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Jérôme Le Ny

Polymtl and GERAD June 14-16, 2017 2 / 44



Overview

1 Introduction and Problem Statement

2 Methodology and Main Contributions

3 Deterministic Dynamics

4 Stochastic Dynamics

5 Some Comparisons

6 Conclusion and Extensions

Polymtl and GERAD June 14-16, 2017 3 / 44



Example 1 - “Tupperware Effect”

[Harvard Gazette (2012) - “Peer pressure in elections”]

Event: Fundraising coffee session for a 2009 Democratic U.S. House
candidate, Julie Hamos.

Previous elections cyles: The group supported another candidate.

2009: After Julie’s speech, the guests were invited to write checks,
and many backed Julie.

Julie lost and many guests regretted backing her.

What made a guest support Julie although initially not in favor of her
candidacy?

Fear of being different from the group: Conformity pressure, Social effect,
Tupperware Effect, Peer effect.
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Example 2 - Social effect and the diffusion of home
computers

A study by Goolsbe and Klenow [Goolsbe and Klenow ’02].

Samples of 208 U.S.
cities.

x−axis = Fraction of
households owning a
computer at the begin-
ning of 1997.

y−axis = Fraction of
households not owning a
computer at the begin-
ning of 1997 that bought
during 1997.
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Introduction

What are the collective choice problems ?
The collective choice problems are concerned with situations and deci-
sion making when a large number of agents make a socially influenced
choice amongst different alternatives.
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Application 1 - Robotics

Collection of robots exploring an unknown terrain.

Multiple potential sites of interest to visit (Discrete choices).

The robots must stay as much as possible grouped to carry out some
collective tasks (Social effect).
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Application 2 - Elections

A group of voters are choosing among a set of candidates (Discrete
choices).

Along the path to choose a candidate, changing one’s opinion requires
an effort but deviation from the majority’s opinion involves a discomfort
(Social effect).
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Problem Statement
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Questions We Addressed

How do the agents act on the individual level?
Do they make their choices a priori or continuously while moving ?

Can one anticipate the macroscopic behavior of the population, i.e. the
distribution of the agents between the alternatives?

If yes, are there multiple potential macroscopic behaviors?

What is the necessary information to compute the individual strategies
and anticipate the macroscopic behaviors?

How does the strength of the social effect influence the macroscopic
behavior?
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Min-LQG Model

N agents, with dynamics and individual costs:

dxi = Axidt + Buidt + σdwi ∀i ∈ {1 . . . ,N}, (1)

Ji (ui , x̄ , x
0
i ) = E

(∫ T

0

{
q

2

Social effect︷ ︸︸ ︷
‖xi − x̄‖2 +

r

2

Effort︷ ︸︸ ︷
‖ui‖2

}
dt

+
M

2
min

j=1,...,l

( Choice︷ ︸︸ ︷
‖xi (T )− pj‖2

)∣∣∣x0
i

)
, (2)

xi ∈ Rn the state of agent i , ui ∈ Rm its control input.

pj ∈ Rn for j = 1, . . . , l home destinations.

x̄ = 1/N
∑N

j=1 xj the average of the population.

Independent initial conditions x0
i and Wiener processes wi , i = 1, . . . ,N.
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Methodology - Mean Field Games

For a continuum of agents

Assume x̄ given
and equal to x̂

Minimize Ji (ui , x̂)
(Tracking
Problem)

Decentralized
strategies ui (xi , x̂)

dxi = Axidt +
Buidt (State
Aggregation)

x̄ = G (x̂)
x̂ admissible
only if Fixed
point of G
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Methodology - Mean Field Games

Practical situation (finite number of agents)

The decentralized strategies ui (xi , x̂) computed for a continuum of agents
(hopefully) constitute an ε−Nash equilibrium, where ε is close to zero for
N large enough.

Definition

An ε−Nash equilibrium is such that each agent can profit at most ε by a
unilateral deviant behavior.



Main Contributions

How do the agents act on the individual level?
Do they make their choices a priori or continuously while moving ?

Without noise: an agent picks a destination prior start moving based
on its initial condition and the initial distribution of the population.

With noise: the agents update continuously their choices along the
path.

Can one anticipate the macroscopic behavior of the population, i.e. the
distribution of the agents between the alternatives?

We show the existence of at least one infinite population Nash equilib-
rium.

There exists a one to one map between the infinite population equilibria
and the fixed points of a finite dimensional operator F defined on Rl .

