A Linear-Quadratic Mean Field Team with Mixed Players

Minyi Huang

School of Mathematics and Statistics Carleton University Ottawa, Canada

(Work with Son L. Nguyen, University of Puerto Rico)

MFGs and Related Topics - 4, Rome, June 2017

Outline of talk

- Mean Field Teams (MFTs) Cooperative (i.e., social optimization)
 - Recall mean field games (MFG) noncooperative
 - with peers (i.e., comparably small players)
 - with mixed players (i.e., with a major player)
 - Motivation for cooperation
 - Parallel development (peers, mixed players, etc)
- > This talk: MFTs with mixed players and dynamic coupling
 - Method: person-by-person optimality; two-scale variations due to dynamic coupling (neither usually used in MFG)
 - **Result**: Social optimality theorem

Mean Field Game: A major player A_0 and minor players A_i , $1 \le i \le N$

Dynamics (Huang'10):

$$dx_0(t) = [A_0x_0(t) + B_0u_0(t) + F_0x^{(N)}(t)]dt + D_0dW_0(t), \quad t \ge 0, dx_i(t) = [A(\theta_i)x_i(t) + Bu_i(t) + Fx^{(N)}(t) + Gx_0(t)]dt + DdW_i(t),$$

Costs:

$$J_{0}(u_{0},...,u_{N}) = E \int_{0}^{\infty} e^{-\rho t} \left\{ \left| x_{0} - \Phi(x^{(N)}) \right|_{Q_{0}}^{2} + u_{0}^{T} R_{0} u_{0} \right\} dt, J_{i}(u_{0},...,u_{N}) = E \int_{0}^{\infty} e^{-\rho t} \left\{ \left| x_{i} - \Psi(x_{0},x^{(N)}) \right|_{Q}^{2} + u_{i}^{T} R u_{i} \right\} dt,$$

 $x^{(N)} = \frac{1}{N} \sum_{i=1}^{N} x_i, \ \Phi(x^{(N)}) = H_0 x^{(N)} + \eta_0, \ \Psi(x_0, x^{(N)}) = H_{x_0} + \hat{H} x^{(N)} + \eta_0$

Different variants are possible

MFGs: 1 major and N minor players:

1) Simultaneous strategy selection (Nash game and variants)

- Huang (2010); Nguyen and Huang (2012) LQG
- Nourian and Caines (2013); Carmona and Zhu (2015); Bensoussan et al. (2015)
 Nonlinear diffusion; conditional mean field
- Buckdahn, Li, and Peng (2014)
 nonlinear diffusion, minor players have coordination
- Sen and Caines (2016) noisy information
- 2) Strategy selection with leadership
 - Wang and Zhang (2014) Discrete time
 - Moon and Basar (2015); Bensoussan et al (2016) Continuous time
 - Kolokoltsov (2015) Principal agent

Motivation for cooperative decision (mean field team)

- Manage space heaters in large buildings (hotel, apartment building, etc); they can run cooperatively to maintain comfort and good average load (as a mean field)
- Kizilkale and Malhame (2016) considered related collective target tracking reflecting partial cooperation; linear SDE temperature dynamics

LQ Mean Field Team (social optimization) with peers:

Dynamics and costs (Huang, Caines, Malhame, 2012):

$$dx_i = A(\theta_i)x_i dt + Bu_i dt + DdW_i, \qquad 1 \le i \le N,$$

$$J_i = E \int_0^\infty e^{-\rho t} \left\{ |x_i - \Phi(x^{(N)})|_Q^2 + u_i^T R u_i \right\} dt,$$

where $\Phi(x^{(N)}) = \Gamma x^{(N)} + \eta$, $x^{(N)} = (1/N) \sum_{i=1}^{N} x_i$.

- **Objective**: minimize social cost: $J_{soc}^{(N)} = \sum_{i=1}^{N} J_i$.
- Main Results:

$$|(1/N)J_{\mathrm{soc}}^{(N)}(\hat{u}) - \inf_{u \in \mathcal{U}_o}(1/N)J_{\mathrm{soc}}^{(N)}(u)| = O(1/\sqrt{N} + \bar{\epsilon}_N),$$

where $\hat{u} = (\hat{u}_1, \dots, \hat{u}_N)$, $\hat{u}_i = -R^{-1}B^T(\prod_{\theta_i} \hat{x}_i + s_{\theta_i}(t))$; \mathcal{U}_o : centralized controls.

Nonlinear extension: Sen, Huang and Malhamé (CDC'16)

MFT: 1 major and *N* minor players:

Simultaneous strategy selection to minimize social cost $J_0 + \frac{\lambda}{N} \sum_{i=1}^{N} J_i$

- Huang and Nguyen (IFAC'2011) LQ
 - <u>Method and result</u>: Uses state space augmentation; Only partial solution
- Huang and Nguyen (IEEE CDC'16)

$$dx_0 = (A_0x_0 + B_0u_0)dt + D_0dW_0,$$

 $dx_i = (Ax_i + Bu_i)dt + DdW_i, \quad 1 \le i \le N.$

(Decoupled dynamics; players are coupled via the social cost.)

