Pressure equals Price", SICON, 2016.
- J.-D. Benamou, G. Carlier and F. Santambrogio "Variational Mean Field Games", in *Active Particles, Volume 1: Theory, Models, Applications*, 2016.

L The variational problems and the MFG systems

The variational problems

- Let q > 1 and q' := q/(q-1).
- Let $\Omega \subseteq \mathbb{R}^d$ be a bounded domain with a smooth boundary.
- We suppose that the Hamiltonian H satisfies
 - $H: \Omega \times \mathbb{R}^d \to \mathbb{R}$ is continuous.
 - $H(x, \cdot)$ is strictly convex and differentiable (and so the same is valid for $H^*(x, \cdot)$)
 - There exist C_1 , $C_2 > 0$ such that

$$\frac{1}{q'C_1} |\xi|^{q'} - C_2 \le H(x,\xi) \le \frac{C_1}{q'} |\xi|^{q'} + C_2, \forall x \in \Omega, \quad \xi \in \mathbb{R}^d.$$

This implies that H^* satisfies

$$\frac{C_1^{1-q}}{q} |\eta|^q - C_2 \le H^*(x,\eta) \le \frac{C_1^{q-1}}{q} |\eta|^q + C_2, \quad \forall x \in \Omega, \quad \eta \in \mathbb{R}^d.$$

 \blacksquare There exists a modulus of continuity ω such that

$$|H(x,\xi) - H(y,\xi)| \le \omega(|x-y|)(|\xi|^{q'} + 1), \quad \forall x, y \in \Omega, \quad \xi \in \mathbb{R}^d_{\underline{z}}.$$

L The variational problems and the MFG systems

• Define
$$b_q: \Omega \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$$
 as

$$b_q(x,m,w) := \left\{ egin{array}{ll} mH^*(x,-w/m) & \mbox{if} \ m>0, \ 0 & \mbox{if} \ (m,w) = (0,0), \ +\infty & \mbox{otherwise}. \end{array}
ight.$$

which is a convex, proper, l.s.c. function (of "perspective type").

• Define $\mathcal{B}_q: W^{1,q}(\Omega) \times L^q(\Omega)^d \to \mathbb{R} \cup \{+\infty\}$ as

$$\mathcal{B}_q(m,w) := \int_{\Omega} b_q(x,m(x),w(x)) \mathrm{d}x.$$

Finally, let $\mathcal{F}: W^{1,q}(\Omega) \to \mathbb{R}$.

L The variational problems and the MFG systems

We consider the following variational problems

 $\inf \mathcal{B}_q(m,w) + \mathcal{F}(m),$

subject to

$$\begin{aligned} & -\Delta m + \operatorname{div}(w) &= 0 \quad \text{in } \Omega, \\ & (\nabla m + w) \cdot \hat{n} &= 0 \quad \text{on } \partial \Omega, \\ & \int_{\Omega} m \mathrm{d}x = 1, \end{aligned} \tag{P1}$$

and

$$\inf \mathcal{B}_q(m,w) + \mathcal{F}(m),$$

subject to

$$\begin{aligned} & -\Delta m + \operatorname{div}(w) &= 0 \quad \text{in } \Omega, \\ & (\nabla m + w) \cdot \hat{n} &= 0 \quad \text{on } \partial \Omega, \\ & \int_{\Omega} m \mathrm{d}x = 1, \quad 0 \leq m \leq \kappa, \end{aligned} \tag{P2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\kappa \in W^{1,q}(\Omega)$ is such that

$$\underline{\kappa}:= \min_{x\in\overline{\Omega}}\kappa(x)>0 \quad \text{and} \ \int_{\Omega}\kappa(x)\mathrm{d}x>1$$

— The variational problems and the MFG systems

Our main assumptions are the following

(I) $q > d \ge 2$.

