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Mean field games with absorption

N-player games

Player i plays until absorbing boundary is hit or final time reached.
Once a player exits, her/his contribution is removed from the
system. Players thus interact through a renormalized empirical
measure.

Mean field game with absorption

Given a flow of probability measures, solve optimal control problem
for the one representative player; control until first exit from set of
non-absorbing states or final time. Flow of measures here flow of
conditional probabilities.
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Aim and scope

Simple class of systems. Evolution of players’ states described by
controlled Itô equations with constant diffusion coefficient,
performance in terms of expected costs over a finite time horizon;
set of non-absorbing states open and bounded.

Start from N-player games. Define mean field game through
formal passage to the limit.

Justify definition in the usual way (cf. [Huang et al.(2006)], . . . ,
[Carmona and Lacker(2015)], . . . ): Show that solution of the mean
field game induces approximate Nash equilibria for the N-player
games. Works if solution is continuous “almost everywhere” and
diffusion coefficient non-degenerate.

For degenerate noise,
connection more delicate: counterexample.

Here, probabilistic approach. Alternatively, PDE approach.
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Some related works

Systems of interacting firms (loss from default):
Dai Pra et al. [2009], Cvitanić - Ma - Zhang [2012],
Giesecke, Spiliopoulos et al. [2013–2015];

Neuronal networks: Delarue et al. [2015]

Interacting diffusions with absorption on the half-line:
Hambly & Ledger [2017+]

Bertrand oligopoly mean field game model:
Chan & Sircar [2015], Bensoussan & Graber [2016+]

Games with varying number of players:
Bensoussan - Frehse - Grün [2014]
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N-player dynamics �

Let T > 0 be the time horizon, O the set of non-absorbing states, Γ ⊂ Rd

the set of control actions.
Given a vector u = (u1, . . . , uN) of Γ-valued progressive feedback
strategies, the players’ states evolve according to

X N
i (t) = X N

i (0) +

∫ t

0

(
ui (s,X N) + b̄

(
s,X N

i (s),

∫
Rd

w(y)πN(s, dy)

))
ds

+ σW N
i (t), t ∈ [0,T ], i ∈ {1, . . . ,N},

(1)

where πN(t , ·) is the renormalized empirical measure of the states of the
players still in O at time t :

πN
ω(t , ·) .

=

{
1

N̄N
ω

∑N
j=1 1

[0,τ
XN

j (ω))
(t) · δX N

j (t,ω)(·) if N̄N
ω > 0,

δ0(·) if N̄N
ω = 0,

N̄N
ω
.

=
∑N

j=1 1
[0,τ

XN
j (ω))

(t), τX N
j (ω)

.
= inf{t ≥ 0 : X N

j (t , ω) /∈ O}, ω ∈ Ω.

Initial distribution νN
.

= Law(X N
1 (0), . . . ,X N

N (0)) fixed and symmetric.
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N-player costs �

Let UN
fb be the set of all strategy vectors u ∈ ×NUN such that Eq. (1)

under u with initial distribution νN possesses a solution unique in law.

Player i evaluates u = (u1, . . . , uN) ∈ UN
fb according to

JN
i (u)

.
= E

[∫ τN
i

0
f
(

s,X N
i (s),

∫
Rd

w(y)πN(s, dy), ui
(
s,X N)) ds

+ F
(
τN

i ,X
N
i (τN

i )
)]
,

where X N = (X N
1 , . . . ,X

N
N ) is a solution of Eq. (1) under u with initial

distribution νN ,
τN

i (ω)
.

= τX N
i (ω) ∧ T , ω ∈ Ω,

the random time horizon for player i ∈ {1, . . . ,N}, and πN(·) the
conditional empirical measure process induced by (X N

1 , . . . ,X
N
N ).
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Assumptions

(H1) Boundedness and measurability: w , b̄, f , F are Borel measurable
functions uniformly bounded by some constant K > 0.

(H2) Continuity: w , f , F are continuous.

(H3) Lipschitz continuity: b̄(t , ·, ·) Lipschitz with constant L uniformly in t .

(H4) Action space: Γ ⊂ Rd is compact (and non-empty).

