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Mean-field Sparse Optimal Control?

“Ultimately it would be good to have a theory that combined both the

collective behaviour of a large number of “ordinary” agents with the decisions

of a few key players of unusually large (relative) influence – some complicated

combination of PDE and game theory, presumably – but our current

mathematical technology is definitely insufficient for even a zeroth

approximation to this task”.

– Terry Tao, January 7, 2010
https://terrytao.wordpress.com/2010/01/07/mean-field-equations

Next numerics from:
G. Albi, M. Bongini, E. Cristiani, and D. Kalise, Invisible control of

self-organizing agents leaving unknown environments, SIAM J. Appl. Math.

https://terrytao.wordpress.com/2010/01/07/mean-field-equations
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Evacuating an unknown environment
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Simulations I
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Simulations II
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Technical assumptions
(K) The function K ∈ C2(Rd ;Rd) is odd and sublinear, i.e., there exists

CK > 0 such that for all x ∈ Rd it holds

‖K(x)‖ ≤ CK (1 + ‖x‖).

(L) The function L : Rdm × P1(Rd)→ R is

L(y , µ) =

∫
Rd

`

(
y , x ,

∫
Ωµ

)
dµ(x),

with ` ∈ C2(Rdm × Rd × Rd ;R) and Ω ∈ C2(Rd ;Rd).

(G) The function g ∈ C2(Rdm; C2(Rd ;Rd)) satisfies for all x ∈ Rd and all
y ∈ Rdm

g(y)(x) · x ≤ G1‖x‖2 + G2 max
l=1,...,m

‖yl‖2 + G3,

where the constants G1,G2 and G3 are independent on x and y .

(F) For each k = 1, . . . ,m, the function fk ∈ C2(Rdm;Rd) satisfies for all
y ∈ Rdm

fk(y) · yk ≤ F1 max
l=1,...,m

‖yl‖2 + F2,

where the constants F1 and F2 are independent on y and k.

(U) The set U ⊆ RD is compact and convex.

(γ) The function γ : U → R is strictly convex.
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The finite particle sparse optimal control model
For T > 0 fixed, find u∗ ∈ L1([0,T ];U) minimizing the cost
functional

FN(u) =

∫ T

0
[L(y(t), µN(t)) + γ(u(t))] dt,

where (y , µN) solve{
ẏk = 1

N

∑N
j=1 K (yk − xj) + fk(y) + Bku, k = 1, . . . ,m

ẋi = 1
N

∑N
j=1 K (xi − xj) + g(y)(xi ), i = 1, . . . ,N,

for the given initial datum (y(0), x(0)) = (y 0, x0) ∈ Rdm × RdN ,
where

µN(t)(x) =
1

N

N∑
i=1

δ(x − xi (t)),

is the empirical measure centered on the trajectory
x(·) = (x1(·), . . . , xN(·)).
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Corresponding sparse mean-field optimal control

For T > 0 fixed, find u∗ ∈ L1([0,T ];U) minimizing the cost
functional

F (u) =

∫ T

0
[L(y(t), µ(t)) + γ(u(t))] dt,

where (y , µ) solve{
ẏk(t) = (K ? µ(t))(yk(t)) + fk(y(t)) + Bku(t), k = 1, . . . ,m,

∂tµ(t) = −∇x · [(K ? µ(t) + g(y(t)))µ(t)] ,

for the given initial datum
(y(0), µ(0)) = (y 0, µ0) ∈ Rdm × Pc(Rd).
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Scheme of results



Mean-field optimal control

Definition
Let (y 0, µ0) ∈ Rdm × Pc(Rd) be given. A optimal control u∗ for
the ∞-dimensional OC with initial datum (y 0, µ0) is a mean-field
optimal control if there exists a sequence (u∗N)N∈N ⊂ L1([0,T ];U)
and a sequence (µ0

N)N∈N ∈ Pc(Rd) such that

I for every N ∈ N, µ0
N(·) := 1

N

∑N
i=1(· − x0

i ,N) is a sequence of

empirical measures for some x0
i ,N ∈ supp(µ0) + B(0, 1) such

that µ0
N ⇀ µ0 weakly∗ in the sense of measures;

