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Constrained self-organized systems

Constrained self-organized systems

The mathematical description of emerging collective phenomena and
self-organization in systems composed of large numbers of agents has gained
increasing interest in various fields in biology, robotics and control theory, as
well as sociology and economics.

We consider such problems in a constrained setting, where the emergent
behaviour (alignment/consensus, patterns,. . .) is not spontaneous but
enforced by the action of an external policy maker or hierarchical leadership1.

Mean-field type control and game theory has raised a lot of interest recently2.
The general setting consists in a control problem involving a very large
number of agents where the evolution of the state and the objective
functional of each agent may be influenced by the behaviour of other agents.

1M. Caponigro, M. Fornasier, B. Piccoli, E. Trélat ’13; G. Albi, L.P. ’13; G. Albi, L. P., M.
Zanella ’14; M. Fornasier, B. Piccoli, F. Rossi ’14; S. Wongkaev, A. Borźı ’15; B. Düring,
P.A. Markowich, J.F. Pietschmann, M.-T. Wolfram ’09;

2J-M. Lasry, P-L. Lions ’07; M. Huang, R.P. Malhamé, P.E. Caines ’07; A. Bensoussan,
J. Frehse, P. Yam ’13; P. Cardaliaguet, J-M. Lasry, P-L. Lions, A. Porretta ’12; Y. Achdou, F.
Camilli, I. Capuzzo-Dolcetta ’12; P. Degond, J.-G. Liu, C. Ringhofer ’14; M. Fornasier,
F. Solombrino ’14; D.A. Gomes, J. Saúde ’14;. . .
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Constrained self-organized systems

Constrained self-organized systems

Classical examples in socio-economy, biology and robotics are given by forcing
animals/humans/robots to follow a specific path or to reach a desired zone...

... but also influencing consumers towards a given good, persuading voters during
political elections, influencing opinions over social networks
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Microscopic and mean-field optimal control

Microscopic optimal control problems

Let vi(t) ∈ Ω ⊂ Rd evolve

v̇i(t) = Fi(v(t)) + ui(t), i = 1, . . . , N

where v = (v1, . . . , vN ) and u = (u1, . . . , uN ) is a control term defined as follows

Microscopic optimal control

u∗ = arg min
u∈U

JN (u) :=

∫ T

0

1

N

N∑
i=1

(Li(v(t)) + γψ(ui(t))) dt

constrained to the dynamic of (vi(t))
N
i=1, U the admissible space of controls.

In the above system the control is determined as a minimizer of the common
social cost JN (u).

For large values of N the computational effort is prohibitive3 (curse of
dimensionality).

3R.E. Bellman ’57
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Microscopic and mean-field optimal control

Examples

Opinion formation4

d = 1, Ω = [−1, 1], Fi(v) =
1

N

N∑
j=1

P (vi, vj)(vj − vi)

Li(v(t)) = |vi(t)− v̄|2, ψ(ui(t)) = |ui(t)|2,

where v̄ is a desired opinion and P is the compromise function, for example
P (vi, vj) = Ψ(|vi − vj | ≤ ∆) with ∆ the bounded confidence interval and
Ψ(·) the indicator function.

Wealth distribution5

d = 1, Ω = [0,∞[, Fi(v) =
1

N

N∑
j=1

P (vi, vj)(vj − vi),

Li(v(t)) =
1

N

N∑
j=1

|vi(t)− vj(t)|2, ψ(ui(t)) = |ui(t)|2,

where the control aims at reducing inequalities in the wealth distribution.
4M.H. DeGroot ’74; R. Hegselmann, U. Krause ’02; G. Albi, M. Herty, L. P. ’15
5S. Solomon, M. Levy ’96; B. Düring, L.P., G. Toscani ’17
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Microscopic and mean-field optimal control

Swarming models

Let (xi(t), vi(t)) ∈ R2d, d = 1, 2, 3 evolve

ẋi(t) = vi(t),

v̇i(t) = Fi(x(t),v(t)) + ui(t), i = 1, . . . , N

where x = (x1, . . . , xN ), v = (v1, . . . , vN ) and u = (u1, . . . , uN ) ∈ Rd×N is a
control term defined as

u∗ = arg min
u∈U

JN (u) :=

∫ T

0

1

N

N∑
i=1

(Li(x(t),v(t)) + γψ(ui(t))) dt.