The fixed points of F are the potential distributions of the choices
between the alternatives

F (λ1, . . . , λl) = (λ1, . . . , λl)⇒ λj% of the agents are closer to pj at T .
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Main Contributions (Cont.)

What is the necessary information to compute the individual strategies
and anticipate the macroscopic behaviors?

To compute its strategy, each agent needs to know its state and the initial
probability distribution of the population (decentralized strategies).

To anticipate the macroscopic behavior, one need to know the initial
probability distribution of the population.
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Generic Agent’s Best Response

MFG approach: x̄ is assumed equal to a continuous path x̂ and a generic
agent minimizes

J(u, x̂ , x0) =

∫ T

0

{q
2
‖x − x̂‖2 +

r

2
‖u‖2

}
dt +

M

2
min

j=1,...,l

(
‖x(T )− pj‖2

)

= min
j=1,...,l

Jj(u, x̂ , x
0)

= Minimum of l linear tracking problems, each associated

with one of the destination points.

Jj(u, x̂ , x
0) =

∫ T

0

{q
2
‖x − x̂‖2 +

r

2
‖u‖2

}
dt +

M

2
‖x(T ) − pj‖2.
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Generic Agent’s Best Response (cont.)

Recall (Linear Tracking Problem):

Optimal cost J∗j (x̂ , x0) = Quadratic function of x0

Optimal controller u∗j = Linear feedback + Tracking term

Generic Agent
initially at x0

J∗k (x̂ , x0) =
min

j=1,...,l
J∗j (x̂ , x0) Go towards pk

Basin of attraction:

Dj(x̂) =
{
x0 ∈ Rn|J∗j (x̂ , x0) least costly

}
= Region delimited by l − 1 hyperplans
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Generic Agent’s Best Response (cont.)

Theorem (Generic Agent’s Best Response to x̂)

The tracking problem has a unique optimal control law

u∗ = u∗j = Optimal control law of J∗j (x̂ , x0) if x0 ∈ Dj(x̂)
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Fixed Point x̄

x̂ Dj(x̂)
u∗(x̂) =∑l

j=1 u
∗
j 1Dj (x̂)(x0)

G

ẋ∗ = Ax∗ + Bu∗ x̄ = Ex∗
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Where are the fixed points of G?

Set of continuous functions on [0,T ]

For all λ = (λ1, . . . , λl) ∈ [0, 1]l ,
set of optimal states y∗(t, λ) of∫ T

0

r

2
‖v‖2dt +

M

2
‖y(T )−

l∑
j=1

λjpj‖2

s.t. ẏ = Ay + Bv , y(0) = µ0

Set of optimal states y∗(t, λ),
where λ = F (λ) =

(P0(D1(y∗(t, λ))), . . . ,P0(Dl(y
∗(t, λ))))
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s.t. ẏ = Ay + Bv , y(0) = µ0

Set of optimal states y∗(t, λ),
where λ = F (λ) =

(P0(D1(y∗(t, λ))), . . . ,P0(Dl(y
∗(t, λ))))

Polymtl and GERAD June 14-16, 2017 22 / 44



Deterministic Dynamics - Main Theorem

Theorem

The following statements hold:

1 The set of fixed point trajectories x̄(t) is defined by x̄(t) = y∗(t, λ)
for all fixed points λ of the finite dimensional function F map.

2 F has at least one fixed point (equivalently G has at least one fixed
point).

3 The optimal strategy profile (u∗i , u
∗
−i ), when tracking any of the fixed

points x̄ , constitute an ε−Nash equilibirium, with ε converges to zero
as N goes to infinity.

Proof sketch

Point 1: Brouwer’s fixed point theorem.
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Deterministic Dynamics - Summary

The fixed points paths are totally determined by the fixed points of F .

The fixed points of F are the potential distributions of the choices
between the alternatives. If λ is a fixed point of F then 100λj% of the
agents will go towards pj .

Multiple fixed point paths x̄ may exist, and are computed as follows

Compute a fixed point λ of F (Broyden’s method for example)

Compute the corresponding fixed point path x̄(t) = y∗(t, λ)
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Generic Agent’s Best Response - Min-LQG problem

We assume x̄ given and call it x̂ .
The “min-LQG” optimal tracking problem (For clarity purposes, only the
binary choice scalar case):

J (x(0), u(.)) = E
[∫ T

0

{q
2

(x − x̂)2 +
r

2
u2
}
dt +

M

2
min
j=1,2

(x(T )− pj)
2

]
s.t. dx(t) = (ax(t) + bu(t)) dt + σdw(t).