- (II) ${\cal F}$ is weakly lower semicontinuous, Gâteaux differentiable in $W^{1,q}_+$ and
 - bounded from below in $W^{1,q}_+(\Omega)$ if problem (P_1) is considered.
 - For all R > 0 there exists $C_R > 0$ such that that $\mathcal{F}(m) \ge C_R$ if $0 \le m \le R$ in Ω , if problem (P_2) is considered.
 - Assumption (I) is restrictive on the growth of H, but it is crucial in our analysis because of the embedding $W^{1,q}(\Omega) \hookrightarrow C(\overline{\Omega})$.
 - On the other hand, assumption (II) is rather general since no convexity is assumed, and, moreover, dependence on ∇m is allowed.

— The variational problems and the MFG systems

Existence of solutions

We have the following result:

Theorem

Under the previous assumptions, problems (P_1) and (P_2) admit at least one solution.

Sketch of the proof:

(1) The existence for (P_2) follows easily by standard arguments. The key is that if (m_n, w_n) is a minimizing sequence, the inequality $m \leq \kappa$ and the growth of H^* provide uniform bounds on $||w_n||_q$.

(2) In order to prove the existence for problem (P_1) , let $\gamma > 1/|\Omega|$ be arbitrary and let (m_{γ}, w_{γ}) be a solution of (P_2) with $\kappa \equiv \gamma$.

Using the PDE we get

 $||m_{\gamma}||_{\infty} \le c_0 ||m_{\gamma}||_{1,q} \le c_0 c_1 (1 + ||w_{\gamma}||_q) \le 2c_0 c_1 \max\{1, ||w_{\gamma}||_q\}.$

L The variational problems and the MFG systems

- Assuming, w.l.o.g., that $||w_{\gamma}||_q \ge 1$, we get that $m \le 2c_0c_1||w_{\gamma}||_q$ a.e. in Ω .
- Using this fact and that

$$\mathcal{B}_q(m_\gamma, w_\gamma) + \mathcal{F}(m_\gamma) \le \mathcal{B}_q(1/|\Omega|, 0) + \mathcal{F}(1/|\Omega|),$$

(since $(1/|\Omega|, 0)$ is feasible for (P_2)), the growth condition for H^* implies that

$$||w_{\gamma}||_{q} \leq qC_{1}^{q-1} \left(\mathcal{F}(1/|\Omega|) + 2C_{2} - C_{\mathcal{F}} \right) (2c_{0}c_{1})^{q-1},$$

where $C_{\mathcal{F}} = \inf_{m \in W^{1,q}_+(\Omega)} \mathcal{F}(m)$. Thus,

$$||m_{\gamma}||_{\infty} \leq (2c_0c_1)^q q C_1^{q-1} \left(\mathcal{F}(1/|\Omega|) + 2C_2 - C_{\mathcal{F}} \right).$$

The result follows.

^L The variational problems and the MFG systems

Optimality conditions and MFG systems

Now, having the existence of solutions, we want to establish the optimality conditions to obtain the desired MFG system.

• We need to compute $\partial \mathcal{B}_q$. In order to get an idea of the result, for $x \in \Omega$ define

$$A_{q'}(x) := \{ (\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^d : \alpha + H(x, -\beta) \le 0 \}.$$

It easy to check that

$$b_q^*(x,\cdot,\cdot) = \chi_{A_{q'}(x)}(\cdot,\cdot),$$

and

$$\partial_{(m,w)}b_q(x,m,w) = \begin{cases} (-H(x,-\beta_x),\beta_x) & \text{if } m > 0, \\ (\alpha,\beta) \in A_{q'}(x) & \text{if } (m,w) = (0,0), \\ \emptyset & \text{otherwise,} \end{cases}$$

where, if m > 0, $\beta_x := -\nabla H^*(x, -w/m)$.

