Mean Field Games on networks

Claudio Marchi

Università di Padova
joint works with: S. Cacace (Rome) and F. Camilli (Rome)

Outline

- Brief introduction
- Definition of networks
- Formal derivation of the MFG system on networks
- Study of the MFG system on networks
- A numerical scheme

Model example on the torus \mathbb{T}^{n} [Lasry-Lions,'06]

Consider a game with N rational and indistinguishable players. The i-th player's dynamics is

$$
d X_{t}^{i}=-\alpha_{t}^{i} d t+\sqrt{2 \nu} d W_{t}^{i}, \quad X_{0}^{i}=x^{i} \in \mathbb{T}^{n}
$$

where $\nu>0, W^{i}$ are independent Brownian motions and α^{i} is the control chosen so to minimize the cost functional

$$
\liminf _{T \rightarrow+\infty} \frac{1}{T} \mathbb{E}_{x}\left\{\int_{0}^{T}\left[L\left(X_{s}^{i}, \alpha_{s}^{i}\right)+V\left(\frac{1}{N-1} \sum_{j \neq i} \delta_{X_{s}^{j}}\right)\right] d s\right\} .
$$

The Nash equilibria are characterized by a system of 2 N equations. As $N \rightarrow+\infty$, this system reduces to the following one:
(MFG-T ${ }^{n}$)

$$
\begin{cases}-\nu \Delta u+H(x, D u)+\rho=V([m]) & \text { in } \mathbb{T}^{n} \\ \nu \Delta m+\operatorname{div}\left(m \frac{\partial H}{\partial p}(x, D u)\right)=0 & \text { in } \mathbb{T}^{n} \\ \int_{\mathbb{T}^{n}} m d x=1, \quad m>0 & \\ \int_{\mathbb{T}^{n}} u d x=0 & \end{cases}
$$

- $H(x, p):=\sup _{q \in \mathbb{R}^{n}}\{-p \cdot q-L(x, q)\}$;
- " $[m]$ " means that V depends on m in a local or in a nonlocal way.

Theorem [Lasry-Lions '06]

- There exists a smooth solution (u, m, ρ) to the above problem;
- Assume
either V is strictly monotone in m (i.e.
$\int_{\mathbb{T}^{n}}\left(V\left(\left[m_{1}\right]\right)-V\left(\left[m_{2}\right]\right)\right)\left(m_{1}-m_{2}\right) d x \leq 0$ implies $\left.m_{1}=m_{2}\right)$
or V is monotone in $m\left(\right.$ i.e. $\left.\int_{\mathbb{T}^{n}}\left(V\left(\left[m_{1}\right]\right)-V\left(\left[m_{2}\right]\right)\right)\left(m_{1}-m_{2}\right) d x \geq 0\right)$ and H is strictly convex in p.
Then the solution is unique.

Basic References for MFG theory:

- Lasry-Lions, C.R. Math. Acad. Sci. Paris 343 (2006), 619-625.
- Lasry-Lions, C.R. Math. Acad. Sci. Paris 343 (2006), 679-684.
- Lasry-Lions, Jpn. J. Math. 2 (2007), 229-260.
- Huang-Malhamé-Caines, Commun. Inf. Syst. 6 (2006), 221-251.
- Lions' course at College de France '06-'12 and '16-'17
www. college-de-france.fr
- Cardaliaguet, Notes on MFG (from Lions' lectures at College de France), www. ceremade.dauphine.fr/~cardalia/
- Achdou-Capuzzo Dolcetta, SIAM J. Num. Anal. 48 (2010), 1136-1162.
- Achdou-Camilli-Capuzzo Dolcetta, SIAM J. Num. Anal. 51 (2013),2585-2612.
- MFG on graphs (i.e., agents have a finite number of states)
- Discrete time, finite state space: Gomes-Mohr-Souza, J. Math. Pures Appl. 93 (2010), 308-328.
- Continuous time, finite state space: Gomes-Mohr-Souza, Appl. Math. Optim., 68 (2013), 99-143. Guéant, Appl. Math. Optim. 72 (2015), 291-303.

Network

A network is a connected set Γ consisting of vertices $V:=\left\{v_{i}\right\}_{i \in I}$ and edges $E:=\left\{e_{j}\right\}_{j \in J}$ connecting the vertices. We assume that the network is embedded in the Euclidian space \mathbb{R}^{n} and that any two edges can only have intersection at a vertex.

(a) An example of network

Some Notations

- Inc $_{i}:=\left\{j \in J: e_{j}\right.$ incident to $\left.v_{i}\right\}$ is the set of edges incident to the vertex v_{i}.
- A vertex v_{i} is a transition vertex if it has more than one incident edge. We denote by $\Gamma_{T}=\left\{v_{i}, i \in I_{T}\right\}$ the set of transition vertices. A vertex v_{i} is a boundary vertex if it has only one incident edge. For simplicity, we assume that the set of boundary vertices is empty.
- Any edge e_{j} is parametrized by a smooth function $\pi_{j}:\left[0, l_{j}\right] \rightarrow \mathbb{R}^{n}$.
For a function $u: \Gamma \rightarrow \mathbb{R}$ we denote by $u_{j}:\left[0, l_{j}\right] \rightarrow \mathbb{R}$ its restriction

Some Notations

- Inc $_{i}:=\left\{j \in J: e_{j}\right.$ incident to $\left.v_{i}\right\}$ is the set of edges incident to the vertex v_{i}.
- A vertex v_{i} is a transition vertex if it has more than one incident edge. We denote by $\Gamma_{T}=\left\{v_{i}, i \in I_{T}\right\}$ the set of transition vertices. A vertex v_{i} is a boundary vertex if it has only one incident edge. For simplicity, we assume that the set of boundary vertices is empty.
- Any edge e_{j} is parametrized by a smooth function $\pi_{j}:\left[0, l_{j}\right] \rightarrow \mathbb{R}^{n}$. For a function $u: \Gamma \rightarrow \mathbb{R}$ we denote by $u_{j}:\left[0, l_{j}\right] \rightarrow \mathbb{R}$ its restriction to e_{j}, i.e. $u(x)=u_{j}(y)$ for $x \in e_{j}, y=\pi_{j}^{-1}(x)$.