(H5) State space: O ⊂ Rd is non-empty, open, and bounded such that
∂O is a C2-manifold.

For main results, additional non-degeneracy assumption:

σ is a matrix of full rank.

Under non-degeneracy assumption, UN
fb = ×NUN .
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Nash equilibria

Given a strategy vector u = (u1, . . . , uN) and an individual strategy
v ∈ UN , indicate by

[u−i , v ]
.

= (u1, . . . , ui−1, v , ui+1, . . . , uN)

the strategy vector obtained from u by replacing ui with v .

Definition.

Let ε ≥ 0. A strategy vector u = (u1, . . . , uN) ∈ UN
fb is called an ε-Nash

equilibrium for the N-player game if for every i ∈ {1, . . . ,N}, every
v ∈ UN such that [u−i , v ] ∈ UN

fb ,

JN
i (u) ≤ JN

i

(
[u−i , v ]

)
+ ε.

If u is an ε-Nash equilibrium with ε = 0, then u is called a Nash
equilibrium.

Nash equilibria in full information feedback strategies.
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Limit dynamics �

Mean field limit suggests to consider the equation

X (t) = X (0) +

∫ t

0

(
u(s,X ) + b̄

(
s,X (s),

∫
Rd

w(y)p(s, dy)

))
ds

+ σW (t), t ∈ [0,T ],

(2)

where p ∈M .
= M([0,T ],P(Rd )) is a flow of probability measures,

u ∈ U1 a Γ-valued progressive feedback strategy, and W a d-dimensional
Wiener process.

In view of N-player game, p should correspond to a flow of conditional
probabilities.
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Limit costs �

Let Ufb denote the set of all feedback strategies u ∈ U1 such that Eq. (2)
possesses a solution unique in law given any initial distribution with
support in O. Under non-degeneracy assumption, Ufb = U1.

Costs associated with a strategy u ∈ Ufb, a flow of measures p ∈M, and
an initial distribution ν ∈ P(Rd ) with support in O:

J(ν, u; p)
.

= E

[∫ τ

0
f
(

s,X (s),

∫
Rd

w(y)p(s, dy), u(s,X )

)
ds

+ F (τ,X (τ))

]
,

where X is a solution of Eq. (2) under u with initial distribution ν, and
τ
.

= τX ∧ T the random time horizon.
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Minimal costs

Minimal costs associated with p ∈M and ν ∈ P(Rd ) with respect to
stochastic open-loop strategies:

V (ν; p)
.

= inf
((Ω,F,(Ft ),P),ξ,α,W )∈A:P ◦ξ−1=ν

E
[∫ τ

0
f
(

s,X (s),

∫
Rd

w(y)p(s, dy), α(s)

)
ds + F (τ,X (τ))

]
,

where X is the unique solution of

X (t) = ξ +

∫ t

0

(
α(s) + b̄

(
s,X (s),

∫
Rd

w(y)p(s, dy)

))
ds

+ σW (t), t ∈ [0,T ],

(3)

and A set of all quadruples ((Ω,F , (Ft ),P), ξ, α,W ) such that
(Ω,F , (Ft ),P) is a filtered probability space, ξ an O-valued
F0-measurable random variable, α a Γ-valued (Ft )-progressively
measurable process, and W a d-dimensional (Ft )-Wiener process.

Notice that
inf

u∈Ufb

J(ν, u; p) ≥ V (ν; p).
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Mean field game

Definition.

A feedback solution of the mean field game is a triple (ν, u, p) such that

(i) ν ∈ P(Rd ) with supp(ν) ⊂ O, u ∈ Ufb, and p ∈M;

(ii) optimality property: strategy u is optimal for p and initial distribution
ν in the sense that

J(ν, u; p) = V (ν; p);

(iii) conditional mean field property: if X is a solution of Eq. (2) with flow
of measures p, strategy u, and initial distribution ν, then
p(t) = P

(
X (t) ∈ · | τX > t

)
for every t ∈ [0,T ] such that

P
(
τX > t

)
> 0.