I for every N ∈ N, u∗N is a solution of the finite dimensional OC
with initial datum (y 0, µ0

N);

I there exists a subsequence of (u∗N)N∈N converging weakly in
L1([0,T ];U) to u∗.
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Γ-convergence

Theorem (F., Rossi, Piccoli,’14)

Consider an initial datum (y 0, µ0) ∈ Rdm × P1(Rd), and a
sequence (µ0

N)N∈N, where µ0
N is as in Definition.

Then the
sequence of functionals (FN)N∈N on X = L1([0,T ];U) Γ-converges
to the functional F . In particular, there exist mean-field optimal
controls in the sense of Definition.
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PMP mean-field convergence

Theorem (Bongini, F., Rossi, Solombrino, ‘16)
Fix an initial datum (y 0, µ0) ∈ Rdm × Pc(Rd). If u∗ is a mean-field optimal
control and (y∗, µ∗) is the corresponding trajectory, then (u∗, y∗, µ∗) satisfies
the following extended Pontryagin Maximum Principle:

There exists (q∗(·), ν∗(·)) ∈ Lip([0,T ];Rdm × P1(R2d)) such that

I there exists RT > 0, depending only on y 0, supp(µ0),m,K , g , fk ,Bk ,U ,
and T , such that supp(ν∗(·)) ⊆ B(0,RT ) and it satisfies
π1#ν

∗(t) = µ∗(t) for all t ∈ [0,T ];

I it holds 
ẏ∗k = ∇qkHc(y∗, q∗, ν∗, u∗),

q̇∗k = −∇ykHc(y∗, q∗, ν∗, u∗),

∂tν
∗= −∇(x,r) · ((J∇νHc(y∗, q∗, ν∗, u∗))ν∗) ,

u∗ = arg maxu∈U Hc(y∗, q∗, ν∗, u),



PMP mean-field convergence

Theorem (Bongini, F., Rossi, Solombrino, ‘16)
Fix an initial datum (y 0, µ0) ∈ Rdm × Pc(Rd). If u∗ is a mean-field optimal
control and (y∗, µ∗) is the corresponding trajectory, then (u∗, y∗, µ∗) satisfies
the following extended Pontryagin Maximum Principle:

There exists (q∗(·), ν∗(·)) ∈ Lip([0,T ];Rdm × P1(R2d)) such that

I there exists RT > 0, depending only on y 0, supp(µ0),m,K , g , fk ,Bk ,U ,
and T , such that supp(ν∗(·)) ⊆ B(0,RT ) and it satisfies
π1#ν

∗(t) = µ∗(t) for all t ∈ [0,T ];

I it holds 
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ẏ∗k = ∇qkHc(y∗, q∗, ν∗, u∗),

q̇∗k = −∇ykHc(y∗, q∗, ν∗, u∗),

∂tν
∗= −∇(x,r) · ((J∇νHc(y∗, q∗, ν∗, u∗))ν∗) ,

u∗ = arg maxu∈U Hc(y∗, q∗, ν∗, u),



PMP mean-field convergence

Theorem (Bongini, F., Rossi, Solombrino, ‘16)
Fix an initial datum (y 0, µ0) ∈ Rdm × Pc(Rd). If u∗ is a mean-field optimal
control and (y∗, µ∗) is the corresponding trajectory, then (u∗, y∗, µ∗) satisfies
the following extended Pontryagin Maximum Principle:

There exists (q∗(·), ν∗(·)) ∈ Lip([0,T ];Rdm × P1(R2d)) such that

I there exists RT > 0, depending only on y 0, supp(µ0),m,K , g , fk ,Bk ,U ,
and T , such that supp(ν∗(·)) ⊆ B(0,RT ) and it satisfies
π1#ν

∗(t) = µ∗(t) for all t ∈ [0,T ];

I it holds 
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PMP mean-field convergence
I J ∈ R2d×2d is the symplectic matrix