Some Notations

- Inc $_{i}:=\left\{j \in J: e_{j}\right.$ incident to $\left.v_{i}\right\}$ is the set of edges incident to the vertex v_{i}.
- A vertex v_{i} is a transition vertex if it has more than one incident edge. We denote by $\Gamma_{T}=\left\{v_{i}, i \in I_{T}\right\}$ the set of transition vertices. A vertex v_{i} is a boundary vertex if it has only one incident edge. For simplicity, we assume that the set of boundary vertices is empty.
- Any edge e_{j} is parametrized by a smooth function $\pi_{j}:\left[0, l_{j}\right] \rightarrow \mathbb{R}^{n}$. For a function $u: \Gamma \rightarrow \mathbb{R}$ we denote by $u_{j}:\left[0, I_{j}\right] \rightarrow \mathbb{R}$ its restriction to e_{j}, i.e. $u(x)=u_{j}(y)$ for $x \in e_{j}, y=\pi_{j}^{-1}(x)$.
- The derivative are considered w.r.t. the parametrization.

Some Notations

- Inc $_{i}:=\left\{j \in J: e_{j}\right.$ incident to $\left.v_{i}\right\}$ is the set of edges incident to the vertex v_{i}.
- A vertex v_{i} is a transition vertex if it has more than one incident edge. We denote by $\Gamma_{T}=\left\{v_{i}, i \in I_{T}\right\}$ the set of transition vertices. A vertex v_{i} is a boundary vertex if it has only one incident edge. For simplicity, we assume that the set of boundary vertices is empty.
- Any edge e_{j} is parametrized by a smooth function $\pi_{j}:\left[0, l_{j}\right] \rightarrow \mathbb{R}^{n}$. For a function $u: \Gamma \rightarrow \mathbb{R}$ we denote by $u_{j}:\left[0, l_{j}\right] \rightarrow \mathbb{R}$ its restriction to e_{j}, i.e. $u(x)=u_{j}(y)$ for $x \in e_{j}, y=\pi_{j}^{-1}(x)$.
- The derivative are considered w.r.t. the parametrization.
- The oriented derivative of a function u at a transition vertex v_{i} is

$$
\partial_{j} u\left(v_{i}\right):= \begin{cases}\lim _{h \rightarrow 0^{+}}\left(u_{j}(h)-u_{j}(0)\right) / h, & \text { if } v_{i}=\pi_{j}(0) \\ \lim _{h \rightarrow 0^{+}}\left(u_{j}\left(I_{j}-h\right)-u_{j}\left(I_{j}\right)\right) / h, & \text { if } v_{i}=\pi_{j}\left(I_{j}\right) .\end{cases}
$$

Some functional spaces

- $u \in C^{q, \alpha}(\Gamma)$, for $q \in \mathbb{N}$ and $\alpha \in(0,1]$, when $u \in C^{0}(\Gamma)$ and $u^{j} \in C^{q, \alpha}\left(\left[0, l_{j}\right]\right)$ for each $j \in J$. We set

$$
\|u\|_{\Gamma}^{(q+\alpha)}=\max _{j \in J}\left\|u_{j}\right\|_{\left[0, l_{j}\right]}^{(q+\alpha)} .
$$

- $u \in L^{p}(\Gamma), p \geq 1$ if $u^{j} \in L^{p}\left(0, I_{j}\right)$ for each $j \in J$. We set

$$
\|u\|_{L^{p}}=\left(\sum_{j \in J}\left\|u_{j}\right\|_{L^{p}\left(e_{j}\right)}^{p}\right)^{1 / p} .
$$

- $u \in W^{k, p}(\Gamma)$, for $k \in \mathbb{N}, k \geq 1$ and $p \geq 1$ if $u \in C^{0}(\Gamma)$ and $u^{j} \in W^{k, p}\left(0, l_{j}\right)$ for each $j \in J$. We set

$$
\|u\|_{W^{k, p}}=\left(\sum_{j \in J}\left\|u_{j}\right\|_{W^{k, p}\left(e_{j}\right)}^{p}\right)^{1 / p}
$$

Formal derivation of MFG systems on networks

Dynamics of a generic player.

Inside each edge e_{j}, the dynamics of a generic player is

$$
d X_{t}=-\alpha_{t} d t+\sqrt{2 \nu_{j}} d W_{t}
$$

where α is the control, $\nu_{j}>0$ and W is an independent Brownian motions.

At any internal vertex v_{i}, the player

Formal derivation of MFG systems on networks

Dynamics of a generic player.

Inside each edge e_{j}, the dynamics of a generic player is

$$
d X_{t}=-\alpha_{t} d t+\sqrt{2 \nu_{j}} d W_{t}
$$

where α is the control, $\nu_{j}>0$ and W is an independent Brownian motions.

At any internal vertex v_{i}, the player spends zero time a.s. at v_{i} and it enters in one of the incident edges, say e_{j}, with probability $\beta_{i j}$ with

$$
\beta_{i j}>0, \quad \sum_{j \in \ln c_{i}} \beta_{i j}=1 .
$$

Discussion on the transition condition: probabilistic approach
We consider the uncontrolled case. Fix a vertex v_{i}.

- Rigorous definition of "enters in one of the incident edges..." For $\delta>0$, consider $\theta_{\delta}:=\inf \left\{t>0 \mid \operatorname{dist}\left(X_{t}, v_{i}\right)=\delta\right\}$. Then,

$$
\lim _{\delta \rightarrow 0^{+}} P\left\{X_{\theta_{\delta}} \in e_{j}\right\}=\beta_{i j} .
$$

- Fattening interpretation. Let M_{ε} be the set in \mathbb{R}^{n} obtained "enlarging" each edge e_{j} by a ball of radius $\varepsilon \beta_{i j}$. One can obtain these dynamics as the limit as $\varepsilon \rightarrow 0^{+}$of a Brownian motion in M with normal reflection at the boundary.

Discussion on the transition condition: probabilistic approach

We consider the uncontrolled case. Fix a vertex v_{i}.

- Rigorous definition of "enters in one of the incident edges..." For $\delta>0$, consider $\theta_{\delta}:=\inf \left\{t>0 \mid \operatorname{dist}\left(X_{t}, v_{i}\right)=\delta\right\}$. Then,

$$
\lim _{\delta \rightarrow 0^{+}} P\left\{X_{\theta_{\delta}} \in e_{j}\right\}=\beta_{i j} .
$$

- Fattening interpretation. Let M_{ε} be the set in \mathbb{R}^{n} obtained "enlarging" each edge e_{j} by a ball of radius $\varepsilon \beta_{i j}$. One can obtain these dynamics as the limit as $\varepsilon \rightarrow 0^{+}$of a Brownian motion in M_{ε} with normal reflection at the boundary.