 <u>Method and result</u>: Person-by-person optimality; existence under standard positive (semi-)definiteness assumption for cost weight matrices

This talk considers the LQ MFT with

- a major player
- coupled dynamics

Example:

$$dx_{i,t}^{N} = (Ax_{i,t}^{N} + Bu_{i,t}^{N} + Fx_{t}^{(N)} + Gx_{0,t}^{N})dt + DdW_{i,t}, \quad 1 \leq i \leq N.$$

The dynamic coupling causes some very delicate difficulties

- This generates small but important perturbations
- Different from MFG

Dynamics of the major player A_0 , and N minor players A_i :

$$\begin{aligned} dx_{0,t}^{N} &= (A_{0}x_{0,t}^{N} + B_{0}u_{0,t}^{N} + F_{0}x_{t}^{(N)})dt + D_{0}dW_{0,t}, \\ dx_{i,t}^{N} &= (Ax_{i,t}^{N} + Bu_{i,t}^{N} + Fx_{t}^{(N)} + Gx_{0,t}^{N})dt + DdW_{i,t}, \quad 1 \leq i \leq N. \end{aligned}$$

(A1) The initial states $x_{j,0}^N = x_j(0)$ for $j \ge 0$. $\{x_j(0), 0 \le j \le N\}$ are independent, and for all $1 \le i \le N$, $Ex_i(0) = \mu_0$. $\sup_j E|x_i(0)|^2 \le c$ for a constant c independent of N.

Note: The condition of equal initial means can be generalized.

Related Literature MFT with coupled dynamics Model Person-by-person optimality Solution and social optimality

The cost for A_0 and A_i , $1 \le i \le N$:

$$J_{0}(u_{0}^{N}, u_{-0}^{N}) = E \int_{0}^{T} \{|x_{0}^{N} - \Phi(x^{(N)})|_{Q_{0}}^{2} + (u_{0}^{N})^{T} R_{0} u_{0}^{N}\} dt,$$

$$J_{i}(u_{i}^{N}, u_{-i}^{N}) = E \int_{0}^{T} \{|x_{i}^{N} - \Psi(x_{0}^{N}, x^{(N)})|_{Q}^{2} + (u_{i}^{N})^{T} R u_{i}^{N}\} dt,$$

where $Q_0 \ge 0$, $Q \ge 0$ and $R_0 > 0$, R > 0,

•
$$u_{-j}^{N} = (u_{0}^{N}, \dots, u_{j-1}^{N}, u_{j+1}^{N}, \dots, u_{N}^{N}), \quad x^{(N)} = \frac{1}{N} \sum_{i=1}^{N} x_{i}^{N},$$

• $\Phi(x^{(N)}) = H_{0}x^{(N)} + \eta_{0}, \quad \Psi(x_{0}^{N}, x^{(N)}) = Hx_{0}^{N} + \hat{H}x^{(N)} + \eta.$
The social cost:

$$J_{\mathrm{soc}}^{(N)}(u^N) = J_0 + \frac{\lambda}{N} \sum_{k=1}^N J_k,$$

where $u^N = (u_0^N, u_1^N, \dots, u_N^N)$ and $\lambda > 0$.

Recall the social cost:

$$J_{\mathrm{soc}}^{(N)}(u^N) = J_0 + \frac{\lambda}{N} \sum_{k=1}^N J_k,$$

where $u^N = (u_0^N, u_1^N, \dots, u_N^N)$ and $\lambda > 0$.

- Give a big share to \mathcal{A}_0
- ► If λ/N were replaced by 1, the limiting control problem would be too insensitive to the performance of the major player and become inappropriate.

Notation:

$$\begin{array}{l} \bullet \ u^{N} = (u_{0}^{N}, u_{1}^{N}, \cdots, u_{N}^{N}) \\ \bullet \ u_{-j}^{N} = (u_{0}^{N}, \dots, u_{j-1}^{N}, u_{j+1}^{N}, \dots, u_{N}^{N}), \ j \geq 0 \\ \bullet \ x^{(N)} = \frac{1}{N} \sum_{i=1}^{N} x_{i}^{N}, \ \hat{x}^{(N)} = \frac{1}{N} \sum_{i=1}^{N} \hat{x}_{i}^{N}, \ \text{etc} \\ \bullet \ \hat{u}^{(N)} = \frac{1}{N} \sum_{i=1}^{N} \hat{u}_{i}^{N} \\ \bullet \ \hat{x}_{-i}^{(N)} = \frac{1}{N} \sum_{j \neq i}^{N} \hat{x}_{j}^{N}. \\ \bullet \ \tilde{x}_{0}^{(N)} = \frac{1}{N} \sum_{j \neq i}^{N} \tilde{x}_{j}^{N}. \\ \bullet \ x_{0}^{\infty}, \ x_{i}^{\infty}, \ u_{i}^{\infty}, \ \text{etc. for the limiting model} \end{array}$$

• m, \hat{m}, \tilde{m} for the mean field

Existence of (centralized) social optimum

Fact: Since the optimal control problem minimizing $J_{soc}^{(N)}$ is strictly convex and coercive, there exists a unique optimal control

$$\hat{u}^N = (\hat{u}_0^N, \hat{u}_1^N, \dots, \hat{u}_N^N),$$

where each \hat{u}_i^N belongs to $L^2_{\mathcal{F}}(0, T; \mathbb{R}^{n_1})$.