For example 6

Fi(x,v) =
1

N

N∑
j=1

H(xi, xj)(vj − vi), H(xi, xj) =
K

(1 + |xi − xj |2)β

and we can take Li(x,v) = |vi− v̄|2 to enforce convergence towards a velocity v̄.
6F. Cucker, S. Smale ’07; M. D’Orsogna, A. Bertozzi et al.’06; S.Motsch, E.Tadmor ’11
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Microscopic and mean-field optimal control

Mean-Field Optimal Control

Let fN (x, v, t) = 1
N

∑N
j=1 δ(x− xi(t))δ(v − vi(t)) then fN → f(x, v, t) as

N →∞ which satisfies 7

Mean-field optimal control

min
u∈U

J(f, u) :=

∫ T

0

∫
R2d

(L(x, v, t) + γψ(u)) f(x, v, t) dx dv dt

s.t. ∂tf + v · ∇xf = −∇v · ((F [f ] + u) f) , f(x, v, 0) = f0(x, v)

For example, for the Cucker-Smale model we have

F [f ](x, v, t) =

∫
R2d

H(x, y)(w − v)f(y, w, t) dw dy.

7A. Bensoussan, J. Frehse, P. Yam ’13; G.A. Y-P. Choi, M. Fornasier, D. Kalise, F.
Solombrino, ’13, ’16.
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Microscopic and mean-field optimal control

Comparison of microscopic and mean-field solutions
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Boltzmann-type Optimal Control

Let us consider the following Boltzmann equation

∂tf + v · ∇xf = Qκ(f, f)

where Qκ(f, f)(x, v, t) is the constrained Boltzmann-Povzner operator 8 defined
as

Qκ(f, f) = λ

∫
R2d

(
1

Jκ
f(x, ′v)f(y, ′w)− f(x, v)f(y, w)

)
dy dw.

Here λ > 0 is the interaction rate, (′v,′ w) the pre-interaction terms which
generate the pair (v, w) and Jκ indicates the jacobian of the binary interaction
rule {

v′ = v + αF (x, y, v, w) + ακ(v, w)

w′ = w + αF (y, x, w, v) + ακ(w, v)

where (v′, w′) are now the post-interaction terms generated from (v, w).
The factor κ(v, w) represents the effect of the control over the binary dynamic. If
κ(v, w) = u(v), κ(w, v) = u(w) the control acts over the single particle.

8A.Y. Povzner ’62; M. Fornasier, J. Haskovec, G. Toscani ’10; L.P., G. Toscani ’13
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Boltzmann Optimal Control

Boltzmann Optimal Control

Boltzmann-type optimal control

min
κ∈K

JB(f, κ) :=

∫ T

0

∫
R2d

(
L(x, v, t) + γ

∫
R2d

ψ(κ)f(y, w, t)dydw

)
f(x, v, t)dxdvdt,

s.t. ∂tf + v · ∇xf = Qκ(f, f), f(x, v, 0) = f0(x, v).

In the case κ(v, w) = u(v) if
∫
R2d f(y, w, t)dydw = 1 we have∫

R2d

ψ(u)f(y, w, t)dydw = ψ(u)

∫
R2d

f(y, w, t)dydw = ψ(u).

Questions

Relations between Boltzmann-type control and mean-field control?

How can we deal with the curse of dimensionality?

Lorenzo Pareschi (University of Ferrara) Boltzmann-type Optimal Control and MPC Rome, June 14-16, 2017 12 / 32
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Boltzmann Optimal Control

Boltzmann Control, Mean-field control and MPC
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Boltzmann Optimal Control

Optimality condition for the Boltzmann control

To simplify notations we restrict to the space homogeneous setting f = f(v, t).
Let us introduce the function p ∈ C2

0 (Rd × [0, T ];R), and we define the
Lagrangian of the Boltzmann-type Optimal Control Problem as follows

LB(f, u, p) = JB(f, u) +

∫ T

0

∫
Rd
p (∂tf −Qκ(f, f)) dvdt.

For κ(v, w) = u(v) computing the variations with respect to f and u we get 9

Boltzmann optimality system (κ(v, w) = u(v))

∂tf = λ

∫
Rd

(
1

Jκ
f(′v)f(′w)− f(v)f(w)

)
dw, f(v, 0) = f0(v)

∂tp = L(v, t) + γψ(u(v))

− λ
∫
Rd

(
p(v′)− p(v) + p(w′)− p(w)

)
f(w) dw, p(v, T ) = 0,

∇uψ(u) =
λα

γ

∫
Rd
∇vp(v′)f(w) dw

9C. Cercignani ’88
Lorenzo Pareschi (University of Ferrara) Boltzmann-type Optimal Control and MPC Rome, June 14-16, 2017 14 / 32



Introduction Boltzmann-type optimal control Model Predictive Control Stochastic simulation methods Conclusions

Boltzmann Optimal Control

After integration by parts we get

LB(f, u, p) = JB(f, u) +

∫
Rd
f(v, T )p(v, T ) dv −

∫
Rd
f(v, 0)p(v, 0) dv

−
∫ T

0

∫
Rd
∂tpf dv − λ

∫ T

0

∫
R2d

(p(v′)− p(v))f(v)f(w) dv dw dt.