J =

(
0 Id
−Id 0

)
,

the Hamiltonian Hc : R2dm × Pc(R2d)× RD → R is defined as

Hc(y , q, ν, u) =

{
H(y , q, ν, u) if supp(ν) ⊆ B(0,RT ),

+∞ elsewhere;

and H : R2dm × Pc(R2d)× RD → R is defined as

H(y , q, ν, u) =
1

2

∫
R4d

(r − r ′) · K(x − x ′) dν(x , r) dν(x ′, r ′)

+

∫
R2d

r · g(y)(x)dν(x , r) +
m∑

k=1

∫
R2d

qk · K(yk − x) dν(x , r)

+
m∑

k=1

qk · (fk(y) + Bku)− L(y , π1#ν)− γ(u).

I y∗(0) = y 0 and ν∗(0)(E × Rd) = µ0(E) for every Borel set E ⊆ Rd ,

I q∗(T ) = 0 and ν∗(T )(Rd × E) = δ0(E) for every Borel set E ⊆ Rd ,
where δ0 is the Dirac measure centered in 0.
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the Hamiltonian Hc : R2dm × Pc(R2d)× RD → R is defined as

Hc(y , q, ν, u) =

{
H(y , q, ν, u) if supp(ν) ⊆ B(0,RT ),

+∞ elsewhere;

and H : R2dm × Pc(R2d)× RD → R is defined as

H(y , q, ν, u) =
1

2

∫
R4d

(r − r ′) · K(x − x ′) dν(x , r) dν(x ′, r ′)

+

∫
R2d

r · g(y)(x)dν(x , r) +
m∑

k=1

∫
R2d

qk · K(yk − x) dν(x , r)

+
m∑

k=1

qk · (fk(y) + Bku)− L(y , π1#ν)− γ(u).

I y∗(0) = y 0 and ν∗(0)(E × Rd) = µ0(E) for every Borel set E ⊆ Rd ,

I q∗(T ) = 0 and ν∗(T )(Rd × E) = δ0(E) for every Borel set E ⊆ Rd ,
where δ0 is the Dirac measure centered in 0.



Remarks

I (y∗, q∗, ν∗) is essentially an Hamiltonian flow in the
Wasserstein space of probability measures with respect to
state and adjoint variables with Hamiltonian H, in the sense
of Ambrosio-Gangbo.

I This fact is remarkably consistent with the state dynamics,
since both are flows in a Wasserstein space.

I This formulation of the optimality conditions making use of
the formalism of subdifferential calculus in Wasserstein spaces
of probability measures constitutes one of the novelties of the
work.
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Scheme of results



Proof strategy

I The extended PMP is derived after reformulating the
finite-dimensional PMP in terms of the empirical measure in
the product space of state variables xi and adjoint variables
pi , defined as

νN(x , r) =
1

N

N∑
i=1

δ(x − xi , r − Npi ).

I Notice that rescaling the adjoint variables pi by the number N
of agents is needed in order to observe a nontrivial dynamics
in the limit;

I A final explicit hard computation is done to verify that the
mean-field limit dynamics of the PMP coincides with the
symplectic (Wasserstein)-gradient flow of the Hamiltonian.
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Mean-field optimal control without isolated leaders

We consider here mainly large particle/agent systems of form:

dxi =

 1

N

N∑
j=1

K (xi , xj)(xj − xi )

 dt + fi dt +
√

2σ dBt
i , i = 1, . . . ,N,

where K (·, ·) represents the communication function between
agents xi ∈ Rd and Bt

i is a d-dimensional Brownian motion.

One can use the model for d = 1 and xi ∈ I = [−1, 1] to formulate
opinion models, where xi represents an opinion in the continuous
set between two opposite opinions {−1, 1}.

According to the choice of the communication function K (·, ·),
consensus can emerge or not, and opinion control is of interest.
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Mean-field optimal control without isolated leaders

The control

f = arg min
g∈U

J(x , g) := E

[∫ T

0

1

N

N∑
i=1

(
1

2
|xi − x̄ |2 + γΨ(gi )

)
dt

]
,

where x̄ represents a target point, γ is the penalization parameter
of the control g , which is chosen among the admissible controls in
U , and Ψ : Rd → R+ ∪ {0} is a convex function.