What to do next?

▶ Use person-by-person optimality; perturb one component in \hat{u}^N ; for instance (similarly for a minor player)

$$J_{\mathrm{soc}}^{(N)}(\hat{u}_0^N, \hat{u}_1^N, \dots, \hat{u}_N^N) \leq J_{\mathrm{soc}}^{(N)}(\boldsymbol{u}_0^N, \hat{u}_1^N, \dots, \hat{u}_N^N)$$

► Construct two limiting variational problems: P_{A0} for the major player and P_{Ai} for a representative minor player

Related Literature MFT with coupled dynamics Model Person-by-person optimality Solution and social optimality

1. – The major player's variational problem

Consider variation $\tilde{u}_{0}^{N} \in L^{2}_{\mathcal{F}}(0, T; \mathbb{R}^{n_{1}})$. Let $(\hat{x}_{j}^{N})_{j=0}^{N}$ correspond to $(\hat{u}_{j}^{N})_{j=0}^{N}$, $(\hat{x}_{j}^{N} + \tilde{x}_{j}^{N})_{j=0}^{N}$ correspond to $(\hat{u}_{0}^{N} + \tilde{u}_{0}^{N}, \hat{u}_{1}^{N}, \dots, \hat{u}_{N}^{N})$. Then $d\tilde{x}_{0}^{N} = [A_{0}\tilde{x}_{0}^{N} + F_{0}\tilde{x}^{(N)} + B_{0}\tilde{u}_{0}^{N}]dt$, $\tilde{x}_{0}^{N}(0) = 0$, $d\tilde{x}^{(N)} = [(A + F)\tilde{x}^{(N)} + G\tilde{x}_{0}^{N}]dt$, $\tilde{x}^{(N)}(0) = 0$, $\tilde{x}^{(N)} = \frac{1}{N}\sum_{i=1}^{N}\tilde{x}_{i}^{N}$

The first variation of the social cost

$$\frac{1}{2}\delta J_0 + \frac{\lambda}{2N}\sum_{i=1}^N \delta J_i = E \int_0^T L_0^N(t)dt, \quad \text{linear functional of } \tilde{u}_0^N$$

where

$$L_0^N = [\hat{x}_0^N - (H_0 \hat{x}^{(N)} + \eta_0)]^T Q(\tilde{x}_0^N - H_0 \tilde{x}^{(N)}) + (\hat{u}_0^N)^T R_0 \tilde{u}_0^N + \lambda [(I - \hat{H}) \hat{x}^{(N)} - H \hat{x}_0^N - \eta]^T Q[(I - \hat{H}) \tilde{x}^{(N)} - H \tilde{x}_0^N]$$

Recall $E \int_0^T L_0^N dt$ is a linear functional of \tilde{u}_0^N .

Lemma (The first order variational condition) We have

$$E\int_0^T L_0^N(t)dt=0$$

for all $\tilde{u}_0^N \in L_{\mathcal{F}}(0, T; \mathbb{R}^{n_1})$.

Proof. Use person-by-person optimality.

1.1. The major player's limiting variational problem

$$d\hat{x}_{0}^{\infty} = (A_{0}\hat{x}_{0}^{\infty} + B_{0}\hat{u}_{0}^{\infty} + F_{0}\hat{m})dt + D_{0}dW_{0}(t),$$

$$d\hat{m} = ((A + F)\hat{m} + B\bar{u} + G\hat{x}_{0}^{\infty})dt.$$

$$egin{aligned} d ilde{x}_0^\infty &= (A_0 ilde{x}_0^\infty + B_0 ilde{u}_0^\infty + F_0 ilde{m})dt, \quad ilde{x}_{0,0}^\infty &= 0, \ d ilde{m} &= ((A+F) ilde{m} + G ilde{x}_0^\infty)dt, \quad ilde{m}_0 &= 0. \end{aligned}$$

Problem $P_{\mathcal{A}_0}$: Find \hat{u}_0^{∞} to satisfy the variational condition

$$E\int_0^T L_0^\infty dt = 0, \qquad \forall \ \tilde{u}_0^\infty \in L_{\mathcal{F}}(0, T; \mathbb{R}^{n_1})$$

where

$$L_{0}^{\infty} = [\hat{x}_{0}^{\infty} - (H_{0}\hat{m} + \eta_{0})]^{T}Q(\tilde{x}_{0}^{\infty} - H_{0}\tilde{m}) + (\hat{u}_{0}^{\infty})^{T}R_{0}\tilde{u}_{0}^{\infty} + \lambda[(I - \hat{H})\hat{m} - H\hat{x}_{0}^{\infty} - \eta]^{T}Q[(I - \hat{H})\tilde{m} - H\tilde{x}_{0}^{\infty}]$$