^L The variational problems and the MFG systems

Define

$$\overline{\mathcal{A}_{q'}} := \left\{ (\alpha, \beta) \in \mathcal{M}(\overline{\Omega}) \times L^{q'}(\Omega)^d : \alpha + H(\cdot, -\beta) \in \mathcal{M}_{-}(\overline{\Omega}) \right\},\$$

or equivalently,

$$\overline{\mathcal{A}_{q'}} := \left\{ (\alpha, \beta) \in \mathcal{M}(\overline{\Omega}) \times L^{q'}(\Omega)^d : \\ \alpha^{\mathrm{ac}} + H(\cdot, -\beta) \le 0, \text{a.e. in } \Omega \text{ and } \alpha^{\mathrm{s}} \in \mathcal{M}_{-}(\overline{\Omega}) \right\}.$$

Theorem

(i)
$$\mathcal{B}_r^*(\alpha,\beta) = \chi_{\overline{\mathcal{A}_{r'}}}(\alpha,\beta)$$
 for all $(\alpha,\beta) \in (W^{1,q}(\Omega))^* \times L^{q'}(\Omega)^d$.

(ii) Suppose that $\mathcal{B}_q(m, w) < \infty$. Then, if $v := (w/m)\mathbb{I}_{\{m>0\}} \notin L^q(\Omega)^d$ we have that $\partial \mathcal{B}_q(m, w) = \emptyset$. Otherwise, $\partial \mathcal{B}_q(m, w)$ exists and ²

$$\partial \mathcal{B}_q(m,w) = \left\{ (\alpha,\beta) \in \overline{\mathcal{A}_{q'}} ; \quad \alpha \, \sqcup \, \{m > 0\} = -H(\cdot, \nabla H^*(\cdot, -v)) \\ \text{and} \quad \beta \, \sqcup \, \{m > 0\} = -\nabla H^*(\cdot, -v) \right\}.$$

^L The variational problems and the MFG systems

As a consequence we obtain

Theorem

There exists $(m,u,\lambda)\in W^{1,q}(\Omega)\times W^{1,q'}(\Omega)\times \mathbb{R}$ such that

$$\left\{ \begin{array}{rl} -\Delta u + H(\cdot,\nabla u) + \lambda &= D\mathcal{F}(m), \quad \mbox{in }\Omega \\ -\Delta m - {\rm div} \left(m\nabla_{\xi}H(\cdot,\nabla u)\right) &= 0, & \mbox{in }\Omega, \\ (\nabla m + m\nabla_{\xi}H(\cdot,\nabla u)) \cdot n &= 0, & \mbox{on }\partial\Omega, \\ \int_{\Omega} u {\rm d}x = 0, \ \int_{\Omega} m {\rm d}x = 1, \quad m(x) > 0 & \mbox{in }\overline{\Omega}, \end{array} \right.$$

where both PDE are interpreted in a weak sense.

Sketch of the proof:

(1) Define
$$\hat{\mathcal{B}}_q(m,w) := \mathcal{B}_q(m,w) + \chi_{G^{-1}(0)}(m,w)$$
, where

$$G(m,w) = (-\Delta m + \operatorname{div}(w), \int_{\Omega} m \mathrm{d}x - 1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

— The variational problems and the MFG systems

(2) If (m, w) is a solution of (P_1) , it is possible to prove that

$$(-D\mathcal{F}(m),0) \in \partial \hat{\mathcal{B}}_q(m,w)$$

(3) It is also possible to find a point (\hat{m}, \hat{w}) such that $G(\hat{m}, \hat{w}) = 0$ with $\hat{m} > 0$. Therefore, since q > d, \mathcal{B}_q is continuous at (\hat{m}, \hat{w}) and so

$$(-D\mathcal{F}(m),0) \in \partial \hat{\mathcal{B}}_q(m,w) = \partial \mathcal{B}_q(m,w) + \partial \chi_{G^{-1}(0)}(m,w).$$

(4) In particular, $\partial \mathcal{B}_q(m,w) \neq \emptyset$ and so

$$v := (w/m)\mathbb{I}_{\{m>0\}} \in L^q(\Omega)^d.$$

(5) Since *m* solves

$$-\Delta m + \operatorname{div}(vm) = 0$$

and $v \in L^q(\Omega)^d$, with q > d, by the Harnack inequality proved in Trudinger '73, we have that m > 0 in Ω . Since $\partial\Omega$ is regular, classical reflection arguments show that m > 0 in $\overline{\Omega}$. (6) The result easily follows from the characterization of $\partial \mathcal{B}_q(m, w)$.