Mean-field optimal control without isolated leaders
As the number of particles N →∞, the finite dimensional optimal
control problem with SDE constraints converges to the following
mean field optimal control problem1:

∂tµ+∇ · ((K[µ] + f )µ) = σ∆µ, (1)

where the interaction force K is given by

K[µ](x) =

∫
K (x , y)(y − x)µ(y , t) dy (2)

and the solution µ is controlled by the minimizer of the cost
functional

J(µ, f ) =

∫ T

0

(
1

2

∫
|x − x̄ |2µ(x , t) dx + γ

∫
Ψ(f )µ(x , t) dx

)
dt.

(3)

1D. Lacker. Limit theory for controlled McKean-Vlasov dynamics. SIAM J.
Control. Opt. 2016;
M. Fornasier and F. Solombrino, Mean field optimal control, ESAIM: COCV,
2014
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Deterministic case: σ = 0

Definition
For a given T and q ∈ [1,∞), we fix a control bound function
` ∈ Lq(0,T ). Then f ∈ F`([0,T ]) if and only if

(i) f : Rd × [0,T ]→ Rd is a Carathéodory function.

(ii) f (·, t) ∈W 1,∞
loc (Rd) for almost every t ∈ [0,T ].

(iii) |f (0, t)|+ ‖f (·, t)‖Lip ≤ `(t) for almost every t ∈ [0,T ].



Deterministic case: σ = 0

I Finite dimensional optimal control problem:

min
f∈F`

J(x , f ) := min
f∈F`

∫ T

0

1

N

N∑
i=1

(
1

2
|xi − x̄ |2 + γΨ(f (xi , t))

)
dt, (4)

where xi is a unique solution of

ẋi =
1

N

N∑
j=1

K(xi , xj)(xj − xi ) + f (xi , t), i = 1, · · · ,N, t > 0, (5)

I Infinite dimensional optimal control problem:

min
f∈F`

J(µt , f ) := min
f∈F`

∫ T

0

(
1

2

∫
Rd

|x − x̄ |2 µt(dx) + γ

∫
Rd

Ψ(f )µt(dx)

)
dt,

(6)
where µ ∈ C([0,T ];P1(Rd)) is the unique weak solution of

∂tµt = ∇ · ((K[µt ] + f )µt) , (x , t) ∈ Rd × [0,T ],

K[µt ](x) =

∫
Rd

K(x , y)(y − x)µt(dy).
(7)
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Deterministic case: σ = 0

Theorem (F. and Solombrino, ‘14)

Let T > 0. Suppose that K ∈W 1,∞
loc (R2d) and Ψ si such that for

1 ≤ q <∞

Lip(Ψ,B(0,R)) ≤ CRq−1 for all R > 0.

Assume that {x0
i }Ni=1 ⊂ B(0,R0) for R0 > 0 independent of N. For

all N ∈ N, let us denote the control function fN ∈ F` as a solution
of the finite dimensional OC. If there exits µ0 ∈ Pc(Rd) such that
limN→∞W1(µN0 , µ0), then there exists a subsequence (f Nk

t )k∈N
and a function f∞t such that f Nk

t → f∞t weakly. Moreover, f∞t and
the corresponding µ∞t are solutions of the ∞-dimensional OC.

The proof follows by a combination of a Γ-limit and mean-field
limit.
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Stochastic case: σ > 0
Let Ω denote an open, bounded, smooth subset of Rd . We
introduce:

V := L2(0,T ; H1(Ω))∩Ḣ1(0,T ; H−1
∗ (Ω)), and H−1

∗ (Ω) = H1(Ω)′,

and the set of admissible controls

QM :=
{
‖f ‖L2(0,T ;L∞(Ω)) ≤ M : f ∈ L2(0,T ; L∞(Ω))

}
,

for a given M > 0.