Method: construct an appropriate adjoint process (p_0, p) ,

The \mathcal{A}_0 -FBSDE (\bar{u}) :

$$\begin{split} d\hat{x}_{0}^{\infty} &= (A_{0}\hat{x}_{0}^{\infty} + B_{0}\hat{u}_{0}^{\infty} + F_{0}\hat{m})dt + D_{0}dW_{0}, \\ d\hat{m} &= [(A + F)\hat{m} + G\hat{x}_{0}^{\infty} + B\bar{u}]dt, \\ dp_{0} &= \{-A_{0}^{T}p_{0} - G^{T}p + Q_{0}[\hat{x}_{0}^{\infty} - (H_{0}\hat{m} + \eta_{0})] \\ &- H^{T}\lambda Q[(I - \hat{H})\hat{m} - H\hat{x}_{0}^{\infty} - \eta]\}dt + \xi_{0}dW_{0}, \\ dp &= \{-F_{0}^{T}p_{0} - (A + F)^{T}p - H_{0}^{T}Q_{0}[\hat{x}_{0}^{\infty} - (H_{0}\hat{m} + \eta_{0})] \\ &+ (I - \hat{H})^{T}\lambda Q[(I - \hat{H})\hat{m} - H\hat{x}_{0}^{\infty} - \eta]\}dt + \xi dW_{0}, \end{split}$$

where $\hat{x}_0(0) = x_0(0)$, $\hat{m}(0) = \mu_0$, $p_0(T) = p(T) = 0$.

The optimal control (critical point) is

$$\hat{u}_0^{\infty} = R_0^{-1} B_0^{T} p_0.$$

Lemma The A_0 -FBSDE(\bar{u}) has a unique solution.

Proof: Identify a Hamiltonian with nonnegative state weight matrix; see next page.

Lemma.

$$\mathbf{Q} = \begin{bmatrix} Q_0 & -Q_0 H_0 \\ -H_0^T Q_0 & H_0^T Q_0 H_0 \end{bmatrix} \\ + \lambda \begin{bmatrix} H^T Q H & -H^T Q (I - \hat{H}) \\ -(I - \hat{H})^T Q H & (I - \hat{H})^T Q (I - \hat{H}) \end{bmatrix}$$

is positive semi-definite.

2. – The minor player's variational problem. Suppose \hat{u}^N yields the state processes \hat{x}_i^N , $j = 0, \dots, N$.

Consider (u_i^N, \hat{u}_{-i}^N) for a fixed $i \ge 1$, which generates

1

$$\begin{aligned} dx_0^N &= (A_0 x_0^N + B_0 \hat{u}_0^N + F_0 x^{(N)}) dt + D_0 dW_0, \\ dx_j^N &= (A x_j^N + B \hat{u}_j^N + F x^{(N)} + G x_0^N) dt + D dW_j, \quad 1 \le j \ne i, \\ dx_i^N &= (A x_i^N + B u_i^N + F x^{(N)} + G x_0^N) dt + D dW_i. \end{aligned}$$

The variations of the state processes (0 initial conditions)

$$\begin{split} d\tilde{x}_{0}^{N} &= (A_{0}\tilde{x}_{0}^{N} + F_{0}\tilde{x}_{-i}^{(N)} + \frac{1}{N}F_{0}\tilde{x}_{i}^{N})dt, \\ d\tilde{x}_{j}^{N} &= (A\tilde{x}_{j}^{N} + F\tilde{x}_{-i}^{(N)} + \frac{1}{N}F\tilde{x}_{i}^{N} + G\tilde{x}_{0}^{N})dt, \quad 1 \leq j \neq i \\ d\tilde{x}_{i}^{N} &= (A\tilde{x}_{i}^{N} + B\tilde{u}_{i}^{N} + F\tilde{x}_{-i}^{(N)} + \frac{1}{N}F\tilde{x}_{i}^{N} + G\tilde{x}_{0}^{N})dt. \end{split}$$

Related Literature MFT with coupled dynamics Model Person-by-person optimality Solution and social optimality

The first variations of the costs:

$$\begin{split} &\frac{1}{2}\delta J_0 = E \int_0^T \chi_0 dt, \qquad \frac{\lambda}{2N}\delta J_i = E \int_0^T \chi_i dt, \\ &\frac{\lambda}{2N} \sum_{j \neq i} \delta J_j = E \int_0^T \chi_{-i} dt \end{split}$$

