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Outline of talk

I Mean Field Teams (MFTs) – Cooperative (i.e., social optimization)

I Recall mean field games (MFG) – noncooperative

I with peers (i.e., comparably small players)
I with mixed players (i.e., with a major player)

I Motivation for cooperation
I Parallel development (peers, mixed players, etc)

I This talk: MFTs with mixed players and dynamic coupling

I Method: person-by-person optimality; two-scale variations
due to dynamic coupling (neither usually used in MFG)

I Result: Social optimality theorem
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MFG with a major player
MFT motivation and LQ models

Mean Field Game: A major player A0 and minor players Ai , 1 ≤ i ≤ N

Dynamics (Huang’10):

dx0(t) =
[
A0x0(t) + B0u0(t) + F0x

(N)(t)
]
dt + D0dW0(t), t ≥ 0,

dxi (t) =
[
A(θi )xi (t) + Bui (t) + Fx (N)(t) + Gx0(t)

]
dt + DdWi (t),

Costs:

J0(u0, ..., uN) = E

∫ ∞

0

e−ρt
{∣∣x0 − Φ(x (N))

∣∣2
Q0

+ uT0 R0u0
}
dt,

Ji (u0, ..., uN) = E

∫ ∞

0

e−ρt
{∣∣xi −Ψ(x0, x

(N))
∣∣2
Q
+ uTi Rui

}
dt,

x(N) = 1
N

∑N
i=1 xi , Φ(x(N)) = H0x(N) + η0, Ψ(x0, x(N)) = Hx0 + Ĥx(N) + η

I Different variants are possible
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MFG with a major player
MFT motivation and LQ models

MFGs: 1 major and N minor players:

1) Simultaneous strategy selection (Nash game and variants)

I Huang (2010); Nguyen and Huang (2012) – LQG

I Nourian and Caines (2013); Carmona and Zhu (2015); Bensoussan et al. (2015)
– Nonlinear diffusion; conditional mean field

I Buckdahn, Li, and Peng (2014)– nonlinear diffusion, minor players have
coordination

I Sen and Caines (2016) – noisy information

2) Strategy selection with leadership

I Wang and Zhang (2014) – Discrete time

I Moon and Basar (2015); Bensoussan et al (2016) – Continuous time

I Kolokoltsov (2015) – Principal agent

4 / 35



Related Literature
MFT with coupled dynamics

MFG with a major player
MFT motivation and LQ models

Motivation for cooperative decision (mean field team)

I Manage space heaters in large buildings (hotel, apartment building,
etc); they can run cooperatively to maintain comfort and good
average load (as a mean field)

I Kizilkale and Malhame (2016) considered related collective target
tracking reflecting partial cooperation; linear SDE temperature
dynamics
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MFG with a major player
MFT motivation and LQ models

LQ Mean Field Team (social optimization) with peers:

I Dynamics and costs (Huang, Caines, Malhame, 2012):

dxi = A(θi )xidt + Buidt + DdWi , 1 ≤ i ≤ N,

Ji = E

∫ ∞

0

e−ρt
{
|xi − Φ(x (N))|2Q + uTi Rui

}
dt,

where Φ(x (N)) = Γx (N) + η, x (N) = (1/N)
∑N

i=1 xi .

I Objective: minimize social cost: J
(N)
soc =

∑N
i=1 Ji .

I Main Results:

|(1/N)J(N)
soc (û)− inf

u∈Uo

(1/N)J(N)
soc (u)| = O(1/

√
N + ϵ̄N),

where û = (û1, . . . , ûN), ûi = −R−1BT (Πθi x̂i + sθi (t));
Uo : centralized controls.

Nonlinear extension: Sen, Huang and Malhamé (CDC’16)
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MFG with a major player
MFT motivation and LQ models

MFT: 1 major and N minor players:

Simultaneous strategy selection to minimize social cost
J0 +

λ
N

∑N
i=1 Ji

I Huang and Nguyen (IFAC’2011) – LQ

I Method and result: Uses state space augmentation; Only
partial solution

I Huang and Nguyen (IEEE CDC’16)

dx0 = (A0x0 + B0u0)dt + D0dW0,

dxi = (Axi + Bui )dt + DdWi , 1 ≤ i ≤ N.

(Decoupled dynamics; players are coupled via the social cost.)