L The variational problems and the MFG systems

• Similarly, for problem (P_2) we obtain

Theorem

There exists $(m, u, p, \lambda) \in W^{1,q}(\Omega) \times W^{1,q'}(\Omega) \times \mathcal{M}(\overline{\Omega}) \times \mathbb{R}$ such that

$$-\Delta u + H(\cdot, \nabla u) - p + \lambda \quad = D\mathcal{F}(m), \qquad \qquad \text{in } \Omega,$$

$$-\Delta m - \operatorname{div}\left(m\nabla_{\xi}H(\cdot,\nabla u)\right) = 0, \qquad \qquad \text{in } \Omega,$$

$$(\nabla m + m \nabla_{\xi} H(\cdot, \nabla u)) \cdot n = 0, \qquad \qquad \text{on } \partial\Omega,$$

$$\int_{\Omega} u dx = 0, \quad \int_{\Omega} m dx = 1, \quad 0 < m(x) \le \kappa(x) \qquad \text{ in } \overline{\Omega},$$

$$\operatorname{spt}(p) \subseteq \{m = \kappa\}, \quad p \ge 0 \qquad \qquad \text{in } \Omega$$

where both PDE are interpreted in a weak sense.

- p corresponds to a Lagrange multiplier associated to $m \leq \kappa$.
- This result improves the one in Mészáros-S. '15 (when q > d).

^L The variational problems and the MFG systems

Some choices for \mathcal{F}

We consider

$$\mathcal{F}(m) := \int_{\Omega} F(x, m(x), \nabla m(x)) \, \mathrm{d}x,$$

where $F:\Omega\times \mathbb{R}\times \mathbb{R}^d\to \mathbb{R}$ is a Carathéodory function such that

(i) For a.e. $x \in \Omega$ and all $z \in \mathbb{R}$ the function $F(x, z, \cdot)$ is convex. (ii) There exists $\gamma \in L^1(\Omega)$ such that for a.e. $x \in \Omega$

$$F(x, z, \xi) \ge \gamma(x) \quad \forall z \ge 0, \ \xi \in \mathbb{R}^d.$$

(iii) For all R > 0 there exists $a_1 \in L^1(\Omega)$, $a_2 \in L^{q'}(\Omega)$ and $b = b(R) \ge 0$ such that for a.e. $x \in \Omega$, $0 \le z \le R$ and $\xi \in \mathbb{R}^d$

$$\begin{aligned} |\partial_z F(x,z,\xi)| &\leq a_1(x) + b|\xi|^q, \\ |\nabla_\xi F(x,z,\xi)| &\leq a_2(x) + b|\xi|^{q-1}. \end{aligned}$$

— The variational problems and the MFG systems

- In the standard case, when F is independent of ∇m , and we denote by $f(x,m) = \partial_m F(x,m)$, we get that $f \in L^1(\Omega)$. Therefore, if we consider (P_1) by the results by Stampacchia '65, we get that $u \in W^{1,s}(\Omega)$ for all $s \in (1, d/(d-1))$.
- If in addition, $x \in \Omega \to f(x, m(x)) \in L^r$ for some r > d and $\nabla_{\xi} H(x, \cdot)$ is Hölder continuous, uniformly on $x \in \Omega$, we can prove that for some α_0 , $\alpha_1 \in (0, 1)$

$$u \in C^{1,\alpha_0}_{\text{loc}}(\Omega)$$
 and $m \in C^{1,\alpha_1}_{\text{loc}}(\Omega)$.

