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Model example on the torus Tn [Lasry-Lions,’06]

Consider a game with N rational and indistinguishable players. The
i-th player’s dynamics is

dX i
t = −αi

tdt +
√

2νdW i
t , X i

0 = x i ∈ Tn

where ν > 0, W i are independent Brownian motions and αi is the
control chosen so to minimize the cost functional

lim inf
T→+∞

1
T
Ex


∫ T

0

L(X i
s, α

i
s) + V

 1
N − 1

∑
j 6=i

δX j
s

ds

 .

The Nash equilibria are characterized by a system of 2N equations. As
N → +∞, this system reduces to the following one:
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(MFG-Tn)


−ν∆u + H(x ,Du) + ρ = V ([m]) in Tn

ν∆m + div
(

m ∂H
∂p (x ,Du)

)
= 0 in Tn∫

Tn m dx = 1, m > 0∫
Tn u dx = 0

H(x ,p) := supq∈Rn{−p · q − L(x ,q)};
“[m]” means that V depends on m in a local or in a nonlocal way.

Theorem [Lasry-Lions ’06]
There exists a smooth solution (u,m, ρ) to the above problem;
Assume

I either V is strictly monotone in m (i.e.∫
Tn (V ([m1])− V ([m2])) (m1 −m2)dx ≤ 0 implies m1 = m2)

I or V is monotone in m (i.e.
∫
Tn (V ([m1])− V ([m2]))(m1 −m2)dx≥0)

and H is strictly convex in p.

Then the solution is unique.
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Basic References for MFG theory:
Lasry-Lions, C.R. Math. Acad. Sci. Paris 343 (2006), 619-625.
Lasry-Lions, C.R. Math. Acad. Sci. Paris 343 (2006), 679-684.
Lasry-Lions, Jpn. J. Math. 2 (2007), 229-260.
Huang-Malhamé-Caines, Commun. Inf. Syst. 6 (2006), 221-251.
Lions’ course at College de France ’06-’12 and ’16-’17
www.college-de-france.fr
Cardaliaguet, Notes on MFG (from Lions’ lectures at College de
France), www.ceremade.dauphine.fr/∼cardalia/
Achdou-Capuzzo Dolcetta, SIAM J. Num. Anal. 48 (2010),
1136-1162.
Achdou-Camilli-Capuzzo Dolcetta, SIAM J. Num. Anal. 51
(2013),2585-2612.
MFG on graphs (i.e., agents have a finite number of states)

I Discrete time, finite state space:
Gomes-Mohr-Souza, J. Math. Pures Appl. 93 (2010), 308-328.

I Continuous time, finite state space:
Gomes-Mohr-Souza, Appl. Math. Optim., 68 (2013), 99-143.
Guéant, Appl. Math. Optim. 72 (2015), 291-303.
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Network

A network is a connected set Γ consisting of vertices V := {vi}i∈I and
edges E := {ej}j∈J connecting the vertices. We assume that the
network is embedded in the Euclidian space Rn and that any two
edges can only have intersection at a vertex.

(a) An example of network
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Some Notations

Inci := {j ∈ J : ej incident to vi} is the set of edges incident to the
vertex vi .
A vertex vi is a transition vertex if it has more than one incident
edge. We denote by ΓT = {vi , i ∈ IT} the set of transition vertices.
A vertex vi is a boundary vertex if it has only one incident edge.
For simplicity, we assume that the set of boundary vertices is
empty.
Any edge ej is parametrized by a smooth function πj : [0, lj ]→ Rn.
For a function u : Γ→ R we denote by uj : [0, lj ]→ R its restriction
to ej , i.e. u(x) = uj(y) for x ∈ ej , y = π−1

j (x).
The derivative are considered w.r.t. the parametrization.
The oriented derivative of a function u at a transition vertex vi is

∂ju(vi) :=

{
limh→0+(uj(h)− uj(0))/h, if vi = πj(0)
limh→0+(uj(lj − h)− uj(lj))/h, if vi = πj(lj).
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Some functional spaces

u ∈ Cq,α(Γ), for q ∈ N and α ∈ (0,1], when u ∈ C0(Γ) and
uj ∈ Cq,α([0, lj ]) for each j ∈ J. We set