I Method and result: Person-by-person optimality; existence
under standard positive (semi-)definiteness assumption for cost
weight matrices
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Model
Person-by-person optimality
Solution and social optimality

This talk considers the LQ MFT with

I a major player

I coupled dynamics

Example:

dxNi ,t = (AxNi ,t + BuNi ,t + Fx
(N)
t + GxN0,t)dt + DdWi ,t , 1 ≤ i ≤ N.

The dynamic coupling causes some very delicate difficulties

I This generates small but important perturbations

I Different from MFG
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Person-by-person optimality
Solution and social optimality

Dynamics of the major player A0, and N minor players Ai :

dxN0,t = (A0x
N
0,t + B0u

N
0,t + F0x

(N)
t )dt + D0dW0,t ,

dxNi ,t = (AxNi ,t + BuNi ,t + Fx
(N)
t + GxN0,t)dt + DdWi ,t , 1 ≤ i ≤ N.

(A1) The initial states xNj ,0 = xj(0) for j ≥ 0. {xj(0), 0 ≤ j ≤ N}
are independent, and for all 1 ≤ i ≤ N, Exi (0) = µ0.
supi E |xi (0)|2 ≤ c for a constant c independent of N.

Note: The condition of equal initial means can be generalized.
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The cost for A0 and Ai , 1 ≤ i ≤ N:

J0(u
N
0 , u

N
−0) = E

∫ T

0
{|xN0 − Φ(x (N))|2Q0

+ (uN0 )
TR0u

N
0 }dt,

Ji (u
N
i , u

N
−i ) = E

∫ T

0
{|xNi −Ψ(xN0 , x (N))|2Q + (uNi )

TRuNi }dt,

where Q0 ≥ 0, Q ≥ 0 and R0 > 0, R > 0,

I uN−j = (uN0 , . . . , u
N
j−1, u

N
j+1, . . . , u

N
N ), x (N) = 1

N

∑N
i=1 x

N
i ,

I Φ(x (N)) = H0x
(N) + η0, Ψ(xN0 , x (N)) = HxN0 + Ĥx (N) + η.

The social cost:

J(N)
soc (u

N) = J0 +
λ

N

N∑
k=1

Jk ,

where uN = (uN0 , u
N
1 , . . . , u

N
N ) and λ > 0.
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Model
Person-by-person optimality
Solution and social optimality

Recall the social cost:

J(N)
soc (u

N) = J0 +
λ

N

N∑
k=1

Jk ,

where uN = (uN0 , u
N
1 , . . . , u

N
N ) and λ > 0.

I Give a big share to A0

I If λ/N were replaced by 1, the limiting control problem would
be too insensitive to the performance of the major player and
become inappropriate.
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Notation:

I uN = (uN0 , u
N
1 , · · · , uNN )

I uN−j = (uN0 , . . . , u
N
j−1, u

N
j+1, . . . , u

N
N ), j ≥ 0

I x (N) = 1
N

∑N
i=1 x

N
i , x̂ (N) = 1

N

∑N
i=1 x̂

N
i , etc

I û(N) = 1
N

∑N
i=1 û

N
i

I x̂
(N)
−i = 1

N

∑N
j ̸=i x̂

N
j .

I x̃
(N)
−i = 1

N

∑N
j ̸=i x̃

N
j .

I x∞0 , x∞i , u∞i , etc. for the limiting model

I m, m̂, m̃ for the mean field
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Existence of (centralized) social optimum

Fact: Since the optimal control problem minimizing J
(N)
soc is strictly

convex and coercive, there exists a unique optimal control

ûN = (ûN0 , û
N
1 , . . . , û

N
N ),

where each ûNj belongs to L2F (0,T ;Rn1).

What to do next?

I Use person-by-person optimality; perturb one component in
ûN ; for instance (similarly for a minor player)

J(N)
soc (û

N
0 , û

N
1 , . . . , û

N
N ) ≤ J(N)

soc (u
N
0 , û

N
1 , . . . , û

N
N )

I Construct two limiting variational problems: PA0 for the
major player and PAi

for a representative minor player
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1. – The major player’s variational problem