Then we compute the functional derivatives of the Lagrangian with respect to the state function
f and the control u. We have

δLB(f, u, p)

δf
= L(v) + γψ(u(v))

− ∂tp− λ
∫
R2d

(
p(v′)− p(v) + p(w′)− p(w)

)
f(w) dw

δLB(f, u, p)

δu
= γ∇uψ(u)− λα

∫
Rd
∇up(v′)f(w) dw.

Imposing that the solution to the optimal control problem satisfies

δLB
δf

∣∣∣
(f,u,p)

= 0 and
δLB
δu

∣∣∣
(f,u,p)

= 0,

yields the optimality system.

Lorenzo Pareschi (University of Ferrara) Boltzmann-type Optimal Control and MPC Rome, June 14-16, 2017 15 / 32
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Mean-field asymptotics

The quasi-invariant optimality limit

We can prove 10

Theorem
Let T > 0, ε > 0, and assume that the function F (·, ·) ∈ L2

loc for every t ≥ 0. We consider a
weak solution f of the Boltzmann optimal control with initial datum f0(v). Introducing the
quasi-invariant scaling

α = ε, λ = 1/ε,

define by (fε, kε, pε) a solution for the scaled optimality conditions system. Then as ε→ 0,
(fε, uε, pε) converges point-wise, up to a subsequence, to (g, u, q) solution of the mean-field
optimality system

∂tg = −∇v ·
(∫

Rd
F (v, w)g(w) dw + u(v)

)
g(v)

∂tq = L(v, t) + γψ(u)

−
∫
Rd

(∇vq(v) · (F (v, w) + u(v)) +∇vq(w) · (F (w, v) + u(w))) g(w) dw

∇uψ(u(v)) =
1

γ
∇vq(v).

10G. Albi, L. Pareschi ’17
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Mean-field asymptotics

Let fε be a weak solution of the scaled equation

d

dt

∫
Rd
ϕ(v)f

ε
(v) dv =

1

ε

∫
R2d

(
ϕ(v

′
ε)− ϕ(v)

)
f
ε
(v)f

ε
(w) dw dv

for every test function ϕ. Now writing ϕ(v′ε) = ϕ(v) + (v′ε − v) · ∇vϕ(v) + R(v′ε − v;ϕ) we get

d

dt

∫
Rd
ϕ(v)f

ε
(v) dv =

∫
R2d

(
∇vϕ(v) · (F (v, w) + u

ε
(v))

)
f
ε
(v)f

ε
(w) dw dv +Rε1,

where Rε1 is the remainder.
We perform an analogous computation for the adjoint equation

∂tp
ε
= L(v, t) + γψ(u(v))−

1

ε

∫
Rd

(
p
ε
(v

′ − ε)− pε(v) + p
ε
(w

′
ε)− p

ε
(w)
)
f(w) dw,

since pε is in C2
0 (R

d × [0, T ]) we can write

p
ε
(v

′
ε) = p

ε
(v) + (v

′
ε − v) · ∇vp

ε
(v) + R(v

′
ε − v; p).

Introducing the above expansion yields

∂tp
ε
= L(v, t) + γψ(u

ε
(v))

−
∫
Rd

(
(F (v, w) + u

ε
(v, w)) · ∇vpε(v) + (F (w, v) + u

ε
(w, v)) · ∇vpε(w)

)
f
ε
(w) dw +Rε2.

In the limit ε→ 0 both the remainders vanishes and denoting by (g, u, q) the limit of (fε, uε, pε) we get the
desired mean-field optimality system. The same argument permits to show the compatibility condition.

