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Overview

Overview

A mean field game (MFG) will refer to a game with a continuum
of players.

In various contexts, we know rigorously that the MFG arises as the
limit of n-player games as n→∞.

This talk: Refined MFG asymptotics in the form of a central limit
theorem and large deviation principle, as well as non-asymptotic
concentration bounds.

Key idea: Use the master equation to quantitatively relate
n-player equilibrium to n-particle system of McKean-Vlasov type,
building on idea of Cardaliaguet-Delarue-Lasry-Lions ’15.
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Interacting diffusion models

Interacting diffusions
Suppose particles i = 1, . . . , n interact through their empirical
measure according to

dX i
t = b(X i

t , ν̄
n
t )dt + dW i

t , ν̄nt =
1

n

n∑
k=1

δX k
t
,

where W 1, . . . ,W n are independent Brownian motions.

Under “nice” assumptions on b, we have ν̄nt → νt , where νt solves
the McKean-Vlasov equation,

dXt = b(Xt , νt)dt + dWt , νt = Law(Xt),

or
d

dt
〈νt , ϕ〉 = 〈νt , b(·, νt)∇ϕ(·) +

1

2
∆ϕ(·)〉.
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Interacting diffusion models

Empirical measure limit theory

There is a rich literature on asymptotics of ν̄nt :

1. LLN: ν̄n → ν, where ν solves a McKean-Vlasov equation.
(Oelschläger ’84, Gärtner ’88, Sznitman ’91, etc.)

2. Fluctuations:
√
n(ν̄nt − νt) converges to a distribution-valued

process driven by space-time Brownian motion.
(Tanaka ’84, Sznitman ’85, Kurtz-Xiong ’04, etc.)

3. Large deviations: ν̄n has an explicit LDP.
(Dawson-Gärtner ’87, Budhiraja-Dupius-Fischer ’12)

4. Concentration: Finite-n bounds are available for
P(d(ν̄n, ν) > ε), for various metrics d .

(Bolley-Guillin-Villani ’07, etc.)

The idea: Use the more tractable McKean-Vlasov system to
analyze the large-n-particle system.
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Mean field games

A class of mean field games
Agents i = 1, . . . , n have state process dynamics

dX i
t = αi

tdt + dW i
t ,

with W 1, . . . ,W n independent Brownian, (X 1
0 , . . . ,X

n
0 ) i.i.d.

Agent i chooses αi to minimize

Jni (α1, . . . , αn) = E
[∫ T

0

(
f (X i

t , µ̄
n
t ) +

1

2
|αi

t |2
)
dt + g(X i

T , µ̄
n
T )

]
,

µ̄nt =
1

n

n∑
k=1

δX k
t
.

Say (α1, . . . , αn) form an ε-Nash equilibrium if

Jni (α1, . . . , αn) ≤ ε+ inf
β
Jni (. . . , αi−1, β, αi+1, . . .),∀i = 1, . . . , n
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Mean field games

The n-player HJB system

The value function vni (t, x), for x = (x1, . . . , xn), for agent i in the
n-player game solves

∂tv
n
i (t, x) +

1

2

n∑
k=1

∆xkv
n
i (t, x) +

1

2
|Dxi v

n
i (t, x)|2

+
∑
k 6=i

Dxkv
n
k (t, x) · Dxkv

n
i (t, x) = f

(
xi ,

1

n

n∑
k=1

δxk

)
.

A Nash equilibrium is given by

αi
t = −Dxi v

n
i (t,X 1

t , . . . ,X
n
t ).

But vni is generally hard to find, especially for large n.
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Mean field games

Mean field limit n→∞?

The problem

Given a Nash equilibrium (αn,1, . . . , αn,n) for each n, can we
describe the asymptotics of (µ̄nt )t∈[0,T ]?

Previous results, limited to LLN
Lasry/ Lions ’06, Feleqi ’13, Fischer ’14, L. ’15,
Cardaliaguet-Delarue-Lasry-Lions ’15, Cardaliaguet ’16...

A related, better-understood problem

Find a mean field game solution directly, and use it to construct an
εn-Nash equilibrium for the n-player game, where εn → 0.
See Huang/Malhamé/Caines ’06 & many others.
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Mean field games

Proposed mean field game limit

A deterministic measure flow (µt)t∈[0,T ] ∈ C ([0,T ];P(Rd)) is a
mean field equilibrium (MFE) if:
α∗ ∈ arg minα E

[∫ T
0

(
f (Xα

t , µt) + 1
2 |αt |2

)
dt + g(Xα

T , µT )
]
,

dXα
t = αtdt + dWt ,

µt = Law(Xα∗
t ).