Consider variation ũN0 ∈ L2F (0,T ;Rn1). Let (x̂Nj )Nj=0 correspond to

(ûNj )
N
j=0, (x̂

N
j + x̃Nj )Nj=0 correspond to (ûN0 + ũN0 , û

N
1 , . . . , û

N
N ). Then

dx̃N0 = [A0x̃
N
0 + F0x̃

(N) + B0ũ
N
0 ]dt, x̃N0 (0) = 0,

dx̃ (N) = [(A+ F )x̃ (N) + Gx̃N0 ]dt, x̃ (N)(0) = 0, x̃ (N) =
1

N

N∑
i=1

x̃Ni

The first variation of the social cost

1

2
δJ0 +

λ

2N

N∑
i=1

δJi = E

∫ T

0
LN0 (t)dt, linear functional of ũN0

where

LN0 =[x̂N0 − (H0x̂
(N) + η0)]

TQ(x̃N0 − H0x̃
(N)) + (ûN0 )

TR0ũ
N
0

+ λ[(I − Ĥ)x̂ (N) − Hx̂N0 − η]TQ[(I − Ĥ)x̃ (N) − Hx̃N0 ]

14 / 35



Related Literature
MFT with coupled dynamics

Model
Person-by-person optimality
Solution and social optimality

Recall E
∫ T
0 LN0 dt is a linear functional of ũN0 .

Lemma (The first order variational condition) We have

E

∫ T

0
LN0 (t)dt = 0

for all ũN0 ∈ LF (0,T ;Rn1).

Proof. Use person-by-person optimality.
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1.1. The major player’s limiting variational problem

dx̂∞0 = (A0x̂
∞
0 + B0û

∞
0 + F0m̂)dt + D0dW0(t),

dm̂ = ((A+ F )m̂ + Bū + Gx̂∞0 )dt.

dx̃∞0 = (A0x̃
∞
0 + B0ũ

∞
0 + F0m̃)dt, x̃∞0,0 = 0,

dm̃ = ((A+ F )m̃ + Gx̃∞0 )dt, m̃0 = 0.

Problem PA0 : Find û∞0 to satisfy the variational condition

E

∫ T

0
L∞0 dt = 0, ∀ ũ∞0 ∈ LF (0,T ;Rn1)

where

L∞0 =[x̂∞0 − (H0m̂ + η0)]
TQ(x̃∞0 − H0m̃) + (û∞0 )TR0ũ

∞
0

+ λ[(I − Ĥ)m̂ − Hx̂∞0 − η]TQ[(I − Ĥ)m̃ − Hx̃∞0 ]

Method: construct an appropriate adjoint process (p0, p),
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The A0-FBSDE(ū):

dx̂∞0 = (A0x̂
∞
0 + B0û

∞
0 + F0m̂)dt + D0dW0,

dm̂ = [(A+ F )m̂ + Gx̂∞0 + Bū]dt,

dp0 = {−AT
0 p0 − GTp + Q0[x̂

∞
0 − (H0m̂ + η0)]

− HTλQ[(I − Ĥ)m̂ − Hx̂∞0 − η]}dt + ξ0dW0,

dp = {−FT
0 p0 − (A+ F )Tp − HT

0 Q0[x̂
∞
0 − (H0m̂ + η0)]

+ (I − Ĥ)TλQ[(I − Ĥ)m̂ − Hx̂∞0 − η]}dt + ξdW0,

where x̂0(0) = x0(0), m̂(0) = µ0, p0(T ) = p(T ) = 0.

The optimal control (critical point) is

û∞0 = R−1
0 BT

0 p0.

Lemma The A0-FBSDE(ū) has a unique solution.
Proof: Identify a Hamiltonian with nonnegative state weight matrix; see next page.
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Lemma.

Q =

[
Q0 −Q0H0

−HT
0 Q0 HT

0 Q0H0

]
+ λ

[
HTQH −HTQ

(
I − Ĥ

)
−
(
I − Ĥ

)T
QH

(
I − Ĥ

)T
Q
(
I − Ĥ

)]

is positive semi-definite.
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2. – The minor player’s variational problem.
Suppose ûN yields the state processes x̂Nj , j = 0, . . . ,N.

Consider (uNi , û
N
−i ) for a fixed i ≥ 1, which generates

dxN0 = (A0x
N
0 + B0û

N
0 + F0x

(N))dt + D0dW0,

dxNj = (AxNj + BûNj + Fx (N) + GxN0 )dt + DdWj , 1 ≤ j ̸= i ,

dxNi = (AxNi + BuNi + Fx (N) + GxN0 )dt + DdWi .