Discussion on the transition condition: probabilistic approach

We consider the uncontrolled case. Fix a vertex v_{i}.

- Rigorous definition of "enters in one of the incident edges..." For $\delta>0$, consider $\theta_{\delta}:=\inf \left\{t>0 \mid \operatorname{dist}\left(X_{t}, v_{i}\right)=\delta\right\}$. Then,

$$
\lim _{\delta \rightarrow 0^{+}} P\left\{X_{\theta_{\delta}} \in e_{j}\right\}=\beta_{i j} .
$$

- Fattening interpretation. Let M_{ε} be the set in \mathbb{R}^{n} obtained "enlarging" each edge e_{j} by a ball of radius $\varepsilon \beta_{i j}$. One can obtain these dynamics as the limit as $\varepsilon \rightarrow 0^{+}$of a Brownian motion in M_{ε} with normal reflection at the boundary.
- Itô's formula still holds true.
\square

Discussion on the transition condition: probabilistic approach

We consider the uncontrolled case. Fix a vertex v_{i}.

- Rigorous definition of "enters in one of the incident edges..." For $\delta>0$, consider $\theta_{\delta}:=\inf \left\{t>0 \mid \operatorname{dist}\left(X_{t}, v_{i}\right)=\delta\right\}$. Then,

$$
\lim _{\delta \rightarrow 0^{+}} P\left\{X_{\theta_{\delta}} \in e_{j}\right\}=\beta_{i j} .
$$

- Fattening interpretation. Let M_{ε} be the set in \mathbb{R}^{n} obtained "enlarging" each edge e_{j} by a ball of radius $\varepsilon \beta_{i j}$. One can obtain these dynamics as the limit as $\varepsilon \rightarrow 0^{+}$of a Brownian motion in M_{ε} with normal reflection at the boundary.
- Itô's formula still holds true.

See: [Freidlin-Wentzell, Ann. Prob.'93], [Freidlin-Sheu, PTRF'00].

Discussion on the transition condition: analytical approach

Consider the operator \mathcal{A} defined on $C^{0}(\Gamma)$, defined for $x \in e_{j}$ by

$$
A_{j} u:=\nu_{j} \frac{d^{2} u}{d y^{2}}(y)+\bar{\alpha} \frac{d u}{d y}(y), \quad y=\pi^{-1}(x)
$$

with domain

$$
D(\mathcal{A}):=\{u \in C^{2}(\Gamma) \mid \underbrace{\sum_{j \in \ln c_{i}} \beta_{i j} \partial_{j} u\left(v_{i}\right)=0}_{\text {(weighted) Kirchhoff condition }}\}
$$

- \mathcal{A} generates on Γ the Markov process X_{t} described before.
- \mathcal{A} fulfills the Maximum Principle.
- Fattening interpretation. The solution of $\mathcal{A} u=0$ is the $\lim _{\varepsilon \rightarrow 0}$

Discussion on the transition condition: analytical approach

Consider the operator \mathcal{A} defined on $C^{0}(\Gamma)$, defined for $x \in e_{j}$ by

$$
A_{j} u:=\nu_{j} \frac{d^{2} u}{d y^{2}}(y)+\bar{\alpha} \frac{d u}{d y}(y), \quad y=\pi^{-1}(x)
$$

with domain

$$
D(\mathcal{A}):=\{u \in C^{2}(\Gamma) \mid \underbrace{\sum_{j \in \ln c_{i}} \beta_{i j} \partial_{j} u\left(v_{i}\right)=0}_{\text {(weighted) Kirchhoff condition }}\} .
$$

- \mathcal{A} generates on Γ the Markov process X_{t} described before.
- \mathcal{A} fulfills the Maximum Principle.
- Fattening interpretation. The solution of $\mathcal{A} u=0$ is the $\lim _{\varepsilon \rightarrow 0^{+}}$

Discussion on the transition condition: analytical approach

Consider the operator \mathcal{A} defined on $C^{0}(\Gamma)$, defined for $x \in e_{j}$ by

$$
A_{j} u:=\nu_{j} \frac{d^{2} u}{d y^{2}}(y)+\bar{\alpha} \frac{d u}{d y}(y), \quad y=\pi^{-1}(x)
$$

with domain

$$
D(\mathcal{A}):=\{u \in C^{2}(\Gamma) \mid \underbrace{\sum_{j \in \ln c_{i}} \beta_{i j} \partial_{j} u\left(v_{i}\right)=0}_{\text {(weighted) Kirchhoff condition }}\} .
$$

- \mathcal{A} generates on Γ the Markov process X_{t} described before.
- \mathcal{A} fulfills the Maximum Principle.
- Fattening interpretation. The solution of $\mathcal{A} u=0$ is the $\lim _{\varepsilon \rightarrow 0^{+}}$ of u_{ε}, solution of a "similar" problem in M_{ε} with $\frac{\partial u_{\varepsilon}}{\partial n}=0$ on ∂M_{ε}.

Discussion on the transition condition: analytical approach

Consider the operator \mathcal{A} defined on $C^{0}(\Gamma)$, defined for $x \in e_{j}$ by

$$
A_{j} u:=\nu_{j} \frac{d^{2} u}{d y^{2}}(y)+\bar{\alpha} \frac{d u}{d y}(y), \quad y=\pi^{-1}(x)
$$

with domain

$$
D(\mathcal{A}):=\{u \in C^{2}(\Gamma) \mid \underbrace{\sum_{j \in \operatorname{In} c_{i}} \beta_{i j} \partial_{j} u\left(v_{i}\right)=0}_{\text {(weighted) Kirchhoff condition }}\}
$$

- \mathcal{A} generates on Γ the Markov process X_{t} described before.
- \mathcal{A} fulfills the Maximum Principle.
- Fattening interpretation. The solution of $\mathcal{A} u=0$ is the $\lim _{\varepsilon \rightarrow 0^{+}}$ of u_{ε}, solution of a "similar" problem in M_{ε} with $\frac{\partial u_{\varepsilon}}{\partial n}=0$ on ∂M_{ε}.
See: [Freidlin-Wentzell, Ann. Prob.'93], [Below-Nicaise, CPDE'96].In [Lions' course,'17]: fattening interpretation for some controlled cases.