The OC problem reads:

min
f∈QM

J(µ, f ) := min
f∈QM

∫ T

0

(
1

2

∫
Ω

|x − x̄ |2µ(x , t) dx + γ

∫
Ω

Ψ(f )µ(x , t) dx

)
dt,

(8)

where µ is a weak solution to the following parabolic equation:

∂tµ+∇ · (K[µ]µ+ f µ) = σ∆µ, (x , t) ∈ ΩT := Ω× [0,T ], (9)

with the initial data

µ(·, 0) = µ0(x) x ∈ Ω,

and the zero-flux boundary condition

〈σ∇µ− (K[µ] + f )µ, n(x)〉 = 0, (x , t) ∈ ∂Ω× [0,T ],

where n(x) is the outward normal to ∂Ω at the point x ∈ ∂Ω.
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Stochastic case: σ > 0

Theorem (mathematical folklore)

For a given T ,M > 0, let us assume µ0 ∈ L2(Ω). Furthermore, we
assume that K ∈ L∞(Ω2) and Ψ satisfies that for all R > 0

W 1,∞(Ψ,B(0,R)) ≤ CR,

for some C > 0. Then there exist f∞ ∈ QM and the corresponding
density µ∞ solving the OC.

One rigorous and simple proof based on the direct method is
reviewed in the survey:

G. Albi, Y.-P. Choi, M. Fornasier and D. Kalise. Mean field control hierarchy,
to appear in Applied Mathematics and Optimization (special issue on
Mean-Field Games)
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Rigorous derivation of first order optimality

Let X and Y be Banach spaces, and let a functional
J : U(x∗) ⊆ X → R and a mapping G : U(x∗) ⊆ X → Y be
continuously differentiable on an open neighbourhood of x∗.

Consider:
J(x)→ inf, G (x) = 0. (10)

Theorem (Lagrange multiplier theorem in Banach spaces)

Let x∗ be a solution and let the range of the operator
G ′(x∗) : X → Y be closed. Then there exists a nonzero pair
(λ, p) ∈ R× Y ′ such that

L′x(x∗, λ, p)(x) = 0 for all x ∈ X ,

where
L(x , λ, p) = λJ(x) + G (x)(p).

Moreover, if Im G ′(x∗) = Y , then λ 6= 0 in the above, thus we can
assume that λ = 1.
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Rigorous derivation of first order optimality

In order to apply the above theorem, we set

X = V × L2(ΩT ), Y = L2(0,T ; H−1(Ω)),

J(µ, f ) =

∫ T

0

(
1

2

∫
Ω
|x − x̄ |2µ(x , t) dx + γ

∫
Ω

Ψ(f )µ(x , t) dx

)
dt,

and

G (µ, f )(ψ) = −
∫ T

0

∫
Ω
∂tψ µ dxdt +

∫ T

0

∫
Ω
∇ψ · (K[µ]µ) dxdt

+

∫ T

0

∫
Ω
∇ψ · (f µ) dxdt − σ

∫ T

0

∫
Ω
∇µ · ∇ψ dxdt,

for ψ ∈ Y ′ = L2(0,T ; H1
0 (Ω)).



Rigorous derivation of first order optimality

Theorem (mathematical folklore: mean-field OC system)

Let (µ∗, f ∗) ∈ V × QM be a solution to the OC.

Suppose that
there exists a µ` > 0 such that µ∗ ≥ µ` for all (x , t) ∈ ΩT . Then
there exists ψ∗ ∈ Y ′ such that

G ′µ(µ∗, f ∗)(ν, ψ∗) = J ′µ(µ∗, f ∗)(ν), for all ν ∈ V ,

G ′f (µ∗, f ∗)(g , ψ∗) = J ′f (µ∗, f ∗)(g), for all g ∈ L2(ΩT ).
(11)

One rigorous and simple proof is reviewed in the survey:

G. Albi, Y.-P. Choi, M. Fornasier and D. Kalise. Mean field control hierarchy,
to appear in Applied Mathematics and Optimization (special issue on
Mean-Field Games)
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Rigorous derivation of first order optimality

Let us comment the positivity principle on the existence of µ` > 0
such that µ∗ ≥ µ` for all (x , t) ∈ ΩT .