Lorenzo Pareschi (University of Ferrara) Boltzmann-type Optimal Control and MPC Rome, June 14-16, 2017 17 / 32
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Mean-field asymptotics

Optimality systems for binary control
In the general case, for a symmetric binary control κ(v, w) = κ(w, v) we have

Boltzmann optimality system (κ = κ(v, w))

∂tf = λ

∫
Rd

(
1

Jκ
f(

′
v)f(

′
w)− f(v)f(w)

)
dw, f(v, 0) = f

0
(v)

∂tp = L(v, t) + γ

∫
Rd

(ψ(κ(v, w)) + ψ(κ(w, v))) f(w) dw

− λ
∫
Rd

(
p(v

′
)− p(v) + p(w

′
)− p(w)

)
f(w) dw, p(v, T ) = 0,

∇κψ(κ) =
λα

2γ

(
∇vp(v′) +∇vp(w′

)
)

In the quasi-invariant limit we obtain optimality conditions for a different mean-field problem

Mean-field optimality system (κ = κ(v, w))

∂tg = −∇v ·
((∫

Rd
(F (v, w) + κ) g(w) dw

)
g(v)

)
∂tq = L(v, t) + γ

∫
Rd

(ψ(κ(v, w)) + ψ(κ(w, v))) g(w) dw

−
∫
Rd

(∇vq(v) · (F (v, w) + κ(v, w)) +∇vq(w) · (F (w, v) + κ(w, v))) g(w) dw

∇κψ(κ) =
1

2γ
(∇vq(v) +∇vq(w)) .

Lorenzo Pareschi (University of Ferrara) Boltzmann-type Optimal Control and MPC Rome, June 14-16, 2017 18 / 32
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Mean-field asymptotics

Boltzmann Control, Mean-field control and MPC
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Model Predictive Control

Model Predictive Control (MPC) MPC compute the next M − 1, say, optimal
moves on a limited time horizon.

Split the time interval [0, T ] in intervals of length ∆t, with tn = n∆t.

Compute the value of the control at tn, solving for the known state
fn(v) a (reduced) time discrete optimization problem on the predictive
horizon [tn, tn + (M − 1)∆t].

Having the control at tn the new state fn+1(v) is computed.

This procedure is reiterated until n∆t = T is reached.

The method typically yields suboptimal solutions, and is closely related
toInstantaneous Control (IC) which essentially corresponds to the case M = 2.

Lorenzo Pareschi (University of Ferrara) Boltzmann-type Optimal Control and MPC Rome, June 14-16, 2017 20 / 32
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MPC for Boltzmann optimal control

MPC for Boltzmann optimal control

We consider the MPC method to solve the Boltzmann optimal control problem
based on a sequence of forward Euler approximations, thus we have 11

MPC for Boltzmann optimal control

min
u
JBM (κ, f) :=

M−2∑
m=0

∫ tm+1

tm

[∫
Rd

(
Lm(v) + γ

∫
Rd
ψ(κm)fm(w)dw

)
fm(v)dv

]
,

subject to

fm+1 = fm + ∆tQκm(fm, fm), m = 0, . . . ,M − 2,

with the binary dynamics

v′(κm) = v + αF (v, w) + ακm(v, w),

w′(κm) = w + αF (w, v) + ακm(w, v).

11G. Albi, L.P. ’17
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MPC for Boltzmann optimal control

Boltzmann-MPC feedback control

We obtain the following system of feedback controls for m = M − 2, . . . , 0

∇κψ(κM−1) = 0,

∇κψ(κm) = −αλ
2γ

∆t
[
∇vLm+1(v′) +∇vLm+1(w′)

+2γ∇v
(∫

Rd
(ψ(κm+1(v′, s)) + ψ(κm+1(w′, s)))fm(s)ds

)]
.

For ψ(·) = | · |2 and a target cost L(v) = |v − v̄|2 we have the feedback control

κM−1 = 0,

κm = −αλ
γ

∆t

[
v̄ − 1

2
(v′+w′) + γ∇v

(∫
Rd

(|κm+1(v′, s)|2+ |κm+1(w′, s)|2)fm(s)ds

)]
.

In the instantaneous control case M = 2 we have

κ̂(v, w) =
αλ∆t

γ + α2λ∆t

[
v̄ − 1

2
(v + w)− α

2
(F (v, w) + F (w, v))

]
.