‖u‖(q+α)
Γ = max

j∈J
‖uj‖

(q+α)
[0,lj ]

.

u ∈ Lp(Γ), p ≥ 1 if uj ∈ Lp(0, lj) for each j ∈ J. We set

‖u‖Lp = (
∑
j∈J

‖uj‖pLp(ej )
)1/p.

u ∈W k ,p(Γ), for k ∈ N, k ≥ 1 and p ≥ 1 if u ∈ C0(Γ) and
uj ∈W k ,p(0, lj) for each j ∈ J. We set

‖u‖W k,p = (
∑
j∈J

‖uj‖pW k,p(ej )
)1/p.
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Formal derivation of MFG systems on networks

Dynamics of a generic player.

Inside each edge ej , the dynamics of a generic player is

dXt = −αtdt +
√

2νjdWt

where α is the control, νj > 0 and W is an independent Brownian
motions.

At any internal vertex vi , the player spends zero time a.s. at vi and it
enters in one of the incident edges, say ej , with probability βij with

βij > 0,
∑

j∈Inci

βij = 1.
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Discussion on the transition condition: probabilistic approach

We consider the uncontrolled case. Fix a vertex vi .
Rigorous definition of “enters in one of the incident edges...”
For δ > 0, consider θδ := inf{t > 0 | dist(Xt , vi) = δ}. Then,

lim
δ→0+

P{Xθδ ∈ ej} = βij .

Fattening interpretation. Let Mε be the set in Rn obtained
“enlarging” each edge ej by a ball of radius εβij . One can obtain
these dynamics as the limit as ε→ 0+ of a Brownian motion in Mε

with normal reflection at the boundary.
Itô’s formula still holds true.

See: [Freidlin-Wentzell, Ann. Prob.’93], [Freidlin-Sheu, PTRF’00].
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Discussion on the transition condition: analytical approach

Consider the operator A defined on C0(Γ), defined for x ∈ ej by

Aju := νj
d2u
dy2 (y) + ᾱ

du
dy

(y), y = π−1(x)

with domain

D(A) :=
{

u ∈ C2(Γ) |
∑

j∈Inci

βij∂ju(vi) = 0

︸ ︷︷ ︸
(weighted) Kirchhoff condition

}
.

A generates on Γ the Markov process Xt described before.
A fulfills the Maximum Principle.
Fattening interpretation. The solution of Au = 0 is the limε→0+

of uε, solution of a “similar” problem in Mε with ∂uε
∂n = 0 on ∂Mε.

See: [Freidlin-Wentzell, Ann. Prob.’93], [Below-Nicaise, CPDE’96].In
[Lions’ course,’17]: fattening interpretation for some controlled cases.
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Formal derivation of the MFG system on the network
We formally derive the MFG system on the network: the HJB equation
is obtained through the dynamic programming principle while the FP
equation is obtained as adjoint of the linearized HJB one.

Hence, the HJB equation is
−νj∂

2u + Hj(x , ∂u) + ρ = V [m] x ∈ ej , j ∈ J∑
j∈Inci

βij∂ju(vi) = 0 i ∈ IT
uj(vi) = uk (vi) j , k ∈ Inci .

The linearized equation is
−νj∂

2w + ∂pHj(x , ∂u)∂w = 0 x ∈ ej , j ∈ J∑
j∈Inci

βij∂jw(vi) = 0 i ∈ IT
wj(vi) = wk (vi) j , k ∈ Inci .
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Writing the weak formulation for a test function m, we get

0 =
∑
j∈J

∫
ej

(
− νj∂

2w + ∂pHj(x , ∂u)∂w
)
m dx

=
∑
j∈J

∫
ej

[
− νj∂

2m − ∂(m∂pHj(x , ∂u))
]
w dx

+
∑
i∈IT

∑
j∈Inci

(
νj∂jm(vi) + ∂pH(vi , ∂u)mj(vi)

)
w(vi)

−
∑
i∈IT

∑
j∈Inci

νjmj(vi)∂jw(vi)︸ ︷︷ ︸
=0 if

mj (vi )νj
βij

= mk (vi )νk
βik

.