Formal derivation of the MFG system on the network

We formally derive the MFG system on the network: the HJB equation is obtained through the dynamic programming principle while the FP equation is obtained as adjoint of the linearized HJB one.

Hence, the HJB equation is

$$
\begin{cases}-\nu_{j} \partial^{2} u+H_{j}(x, \partial u)+\rho=V[m] & x \in e_{j}, j \in J \\ \sum_{j \in \ln c_{i}} \beta_{i j} \partial_{j} u\left(v_{i}\right)=0 & i \in I_{T} \\ u_{j}\left(v_{i}\right)=u_{k}\left(v_{i}\right) & j, k \in \operatorname{Inc} c_{i} .\end{cases}
$$

The linearized equation is

$$
\begin{cases}-\nu_{j} \partial^{2} w+\partial_{\rho} H_{j}(x, \partial u) \partial w=0 & x \in e_{j}, j \in J \\ \sum_{j \in \operatorname{In} c_{i}}^{\beta_{i j} \partial_{j} w\left(v_{i}\right)=0} & i \in I_{T} \\ w_{j}\left(v_{i}\right)=w_{k}\left(v_{i}\right) & j, k \in \operatorname{In} c_{i} .\end{cases}
$$

Writing the weak formulation for a test function m, we get

$$
\begin{aligned}
0= & \sum_{j \in J} \int_{e_{j}}\left(-\nu_{j} \partial^{2} w+\partial_{p} H_{j}(x, \partial u) \partial w\right) m d x \\
= & \sum_{j \in J} \int_{e_{j}}\left[-\nu_{j} \partial^{2} m-\partial\left(m \partial_{p} H_{j}(x, \partial u)\right)\right] w d x \\
& +\sum_{i \in I_{T}} \sum_{j \in \ln c_{i}}\left(\nu_{j} \partial_{j} m\left(v_{i}\right)+\partial_{p} H\left(v_{i}, \partial u\right) m_{j}\left(v_{i}\right)\right) w\left(v_{i}\right) \\
& -\sum_{i \in I_{T}} \underbrace{}_{=0 \quad \text { if } \frac{m_{j}\left(v_{i} \nu_{j}\right.}{\beta_{j}}=\frac{m_{k}\left(v_{i j}\right) v_{k}}{\beta_{\beta_{k}}}} \nu_{j} m_{j}\left(v_{i}\right) \partial_{j} w\left(v_{i}\right) .
\end{aligned}
$$

By the integral term, we obtain

$$
\nu_{j} \partial^{2} m+\partial\left(m \partial_{p} H_{j}(x, \partial u)\right)=0 \quad x \in e_{j}, j \in J .
$$

The MFG system on a network

Assume $\frac{\nu_{j}}{\beta_{i j}}=\frac{\nu_{k}}{\beta_{k_{k}}} \forall j, k \in \operatorname{Inc} c_{i}, i \in I_{T}$. The MFG systems is
(MFG $\left.{ }_{\Gamma}\right)\left\{\begin{array}{lr}-\nu \partial^{2} u+H(x, \partial u)+\rho=V(m) & x \in \Gamma \\ \nu \partial^{2} m+\partial\left(m \partial_{p} H(x, \partial u)\right)=0 & x \in \Gamma \\ \sum_{j \in \ln c_{i}} v_{j} \partial_{j} u\left(v_{i}\right)=0 & i \in I_{T} \\ \sum_{j \in \ln c_{i}}\left[\nu_{j} \partial_{j} m\left(v_{i}\right)+\partial_{p} H_{j}\left(v_{i}, \partial_{j} u\right) m_{j}\left(v_{i}\right)\right]=0 & i \in I_{T} \\ u_{j}\left(v_{i}\right)=u_{k}\left(v_{i}\right) & j, k \in \operatorname{Inc} c_{i}, i \in I_{T} \\ m_{j}\left(v_{i}\right)=m_{k}\left(v_{i}\right) & j, k \in \operatorname{In} c_{i}, i \in I_{T} \\ \int_{\Gamma} u(x) d x=0 & \\ \int_{\Gamma} m(x) d x=1, \quad m \geq 0 . & \end{array}\right.$

The MFG system on a network

Assume $\frac{\nu_{j}}{\beta_{i j}}=\frac{\nu_{k}}{\beta_{k_{k}}} \forall j, k \in \operatorname{Inc} c_{i}, i \in I_{T}$. The MFG systems is
(MFG $\left.{ }_{\Gamma}\right)\left\{\begin{array}{lr}-\nu \partial^{2} u+H(x, \partial u)+\rho=V(m) & x \in \Gamma \\ \nu \partial^{2} m+\partial\left(m \partial_{p} H(x, \partial u)\right)=0 & x \in \Gamma \\ \sum_{j \in \ln c_{i}} v_{j} \partial_{j} u\left(v_{i}\right)=0 & i \in I_{T} \\ \sum_{j \in \ln c_{i}}\left[\nu_{j} \partial_{j} m\left(v_{i}\right)+\partial_{p} H_{j}\left(v_{i}, \partial_{j} u\right) m_{j}\left(v_{i}\right)\right]=0 & i \in I_{T} \\ u_{j}\left(v_{i}\right)=u_{k}\left(v_{i}\right) & j, k \in \operatorname{Inc} c_{i}, i \in I_{T} \\ m_{j}\left(v_{i}\right)=m_{k}\left(v_{i}\right) & j, k \in \operatorname{In} c_{i}, i \in I_{T} \\ \int_{\Gamma} u(x) d x=0 & \\ \int_{\Gamma} m(x) d x=1, \quad m \geq 0 . & \end{array}\right.$