where

$$\begin{split} \chi_{0} &= [\hat{x}_{0}^{N} - (H_{0}\hat{x}^{(N)} + \eta_{0})]^{T}Q_{0}[\tilde{x}_{0}^{N} - H_{0}\tilde{x}_{-i}^{(N)} - \frac{1}{N}H_{0}\tilde{x}_{i}^{N}] \\ \chi_{i} &= (\hat{x}_{i}^{N} - (H\hat{x}_{0}^{N} + \hat{H}\hat{x}^{(N)} + \eta))^{T}\frac{1}{N}\lambda Q \\ &\quad \cdot (\tilde{x}_{i}^{N} - H\tilde{x}_{0}^{N} - \hat{H}\tilde{x}_{-i}^{(N)} - \frac{1}{N}\hat{H}\tilde{x}_{i}^{N}) + (\hat{u}_{i}^{N})^{T}\frac{1}{N}\lambda R\tilde{u}_{i}^{N} \\ \chi_{-i} &= [(I - \hat{H})\hat{x}^{(N)} - H\hat{x}_{0}^{N} - \eta]^{T}\lambda Q \\ &\quad \cdot [(I - \hat{H})\tilde{x}_{-i}^{(N)} - H\tilde{x}_{0}^{N} - \frac{1}{N}\hat{H}\tilde{x}_{i}^{N}] + O(\frac{1}{N^{2}}) \end{split}$$

Related Literature MFT with coupled dynamics Model Person-by-person optimality Solution and social optimality

PbP optimality implies the variational condition:

$$E\int_0^T L_i^N dt = 0, \quad \forall \tilde{u}_i^N,$$

where

$$\begin{split} \mathcal{L}_{i}^{N} &= \chi_{0} + \chi_{i} + \chi_{-i} \\ &= \left[\hat{x}_{0}^{N} - (H_{0}\hat{x}^{(N)} + \eta_{0}) \right]^{T} Q_{0} (\tilde{x}_{0}^{N} - H_{0}\tilde{x}_{-i}^{(N)} - \frac{1}{N} H_{0} \tilde{x}_{i}^{N}) \\ &+ \left[\hat{x}_{i}^{N} - (H\hat{x}_{0}^{N} + \hat{H}\hat{x}^{(N)} + \eta) \right]^{T} \frac{1}{N} \lambda Q \tilde{x}_{i}^{N} + (\hat{u}_{i}^{N})^{T} \frac{1}{N} \lambda R \tilde{u}_{i}^{N} \\ &+ \left[(I - \hat{H}) \hat{x}^{(N)} - H \hat{x}_{0}^{N} - \eta \right]^{T} \lambda Q \left[(I - \hat{H}) \tilde{x}_{-i}^{(N)} - H \tilde{x}_{0}^{N} - \frac{1}{N} \hat{H} \tilde{x}_{i}^{N} \right] \\ &+ O(\frac{1}{N^{2}}) \end{split}$$

For the minor player, we introduce a limiting problem:

- Use a limiting model below to produce approximations of $(\hat{x}_0^N, \hat{x}^{(N)}, \hat{x}_i^N)$.
- Further approximate $(\tilde{x}_0^N, \tilde{x}_{-i}^{(N)}, \tilde{x}_i^N)$ appropriately.

Consider

$$d\hat{x}_0^{\infty} = (A_0\hat{x}_0^{\infty} + B_0\hat{u}_0^{\infty} + F_0\hat{m})dt + D_0dW_0$$

$$d\hat{m} = ((A+F)\hat{m} + B\bar{u} + G\hat{x}_0^{\infty})dt$$

$$dx_i^{\infty} = (Ax_i^{\infty} + Bu_i^{\infty} + F\hat{m} + G\hat{x}_0^{\infty})dt + DdW_i,$$

where $\hat{x}_0^{\infty}(0) = x_0(0)$, $\hat{m}(0) = \mu_0$, $x_i^{\infty}(0) = x_i(0)$, and \hat{u}_0^{∞} has been determined by the variational problem of \mathcal{A}_0 .

$$\begin{split} d\tilde{x}_0^\infty &= (A_0\tilde{x}_0^\infty + F_0\tilde{m} + \frac{1}{N}F_0\tilde{x}_i^\infty)dt, \quad \tilde{x}_{0,0}^\infty = 0, \\ d\tilde{m} &= [(A+F)\tilde{m} + \frac{1}{N}F\tilde{x}_i^\infty + G\tilde{x}_0^\infty]dt, \quad \tilde{m}_0 = 0, \\ d\tilde{x}_i^\infty &= (A\tilde{x}_i^\infty + B\tilde{u}_i^\infty)dt, \quad \tilde{x}_{0,0}^i = 0 \end{split}$$

$$\begin{split} L_{i}^{\infty} &= [\hat{x}_{0}^{\infty} - (H_{0}\hat{m} + \eta_{0})]^{T} Q_{0} (\tilde{x}_{0}^{\infty} - H_{0}\tilde{m} - \frac{1}{N}H_{0}\tilde{x}_{i}^{\infty}) \\ &+ [\hat{x}_{i}^{\infty} - (H\hat{x}_{0}^{\infty} + \hat{H}\hat{m} + \eta)]^{T} \frac{1}{N}\lambda Q\tilde{x}_{i}^{\infty} + (\hat{u}_{i}^{\infty})^{T} \frac{1}{N}\lambda R\tilde{u}_{i}^{\infty} \\ &+ [(I - \hat{H})\hat{m} - H\hat{x}_{0}^{\infty} - \eta]^{T}\lambda Q[(I - \hat{H})\tilde{m} - H\tilde{x}_{0}^{\infty} - \frac{1}{N}\hat{H}\tilde{x}_{i}^{\infty}] \end{split}$$

The new variational problem $P_{\mathcal{A}_i}$: Find \hat{u}_i^{∞} such that

$$E\int_0^T L_i^\infty dt = 0, \qquad \forall \ \tilde{u}_i^\infty.$$

Solution Method: identify adjoint processes.