 Of course, functions depending non-locally on m can also be considered.

L The variational problems and the MFG systems

A very simple example of ${\mathcal F}$ depending only on m is

$$\mathcal{F}(m) = \frac{1}{\alpha+1} \int_{\Omega} m(x)^{\alpha+1} \mathrm{d}x$$

which gives the existence (for α arbitrary) of solutions of

$$\left\{ \begin{array}{rl} -\Delta u + H(\cdot,\nabla u) + \lambda &= m^{\alpha} & \mbox{ in }\Omega, \\ \nabla u \cdot n &= 0 & \mbox{ on }\partial\Omega, \\ -\Delta m - {\rm div} \left(m \nabla_{\xi} H(\cdot,\nabla u)\right) &= 0, & \mbox{ in }\Omega, \\ \left(\nabla m + m \nabla_{\xi} H(\cdot,\nabla u)\right) \cdot n &= 0, & \mbox{ on }\partial\Omega, \\ \int_{\Omega} m {\rm d}x = 1, & m(x) > 0 & \mbox{ in }\overline{\Omega}. \end{array} \right.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

L The variational problems and the MFG systems

 \blacksquare In the focusing case, for $\alpha>0$ we get the existence of solutions of

$$\begin{split} -\Delta u + H(\cdot,\nabla u) - p + \lambda &= -m^{\alpha} & \text{ in } \Omega, \\ \nabla u \cdot n &= 0 & \text{ on } \partial\Omega, \\ -\Delta m - \operatorname{div}\left(m\nabla_{\xi}H(\cdot,\nabla u)\right) &= 0, & \text{ in } \Omega, \\ (\nabla m + m\nabla_{\xi}H(\cdot,\nabla u)) \cdot n &= 0, & \text{ on } \partial\Omega, \\ \int_{\Omega} m \mathrm{d}x = 1, \quad 0 < m \leq \kappa \quad \text{ in } \overline{\Omega}, \\ \mathrm{spt}(p) \subseteq \{m = \kappa\}, \quad p \geq 0 & \text{ in } \overline{\Omega} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

— The variational problems and the MFG systems

A very simple example of ${\mathcal F}$ depending only on ∇m is

$$\mathcal{F}(m) = \frac{1}{2} \int_{\Omega} |\nabla m(x)|^2 \mathrm{d}x$$

which gives the existence of solutions of

$$\left\{ \begin{array}{rl} -\Delta u + H(\cdot,\nabla u) + \lambda &= -\Delta m, \quad \mbox{in }\Omega, \\ \nabla(u-m)\cdot n &= 0, & \mbox{on }\partial\Omega, \\ -\Delta m - {\rm div} \left(m\nabla_{\xi}H(\cdot,\nabla u)\right) &= 0, & \mbox{in }\Omega, \\ \left(\nabla m + m\nabla_{\xi}H(\cdot,\nabla u)\right)\cdot n &= 0, & \mbox{on }\partial\Omega, \\ \int_{\Omega}m{\rm d}x = 1, \quad m(x) > 0 & \mbox{in }\overline{\Omega}. \end{array} \right.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

└── A simple application to multipopulations MFGs

A simple application to multipopulations MFGs

We consider here the system

$$(MFG)_{N} \begin{cases} -\Delta u_{i} + H^{i}(\cdot, \nabla u_{i}) + \lambda_{i} = f^{i}(x, (m_{i})_{i=1}^{N}), & \text{in } \Omega, \\ \nabla u_{i} \cdot n = 0, & \text{on } \partial \Omega, \\ -\Delta m_{i} - \operatorname{div} \left(m_{i} \nabla_{\xi} H^{i}(\cdot, \nabla u_{i}) \right) = 0, & \text{in } \Omega, \end{cases}$$

$$\left\{ \begin{array}{ccc} (MFG)_N \\ & (\nabla m_i + m_i \nabla_{\xi} H^i(\cdot, \nabla u_i)) \cdot n &= 0, & \text{on } \partial\Omega, \\ & \int_{\Omega} m_i \mathrm{d}x = 1, & m_i(x) > 0 & \text{on } \overline{\Omega}, \\ & i = 1, ..., N, \end{array} \right.$$