The associated HJB equation:

−∂V
∂t

= ax
∂V

∂x
− b2

2r

(
∂V

∂x

)2

+
σ2

2

∂2V

∂x2
+

q

2
(x − x̂)2

V (T , x) =
M

2
min
j=1,2

(x − pj)
2.
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Generic Agent’s Best Response - Min-LQG problem (cont.)

Theorem (min-LQG HJB Solution)

The HJB equation of the “min-LQG” problem has a unique solution:

V (t, x) = −σ
2r

b2
log

(
exp

(
− b2

σ2r
V1(t, x)

)
P
(
x

(1)
∗ (T ) ≤ c

∣∣∣x (1)
∗ (t) = x

)
+ exp

(
− b2

σ2r
V2(t, x)

)
P
(
x

(2)
∗ (T ) ≥ c

∣∣∣x (2)
∗ (t) = x

))
,

where c = p1+p2
2 , Vj and x

(j)
∗ are the optimal cost-to-go and optimal state

of the LQG problem

J(j)
(
x (j)(0), u(j)(.)

)
= E

[ ∫ T

0

{q
2

(x (j) − x̂)2 +
r

2
(u(j))2

}
dt

+
M

2
(x (j)(T )− pj)

2
]

s.t. the dynamics of the generic agent.
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Generic Agent’s Best Response- Min-LQG problem (cont.)

Theorem (Generic agent’s best response)

u∗(t, x , x̂) =
2∑

j=1

exp
(
− b2

σ2r
Ṽj(t, x)

)
exp

(
− b2

σ2r
Ṽ1(t, x)

)
+ exp

(
− b2

σ2r
Ṽ2(t, x)

)u(j)
∗ (t, x)

Ṽj(t, x) = Vj(t, x)− σ2r

b2
log (gj(t, x)) ,

where gj(t, x) = P
(
x

(j)
∗ (T ) closer to pj

∣∣∣x (j)
∗ (t) = x

)
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Generic Agent’s Best Response- Min-LQG problem (cont.)

u∗(t, x , x̂)=
2∑

j=1

exp
(
− b2

σ2r
Ṽj(t, x)

)
exp

(
− b2

σ2r
Ṽ1(t, x)

)
+ exp

(
− b2

σ2r
Ṽ2(t, x)

)u(j)
∗ (t, x)

Ṽj(t, x) = Vj(t, x)− σ2r

b2
log (gj(t, x)) ,
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Generic Agent’s Best Response- Min-LQG problem (cont.)
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Generic Agent’s Best Response- Min-LQG problem (cont.)
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exp
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σ2r
Ṽj(t, x)

)
exp

(
− b2

σ2r
Ṽ1(t, x)

)
+ exp

(
− b2

σ2r
Ṽ2(t, x)

)u(j)
∗ (t, x)

Ṽj(t, x) = Vj(t, x)− σ2r

b2
log (gj(t, x)) ,

gj(t, x) = P
(
x

(j)
∗ (T ) closer to pj

∣∣∣x (j)
∗ (t) = x

)

The generic agent is indecisive: its best response is a convex combina-

tion of u
(1)
∗ (choosing p1) and u

(2)
∗ (choosing p2).

u
(1)
∗ and u

(2)
∗ are weighted by a Gibbs distribution, which attributes

more mass to the less costly and risky choice.
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Ṽj(t, x) = Vj(t, x)− σ2r

b2
log (gj(t, x)) ,

gj(t, x) = P
(
x

(j)
∗ (T ) closer to pj

∣∣∣x (j)
∗ (t) = x

)

The generic agent is indecisive: its best response is a convex combina-

tion of u
(1)
∗ (choosing p1) and u

(2)
∗ (choosing p2).

u
(1)
∗ and u

(2)
∗ are weighted by a Gibbs distribution, which attributes

more mass to the less costly and risky choice.

Polymtl and GERAD June 14-16, 2017 32 / 44



Fixed Point x̄

A fixed point path x̄ satisfies the following Mean Field equations:

dx∗(t) = (ax∗(t) + bu∗ (t, x∗(t), x̄)) dt + σdw(t), x∗(0) = x(0)

x̄(t) = Ex∗(t).
(3)

(3) is a nonlinear Mckean-Vlasov equation.