L. Campi / M. Fischer Mean field games with absorption



1 Introduction

2 N-player games with absorption

3 Mean field game

4 Construction of approximate Nash equilibria

5 Existence of MFG solutions

6 A counterexample

7 Conclusions

L. Campi / M. Fischer Mean field games with absorption



Approximate Nash equilibria from the mean field game

Set X .
= C([0,T ],Rd ). For ν ∈ P(Rd ), let Θν ∈ P(X ) denote the law of

X (t) = ξ + σW (t), t ∈ [0,T ], where Law(ξ) = ν.

Theorem 1.

Grant the non-degeneracy assumption in addition to (H1)-(H5). Suppose
(νN)N∈N is ν-chaotic for some ν ∈ P(Rd ) with support in O.
If (ν, u, p) is a feedback solution of the mean field game regular in the
sense that

Θν ({ϕ ∈ X : u(t , ·) is discontinuous at ϕ}) = 0, a.e. t ∈ [0,T ],

then (uN)N∈N ⊂ UN
fb with uN = (uN

1 , . . . , u
N
N ) defined by

uN
i (t ,ϕ)

.
= u(t , ϕi ), (t ,ϕ) ∈ [0,T ]×X N ,

yields a sequence of approximate Nash equilibria: for every ε > 0, there
exists N0(ε) ∈ N such that uN is an ε-Nash equilibrium for the N-player
game whenever N ≥ N0(ε).
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Proof (sketch)

Let ε > 0. By symmetry, enough to let player one deviate. Thus, show
that there exists N0 = N0(ε) ∈ N such that for all N ≥ N0,

JN
1 (uN) ≤ inf

v∈UN

JN
1

(
[uN,−1, v ]

)
+ ε.

First step. Rewrite dynamics using unconditional measures on path
space: for (t , ϕ, θ) ∈ [0,T ]×X × P(X ),

b̂(t , ϕ, θ)
.

= b (t , ϕ, θ, u(t , ϕ))

=

{
u(t , ϕ) + b̄

(
t , ϕ(t),

∫
w(ϕ̃(t))1[0,τ(ϕ̃))(t)θ(dϕ̃)∫

1[0,τ(ϕ̃))(t)θ(dϕ̃)

)
if θ(τ > t) > 0,

u(t , ϕ) + b̄ (t ,w(0)) if θ(τ > t) = 0,

where τ(ϕ)
.

= inf{t ≥ 0 : ϕ(t) /∈ O}.
Set θ∗

.
= Law(X ) where X solution of Eq. (2) with flow of measures p,

feedback strategy u, and initial distribution ν. Then θ∗ unique
McKean-Vlasov solution of dynamics associated with (b̂, σ).

L. Campi / M. Fischer Mean field games with absorption



Proof (sketch cont.)

Second step. For N ∈ N, let X N be solution of Eq. (1) under strategy
vector uN with initial distribution νN . Denote by µN the associated
empirical measure on X . Then

Law(µN)
N→∞−→ δθ∗ in P(P(X )),

where θ∗ is the measure identified in Step One.
Use Tanaka-Sznitman theorem, chaoticity of initial distributions, and
symmetry of coefficients to conclude that

JN
1 (uN)

N→∞−→ = J(ν, u; p).

Difficulty here: built in discontinuity due to absorption; non-degeneracy of
σ provides “sufficient” continuity.
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Proof (sketch cont.)

Third step. For N ∈ N \ {1}, choose vN
1 ∈ UN such that

JN
1

(
[uN,−1, vN

1 ]
)
≤ inf

v∈UN

JN
1

(
[uN,−1, v ]

)
+ ε/2.

Let X̃
N

be a solution of Eq. (1) under strategy vector [uN,−1, vN
1 ] with

initial distribution νN . Denote by µ̃N the associated empirical measure.
Then

Law
(
µ̃N) N→∞−→ δθ∗ in P(P(X )),

where θ∗ unique McKean-Vlasov solution found in Steps One and Two.
Re-express cost functional in terms of unconditional measure and
interpret vN

1 (·, X̃ N
) as stochastic open-loop control. Using the

convergence of (µ̃N), conclude that

lim inf
N→∞

JN
1 ([uN,−1, vN

1 ]) ≥ V (ν; p).
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Proof (sketch cont.)