The variations of the state processes (0 initial conditions)

dx̃N0 = (A0x̃
N
0 + F0x̃

(N)
−i + 1

NF0x̃
N
i )dt,

dx̃Nj = (Ax̃Nj + F x̃
(N)
−i +

1

N
F x̃Ni + Gx̃N0 )dt, 1 ≤ j ̸= i

d x̃Ni = (Ax̃Ni + BũNi + F x̃
(N)
−i +

1

N
F x̃Ni + Gx̃N0 )dt.
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The first variations of the costs:

1

2
δJ0 = E

∫ T

0
χ0dt,

λ

2N
δJi = E

∫ T

0
χidt,

λ

2N

∑
j ̸=i

δJj = E

∫ T

0
χ−idt

where

χ0 = [x̂N0 − (H0x̂
(N) + η0)]

TQ0[x̃
N
0 − H0x̃

(N)
−i − 1

N
H0x̃

N
i ]

χi = (x̂Ni − (Hx̂N0 + Ĥx̂ (N) + η))T
1

N
λQ

· (x̃Ni − Hx̃N0 − Ĥx̃
(N)
−i − 1

N
Ĥx̃Ni ) + (ûNi )

T 1

N
λRũNi

χ−i = [(I − Ĥ)x̂ (N) − Hx̂N0 − η]TλQ

· [(I − Ĥ)x̃
(N)
−i − Hx̃N0 − 1

N
Ĥx̃Ni ] + O(

1

N2
)
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PbP optimality implies the variational condition:

E

∫ T

0
LNi dt = 0, ∀ũNi ,

where

LNi = χ0 + χi + χ−i

= [x̂N0 − (H0x̂
(N) + η0)]

TQ0(x̃
N
0 − H0x̃

(N)
−i − 1

N
H0x̃

N
i )

+ [x̂Ni − (Hx̂N0 + Ĥx̂ (N) + η)]T
1

N
λQx̃Ni + (ûNi )

T 1

N
λRũNi

+ [(I − Ĥ)x̂ (N) − Hx̂N0 − η]TλQ[(I − Ĥ)x̃
(N)
−i − Hx̃N0 − 1

N
Ĥx̃Ni ]

+ O(
1

N2
)
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For the minor player, we introduce a limiting problem:

I Use a limiting model below to produce approximations of
(x̂N0 , x̂ (N), x̂Ni ).

I Further approximate (x̃N0 , x̃
(N)
−i , x̃Ni ) appropriately.

Consider

dx̂∞0 = (A0x̂
∞
0 + B0û

∞
0 + F0m̂)dt + D0dW0

dm̂ = ((A+ F )m̂ + Bū + Gx̂∞0 )dt

dx∞i = (Ax∞i + Bu∞i + Fm̂ + Gx̂∞0 )dt + DdWi ,

where x̂∞0 (0) = x0(0), m̂(0) = µ0, x
∞
i (0) = xi (0), and û∞0 has

been determined by the variational problem of A0.
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Let

dx̃∞0 = (A0x̃
∞
0 + F0m̃ + 1

NF0x̃
∞
i )dt, x̃∞0,0 = 0,

dm̃ = [(A+ F )m̃ +
1

N
F x̃∞i + Gx̃∞0 ]dt, m̃0 = 0,

dx̃∞i = (Ax̃∞i + Bũ∞i )dt, x̃ i0,0 = 0

L∞i = [x̂∞0 − (H0m̂ + η0)]
TQ0(x̃

∞
0 − H0m̃ − 1

N
H0x̃

∞
i )

+ [x̂∞i − (Hx̂∞0 + Ĥm̂ + η)]T
1

N
λQx̃∞i + (û∞i )T

1

N
λRũ∞i

+ [(I − Ĥ)m̂ − Hx̂∞0 − η]TλQ[(I − Ĥ)m̃ − Hx̃∞0 − 1

N
Ĥx̃∞i ]

The new variational problem PAi
: Find û∞i such that

E

∫ T

0
L∞i dt = 0, ∀ ũ∞i .

Solution Method: identify adjoint processes.
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Remark: non-commutativity!

Fact: (x̃∞0 , m̃) is not determined as the variations of the limiting
dynamics in PAi

since the control variation does not affect the first
two equations.