By the integral term, we obtain

νj∂
2m + ∂(m ∂pHj(x , ∂u)) = 0 x ∈ ej , j ∈ J.
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The MFG system on a network

Assume νj
βij

= νk
βik
∀j , k ∈ Inci , i ∈ IT . The MFG systems is

(MFGΓ)



− ν∂2u + H(x , ∂u) + ρ = V (m) x ∈ Γ

ν∂2m + ∂(m ∂pH(x , ∂u)) = 0 x ∈ Γ∑
j∈Inci

νj∂ju(vi) = 0 i ∈ IT∑
j∈Inci

[νj∂jm(vi) + ∂pHj(vi , ∂ju)mj(vi)]=0 i ∈ IT

uj(vi) = uk (vi) j , k ∈ Inci , i ∈ IT
mj(vi) = mk (vi) j , k ∈ Inci , i ∈ IT∫

Γ
u(x)dx = 0∫

Γ
m(x)dx = 1, m ≥ 0.
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The MFG systems on networks

Theorem (Camilli-M., SJCO ’16)
We assume

Hj ∈ C2(ej × R), convex, with δ|p|2 − C ≤ Hj(x ,p) ≤ δ|p|2 + C,
νj > 0,
V ∈ C1([0,+∞)).

Then, there exists a solution (u,m, ρ) ∈ C2(Γ)× C2(Γ)× R to (MFGΓ).

Moreover, assume
either V is strictly monotone in m
or V is monotone in m and H is strictly convex in p.

Then the solution is unique.
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Sketch of the proof

Step 1: On the HJB equation.

For f ∈ C0,α(Γ), ∃!(u, ρ) ∈ C2(Γ)× R solution to

(HJB)


−ν∂2u + H(x , ∂u) + ρ = f (x), x ∈ Γ∑

j∈Inci
νj∂ju(vi) = 0 i ∈ IT

uj(vi) = uk (vi) j , k ∈ Inci , i ∈ IT∫
Γ u(x) = 0.

Moreover u ∈ C2,α(Γ) and: ‖u‖C2,α(Γ) ≤ C, |ρ| ≤ maxΓ |H(·,0)− f (·)|.

The proof is based on
∃uλ ∈W 1,2(Γ), weak solution to the discounted approximation

−ν∂2uλ + H(x , ∂uλ) + λuλ = f (x) x ∈ Γ

as in [Boccardo-Murat-Puel,’83]; the Comparison Principle applies;
uλ ∈ C2,α(Γ) by the 1-d of the problem and Sobolev theorem;
as λ→ 0+, λuλ → ρ and (uλ −min uλ)→ u.
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Step 2: On the FP equation.

For b ∈ C1(Γ), there exists a unique weak solution m ∈W 1,2(Γ) to

(FP)


ν∂2m + ∂(b(x) m) = 0 x ∈ Γ∑

j∈Inci
[b(vi)mj(vi) + νj∂jm(vi)] = 0 i ∈ IT

mj(vi) = mk (vi) j , k ∈ Inci , i ∈ IT
m ≥ 0,

∫
Γ m(x)dx = 1.

Moreover, m is a classical solution with ‖m‖H1 ≤ C, 0 < m(x) ≤ C (for
some C > 0 depending only on ‖b‖∞ and ν).

The proof is based on
the existence of a weak solution is based on the theory of bilinear
forms;
the adjoint problem (both equation and transition condition) fulfills
the Maximum Principle;
m ∈ C2(Γ) by the 1-d of the problem and Sobolev theorem.
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Step 3: Fixed point argument.

We set K := {µ ∈ C0,α(Γ) : µ ≥ 0,
∫

Γ µdx = 1} and we define an
operator T : K → K according to the scheme

µ→ u → m

as follows:
given µ ∈ K, solve (HJB) with f (x) = V (µ(x)) for the unknowns
u = uµ and ρ, which are uniquely defined by Step 1;
given uµ, solve (FP) with b(x) = ∂pH(x , ∂uµ) for the unknown m
which is uniquely defined by Step 2;
set T (µ) := m.

Since T is continuous with compact image, Schauder’s fixed point
theorem ensures the existence of a solution.
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Step 4: Uniqueness.