Fourth step. For every N ∈ N \ {1},

JN
1 (uN)− inf

v∈UN

JN
1 ([uN,−1, v ])

≤ JN
1 (uN)− J(ν, u; p) + J(ν, u; p)− JN

1 ([uN,−1, vN
1 ]) + ε/2.

By Steps Two and Three, there exists N0 = N0(ε) such that for all
N ≥ N0,

JN
1 (uN)− J(ν, u; p) + V (ν; p)− JN

1 ([uN,−1, vN
1 ]) ≤ ε/2.

Since (ν, u; p) is a solution of the mean field game, J(ν, u; p) = V (ν; p).
It follows that for all N ≥ N0,

JN
1 (uN)− inf

v∈UN

JN
1 ([uN,−1, v ]) ≤ ε.
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Existence of regular solutions to the MFG

Theorem 2.

In addition to the hypotheses of Theorem 1, assume that

Γ 3 γ 7→ f (t , x ,m, γ) + γ · z

has a unique minimizer given any (t , x ,m, z) (plus some mild technical
assumptions).
Then there exists a feedback solution of the mean field game (ν, u, p)
such that

u(t , ϕ) = α (t , ϕ(t))

for some continuous α : [0,T ]× Rd → Γ; thus, u Markov feedback
strategy.

Proof (idea): Existence of feedback solution through Brouwer-Schauder
fixed point theorem following [Carmona and Lacker(2015)].
Continuity and Markov property of strategy from classical regularity result
due to [Fleming and Rishel(1975)].
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PDE approach

Let (ν, α, p) be a solution according to Theorem 2 with ν(dx) = m0(x)dx .
For simplicity, assume that

σ ≡ σ Idd , b̄(t , x ,m) ≡ 0, f (t , x ,m, γ) = f0(t , x , γ) + f1(t , x ,m).

Set H(t , x , z)
.

= maxγ∈Γ {−γ · z − f0(t , x , γ)}. Let V be the unique
solution of the Hamilton-Jacobi Bellman equation

−∂tV −
σ2

2
∆V + H(t , x ,∇V ) = f1

(
t , x ,

∫
w(y)p(t , dy)

)
in [0,T )× O

with boundary condition V (t , x) = F (t , x) in {T} × cl(O) ∪ [0,T )× ∂O,
and let m be the unique solution of the Kolmogorov forward equation

∂tm −
σ2

2
∆m + div (m(t , x) · α(t , x)) = 0 in (0,T ]× O

with m(0, x) = m0(x) and m(t , x) = 0 in (0,T ]× ∂O. Then

α(t , x) = −DzH (t , x ,∇V (t , x)) , p(t , dx) =
m(t , x)∫

O m(t , y)dy
dx .
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Counterexample: system data �

Dimension d = 3, time horizon T = 2, dispersion coefficient σ ≡ 0.

Initial distributions: νN
.

= ⊗Nν with ν .
= ρ⊗ ρ⊗ δ0, ρ Rademacher.

Set of control actions Γ
.

=
{
γ ∈ R3 : γ1 ∈ [−1, 1], γ2 = 0 = γ3

}
;

Set of non-absorbing states

O .
=
{

x ∈ R3 : −4 < x1 < 1 + ex3−1, −2 < x2 < 2, −1 < x3 <
11
5

}
;

Drift coefficient: w bounded Lipschitz with w(x) = x2 if x ∈ cl(O),

b̄(t , x , y)
.

=

−|y | ∧ 1
4

0
1

 , (t , x , y) ∈ [0, 2]× R3 × R.

Cost coefficients: f ≡ 1, F non-negative bounded Lipschitz with

F (t , x) = 1 +
x3

12
· x1 for all (t , x) ∈ [0, 2]× cl(O).
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Counterexample: boundary of O

Boundary of the set of non-absorbing states O on the x3-x1-plane:

x3 = t

x1

1

−1

2

1 T
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Counterexample: N-player game (N odd)

Since ui,1 takes values in [−1, 1] and ξN
i,1 values in {−1, 1},

−1− 5
4

t ≤ X N
i,1(t) ≤ 1 + t for all t ∈ [0, 2] with probability one.