If we assumed that µ0, f ,P ∈ C2 and µ0 is bounded from below by
a positive constant, then by Feynman-Kac formula, we can show
that µ is bounded from below by some positive constant until the
fixed time T .

We have only numerical evidence of the persistent positivity more
in general.
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Rigorous derivation of first order optimality

Formally, forward-backward system in strong form:

∂tψ
∗ +

1

2
|x − x̄ |2 + γ (Ψ(f ∗)−∇Ψ(f ∗) · f ∗) + σ∆ψ∗

+

∫
Ω

(K (x , y)∇ψ∗(x , t)− K (y , x)∇ψ∗(y , t)) · (y − x)µ∗(y , t) dy = 0,

∂tµ
∗ +∇ · ((K[µ∗] + f ∗)µ∗) = σ∆µ∗

∇Ψ(f ∗) = − 1

γ
∇ψ∗.

Uniqueness and guaranteed numerical solutions are still open problems.
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Numerical approaches: mean-field control hierarchy?
The numerical solution of the mean-field optimal control system
can be approached by sweeping, grad. desc., or aug. Lagrangian
alg.:

computational expensive and no theoretical guarantees
(nonconvexity). More accessible alternatives? Idea: Solve the
control problem on two particles and average it over their
distribution.2

Two agents have positions x , y ∈ Ω and modify them according to

x∗ = x + αK (x , y)(y − x) + αUα(x , y , t) +
√

2αξx ,

y∗ = y + αK (y , x)(x − y) + αUα(y , x , t) +
√

2αξy ,

where (x∗, y∗) are the post-interaction positions, α measures the influence

strength, (ξx , ξy ) is a vector of i.i.d. random variables with zero mean and

variance σ, and Uα(x , y , t) indicates a feedback control.

2G. Albi, M. Herty, L. Pareschi, Kinetic description of optimal control
problems and applications to opinion consensus , Comm. Math. Scien., 2015
G. Albi, L. Pareschi, M. Zanella, Boltzmann type control of opinion consensus
through leaders. Proc. of the Roy. Soc. A., 2014.
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First of all a Boltzmann model

We consider now a kinetic model ruled by the following
Boltzmann-type equation

∂tµ(x , t) = Qα(µ, µ)(x , t),

where

Qα(µ, µ)(x , t) = E
[∫

Ω

(
B∗

1

Jα
µ(x∗, t)µ(y∗, t)− Bµ(x , t)µ(y , t)

)
dy

]
,

where (x∗, y∗) are the pre-interaction positions that generate
arrivals (x , y).
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First of all a Boltzmann model

The collisional operator Qα(·, ·) includes the expected value with
respect to ξx and ξy , while Jα represents the Jacobian of the
transformation (x , y)→ (x∗, y∗).

Here B∗ = B(x∗,y∗)→(x ,y) and
B = B(x ,y)→(x∗,y∗) are the transition rate functions. More into the
details we take into account

B(x ,y)→(x∗,y∗) = ηχΩ(x∗)χΩ(y∗),

as the functions with an interaction rate η > 0, and where χΩ is
the characteristic function of the domain Ω.



First of all a Boltzmann model

The collisional operator Qα(·, ·) includes the expected value with
respect to ξx and ξy , while Jα represents the Jacobian of the
transformation (x , y)→ (x∗, y∗). Here B∗ = B(x∗,y∗)→(x ,y) and
B = B(x ,y)→(x∗,y∗) are the transition rate functions. More into the
details we take into account

B(x ,y)→(x∗,y∗) = ηχΩ(x∗)χΩ(y∗),

as the functions with an interaction rate η > 0, and where χΩ is
the characteristic function of the domain Ω.