Remark: non-commutativity!

Fact: $(\tilde{x}_0^{\infty}, \tilde{m})$ is not determined as the variations of the limiting dynamics in $P_{\mathcal{A}_i}$ since the control variation does not affect the first two equations.

Recall:

$$d\hat{x}_0^{\infty} = (A_0\hat{x}_0^{\infty} + B_0\hat{u}_0^{\infty} + F_0\hat{m})dt + D_0dW_0$$

$$d\hat{m} = ((A + F)\hat{m} + B\bar{u} + G\hat{x}_0^{\infty})dt$$

$$dx_i^{\infty} = (Ax_i^{\infty} + Bu_i^{\infty} + F\hat{m} + G\hat{x}_0^{\infty})dt + DdW_i,$$

and

$$d\tilde{x}_{0}^{\infty} = (A_{0}\tilde{x}_{0}^{\infty} + F_{0}\tilde{m} + \frac{1}{N}F_{0}\tilde{x}_{i}^{\infty})dt,$$

$$d\tilde{m} = [(A + F)\tilde{m} + \frac{1}{N}F\tilde{x}_{i}^{\infty} + G\tilde{x}_{0}^{\infty}]dt,$$

$$d\tilde{x}_{i}^{\infty} = (A\tilde{x}_{i}^{\infty} + B\tilde{u}_{i}^{\infty})dt$$

Related Literature MFT with coupled dynamics Solution and social optimality

Now, for the limiting variational equations, we introduce the adjoint equations $((\hat{x}_0^{\infty}, \hat{m}) \text{ solved from } P_{\mathcal{A}_0})$:

$$\begin{aligned} dq_{0} &= \{-A_{0}^{T}q_{0} - G^{T}q + Q_{0}[\hat{x}_{0}^{\infty} - (H_{0}\hat{m} + \eta_{0})] \\ &- H^{T}\lambda Q[(I - \hat{H})\hat{m} - H\hat{x}_{0}^{\infty} - \eta]\}dt + \zeta_{0}^{a}dW_{0} + \zeta_{0}^{b}dW_{i}, \\ dq &= \{-F_{0}^{T}q_{0} - (A + F)^{T}q - H_{0}^{T}Q_{0}[\hat{x}_{0}^{\infty} - (H_{0}\hat{m} + \eta_{0})] \\ &+ (I - \hat{H})^{T}\lambda Q[(I - \hat{H})\hat{m} - H\hat{x}_{0}^{\infty} - \eta]\}dt + \zeta^{a}dW_{0} + \zeta^{b}dW_{i}, \\ dq_{i} &= \{-F_{0}^{T}q_{0} - F^{T}q - A^{T}q_{i} - H_{0}^{T}Q_{0}[\hat{x}_{0}^{\infty} - (H_{0}\hat{m} + \eta_{0})] \\ &+ \lambda Q[\hat{x}_{i}^{\infty} - (H\hat{x}_{0}^{\infty} + \hat{H}\hat{m} + \eta)] \\ &- \hat{H}\lambda Q[(I - \hat{H})\hat{m} - H\hat{x}_{0}^{\infty} - \eta]\}dt + \zeta_{i}^{a}dW_{0} + \zeta_{i}^{b}dW_{i}, \\ \text{where } q_{0}(T) &= q(T) = q_{i}(T) = 0. \text{ We have } P_{\mathcal{A}_{i}}\text{ 's solution} \\ &\hat{u}_{i}^{\infty} &= (\lambda R)^{-1}B^{T}q_{i}. \end{aligned}$$

Lemma We have $(q_0, q) = (p_0, p)$.

Remark: Somehow unexpected. Good for reducing dimension.

Recall

$$d\tilde{x}_{0}^{\infty} = (A_{0}\tilde{x}_{0}^{\infty} + F_{0}\tilde{m} + \frac{1}{N}F_{0}\tilde{x}_{i}^{\infty})dt,$$

$$d\tilde{m} = [(A + F)\tilde{m} + \frac{1}{N}F\tilde{x}_{i}^{\infty} + G\tilde{x}_{0}^{\infty}]dt,$$

$$d\tilde{x}_{i}^{\infty} = (A\tilde{x}_{i}^{\infty} + B\tilde{u}_{i}^{\infty})dt$$

Construction of the adjoint processes (q_0, q, q_i) :

- Suppose ũ_i[∞] = O(1). In the variational dynamics of (x̃₀[∞], m̃, x̃_i[∞]), the first two entries have magnitude O(1/N), and x̃_i[∞] = O(1).
- Two scales
- Homogenize by using the equation of \tilde{x}_i^{∞}/N .