Law of large numbers

Under strong assumptions, there exists a unique MFE µ, and
µ̄n → µ in probability in C ([0,T ];P(Rd)).
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The master equation

Constructing the MFG value function

1. Fix t ∈ [0,T ) and m ∈ P(Rd).

2. Solve the MFG starting from (t,m), i.e., find (α∗, µ) s.t.
α∗ ∈ arg minα E

[∫ T
t

(
f (Xα

s , µs) + 1
2 |αs |2

)
ds + g(Xα

T , µT )
]
,

dXα
s = αsds + dWs , s ∈ (t,T )

µs = Law(Xα∗
s ), µt = m

3. Define the value function, for x ∈ Rd , by

U(t, x ,m)

= E
[∫ T

t

(
f (Xα∗

s , µs) +
1

2
|α∗s |2

)
ds + g(Xα∗

T , µT )

∣∣∣∣Xα∗
t = x

]

Note: This definition requires uniqueness!
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The master equation

Toward the master equation

The strategy is analogous to classical stochastic optimal control:

1. Show the value function satisfies a dynamic programming
principle (DPP).

2. Use the DPP to identify a PDE for the value function.

3. Use this PDE to construct optimal controls.

The second step requires a notion of derivative on the space
P(Rd) of probability measures as well as an analog of Itô’s formula
for certain measure-valued processes.
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The master equation

Derivatives on P(Rd)

Definition
u : P(Rd)→ R is C 1 if ∃ δuδm : P(Rd)× Rd → R continuous s.t.

lim
h↓0

u(m + t(m̃ −m))− u(m)

t
=

∫
Rd

δu

δm
(m, y) d(m̃ −m)(y).

Define also

Dmu(m, y) = Dy

(
δu

δm
(m, y)

)
.

Key lemma: For x1, . . . , xn ∈ Rd ,

Dxiu

(
1

n

n∑
k=1

δxk

)
=

1

n
Dmu

(
1

n

n∑
k=1

δxk , xi

)
.
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The master equation

Key tool: The master equation

Using the DPP along with an Itô formula for functions of
measures, one derives the master equation:

∂tU(t, x ,m)−
∫
Rd

DxU(t, y ,m) · DmU(t, x ,m, y)m(dy)

+ f (x ,m)− 1

2
|DxU(t, x ,m)|2 +

1

2
∆xU(t, x ,m)

+
1

2

∫
Rd

divyDmU(t, x ,m, y)m(dy) = 0,

Refer to Cardaliaguet-Delarue-Lasry-Lions ’15,
Chassagneux-Crisan-Delarue ’14, Carmona-Delarue ’14,
Bensoussan-Frehse-Yam ’15
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The master equation

Key tool: The master equation

Using the DPP along with an Itô formula for functions of
measures, one derives the master equation:

∂tU(t, x ,m)−
∫
Rd

DxU(t, y ,m) · DmU(t, x ,m, y)m(dy)

+ f (x ,m)− 1

2
|DxU(t, x ,m)|2 +

1

2
∆xU(t, x ,m)

+
1

2

∫
Rd

divyDmU(t, x ,m, y)m(dy) = 0,

Assume henceforth that there is a smooth classical solution with
bounded derivatives!

Assume also E[exp(κ|X 1
0 |2)] <∞ for some κ > 0.
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Key tool: The master equation

Using the DPP along with an Itô formula for functions of
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The master equation

A first n-particle approximation

The MFE µ is the unique solution of the McKean-Vlasov equation

dXt = −DxU(t,Xt , µt)︸ ︷︷ ︸
α∗t

dt + dWt , µt = Law(Xt).

Old idea: Consider the system of n independent processes,

dX i
t = −DxU(t,X i

t , µt)︸ ︷︷ ︸
αi
t

dt + dW i
t .

These controls αi
t can be proven to form an εn-equilibrium for the

n-player game, where εn → 0.
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The master equation

A better n-particle approximation
Key idea of Cardaliaguet et al.: Consider the McKean-Vlasov
system

dY i
t = −DxU(t,Y i

t , ν̄
n
t )︸ ︷︷ ︸

αi
t

dt + dW i
t , ν̄nt =

1

n

n∑
k=1

δY k
t
.