Recall:

dx̂∞0 = (A0x̂
∞
0 + B0û

∞
0 + F0m̂)dt + D0dW0

dm̂ = ((A+ F )m̂ + Bū + Gx̂∞0 )dt

dx∞i = (Ax∞i + Bu∞i + Fm̂ + Gx̂∞0 )dt + DdWi ,

and

dx̃∞0 = (A0x̃
∞
0 + F0m̃ + 1

NF0x̃
∞
i )dt,

dm̃ = [(A+ F )m̃ +
1

N
F x̃∞i + Gx̃∞0 ]dt,

dx̃∞i = (Ax̃∞i + Bũ∞i )dt
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Now, for the limiting variational equations, we introduce the
adjoint equations ((x̂∞0 , m̂) solved from PA0):

dq0 = {−AT
0 q0 − GTq + Q0[x̂

∞
0 − (H0m̂ + η0)]

− HTλQ[(I − Ĥ)m̂ − Hx̂∞0 − η]}dt + ζa0dW0 + ζb0 dWi ,

dq = {−FT
0 q0 − (A+ F )Tq − HT

0 Q0[x̂
∞
0 − (H0m̂ + η0)]

+ (I − Ĥ)TλQ[(I − Ĥ)m̂ − Hx̂∞0 − η]}dt + ζadW0 + ζbdWi ,

dqi = {−FT
0 q0 − FTq − ATqi − HT

0 Q0[x̂
∞
0 − (H0m̂ + η0)]

+ λQ[x̂∞i − (Hx̂∞0 + Ĥm̂ + η)]

− ĤλQ[(I − Ĥ)m̂ − Hx̂∞0 − η]}dt + ζai dW0 + ζbi dWi ,

where q0(T ) = q(T ) = qi (T ) = 0. We have PAi
’s solution

û∞i = (λR)−1BTqi .

Lemma We have (q0, q) = (p0, p).
Remark: Somehow unexpected. Good for reducing dimension.
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Recall

dx̃∞0 = (A0x̃
∞
0 + F0m̃ + 1

NF0x̃
∞
i )dt,

dm̃ = [(A+ F )m̃ +
1

N
F x̃∞i + Gx̃∞0 ]dt,

dx̃∞i = (Ax̃∞i + Bũ∞i )dt

Construction of the adjoint processes (q0, q, qi ):

I Suppose ũ∞i = O(1). In the variational dynamics of
(x̃∞0 , m̃, x̃∞i ), the first two entries have magnitude O(1/N),
and x̃∞i = O(1).

I Two scales

I Homogenize by using the equation of x̃∞i /N.
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So using Lemma (q0, q) = (p0, p) where the RHS is from
A0-FBSDE(ū), the adjoint equations for the minor player are:

dp0 = {−AT
0 p0 − GTp + Q0[x̂

∞
0 − (H0m̂ + η0)]

− HTλQ[(I − Ĥ)m̂ − Hx̂∞0 − η]}dt + ξ0dW0,

dp = {−FT
0 p0 − (A+ F )Tp − HT

0 Q0[x̂
∞
0 − (H0m̂ + η0)]

+ (I − Ĥ)TλQ[(I − Ĥ)m̂ − Hx̂∞0 − η]}dt + ξdW0,

dqi = {−FT
0 p0 − FTp − ATqi − HT

0 Q0[x̂
∞
0 − (H0m̂ + η0)]

+ λQ[x̂∞i − (Hx̂∞0 + Ĥm̂ + η)]

− ĤλQ[(I − Ĥ)m̂ − Hx̂∞0 − η]}dt + ζai dW0 + ζbi dWi ,

where p0(T ) = p(T ) = qi (T ) = 0. Recall we have PAi
’s solution

û∞i = (λR)−1BTqi .

Remainder: Still need to determine ū!
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Question: how to determine ū?

Recall

dp0 = {· · · }dt + ξ0dW0,

dp = {· · · }dt + ξdW0,

dqi = {−FT
0 p0 − FTp − ATqi − HT

0 Q0[x̂
∞
0 − (H0m̂ + η0)]

+ λQ[x̂∞i − (Hx̂∞0 + Ĥm̂ + η)]

− ĤλQ[(I − Ĥ)m̂ − Hx̂∞0 − η]}dt + ζai dW0 + ζbi dWi ,

where qi (T ) = 0. And û∞i = (λR)−1BTqi .

Fact: ū ≈ 1
N

∑
i û

∞
i = (λR)−1BT 1

N

∑
i qi .