So using **Lemma** $(q_0, q) = (p_0, p)$ where the RHS is from A_0 -FBSDE (\bar{u}) , the adjoint equations for the minor player are:

$$dp_{0} = \{-A_{0}^{T}p_{0} - G^{T}p + Q_{0}[\hat{x}_{0}^{\infty} - (H_{0}\hat{m} + \eta_{0})] \\ - H^{T}\lambda Q[(I - \hat{H})\hat{m} - H\hat{x}_{0}^{\infty} - \eta]\}dt + \xi_{0}dW_{0}, \\ dp = \{-F_{0}^{T}p_{0} - (A + F)^{T}p - H_{0}^{T}Q_{0}[\hat{x}_{0}^{\infty} - (H_{0}\hat{m} + \eta_{0})] \\ + (I - \hat{H})^{T}\lambda Q[(I - \hat{H})\hat{m} - H\hat{x}_{0}^{\infty} - \eta]\}dt + \xi dW_{0}, \\ dq_{i} = \{-F_{0}^{T}p_{0} - F^{T}p - A^{T}q_{i} - H_{0}^{T}Q_{0}[\hat{x}_{0}^{\infty} - (H_{0}\hat{m} + \eta_{0})] \\ + \lambda Q[\hat{x}_{i}^{\infty} - (H\hat{x}_{0}^{\infty} + \hat{H}\hat{m} + \eta)] \\ - \hat{H}\lambda Q[(I - \hat{H})\hat{m} - H\hat{x}_{0}^{\infty} - \eta]\}dt + \zeta_{i}^{a}dW_{0} + \zeta_{i}^{b}dW_{i}, \end{cases}$$

where $p_0(T) = p(T) = q_i(T) = 0$. Recall we have P_{A_i} 's solution $\hat{u}_i^{\infty} = (\lambda R)^{-1} B^T q_i$.

Remainder: Still need to determine \bar{u} !

Question: how to determine \bar{u} ?

Recall

$$dp_{0} = \{\cdots\}dt + \xi_{0}dW_{0}, dp = \{\cdots\}dt + \xi dW_{0}, dq_{i} = \{-F_{0}^{T}p_{0} - F^{T}p - A^{T}q_{i} - H_{0}^{T}Q_{0}[\hat{x}_{0}^{\infty} - (H_{0}\hat{m} + \eta_{0})] + \lambda Q[\hat{x}_{i}^{\infty} - (H\hat{x}_{0}^{\infty} + \hat{H}\hat{m} + \eta)] - \hat{H}\lambda Q[(I - \hat{H})\hat{m} - H\hat{x}_{0}^{\infty} - \eta]\}dt + \zeta_{i}^{a}dW_{0} + \zeta_{i}^{b}dW_{i},$$

where $q_i(T) = 0$. And $\hat{u}_i^{\infty} = (\lambda R)^{-1} B^T q_i$.

Fact: $\bar{u} \approx \frac{1}{N} \sum_{i} \hat{u}_{i}^{\infty} = (\lambda R)^{-1} B^{T} \frac{1}{N} \sum_{i} q_{i}$.

Lemma. Averaging the equations of q_i , the resulting SDE is equivalent to that of p(=q).

Consistency condition: Take \bar{u} to satisfy

$$\bar{u} = (\lambda R)^{-1} B^T p$$

Now the "closed-loop" FBSDE for the major player:

$$\begin{split} d\hat{x}_{0}^{\infty} &= (A_{0}\hat{x}_{0}^{\infty} + B_{0}R_{0}^{-1}B_{0}^{T}p_{0} + F_{0}\hat{m})dt + D_{0}dW_{0}, \\ d\hat{m} &= [(A+F)\hat{m} + G\hat{x}_{0}^{\infty} + B(\lambda R)^{-1}B^{T}p]dt, \\ dp_{0} &= \{-A_{0}^{T}p_{0} - G^{T}p + Q_{0}[\hat{x}_{0}^{\infty} - (H_{0}\hat{m} + \eta_{0})] \\ &- H^{T}\lambda Q[(I-\hat{H})\hat{m} - H\hat{x}_{0}^{\infty} - \eta]\}dt + \xi_{0}dW_{0}, \\ dp &= \{-F_{0}^{T}p_{0} - (A+F)^{T}p - H_{0}^{T}Q_{0}[\hat{x}_{0}^{\infty} - (H_{0}\hat{m} + \eta_{0})] \\ &+ (I-\hat{H})^{T}\lambda Q[(I-\hat{H})\hat{m} - H\hat{x}_{0}^{\infty} - \eta]\}dt + \xi dW_{0}, \end{split}$$

where $\hat{x}_0^{\infty}(0) = x_0(0)$, $\hat{m}(0) = \mu_0$, $p_0(T) = p(T) = 0$.

Theorem: This FBSDE has a unique solution. Proof: Use a nice Hamiltonian matrix structure.