Classical theory says that ν̄n → ν, where ν solves the
McKean-Vlasov equation,

dYt = −DxU(t,Yt , νt)dt + dWt , νt = Law(Yt).

We had the same equation for the MFE µ, so uniqueness implies

µ ≡ ν.

So to prove µ̄n → µ, it suffices to show µ̄n and ν̄n are close.
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The master equation

A better n-particle approximation

Key result of Cardaliaguet et al. ’15

Recalling that µ̄nt denotes the n-player Nash equilibrium empirical
measure, µ̄n and ν̄n are very close.

Note: This requires smoothness assumptions on the master
equation U, but not on the n-player HJB system!

Proof idea: Show that

uni (t, x1, . . . , xn) := U

(
t, xi ,

1

n

n∑
k=1

δxk

)

nearly solves the n-player HJB system.
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The master equation

The n-player HJB system revisited

We defined

uni (t, x1, . . . , xn) := U

(
t, xi ,

1

n

n∑
k=1

δxk

)
.

Use the master equation U to find

∂tu
n
i (t, x) +

1

2

n∑
k=1

∆xku
n
i (t, x) +

1

2
|Dxiu

n
i (t, x)|2

+
∑
k 6=i

Dxku
n
k (t, x) · Dxku

n
i (t, x) = f

(
xi ,

1

n

n∑
k=1

δxk

)
+ rni (t, x),

where rni is continuous, with ‖rni ‖∞ ≤ C/n.
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Nash system vs. McKean-Vlasov system

The n-player Nash equilibrium state processes solve

dX i
t = −Dxi v

n
i (t,X 1

t , . . . ,X
n
t )dt + dW i

t .

Compare this to the McKean-Vlasov system,

dY i
t = −DxU(t,Y i

t , ν̄
n
t )dt + dW i

t , where ν̄nt =
1

n

∑
k=1

δY k
t
.

Use Lipshitz property of DxU and Gronwall to bound

1

n

n∑
i=1

|X i
t − Y i

t |2 ≤
C

n

n∑
i=1

∫ t

0
|(Dxi v

n
i − Dxiu

n
i )(s,X 1

s , . . . ,X
n
s )|2ds.
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The master equation

Nash system vs. McKean-Vlasov system
We have estimated

1

n

n∑
i=1

|X i
t − Y i

t |2 ≤
C

n

n∑
i=1

∫ t

0
|Z i ,i

s −Z
i ,i
s |2ds,

where
Y i
t = vni (t,Xt), Z i ,j

t = Dxj v
n
i (t,Xt),

Y i
t = uni (t,Xt), Z i ,j

t = Dxju
n
i (t,Xt).

The rest of the argument relies on BSDE-type estimates.

Key observation: Recalling uni (t, x) = U(t, xi ,
1
n

∑n
k=1 δxk ), the

bounds on master equation derivatives yield

|Z i ,i
t | ≤ C , |Z i ,j

t | ≤ C/n, for i 6= j .
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Mean field game asymptotics

Toward refined mean field game asymptotics

Main idea: Estimate the “distance” between the Nash EQ
empirical measure µ̄n and the McKean-Vlasov empirical measure
ν̄n, and then transfer known results on McKean-Vlasov limits.

Note: In linear-quadratic systems, we can instead describe the
asymptotics of the mean

∫
Rd x d µ̄

n
t (x) in a self-contained manner.
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Mean field game asymptotics

Fluctuations

Theorem
The sequences

√
n(µ̄nt − µt) and

√
n(ν̄nt − µt) both “converge” to

the unique solution of the SPDE:

∂tSt(x) = A∗t,µtSt(x)− divx(
√
µt(x)Ḃ(t, x)),

where B is a space-time Brownian motion and

At,mϕ(x) := Lt,mϕ(x)−
∫
Rd

δ

δm
(DxU(t, y ,m)) (x) · ∇ϕ(y)m(dy),

Lt,mϕ(x) := −DxU(t, x ,m) · ∇ϕ(x) +
1

2
∆ϕ(x).

Provides a second-order approximation µ̄nt ≈ µt + 1√
n
St .
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Proof idea
Show Sn

t =
√
n(µ̄nt − ν̄nt )→ 0 , then use Kurtz-Xiong ’04 to

identify limit of
√
n(ν̄nt − µt). For nice ϕ,

|〈Sn
t , ϕ〉| ≤

1√
n

n∑
i=1

|ϕ(X i
t )− ϕ(Y i

t )| ≤ . . .