The MFG system on a network

Assume $\frac{\nu_{j}}{\beta_{i j}}=\frac{\nu_{k}}{\beta_{k_{k}}} \forall j, k \in \operatorname{Inc} c_{i}, i \in I_{T}$. The MFG systems is
(MFG ${ }_{\Gamma}$) $\left\{\begin{array}{lr}-\nu \partial^{2} u+H(x, \partial u)+\rho=V(m) & x \in \Gamma \\ \nu \partial^{2} m+\partial\left(m \partial_{p} H(x, \partial u)\right)=0 & x \in \Gamma \\ \sum_{j \in \ln c_{i}} v_{j} \partial_{j} u\left(v_{i}\right)=0 & i \in I_{T} \\ \sum_{j \in \ln c_{i}}\left[\nu_{j} \partial_{j} m\left(v_{i}\right)+\partial_{p} H_{j}\left(v_{i}, \partial_{j} u\right) m_{j}\left(v_{i}\right)\right]=0 & i \in I_{T} \\ u_{j}\left(v_{i}\right)=u_{k}\left(v_{i}\right) & j, k \in \operatorname{In} c_{i}, i \in I_{T} \\ m_{j}\left(v_{i}\right)=m_{k}\left(v_{i}\right) & j, k \in \operatorname{In} c_{i}, i \in I_{T} \\ \int_{\Gamma} u(x) d x=0 & \\ \int_{\Gamma} m(x) d x=1, \quad m \geq 0 . & \end{array}\right.$

The MFG system on a network

Assume $\frac{\nu_{j}}{\beta_{i j}}=\frac{\nu_{k}}{\beta_{i k}} \forall j, k \in \operatorname{Inc} c_{i}, i \in I_{T}$. The MFG systems is
(MFG ${ }_{\Gamma}$) $\left\{\begin{array}{lr}-\nu \partial^{2} u+H(x, \partial u)+\rho=V(m) & x \in \Gamma \\ \nu \partial^{2} m+\partial\left(m \partial_{p} H(x, \partial u)\right)=0 & x \in \Gamma \\ \sum_{j \in \ln c_{i}} v_{j} \partial_{j} u\left(v_{i}\right)=0 & i \in I_{T} \\ \sum_{j \in \ln c_{i}}\left[\nu_{j} \partial_{j} m\left(v_{i}\right)+\partial_{p} H_{j}\left(v_{i}, \partial_{j} u\right) m_{j}\left(v_{i}\right)\right]=0 & i \in I_{T} \\ u_{j}\left(v_{i}\right)=u_{k}\left(v_{i}\right) & j, k \in \operatorname{Inc} c_{i}, i \in I_{T} \\ m_{j}\left(v_{i}\right)=m_{k}\left(v_{i}\right) & j, k \in \operatorname{In} c_{i}, i \in I_{T} \\ \int_{\Gamma} u(x) d x=0 & \\ \int_{\Gamma} m(x) d x=1, \quad m \geq 0 . & \end{array}\right.$

The MFG system on a network

Assume $\frac{\nu_{j}}{\beta_{i j}}=\frac{\nu_{k}}{\beta_{\beta_{k}}} \forall j, k \in \operatorname{Inc} c_{i}, i \in I_{T}$. The MFG systems is
(MFG $\left.{ }_{\Gamma}\right)\left\{\begin{array}{lr}-\nu \partial^{2} u+H(x, \partial u)+\rho=V(m) & x \in \Gamma \\ \nu \partial^{2} m+\partial\left(m \partial_{p} H(x, \partial u)\right)=0 & x \in \Gamma \\ \sum_{j \in \ln c_{i}} v_{j} \partial_{j} u\left(v_{i}\right)=0 & i \in I_{T} \\ \sum_{j \in \ln c_{i}}\left[\nu_{j} \partial_{j} m\left(v_{i}\right)+\partial_{p} H_{j}\left(v_{i}, \partial_{j} u\right) m_{j}\left(v_{i}\right)\right]=0 & i \in I_{T} \\ u_{j}\left(v_{i}\right)=u_{k}\left(v_{i}\right) & j, k \in \operatorname{Inc} c_{i}, i \in I_{T} \\ m_{j}\left(v_{i}\right)=m_{k}\left(v_{i}\right) & j, k \in \operatorname{In} c_{i}, i \in I_{T} \\ \int_{\Gamma} u(x) d x=0 & \\ \int_{\Gamma} m(x) d x=1, \quad m \geq 0 . & \end{array}\right.$

The MFG systems on networks

Theorem (Camilli-M., SJCO '16)

We assume

- $H_{j} \in C^{2}\left(e_{j} \times \mathbb{R}\right)$, convex, with $\delta|p|^{2}-C \leq H_{j}(x, p) \leq \delta|p|^{2}+C$,
- $\nu_{j}>0$,
- $V \in C^{1}([0,+\infty))$.

Then, there exists a solution $(u, m, \rho) \in C^{2}(\Gamma) \times C^{2}(\Gamma) \times \mathbb{R}$ to $\left(\mathrm{MFG}_{\Gamma}\right)$.
Moreover, assume

- either V is strictly monotone in m
- or V is monotone in m and H is stricily convex in p.

Then the solution is unique.

The MFG systems on networks

Theorem (Camilli-M., SJCO '16)

We assume

- $H_{j} \in C^{2}\left(e_{j} \times \mathbb{R}\right)$, convex, with $\delta|p|^{2}-C \leq H_{j}(x, p) \leq \delta|p|^{2}+C$,
- $\nu_{j}>0$,
- $V \in C^{1}([0,+\infty))$.

Then, there exists a solution $(u, m, \rho) \in C^{2}(\Gamma) \times C^{2}(\Gamma) \times \mathbb{R}$ to (MFG Γ).
Moreover, assume

- either V is strictly monotone in m
- or V is monotone in m and H is strictly convex in p.

Then the solution is unique.

Sketch of the proof

Step 1: On the HJB equation.

For $f \in C^{0, \alpha}(\Gamma), \exists!(u, \rho) \in C^{2}(\Gamma) \times \mathbb{R}$ solution to
(HJB) $\begin{cases}-\nu \partial^{2} u+H(x, \partial u)+\rho=f(x), & x \in \Gamma \\ \sum_{j \in \ln c_{i} \nu_{j} \partial_{j} u\left(v_{i}\right)=0} & i \in I_{T} \\ u_{j}\left(v_{i}\right)=u_{k}\left(v_{i}\right) & j, k \in \operatorname{Inc} c_{i}, \quad i \in I_{T}\end{cases}$

Moreover $u \in C^{2, \alpha}(\Gamma)$ and: $\|u\|_{C^{2, \alpha}(\Gamma)} \leq C,|\rho| \leq \max _{\Gamma}|H(\cdot, 0)-f(\cdot)|$.
The proof is based on

- $\exists u_{\lambda} \in W^{1,2}(\Gamma)$, weak solution to the discounted approximation

$$
-\nu \partial^{2} u_{\lambda}+H\left(x, \partial u_{\lambda}\right)+\lambda u_{\lambda}=f(x) \quad x \in \Gamma
$$

as in [Boccardo-Murat-Puel,'83]; the Comparison Principle applies;

- $u_{\lambda} \in C^{2, \alpha}(\Gamma)$ by the $1-d$ of the problem and Sobolev theorem;
- as $\lambda \rightarrow 0^{+}, \lambda u_{\lambda} \rightarrow \rho$ and $\left(u_{\lambda}-\min u_{\lambda}\right) \rightarrow u$.