We assume that

• The Hamiltonians $H^i: \Omega \times \mathbb{R}^d \to \mathbb{R}$ satisfy the growth conditions assumed for H.

A simple application to multipopulations MFGs

• The couplings f^i satisfy

 $\begin{array}{ll} (I) & \exists \ \gamma_i \in L^1(\Omega) \ \text{ such that } \int_0^z f^i(x, z_i, (\zeta_j)_{j \neq i}) \mathrm{d} z_i \geq \gamma_i(x) \\ \\ \text{for a.e. } x \in \Omega, \ \forall \ z \geq 0, \ \forall \ (\zeta_1, ..., \zeta_{i-i}, \zeta_{i+1}, ..., \zeta_N) \in [0, +\infty)^{N-1}, \\ \\ (II) & \forall \ R > 0, \ \exists \ a_i \in L^1(\Omega) \ \text{ such that } \ |f^i(x, z, (\zeta_j)_{j \neq i})| \leq a_i(x), \\ \\ \text{for a.e. } x \in \Omega, \ \forall \ 0 \leq z \leq R, \ \forall \ (\zeta_1, ..., \zeta_{i-i}, \zeta_{i+1}, ..., \zeta_N) \in [0, +\infty)^{N-1}, \\ \end{array}$

and

(III) $\begin{array}{l} \forall \; (\zeta_1, ..., \zeta_{i-i}, \zeta_{i+1}, ..., \zeta_N) \in [0, +\infty)^{N-1} \\ \\ \text{the map } z \in [0, +\infty) \to f^i(x, z, (\zeta_j)_{j \neq i}) \in \mathbb{R} \text{ is non-decreasing.} \end{array}$

Proposition

Under the previous assumptions system $(MFG)_N$ admits at least one solution $m = (m_1, ..., m_N)$, $u = (u_1, ..., u_N)$ and $\lambda = (\lambda_1, ..., \lambda_N)$, where, for all i = 1, ..., N, $m_i \in W^{1,q}(\Omega)$ and $u_i \in W^{1,s}(\Omega)$ (for all $s \in (1, d/(d-1))$.

└── A simple application to multipopulations MFGs

Alternatively, we can assume that

$$f^i(x,\zeta_i,(\zeta_j)_{j\neq i})=\partial_{\zeta_i}F(x,\zeta) \quad \text{for a.e. } x\in\Omega, \,\forall\,\zeta=(\zeta_1,...,\zeta_N)\in\mathbb{R}^N.$$

Proposition

Under the previous assumption system $(MFG)_N$ admits at least one solution $m = (m_1, ..., m_N)$, $u = (u_1, ..., u_N)$ and $\lambda = (\lambda_1, ..., \lambda_N)$, where, for all i = 1, ..., N, $m_i \in W^{1,q}(\Omega)$ and $u_i \in W^{1,s}(\Omega)$ (for all $s \in (1, d/(d-1))$.

- The previous assumption is restrictive. On the other hand, it does not require the strong boundedness condition (II) and the monotonicity assumption (III).
- \blacksquare Moreover, this framework allows us to introduce density constraints of the form $m \in \mathcal{K},$ where

$$\mathcal{K} := \left\{ m \in W^{1,q}(\Omega)^N \; ; \; \sum_{i=1}^N \alpha_i m_i(x) \le \kappa(x) \right\}.$$

└─ A simple application to multipopulations MFGs

Suppose that
$$\kappa \in W^{1,q}(\Omega)$$
, $\kappa > 0$, $\alpha_i \ge 0$, $\forall i = 1, ..., N$.
 $\exists \ \overline{i} \in \{1, ..., N\}$ such that $\alpha_{\overline{i}} > 0$ and $\sum_{i=1}^{N} \alpha_i < \|\kappa\|_1$.