Lorenzo Pareschi (University of Ferrara) Boltzmann-type Optimal Control and MPC Rome, June 14-16, 2017 22 / 32
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MPC for Mean-field optimal control

Mean-field-MPC feedback control

Similarly, we can consider a MPC approach based on forward Euler steps to solve
the mean field optimal control, thus we have 12

MPC for mean-field optimal control

min
u
JM (u, f) :=

M−2∑
m=0

∫ tm+1

tm

[∫
Rd

(L(v) + γψ(um)) fm(v)dv

]
,

subject to

fm+1 = fm −∆t∇v · ((F [fm] + um) fm) m = 0, . . . ,M − 2,

In this case the system of feedback controls for m = M − 2, . . . , 0 reads

∇uψ(uM−1) = 0,

∇uψ(um) = −∆t

γ

[
∇vL(v) + 2γ∇v

(
ψ(um+1)

)]
, m = 0, . . . ,M − 2

12M.Herty, M.Zanella ’16; G. Albi, L.P. ’17
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MPC for Mean-field optimal control

Mean-field-MPC feedback control

For a quadratic penalization ψ(·) = | · |2 and a target cost L(v) = |v̄ − v|2 we
have an explicit formulation of the feedback control as follows

uM−1 = 0,

um =
∆t

γ

[
(v̄ − v)− γ∇v

(
|um+1|2

)]
, m = M − 2, . . . , 0

From which we can compute the explicit formula for the control as follows

uM−1 = 0,

um =
∆t

γ
Cm(v̄ − v)

where for m = M − 2, . . . , 0, Cm := 1 + 2∆t2/γC2
m+1, and CM−1 = 0.

For control horizon such that M = 2, we obtain the instantaneous control

û(v) =
∆t

γ
(v̄ − v).

Lorenzo Pareschi (University of Ferrara) Boltzmann-type Optimal Control and MPC Rome, June 14-16, 2017 24 / 32
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MPC for Mean-field optimal control

Explicit MPC mean-field feedback control

M = 20 γ = 7 γ = 8 γ = 10

v̄ = 0

Lorenzo Pareschi (University of Ferrara) Boltzmann-type Optimal Control and MPC Rome, June 14-16, 2017 25 / 32
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MPC Monte Carlo methods

Monte Carlo methods

High computational cost of solving the Boltzmann and mean-field
operators in dimension d, for a product-type quadrature formula based
on N parameters is O(Nd).

Structural properties (positivity, conservation of mass, momentum, ...)
are difficult to preserve at the discrete level.

Staring point is a standard splitting method between transport and
interaction in the scaled (quasi-invariant) Boltzmann equation

∂tf
ε = −v · ∇xfε, ∂tf

ε =
1

ε
Qεκ(fε, fε).

Transport step is solved by shift of the statistical samples (free transport).

Interaction step can be rewritten as

∂tf
ε =

1

ε

[
Qε,+κ (fε, fε)− fε

]
,

∫
R2d

fε dx dv = 1,

where Qε,+κ ≥ 0 is the gain part of the interaction operator.

Lorenzo Pareschi (University of Ferrara) Boltzmann-type Optimal Control and MPC Rome, June 14-16, 2017 26 / 32
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MPC Monte Carlo methods

MPC Monte Carlo methods

We rewrite the forward Euler scheme in the MPC approximation as

fε,m+1 =

(
1−

∆t

ε

)
fε,m +

∆t

ε
Qε,+κm (fε,m, fε,m), m = 0, . . . ,M − 1

If we assume fε,m is a probability density also Qε,+κm (fε,m, fε,m) is a probability density. Under
the restriction ∆t ≤ ε then fε,m+1 is a convex combination of probability densities and we can
construct a Monte Carlo simulation process 13.

In order to sample from Qε,+κm (fε,m, fε,m) we need to evaluate the feedback control κm,
except for instantaneous control this may require a suitable numerical method.

The computational cost to advance one time step is linear, O(Ns), where Ns is the
number of statistical samples from fε,m.

Taking ε = ∆t, for ∆t� 1 we approximate the mean-field model through the asymptotic
Monte Carlo algorithm 14

f∆t,m+1 = Q∆t,+
κm (f∆t,m, f∆t,m).

13K. Nanbu (’78); G. Bird (’95)
14A.V. Bobylev, K. Nanbu ’00; R.E. Caflisch, L.P., G. Dimarco ’10; G. Albi, L.P. ’13
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Numerical examples

MPC of consensus: opinion model

f(v, t)

γ = 8 M = 2 (IC) M = 5 M = 15

v̄ = 0
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Conclusions

We introduced Boltzmann-type optimal control problems and studied their
relations with classical mean-field optimal control.

Derivation of the corresponding MPC approximations in combination with
Monte Carlo methods permits to construct effective stochastic numerical
schemes which defeat the curse of dimensionality.

Future directions

rigorous analysis

effect of uncertainties in the interaction parameters

non cooperative case
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