Step 2: On the FP equation.

For $b \in C^{1}(\Gamma)$, there exists a unique weak solution $m \in W^{1,2}(\Gamma)$ to
(FP)

$$
\begin{cases}\nu \partial^{2} m+\partial(b(x) m)=0 & x \in \Gamma \\ \sum_{j \in \ln c_{i}}\left[b\left(v_{i}\right) m_{j}\left(v_{i}\right)+\nu_{j} \partial_{j} m\left(v_{i}\right)\right]=0 & i \in I_{T} \\ m_{j}\left(v_{i}\right)=m_{k}\left(v_{i}\right) \\ m \geq 0, \quad \int_{\Gamma} m(x) d x=1 . & j, k \in \operatorname{Inc} c_{i}, \quad i \in I_{T}\end{cases}
$$

Moreover, m is a classical solution with $\|m\|_{H^{\prime}} \leq C, 0<m(x) \leq C$ (for some $C>0$ depending only on $\|b\|_{\infty}$ and ν).

The proof is based on

- the existence of a weak solution is based on the theory of bilinear forms;
- the adjoint problem (both equation and transition condition) fulfills the Maximum Principle;
- $m \in C^{2}(\Gamma)$ by the $1-\mathrm{d}$ of the problem and Sobolev theorem.

Step 3: Fixed point argument.

We set $\mathcal{K}:=\left\{\mu \in C^{0, \alpha}(\Gamma): \mu \geq 0, \int_{\Gamma} \mu d x=1\right\}$ and we define an operator $T: \mathcal{K} \rightarrow \mathcal{K}$ according to the scheme

$$
\mu \rightarrow u \rightarrow m
$$

as follows:

- given $\mu \in \mathcal{K}$, solve (HJB) with $f(x)=V(\mu(x))$ for the unknowns $u=u_{\mu}$ and ρ, which are uniquely defined by Step 1 ;
- given u_{μ}, solve (FP) with $b(x)=\partial_{p} H\left(x, \partial u_{\mu}\right)$ for the unknown m which is uniquely defined by Step 2;
- set $T(\mu):=m$.

Since T is continuous with compact image, Schauder's fixed point theorem ensures the existence of a solution.

Step 4: Uniqueness.

Cross-testing the equations in $\left(\mathrm{MFG}_{\Gamma}\right)$, by the transition conditions, we get

$$
\begin{aligned}
& \sum_{j \in J} \int_{e_{j}} \underbrace{\left(m_{1}-m_{2}\right)\left(V\left(m_{1}\right)-V\left(m_{2}\right)\right) d x}_{\geq 0 \text { by monotonicity }}+ \\
& \sum_{j \in J} \int_{e_{j}} m_{1} \underbrace{\left[H_{j}\left(x, \partial_{j} u_{2}\right)-H_{j}\left(x, \partial_{j} u_{1}\right)-\partial_{p} H_{j}\left(x, \partial_{j} u_{1}\right) \partial_{j}\left(u_{2}-u_{1}\right)\right]}_{\geq 0 \text { by convexity }} d x+ \\
& \sum_{j \in J} \int_{e_{j}} m_{2} \underbrace{\left[\left(H_{j}\left(x, \partial_{j} u_{1}\right)-H_{j}\left(x, \partial_{j} u_{2}\right)-\partial_{p} H_{j}\left(x, \partial_{j} u_{2}\right) \partial_{j}\left(u_{1}-u_{2}\right)\right]\right.}_{\geq 0 \text { by convexity }} d x=0 .
\end{aligned}
$$

Therefore, each one of these three lines must vanish and we conclude as in [Lasry-Lions '06].

A finite difference scheme for MFG on network

- We introduce a grid on Γ. For the parametrization $\pi_{j}:\left[0, l_{j}\right] \rightarrow \mathbb{R}^{n}$ of e_{j}, let $y_{j, k}=k h_{j}\left(k=0, \ldots, N_{j}^{h}\right)$ be an uniform partition of $\left[0, l_{j}\right]$:

$$
\mathcal{G}_{h}=\left\{x_{j, k}=\pi_{j}\left(y_{j, k}\right), j \in J, k=0, \ldots, N_{j}^{h}\right\} .
$$

- Inc $c_{i}^{+}:=\left\{j \in \operatorname{Inc} c_{i}: v_{i}=\pi_{j}(0)\right\}, \quad \operatorname{Inc} c_{i}^{-}:=\left\{j \in \operatorname{Inc} c_{i}: v_{i}=\pi_{j}\left(N_{j}^{h} h_{j}\right)\right\}$.
- We introduce the (1-dimensional) finite difference operators

$$
\begin{aligned}
\left(D^{+} U\right)_{j, k} & =\frac{U_{j, k+1}-U_{j, k}}{h_{j}}, \quad\left[D_{h} U\right]_{j, k}=\left(\left(D^{+} U\right)_{j, k},\left(D^{+} U\right)_{j, k-1}\right)^{T} \\
\left(D_{h}^{2} U\right)_{j, k} & =\frac{U_{j, k+1}+U_{j, k-1}-2 U_{j, k}}{h_{j}^{2}}
\end{aligned}
$$

- We introduce the inner product. For $U, W: \mathcal{G}_{h} \rightarrow \mathbb{R}$, set

$$
(U, W)_{2}=\sum_{j \in J} \sum_{k=1}^{N_{j}^{h}-1} h_{j} U_{j, k} W_{j, k}+\sum_{i \in I}\left(\sum_{j \in \ln c_{i}^{+}} \frac{h_{j}}{2} U_{j, 0} W_{j, 0}+\sum_{j \in \ln c_{i}^{-}} \frac{h_{j}}{2} U_{j, N_{j}^{h}} W_{j, N_{j}^{h}}\right) .
$$