The two extra equations of the minor player:

$$\begin{aligned} d\hat{x}_{i}^{\infty} &= [A\hat{x}_{i}^{\infty} + B(\lambda R)^{-1}B^{T}q_{i} + F\hat{m} + G\hat{x}_{0}]dt + DdW_{i}, \\ dq_{i} &= \{-F_{0}^{T}p_{0} - F^{T}p - A^{T}q_{i} - H_{0}^{T}Q_{0}[\hat{x}_{0}^{\infty} - (H_{0}\hat{m} + \eta_{0})] \\ &+ \lambda Q[\hat{x}_{i}^{\infty} - (H\hat{x}_{0}^{\infty} + \hat{H}\hat{m} + \eta)] \\ &- \hat{H}\lambda Q[(I - \hat{H})\hat{m} - H\hat{x}_{0}^{\infty} - \eta]\}dt + \zeta_{i}^{a}dW_{0} + \zeta_{i}^{b}dW_{i}, \end{aligned}$$

which can be uniquely solved.

Related Literature MFT with coupled dynamics Model Person-by-person optimality Solution and social optimality

The whole FBSDE of the minor player:

$$\begin{split} d\hat{x}_{0}^{\infty} &= (A_{0}\hat{x}_{0}^{\infty} + B_{0}R_{0}^{-1}B_{0}^{T}p_{0} + F_{0}\hat{m})dt + D_{0}dW_{0}, \\ d\hat{m} &= [(A+F)\hat{m} + G\hat{x}_{0}^{\infty} + B(\lambda R)^{-1}B^{T}p]dt, \\ dp_{0} &= \{-A_{0}^{T}p_{0} - G^{T}p + Q_{0}[\hat{x}_{0}^{\infty} - (H_{0}\hat{m} + \eta_{0})] \\ &- H^{T}\lambda Q[(I-\hat{H})\hat{m} - H\hat{x}_{0}^{\infty} - \eta]\}dt + \xi_{0}dW_{0}, \\ dp &= \{-F_{0}^{T}p_{0} - (A+F)^{T}p - H_{0}^{T}Q_{0}[\hat{x}_{0}^{\infty} - (H_{0}\hat{m} + \eta_{0})] \\ &+ (I-\hat{H})^{T}\lambda Q[(I-\hat{H})\hat{m} - H\hat{x}_{0}^{\infty} - \eta]\}dt + \xi dW_{0}, \\ d\hat{x}_{i}^{\infty} &= [A\hat{x}_{i}^{\infty} + B(\lambda R)^{-1}B^{T}q_{i} + F\hat{m} + G\hat{x}_{0}]dt + DdW_{i}, \\ dq_{i} &= \{-F_{0}^{T}p_{0} - F^{T}p - A^{T}q_{i} - H_{0}^{T}Q_{0}[\hat{x}_{0}^{\infty} - (H_{0}\hat{m} + \eta_{0})] \\ &+ \lambda Q[\hat{x}_{i}^{\infty} - (H\hat{x}_{0}^{\infty} + \hat{H}\hat{m} + \eta)] \\ &- \hat{H}\lambda Q[(I-\hat{H})\hat{m} - H\hat{x}_{0}^{\infty} - \eta]\}dt + \zeta_{i}^{a}dW_{0} + \zeta_{i}^{b}dW_{i}. \end{split}$$

Theorem. This FBSDE has a unique solution.

Remark 1: General FBSDEs do not always have a solution.

Remark 2: We expect it is easy to have existence (as happens here) due to optimal control nature; different from games; even a two player LQ game may have no solution

Key error estimates

Proposition. Take a fixed $v \in L^2_{\mathcal{F}}(0, T; \mathbb{R}^{n_1})$ and let $\tilde{u}_i^N = \tilde{u}_i^\infty = v$ for both the N + 1 player model and the limiting variational problem. Then for some constant C we have

$$\sup_{t \leq T} E[|\tilde{x}_0^{\infty} - \tilde{x}_0^N|^2 + |\tilde{m} - \tilde{x}_{-i}^{(N)}|^2 + |\frac{1}{N}\tilde{x}_i^{\infty} - \frac{1}{N}\tilde{x}_i^N|^2] \leq \frac{C}{N^4}.$$

Performance gap

Social Optimality Theorem We have

$$|J_{\rm soc}^{(N)}(\hat{u}) - \inf_{u} J_{\rm soc}^{(N)}(u)| = O(1/\sqrt{N}),$$

where each u_j^N , $0 \le j \le N$ within u is in $L^2_{\mathcal{F}}(0, T; \mathbb{R}^{n_1})$, and

$$\hat{u}_0^N = \hat{u}_0^\infty = R_0^{-1} B_0^T p_0, \quad \hat{u}_i^N = \hat{u}_i^\infty = (\lambda R)^{-1} B^T p_i,$$

where (p_0, p_i) are solved from $P_{\mathcal{A}_0}$ and $P_{\mathcal{A}_i}$.

We can further show that p_0 is a linear function of $(\hat{x}_0^{\infty}, \hat{m})$.

We may choose \mathcal{F}_t as the σ -algebra $\mathcal{F}_t^{x,(0),W} \triangleq \sigma(x_j(0), W_j(\tau), 0 \le j \le N, \tau \le t).$

Thank you!