Cross-testing the equations in (MFGΓ), by the transition conditions, we
get∑
j∈J

∫
ej

(m1 −m2)(V (m1)− V (m2))dx︸ ︷︷ ︸
≥0 by monotonicity

+

∑
j∈J

∫
ej

m1
[
Hj(x , ∂ju2)− Hj(x , ∂ju1)− ∂pHj(x , ∂ju1)∂j(u2 − u1)

]︸ ︷︷ ︸
≥0 by convexity

dx+

∑
j∈J

∫
ej

m2
[
(Hj(x , ∂ju1)− Hj(x , ∂ju2)− ∂pHj(x , ∂ju2)∂j(u1 − u2)

]︸ ︷︷ ︸
≥0 by convexity

dx = 0.

Therefore, each one of these three lines must vanish and we conclude
as in [Lasry-Lions ’06].
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A finite difference scheme for MFG on network

We introduce a grid on Γ. For the parametrization πj : [0, lj ]→ Rn

of ej , let yj,k = khj (k = 0, . . . ,Nh
j ) be an uniform partition of [0, lj ]:

Gh = {xj,k = πj(yj,k ), j ∈ J, k = 0, . . . ,Nh
j }.

Inc+
i := {j ∈ Inci : vi = πj(0)}, Inc−i := {j ∈ Inci : vi = πj(Nh

j hj)}.
We introduce the (1-dimensional) finite difference operators

(D+U)j,k =
Uj,k+1 − Uj,k

hj
, [DhU]j,k =

(
(D+U)j,k , (D+U)j,k−1

)T
,

(D2
hU)j,k =

Uj,k+1 + Uj,k−1 − 2Uj,k

h2
j

.

We introduce the inner product. For U,W : Gh → R, set

(U,W )2 =
∑
j∈J

Nh
j −1∑

k=1

hjUj,k Wj,k +
∑
i∈I

( ∑
j∈Inc+

i

hj

2
Uj,0Wj,0+

∑
j∈Inc−

i

hj

2
Uj,Nh

j
Wj,Nh

j

)
.
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We introduce the numerical Hamiltonian gj : [0, lj ]× R2 → R, s.t.:

(G1) monotonicity: gj(x ,q1,q2) is nonincreasing with respect to q1
and nondecreasing with respect to q2.

(G2) consistency: gj (x ,q,q) = Hj(x ,q), ∀x ∈ [0, lj ], ∀q ∈ R.

(G3) differentiability: gj is of class C1.

(G4) superlinear growth : gj(x ,q1,q2) ≥ α((q−1 )2 + (q+
2 )2)γ/2 − C

for some α > 0, C ∈ R and γ > 1.

(G5) convexity : (q1,q2)→ gj (x ,q1,q2) is convex.
We introduce a continuous numerical potential Vh such that ∃C
independent of h such that

max
j,k
|(Vh[M])j,k | ≤ C, |(Vh[M])j,k − (Vh[M])j,`| ≤ C|yj,k − yj,`|.

for all M ∈ Kh := {M : M is continuous, Mj,k ≥ 0, (M,1)2 = 1}.
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We get the following system in the unknown (U,M,R)

− νj (D2
hU)j,k + g(xj,k , [DhU]j,k ) + R = Vh(Mj,k )

νj (D2
hM)j,k + Bh(U,M)j,k = 0,∑

j∈Inc+
i

[
νj (D+U)j,0 +

hj

2
(Vj,0 − R)

]
−
∑

j∈Inc−
i

[
νj (D+U)j,Nh

j −1 −
hj

2
(Vj,Nh

j
− R)

]
= 0

∑
j∈Inc+

i

[
νj (D+M)j,0 + Mj,1

∂g
∂q2

(xj,1, [DhU]j,1)
]
−

∑
j∈Inc−

i

[
νj (D+M)j,Nh

j −1 + Mj,Nh
j −1

∂g
∂q1

(xj,Nh
j −1, [DhU]j,Nh

j −1)
]

= 0

U, M continuous at vi , i ∈ I,

(M,1)2 = 1, (U,1)2 = 0,
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Theorem (Cacace-Camilli-M., M2AN’17)
For any h = {hj}j∈J , the discrete problem has at least a solution
(Uh,Mh, ρh). Moreover

|ρh| ≤ C1, ‖Uh‖∞ + ‖DhUh‖∞ ≤ C2

for some constants C1, C2 independent of h.
Moreover, if Vh is strictly monotone, then the solution is unique.
If (u,m, ρ) is the solution of the MFG system (MFGΓ), then

lim
|h|→0

[
‖Uh − u‖∞ + ‖Mh −m‖∞ + |ρh − ρ|

]
= 0.
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Solution of the discrete MFG system via Nonlinear-Least-Squares