- We introduce the numerical Hamiltonian $g_{j}:\left[0, l_{j}\right] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$, s.t.: $\left(\mathbf{G}_{1}\right)$ monotonicity: $g_{j}\left(x, q_{1}, q_{2}\right)$ is nonincreasing with respect to q_{1} and nondecreasing with respect to q_{2}.
$\left(\mathbf{G}_{\mathbf{2}}\right)$ consistency: $g_{j}(x, q, q)=H_{j}(x, q), \quad \forall x \in\left[0, I_{j}\right], \forall q \in \mathbb{R}$.
$\left(\mathbf{G}_{3}\right)$ differentiability: g_{j} is of class C^{1}.
$\left(\mathbf{G}_{\mathbf{4}}\right)$ superlinear growth: $g_{j}\left(x, q_{1}, q_{2}\right) \geq \alpha\left(\left(q_{1}^{-}\right)^{2}+\left(q_{2}^{+}\right)^{2}\right)^{\gamma / 2}-C$ for some $\alpha>0, C \in \mathbb{R}$ and $\gamma>1$.
$\left(\mathbf{G}_{5}\right)$ convexity: $\left(q_{1}, q_{2}\right) \rightarrow g_{j}\left(x, q_{1}, q_{2}\right)$ is convex.
- We introduce a continuous numerical potential V_{h} such that $\exists C$ independent of h such that

$$
\max _{j, k}\left|\left(V_{h}[M]\right)_{j, k}\right| \leq C, \quad\left|\left(V_{h}[M]\right)_{j, k}-\left(V_{h}[M]\right)_{j, \ell}\right| \leq C\left|y_{j, k}-y_{j, \ell}\right| .
$$

for all $M \in \mathcal{K}_{h}:=\left\{M: M\right.$ is continuous, $\left.M_{j, k} \geq 0,(M, 1)_{2}=1\right\}$.

We get the following system in the unknown (U, M, R)

$$
\left\{\begin{array}{l}
-\nu_{j}\left(D_{h}^{2} U\right)_{j, k}+g\left(x_{j, k},\left[D_{h} U\right]_{j, k}\right)+R=V_{h}\left(M_{j, k}\right) \\
\nu_{j}\left(D_{h}^{2} M\right)_{j, k}+\mathcal{B}^{h}(U, M)_{j, k}=0, \\
\sum_{j \in \ln c_{i}^{+}}\left[\nu_{j}\left(D^{+} U\right)_{j, 0}+\frac{h_{j}}{2}\left(V_{j, 0}-R\right)\right]-\sum_{j \in \ln c_{i}^{-}}\left[\nu_{j}\left(D^{+} U\right)_{j, N_{j}^{h}-1}-\frac{h_{j}}{2}\left(V_{j, N_{j}^{h}}-R\right)\right]=0 \\
\sum_{j \in \ln c_{i}^{+}}\left[\nu_{j}\left(D^{+} M\right)_{j, 0}+M_{j, 1} \frac{\partial g}{\partial q_{2}}\left(x_{j, 1},\left[D_{h} U\right]_{j, 1}\right)\right]- \\
\quad \sum_{j \in \operatorname{lnc} c_{i}^{-}}\left[\nu_{j}\left(D^{+} M\right)_{j, N_{j}^{h-1}}+M_{j, N_{j}^{h}-1} \frac{\partial g}{\partial q_{1}}\left(x_{j, N_{j}^{h}-1},\left[D_{h} U\right]_{j, N_{j}^{h}-1}\right)\right]=0 \\
U, M \text { continuous at } v_{i}, \quad i \in I, \\
(M, 1)_{2}=1, \quad(U, 1)_{2}=0,
\end{array}\right.
$$

Theorem (Cacace-Camilli-M., M2AN'17)

- For any $h=\left\{h_{j}\right\}_{j \in J}$, the discrete problem has at least a solution ($\left.U_{h}, M_{h}, \rho_{h}\right)$. Moreover

$$
\left|\rho_{h}\right| \leq C_{1}, \quad\left\|U_{h}\right\|_{\infty}+\left\|D_{h} U_{h}\right\|_{\infty} \leq C_{2}
$$

for some constants C_{1}, C_{2} independent of h.

- Moreover, if V_{h} is strictly monotone, then the solution is unique.
- If (u, m, ρ) is the solution of the MFG system (MFG $)$, then

Theorem (Cacace-Camilli-M., M2AN'17)

- For any $h=\left\{h_{j}\right\}_{j \in J}$, the discrete problem has at least a solution ($\left.U_{h}, M_{h}, \rho_{h}\right)$. Moreover

$$
\left|\rho_{h}\right| \leq C_{1}, \quad\left\|U_{h}\right\|_{\infty}+\left\|D_{h} U_{h}\right\|_{\infty} \leq C_{2}
$$

for some constants C_{1}, C_{2} independent of h.

- Moreover, if V_{h} is strictly monotone, then the solution is unique.
- If (u, m, ρ) is the solution of the MFG system (MFGr), then

$$
\lim _{|h| \rightarrow 0}\left[\left\|U^{h}-u\right\|_{\infty}+\left\|M^{h}-m\right\|_{\infty}+\left|\rho_{h}-\rho\right|\right]=0
$$

Solution of the discrete MFG system via Nonlinear-Least-Squares

The solution of the MFG discrete system is usually performed by means of some regularizations, e.g. large time approximation or ergodic approximation. We propose a different method:

- We collect the unknowns in a vector $X=(U, M, R)$ of length $2 N^{h}+1$;

Solution of the discrete MFG system via Nonlinear-Least-Squares

The solution of the MFG discrete system is usually performed by means of some regularizations, e.g. large time approximation or ergodic approximation. We propose a different method:

- We collect the unknowns in a vector $X=(U, M, R)$ of length $2 N^{h}+1$;
- we consider the nonlinear map $\mathcal{F}: \mathbb{R}^{2 N^{h}+1} \rightarrow \mathbb{R}^{2 N^{h}+2}$ defined by

$$
\mathcal{F}(X)=\left\{\begin{array}{l}
-\nu_{j}\left(D_{h}^{2} U\right)_{j, k}+g\left(x_{j, k},\left[D_{h} U\right]_{j, k}\right)+R-V_{h}\left(M_{j, k}\right), \\
\nu_{j}\left(D_{h}^{2} M\right)_{j, k}+\mathcal{B}^{h}(U, M)_{j, k}, \\
\sum_{j \in \ln c_{i}^{+}}\left[\nu_{j}\left(D^{+} U\right)_{j, 0}+\frac{h_{j}}{2}\left(V_{j, 0}-R\right)\right]-\sum_{j \in \ln c_{i}^{-}}\left[\nu_{j}\left(D^{+} U\right)_{j, N_{j}^{h}-1}-\frac{h_{j}}{2}\left(V_{j, N_{j}^{h}}-R\right)\right] \\
\sum_{j \in \ln c_{i}^{+}}\left[\nu_{j}\left(D^{+} M\right)_{j, 0}+M_{j, 1} \frac{\partial g}{\partial q_{2}}\left(x_{j, 1}\left[D_{h} U\right]_{j, 1}\right)\right] \\
-\sum_{j \in \ln c_{i}^{-}}\left[\nu_{j}\left(D^{+} M\right)_{j, N_{j}^{h}-1}+M_{j, N_{j}^{h}-1} \frac{\partial g}{\partial q_{1}}\left(x_{j, N_{j}^{h}-1},\left[D_{h} U\right]_{j, N_{j}^{h}-1}\right)\right] \\
(M, 1)_{2}-1 \\
(U, 1)_{2} .
\end{array}\right.
$$

Solution of the discrete MFG system via Nonlinear-Least-Squares

The solution of the MFG discrete system is usually performed by means of some regularizations, e.g. large time approximation or ergodic approximation. We propose a different method:

- We collect the unknowns in a vector $X=(U, M, R)$ of length $2 N^{h}+1$;
- we consider the nonlinear map $\mathcal{F}: \mathbb{R}^{2 N^{h}+1} \rightarrow \mathbb{R}^{2 N^{h}+2}$ defined by

$$
\mathcal{F}(X)=\left\{\begin{array}{l}
-\nu_{j}\left(D_{h}^{2} U\right)_{j, k}+g\left(x_{j, k},\left[D_{h} U\right]_{j, k}\right)+R-V_{h}\left(M_{j, k}\right), \\
\nu_{j}\left(D_{h}^{2} M\right)_{j, k}+\mathcal{B}^{h}(U, M)_{j, k}, \\
\sum_{j \in \ln c_{i}^{+}}\left[\nu_{j}\left(D^{+} U\right)_{j, 0}+\frac{h_{j}}{2}\left(V_{j, 0}-R\right)\right]-\sum_{j \in \ln c_{i}^{-}}\left[\nu_{j}\left(D^{+} U\right)_{j, N_{j}^{h}-1}-\frac{h_{j}}{2}\left(V_{j, N_{j}^{h}}-R\right)\right] \\
\sum_{j \in \ln c_{i}^{+}}\left[\nu_{j}\left(D^{+} M\right)_{j, 0}+M_{j, 1} \frac{\partial g}{\partial q_{2}}\left(x_{j, 1}\left[D_{h} U\right]_{j, 1}\right)\right] \\
-\sum_{j \in \ln c_{i}^{-}}\left[\nu_{j}\left(D^{+} M\right)_{j, N_{j}^{h}-1}+M_{j, N_{j}^{h}-1} \frac{\partial g}{\partial q_{1}}\left(x_{j, N_{j}^{h}-1},\left[D_{h} U\right]_{j, N_{j}^{h}-1}\right)\right] \\
(M, 1)_{2}-1 \\
(U, 1)_{2} .
\end{array}\right.
$$

- The solution of the discrete MFG is the unique X^{\star} s.t. $\mathcal{F}\left(X^{\star}\right)=0$.

The system $\mathcal{F}\left(X^{\star}\right)=0$ is formally overdetermined ($2 N^{h}+2$ equations in $2 N^{h}+1$ unknowns), hence the solution is meant in the following nonlinear-least-squares sense:

$$
X^{\star}=\arg \min _{X} \frac{1}{2}\|\mathcal{F}(X)\|_{2}^{2}
$$

The previous optimization problem is solved by means of the Gauss-Newton method

$$
J_{\mathcal{F}}\left(X^{k}\right) \delta_{X}=-\mathcal{F}\left(X^{k}\right), \quad X^{k+1}=X^{k}+\delta_{X}
$$

via the $Q R$ factorization of the Jacobian $J_{\mathcal{F}}\left(X^{k}\right)$.

Numerical experiments

We consider a network with 2 vertices and 3 edges (boundary vertices are identified!). Each edge has unit length and connects $(0,0)$ to $(\cos (2 \pi j / 3), \sin (2 \pi j / 3))$ with $j=0,1,2$.

Data:

- Uniform diffusion $\nu_{j} \equiv \nu$
- $H_{j}(x, p)=\frac{1}{2}|p|^{2}+f(x)$ $f(x)=s_{j}\left(1+\cos \left(2 \pi\left(x+\frac{1}{2}\right)\right)\right)$
$s_{j} \in\{0,1\}$
- $V[m]=m^{2}$

Computational time for $N^{h} \sim 5000$ is of the order of seconds!

Cost active on all edges

$$
\nu=0.1, \quad s_{0}=1, s_{1}=1, s_{2}=1, \quad V[m]=m^{2}
$$

Computed $\rho=-1.066667$

Cost active on two edges

$$
\nu=0.1, \quad s_{0}=1, s_{1}=1, s_{2}=0, \quad V[m]=m^{2}
$$

Computed $\rho=-0.741639$

Small viscosity, cost active on all edges

$$
\nu=10^{-4}, \quad s_{0}=1, s_{1}=1, s_{2}=1, \quad V[m]=m^{2}
$$

Computed $\rho=-1.116603$

Small viscosity, cost active on two edges

$$
\nu=10^{-4}, \quad s_{0}=1, s_{1}=1, s_{2}=0, \quad V[m]=m^{2}
$$

Computed $\rho=-0.725463$

Numerical experiments

$$
\nu=0.1, \quad s_{0}=1, s_{1}=1, s_{2}=1, \quad V[m]=1-\frac{4}{\pi} \arctan (m)
$$

Computed $\Lambda=-1.219979$

Numerical experiments

$$
\nu=10^{-3}, \quad s_{0}=1, s_{1}=1, s_{2}=1, \quad V[m]=1-\frac{4}{\pi} \arctan (m)
$$

Computed $\Lambda=-2.832411$

More complex networks

Comments and Remarks:

- rigorous derivation of the system starting from the game with N players.
- more general transitions conditions (arbitrary weights for the edges, controlled weights...) and/or lack of continuity condition.
- first order MFG systems on networks.

Thank You!