≤ C√
n

n∑
i=1

∫ t

0

(
|X i

s − Y i
s |+ W2(µ̄ns , ν̄

n
s )

+ |Dxi v
n,i (s,Xs)− DxU(s,X i

s , µ̄
n
s )|
)
ds.

Key point: Master equation estimates yield

1

n

n∑
i=1

E

[
sup

t∈[0,T ]
|X i

t − Y i
t |

]
≤ C

n
,

not C/
√
n ! Similarly for other terms. Yields E|〈Sn

t , ϕ〉| ≤ C/
√
n.
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Large deviations

Theorem
The sequences µ̄n and ν̄n both satisfy a large deviation principle on
C ([0,T ];P(Rd)), with the same (good) rate function.

I (m·) =

{
1
2

∫ T
0 ‖∂tmt − L∗t,mt

mt‖2
Sdt if m abs. cont.

∞ otherwise,

where ‖ · ‖S acts on Schwartz distributions by

‖γ‖2
S = sup

ϕ∈C∞c
〈γ, ϕ〉2/〈γ, |∇ϕ|2〉.

Heuristically:

P (µ̄n ∈ A) ≈ exp

(
−n inf

m·∈A
I (m·)

)
.
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Mean field game asymptotics

Large deviations

Proof idea: Show exponential equivalence

lim
n→∞

1

n
logP

(
sup

t∈[0,T ]
W2(µ̄nt , ν̄

n
t ) > ε

)
= −∞, ∀ε > 0,

where W2 is Wasserstein distance, then identify LDP ν̄n using
Dawson-Gärtner ’87 or Budhiraja-Dupuis-Fischer ’12.

Key challenge: Bounding W2(µ̄nt , ν̄
n
t ) requires exponential

estimates for terms like

1

n

n∑
i=1

n∑
j=1

∫ T

0
|(Dxj v

n
i − Dxju

n
i )(t,X 1

t , . . . ,X
n
t )|2dt.
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Non-asymptotic estimates

Theorem (Dimension-free concentration)

∃C , δ > 0 such that for ∀ a > 0, ∀ n ≥ C/a and all 1-Lipshitz
functions Φ : (C ([0,T ];Rd))n → R we have

P
(
|Φ(X 1, . . . ,X n)− EΦ(X 1, . . . ,X n)| > a

)
≤ 2ne−δna

2
+ 2e−δa

2
.

Corollary

∃C , δ > 0 such that for ∀ a > 0, ∀ n ≥ C/a we have

P
(

sup
t∈[0,T ]

W2(µ̄nt , µt) > a
)
≤ 2ne−δn

2a2
+ 2e−δna

2
.

Proof idea.
The map (x1, . . . , xn) 7→W2( 1

n

∑n
i=1 δxi , µt) is n−1/2-Lipschitz.
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Non-asymptotic estimates

Quantitatively compare n-player and k-player games:

Corollary

∃C , δ > 0 such that for ∀ a > 0, ∀ n, k ≥ C/a we have

P
(

sup
t∈[0,T ]

W2(µ̄nt , µ̄
k
t ) > a

)
≤ 2ne−δn

2a2
+ 2e−δna

2
+ 2ke−δk

2a2
+ 2e−δka

2
.



From the master equation to mean field game limits, fluctuations, and large deviations

Mean field game asymptotics

Non-asymptotic estimates

Proof of concentration theorem.
Use McKean-Vlasov results after showing

P

√√√√1

n

n∑
i=1

‖X i − Y i‖2
∞ > a

 ≤ 2n exp(−δa2n2).

Justify dimension-free concentration for McKean-Vlasov systems
by showing Pn := Law(Y 1, . . . ,Y n) satisfies a transport-entropy
inequality with constant independent of n, i.e., ∃C > 0 s.t.

W1(Pn,Q) ≤
√

CH(Q|Pn), ∀Q � Pn.

Use results of Djellout-Guillin-Wu ’04.
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Mean field game asymptotics

The moral of the story

Sufficiently smooth solution of master equation
=⇒ refined asymptotics for mean field game equilibria,
by comparing the n-player equilibrium to an n-particle system and
then applying existing results on McKean-Vlasov systems.

Major challenges

I Requires a lot of regularity for the master equation, permitting
Lipshitz-BSDE-type estimates.

I Are there counterexamples without smoothness? E.g., can we
always expect µ̄n and ν̄n to be exponentially equivalent?
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