The solution of the MFG discrete system is usually performed by
means of some regularizations, e.g. large time approximation or
ergodic approximation. We propose a different method:
•We collect the unknowns in a vector X = (U,M,R) of length 2Nh + 1;
• we consider the nonlinear map F : R2Nh+1 → R2Nh+2 defined by

F(X ) =



−νj(D2
hU)j,k + g(xj,k , [DhU]j,k ) + R − Vh(Mj,k ), k = 1, . . . ,Nh

j − 1, j ∈ J

νj(D2
hM)j,k + Bh(U,M)j,k , k = 1, . . . ,Nh

j − 1, j ∈ J∑
j∈Inc+

i

[
νj(D+U)j,0 +

hj

2
(Vj,0 − R)

]
−
∑

j∈Inc−i

[
νj(D+U)j,Nh

j −1 −
hj

2
(Vj,Nh

j
− R)

]
i ∈ I

∑
j∈Inc+

i

[
νj(D+M)j,0 + Mj,1

∂g
∂q2

(xj,1, [DhU]j,1)
]

−
∑

j∈Inc−i

[
νj(D+M)j,Nh

j −1 + Mj,Nh
j −1

∂g
∂q1

(xj,Nh
j −1, [DhU]j,Nh

j −1)
]

(M, 1)2 − 1

(U, 1)2.

• The solution of the discrete MFG is the unique X ? s.t. F(X ?) = 0.
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The system F(X ?) = 0 is formally overdetermined (2Nh + 2 equations
in 2Nh + 1 unknowns), hence the solution is meant in the following
nonlinear-least-squares sense:

X ? = arg min
X

1
2
‖F(X )‖22 .

The previous optimization problem is solved by means of the
Gauss-Newton method

JF (X k )δX = −F(X k ), X k+1 = X k + δX .

via the QR factorization of the Jacobian JF (X k ).
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Numerical experiments

We consider a network with 2 vertices and 3 edges (boundary vertices
are identified!). Each edge has unit length and connects (0,0) to
(cos(2πj/3), sin(2πj/3)) with j = 0,1,2.

Data:

• Uniform diffusion νj ≡ ν
• Hj(x ,p) = 1

2 |p|
2 + f (x)

f (x) = sj

(
1 + cos(2π

(
x + 1

2

)
)
)

sj ∈ {0,1}
• V [m] = m2

-1

-0.5

0

0.5

1

-0.5 0 0.5 1

Computational time for Nh ∼ 5000 is of the order of seconds!
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Cost active on all edges

ν = 0.1, s0 = 1, s1 = 1, s2 = 1, V [m] = m2
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Cost active on two edges

ν = 0.1, s0 = 1, s1 = 1, s2 = 0, V [m] = m2
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Small viscosity, cost active on all edges

ν = 10−4, s0 = 1, s1 = 1, s2 = 1, V [m] = m2
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Small viscosity, cost active on two edges

ν = 10−4, s0 = 1, s1 = 1, s2 = 0, V [m] = m2
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Numerical experiments

ν = 0.1, s0 = 1, s1 = 1, s2 = 1, V [m] = 1− 4
πarctan(m)
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Numerical experiments

ν = 10−3, s0 = 1, s1 = 1, s2 = 1, V [m] = 1− 4
πarctan(m)
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More complex networks

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

-2 0 2 4 6 8 10 12

0

2

4

6

8

10

12 -3

-2.5

-2

-1.5

-1

-0.5

0

0

0.1

0.2

0.3

0.4

0.5

0

2

4

6

8

10

12 -3

-2.5

-2

-1.5

-1

-0.5

0

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M U

C. Marchi (Univ. of Padova) Mean Field Games on networks Roma, June 14th, 2017 33 / 35



Comments and Remarks:

rigorous derivation of the system starting from the game with N
players.
more general transitions conditions (arbitrary weights for the
edges, controlled weights...) and/or lack of continuity condition.
first order MFG systems on networks.
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Thank You!
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