Lemma. Averaging the equations of qi , the resulting SDE is
equivalent to that of p(= q).
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Consistency condition: Take ū to satisfy

ū = (λR)−1BTp

Now the “closed-loop” FBSDE for the major player:

dx̂∞0 = (A0x̂
∞
0 + B0R

−1
0 BT

0 p0 + F0m̂)dt + D0dW0,

dm̂ = [(A+ F )m̂ + Gx̂∞0 + B(λR)−1BTp]dt,

dp0 = {−AT
0 p0 − GTp + Q0[x̂

∞
0 − (H0m̂ + η0)]

− HTλQ[(I − Ĥ)m̂ − Hx̂∞0 − η]}dt + ξ0dW0,

dp = {−FT
0 p0 − (A+ F )Tp − HT

0 Q0[x̂
∞
0 − (H0m̂ + η0)]

+ (I − Ĥ)TλQ[(I − Ĥ)m̂ − Hx̂∞0 − η]}dt + ξdW0,

where x̂∞0 (0) = x0(0), m̂(0) = µ0, p0(T ) = p(T ) = 0.

Theorem: This FBSDE has a unique solution.
Proof: Use a nice Hamiltonian matrix structure.
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The two extra equations of the minor player:

dx̂∞i = [Ax̂∞i + B(λR)−1BTqi + Fm̂ + Gx̂0]dt + DdWi ,

dqi = {−FT
0 p0 − FTp − ATqi − HT

0 Q0[x̂
∞
0 − (H0m̂ + η0)]

+ λQ[x̂∞i − (Hx̂∞0 + Ĥm̂ + η)]

− ĤλQ[(I − Ĥ)m̂ − Hx̂∞0 − η]}dt + ζai dW0 + ζbi dWi ,

which can be uniquely solved.
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The whole FBSDE of the minor player:

dx̂∞0 = (A0x̂
∞
0 + B0R

−1
0 BT

0 p0 + F0m̂)dt + D0dW0,

dm̂ = [(A+ F )m̂ + Gx̂∞0 + B(λR)−1BTp]dt,

dp0 = {−AT
0 p0 − GTp + Q0[x̂

∞
0 − (H0m̂ + η0)]

− HTλQ[(I − Ĥ)m̂ − Hx̂∞0 − η]}dt + ξ0dW0,

dp = {−FT
0 p0 − (A+ F )Tp − HT

0 Q0[x̂
∞
0 − (H0m̂ + η0)]

+ (I − Ĥ)TλQ[(I − Ĥ)m̂ − Hx̂∞0 − η]}dt + ξdW0,

dx̂∞i = [Ax̂∞i + B(λR)−1BTqi + Fm̂ + Gx̂0]dt + DdWi ,

dqi = {−FT
0 p0 − FTp − ATqi − HT

0 Q0[x̂
∞
0 − (H0m̂ + η0)]

+ λQ[x̂∞i − (Hx̂∞0 + Ĥm̂ + η)]

− ĤλQ[(I − Ĥ)m̂ − Hx̂∞0 − η]}dt + ζai dW0 + ζbi dWi .

Theorem. This FBSDE has a unique solution.
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Remark 1: General FBSDEs do not always have a solution.

Remark 2: We expect it is easy to have existence (as happens here) due to optimal

control nature; different from games; even a two player LQ game may have no

solution
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Key error estimates

Proposition. Take a fixed v ∈ L2F (0,T ;Rn1) and let
ũNi = ũ∞i = v for both the N + 1 player model and the limiting
variational problem. Then for some constant C we have

sup
t≤T

E [|x̃∞0 − x̃N0 |2 + |m̃ − x̃
(N)
−i |2 + | 1

N
x̃∞i − 1

N
x̃Ni |2] ≤ C

N4
.
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Performance gap

Social Optimality Theorem We have

|J(N)
soc (û)− inf

u
J(N)
soc (u)| = O(1/

√
N),

where each uNj , 0 ≤ j ≤ N within u is in L2F (0,T ;Rn1), and

ûN0 = û∞0 = R−1
0 BT

0 p0, ûNi = û∞i = (λR)−1BTpi ,

where (p0, pi ) are solved from PA0 and PAi
. �

We can further show that p0 is a linear function of (x̂∞0 , m̂).

We may choose Ft as the σ-algebra

Fx�(0),W�
t , σ(xj(0),Wj(τ), 0 ≤ j ≤ N, τ ≤ t).
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Thank you!

35 / 35