From Boltzmann to mean-field equations

Theorem (grazing collision limit)

Fix some control Uα(x , y , t). Introducing

α = ε, η = 1/ε,

for the binary interaction and defining by µε(x , t) the
corresponding solution, µε(x , t) converges for ε→ 0 to µ(x , t)
where µ satisfies the following Fokker-Planck-type equation,

∂tµ+∇ · ((K[µ] + f )µ) = σ∆µ,

where the control

f (x , t) =

∫
Rd

U(x , y , t)µ(y , t) dy .

with U(x , y , t) = limα→0 Uα(x , y , t).3

3G. Albi, Y.-P. Choi, M. Fornasier and D. Kalise. Mean field control
hierarchy, to appear in AMO (special issue MFG)



Mean-field control hierarchy
Inspired by the BBGKY herarchy in kinetic theory: we choose the
control f (x , t), in three ways:

I Instantaneous control: in this case Uα(x , y , t) is computed in
such a way that the post-collisional positions minimize the
cost function:

1

2
(|x∗ − x̄ |2 + |y∗ − x̄ |2) + γ(Ψ(Uα(x , y , t)) + Ψ(Uα(y , x , t))),

then

f (x , t) =

∫
Rd

U(x , y , t)µ(y , t) dy ,

e.g., for Ψ(·) := | · |2/2

U(x , y , t) = lim
α→0

Uα(x , y , t)

= lim
α→0

1

γ + α
((x̄ − x) + αK(x , y)(y − x))

=
(x̄ − x)

γ
,



Mean-field control hierarchy
Inspired by the BBGKY herarchy in kinetic theory: we choose the
control f (x , t), in three ways:

I Instantaneous control: in this case Uα(x , y , t) is computed in
such a way that the post-collisional positions minimize the
cost function:

1

2
(|x∗ − x̄ |2 + |y∗ − x̄ |2) + γ(Ψ(Uα(x , y , t)) + Ψ(Uα(y , x , t))),

then

f (x , t) =

∫
Rd

U(x , y , t)µ(y , t) dy ,

e.g., for Ψ(·) := | · |2/2

U(x , y , t) = lim
α→0

Uα(x , y , t)

= lim
α→0

1

γ + α
((x̄ − x) + αK(x , y)(y − x))

=
(x̄ − x)

γ
,



Mean-field control hierarchy
Inspired by the BBGKY herarchy in kinetic theory: we choose the
control f (x , t), in three ways:

I Instantaneous control: in this case Uα(x , y , t) is computed in
such a way that the post-collisional positions minimize the
cost function:

1

2
(|x∗ − x̄ |2 + |y∗ − x̄ |2) + γ(Ψ(Uα(x , y , t)) + Ψ(Uα(y , x , t))),

then

f (x , t) =

∫
Rd

U(x , y , t)µ(y , t) dy ,

e.g., for Ψ(·) := | · |2/2

U(x , y , t) = lim
α→0

Uα(x , y , t)

= lim
α→0

1

γ + α
((x̄ − x) + αK(x , y)(y − x))

=
(x̄ − x)

γ
,



Mean-field control hierarchy

I Binary optimal control: U(x , y , t) is the true solution of
(just!) the N = 2 particle finite time optimal control problem
(computed by solving the Hamilton-Jacobi-Bellman equation
for 2 particles only); again

f (x , t) =

∫
Rd

U(x , y , t)µ(y , t) dy .

This control is unfortunately NOT mean-field optimal as it
does not fully solve the forward-backward system.

I Mean-field optimal control: f (x , t) is the “true” mean-field
optimal control, solving the forward-backward system
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Applications to opinion control



Applications to opinion control

Sznajd model, K(x , y) = β(1− x2).



Applications to opinion control

Hegselmann-Krause model, K(x , y) = χ{|x−y|≤κ}(y).



Remarks and open issues

I From the numerical experiments, we observe that the
numerical realization of the mean field optimality system
yields the best controller in terms of the cost functional value.

I Feedback controllers obtained for the binary system perform
reasonably well, and provide a much simpler control synthesis.

I A proof of a convergence of a hierarchy is open: is there a
form of BBGKY hierarchy for controls?
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