Show that the set of solutions of (3) can be one to one mapped to the
set of fixed points of a finite dimensional operator.

At least one solution of (3) exists.

As in the deterministic case, the fixed points of the finite dimensional
operator are the distributions of the choices.
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Where are the fixed points of paths?

Set of continuous functions on [0,T ]

For all λ ∈ [0, 1], set of optimal states y∗(t, λ) of∫ T

0

r

2
‖v‖2dt +

M

2
‖y(T )− λp1 − (1− λ)p2‖2

s.t. ẏ = Ay + Bv , y(0) = µ0

Set of optimal states y∗(t, λ), where
λ = F (λ) = probability that a generic

agent optimally tracking y∗(t, λ)
is at time T closer to p1 than p2.
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Fixed Point x̄ (Cont.)

Theorem

The following statements hold:

1 The set of fixed point trajectories x̄(t) is defined by x̄(t) = y∗(t, λ)
for all fixed points λ of the F map.

2 F has at least one fixed point (equivalently G has at least one fixed
point).

3 The optimal strategy profile (u∗i , u
∗
−i ), when tracking any of the fixed

points x̄ , constitute an ε−Nash equilibirium, with ε converges to zero
as N goes to infinity.

Proof sketch

Point 1: Brouwer’s fixed point theorem.
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Fixed Point x̄ (Cont.)

If λ is a fixed point of F then 100λ% of the agents will be closer to
p1 at time T .

Computation of a fixed point of F - Bisection Method

λ0 = 0, λ1 = 1

λ = λ0+λ1
2 , e = |λ0 − λ1|

Implicit finite difference Scheme for the Fokker-Planck equation of

dxλ∗ (t) =
(
axλ∗ (t) + bu∗

(
t, xλ∗ (t), y∗(t, λ)

))
dt + σdw(t)

Compute F (λ) = P(xλ∗ (T ) ≤ c)

If (F (λ)−λ)(F (λ0)−λ0) < 0, λ1 = λ. Else λ0 = λ.

While e > ed
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Simulations

Influence of the social effect (q) on the number of equilibria and
the size of the groups.
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Deterministic Vs. Stochastic dynamics

Deterministic dynamics

Decisive Agents: u∗ = 1D1(x̄)(x0)u
(1)
∗ + (1− 1D1(x̄)(x0))u

(2)
∗ .

x̄ is a fixed point if and only if x̄(t) = y∗(t, λ), where λ is a fixed point
of a well defined finite dimensional operator F .

Px(0)−1 and λ→ F (λ).

Stochastic dynamics

Indecisive Agents: u∗ = p(t, x , x̄)u
(1)
∗ + (1− p(t, x , x̄))u

(2)
∗ .

x̄ is a fixed point if and only if x̄(t) = y∗(t, λ), where λ is a fixed point
of a well defined finite dimensional operator F .

Px(0)−1 and λ→ Pxλ∗ (T )−1 and λ→ F (λ), where

dxλ∗ (t) = axλ∗ (t)dt + bu∗
(
t, xλ∗ (t), y∗(t, λ)

)
dt + σdw(t)
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“Min-LQG” Vs. Static Discrete Choice Models

Economics - Static Discrete Choice Models [McFadden ’74]

Agent

Alternative 1
C1 = U1 + ε1

Pr1 =
exp(−U1)

exp(−U1)+exp(−U2)

Alternative 2
C2 = U2 + ε2

Pr2 =
exp(−U2)

exp(−U1)+exp(−U2)
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Conclusion

1 We considered a dynamic collective choice problem based on a Min-
LQG dynamic game.

2 We showed that multiple ε−Nash equilibria may exist. Each equilibrium
is characterized by a vector λ describing the way the population splits
under a social effect between the destination points.

3 In the deterministic case, an agent picks its destination point prior start
moving.

4 In the stochastic case, the agents are indecisive.

Polymtl and GERAD June 14-16, 2017 42 / 44



Extensions

Dynamic collective choice with nonuniform costs and dynamics, and
initial preferences towards the destination points

Dynamic collective choice with an advertiser [CDC’16]

A Stackelberg competition involving:

A group of agents choosing between two alternatives under the social
and advertisement effects.

An advertiser making some investments to advertise to one of the al-
ternatives.

Dynamic collective choice: social optima

A cooperative game, where a group of agents are cooperatively choosing
among a set of alternatives under the social effect.
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Thank you
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