Proposition

Under the previous assumptions, system

$$\begin{cases} -\Delta u_i + H^i(\cdot, \nabla u_i) - \alpha_i p + \lambda_i = f^i(x, (m_i)_{i=1}^N) & \text{in } \Omega, \\ \nabla u_i \cdot n = 0 & \text{on } \partial \Omega, \\ -\Delta m_i - \operatorname{div} \left(m_i \nabla_{\xi} H^i(\cdot, \nabla u_i) \right) = 0 & \text{in } \Omega, \\ (\nabla m_i + m_i \nabla_{\xi} H^i(\cdot, \nabla u_i)) \cdot n = 0 & \text{on } \partial \Omega, \\ \int_{\Omega} m_i dx = 1, m_i(x) > 0 & \text{in } \overline{\Omega}, \\ \sum_{i=1}^N \alpha_i m_i(x) \le \kappa(x) & \text{for all } x \in \overline{\Omega}, \\ p \ge 0 & \text{and} \quad \operatorname{spt}(p) \subseteq \left\{ x \in \overline{\Omega} \quad \sum_{i=1}^N \alpha_i m_i(x) = \kappa(x) \right\}. \end{cases}$$

admits at least one solution m, u, λ and p, where $m_i \in W^{1,q}(\Omega)$, $u_i \in W^{1,s}(\Omega)$ (for all $s \in (1, d/(d-1))$ and $p \in \mathcal{M}(\overline{\Omega})$. └── A simple application to multipopulations MFGs

A word on the numerical resolution

- It is possible to construct discrete versions of (P_1) and (P_2) in such a way to obtain in the optimality system the finite difference scheme introduced by Achdou-Capuzzo-Dolcetta '10 in the case of (P_1) , and a natural variation in the case of (P_2) .
- If *F* is convex, then we can applied first order methods in order to solve numerically the problem. See e.g. the application of the augmented Lagrangian algorithm in
 - J.M. Benamou and G. Carlier '14
 - J.M. Benamou, G. Carlier and F. Santambrogio '16.
 - Y. Achdou and M. Laurière '16.
 - R. Andreev '16
- In Briceño, Kalise, S. '16, we study and compare different first order proximal methods for the resolution of stationary MFG systems, which can be of first or second order, with and without density constraints.

└─ A simple application to multipopulations MFGs

Example

We consider here an example in Achdou-Capuzzo-Dolcetta 10' with an additional density constraint

$$q = 2, \quad f(x, y, m) = m^2 - \sin(2\pi y) - \sin(2\pi x) - \cos(4\pi x),$$
$$m(x, y) \le \kappa(x, y) := \mathcal{I}_R(x, y) + (1 - \mathcal{I}_R(x, y))d$$

où

$$\mathcal{I}_R(x,y) := \begin{cases} 1 & \text{si } x^2 + y^2 \le R^2 \\ 0 & \text{sinon} \end{cases}, \quad \bar{d} = 1.3, \ R = 0.25.$$

└─ A simple application to multipopulations MFGs

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二回 - 釣�?

Comments and perspectives

Comments and perspectives

- Theoretical study for the time-dependent case and planning problem.
- Numerical study for the time-dependent case. In an ongoing work with L. Briceño, D. Kalise and M. Laurière, we study the discrete problem with and without congestion (the latter corresponds to a Mean Field Type Control problem).
- For problem (P_1) , can we get rid of the density constraint when $1 < q \le d$?

- Numerical analysis when *F* is not convex?
- Numerical analysis for variational multipopulation MFGs.