X N
i can leave O before T = 2 only if X N

i,1(1) = 2; possible only if∑N
j=1 ξ

N
j,2 = 0. Probability of this event equal to zero if N odd, hence

τN
i = 2 for every i . Dynamics of the N-player game thereforeX N

i,1(t)
X N

i,2(t)
X N

i,3(t)

 =

ξN
i,1 +

∫ t
0 ui,1(s,X N)ds − t ·

(∣∣∣ 1
N

∑N
j=1 ξ

N
j,2

∣∣∣ ∧ 1
4

)
ξN

i,2
t

 ,

where ξN
i,k i.i.d. Rademacher. Costs for player i :

JN
i (u) = 2 + EN

1 +
1
6

∫ 2

0
ui,1(s,X N)ds − 1

3

∣∣∣ 1
N

N∑
j=1

ξN
j,2

∣∣∣ ∧ 1
4

 .
Nash equilibrium: u such that ui,1 ≡ −1 for all i ∈ {1, . . . ,N}.
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Counterexample: limit system

Dynamics, given p ∈M, (ξ, α) ∈ A with Law(ξ) = ν:X1(t)
X2(t)
X3(t)

 =

ξ1

ξ2

0

+

∫ t

0

α1(s)−
∣∣∫

R3 w(y)p(s, dy)
∣∣ ∧ 1

4
0
1

 ds.

Suppose p is such that supp(p(t)) ⊆ cl(O) and
∫
R3 w(y)p(t , dy) = 0 for

all t . Dynamics then reduce to

(4)

X1(t)
X2(t)
X3(t)

 =

ξ1 +
∫ t

0 α1(s)ds
ξ2

t

 ,

while costs are equal to

J((ξ, α); p) = E
[
τX ∧ 2 + 1 +

τX ∧ 2
12

· X1(τX ∧ 2)

]
.
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Counterexample: mean field game

If (ξ, α) is such that

α(t , ω) =

{
(1, 0, 0)T if ξ1(ω) = 1 and t ∈ [0, 1],

(−1, 0, 0)T otherwise,

then J((ξ, α); p) = V (ν; p). Let X be the unique solution of Eq. (4) under
such a control, and set

p∗(t , ·)
.

= P(X ∈ · | τX > t), t ∈ [0, 2].

Then supp(p∗(t)) ⊆ cl(O) and
∫
R3 w(y)p∗(t , dy) = 0 for all t .

Define the feedback strategy u∗ in U1 by

u∗(t , ϕ)
.

=


(1, 0, 0)T if ϕ1(t) ≥ 1 and t ∈ [0, 1],

(−1, 0, 0)T if ϕ1(t) ≤ −1,
arbitrarily otherwise.

Then (ν, u∗, p∗) is a feedback solution of the mean field game.
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Counterexample: approximate Nash equilibria?

In analogy with Theorem 1, define uN = (uN
1 , . . . , u

N
N ) by

uN
i (t ,ϕ)

.
= u∗(t , ϕi ), (t ,ϕ) ∈ [0,T ]×X N .

Then uN ∈ UN
fb and, if N is odd,

JN
i (uN) = 3− 1

2
· 2

6
− 1

3
E

∣∣∣ 1
N

N∑
j=1

ξN
j,2

∣∣∣ ∧ 1
4

 ≥ 33
12
.

Suppose player one deviates from uN by always playing −1. Then

JN
1 ([uN,−1,−1]) = 3− 1

3
− 1

3
EN

∣∣∣ 1
N

N∑
j=1

ξN
j,2

∣∣∣ ∧ 1
4

 ≤ 32
12
.

Player one thus saves costs of 1/12 by deviating from uN for every N odd
(asymptotically, also for N even).
Strategy vectors induced by solution (ν, u∗, p∗) do not yield approximate
Nash equilibria with vanishing error!
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Conclusions and open questions

Class of mean field games and N-player games with
absorption.

Construction of approximate Nash equilibria from the mean
field game under non-degeneracy condition. Counter-example
in the degenerate case.

Sufficient conditions for existence of solutions. What about
uniqueness / non-uniqueness?
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Conclusions

Thank you.
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