Examples of Restoration of Uniqueness in Mean-Field Games

François Delarue (Nice - J.-A. Dieudonné)

June 15th 2017

MFG Conference Rome

1．Motivation

Uniqueness in MFG

- MFG of the general form \leadsto time $[0, T]$, state in \mathbb{R}^{d}
- freeze a path $\left(\mu_{t}\right)_{t \in[0, T]} \leadsto$ representative player

$$
d X_{t}=\left(b\left(X_{t}, \mu_{t}\right)+\alpha_{t}\right) d t+\sigma d W_{t}
$$

\leadsto with $X_{0} \sim \mu_{0}$ and $\sigma \in\{0,1\}, \quad \mathrm{T}>0$

- cost functional of the form

$$
J(\alpha)=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T}\left(f\left(X_{t}, \mu_{t}\right)+\frac{1}{2}\left|\alpha_{t}\right|^{2}\right) d t\right]
$$

- find $\left(\mu_{t}\right)_{t \in[0, T]}$ such that $\mu_{t}=\operatorname{Law}\left(X_{t}^{\text {optimal }}\right)$
- Standard example for uniqueness [Lasry-Lions]
- b independent of μ and f and g monotone in μ

$$
\int_{\mathbb{R}^{d}}\left(f(x, \mu)-f\left(x, \mu^{\prime}\right)\right) d\left(\mu-\mu^{\prime}\right)(x) \geq 0
$$

Restoration of uniqueness

- General purpose is to restore uniqueness by forcing the equilibria by a random noise
- Long history for ODEs
- ODE driven by bounded non-Lipschitz velocity field

$$
\dot{X}_{t}=b\left(t, X_{t}\right), \quad \text { with prescribed } X_{0}
$$

$n \rightarrow b$ continuous \Rightarrow existence but uniqueness

- well-known: noise may restore ! [Veretennikov, Krylov...]
- perturb the dynamics by a Brownian motion $\left(B_{t}\right)_{t \geq 0}$

$$
d X_{t}=b\left(t, X_{t}\right) d t+d B_{t}
$$

- based on smoothing properties of the heat kernel \leadsto use the fact that the PDE

$$
\partial_{t} u(t, x)+\frac{1}{2} \Delta u(t, x)+b(t, x) \cdot D_{x} u(t, x)=f(t, x)
$$

has a strong generalized solution if f is bounded
2. A toy example

Linear quadratic control problem

- Choose $X_{0}=0, \sigma=1, d=1$ and dynamics of the form

$$
d X_{t}=\left[\left(c_{b} X_{t}+b\left(\mu_{t}\right)\right)+\alpha_{t}\right] d t+d W_{t}
$$

- cost functional of the form

$$
J(\alpha)=\mathbb{E}\left[\frac{1}{2}\left(c_{g} X_{T}+g\left(\mu_{T}\right)\right)^{2}+\int_{0}^{T}\left[\frac{1}{2}\left(c_{f} X_{t}+f\left(\mu_{t}\right)\right)^{2}+\frac{1}{2} \alpha_{t}^{2}\right] d t\right]
$$

- coefficients c_{b}, c_{f}, c_{g} may be arbitrarily chosen (say 1)
- σ may be 0 or $1 \leadsto$ does not matter in this toy example \leadsto analysis relies on the convex structure of the problem
- General form of the optimizer over α when μ is fixed

$$
\alpha_{t}=-\eta_{t} X_{t}-h_{t}
$$

- η and $h \leadsto$ deterministic and η independent of μ !
- optimal trajectories

$$
d X_{t}=\left(\left(1-\eta_{t}\right) X_{t}+b\left(\mu_{t}\right)-h_{t}\right) d t+\sigma d W_{t}
$$

Linear quadratic control problem

- Choose $X_{0}=0, \sigma=1, d=1$ and dynamics of the form

$$
d X_{t}=\left[\left(c_{b} X_{t}+b\left(\mu_{t}\right)\right)+\alpha_{t}\right] d t+d W_{t}
$$

- cost functional of the form

$$
J(\alpha)=\mathbb{E}\left[\frac{1}{2}\left(c_{g} X_{T}+g\left(\mu_{T}\right)\right)^{2}+\int_{0}^{T}\left[\frac{1}{2}\left(c_{f} X_{t}+f\left(\mu_{t}\right)\right)^{2}+\frac{1}{2} \alpha_{t}^{2}\right] d t\right]
$$

- coefficients c_{b}, c_{f}, c_{g} may be arbitrarily chosen (say 1)
- σ may be 0 or $1 \sim$ does not matter in this toy example \sim analysis relies on the convex structure of the problem
- General form of the optimizer over α when μ is fixed

$$
\alpha_{t}=-\eta_{t} X_{t}-h_{t}
$$

- η and $h \leadsto$ deterministic and η independent of μ !
$\circ X$ is an O.-U. process \leadsto marginal of X is Gaussian with fixed variance \leadsto fixed point on the mean only!

Search for equilibria

- Characterization of (η, h) for a given μ
- equation for $\eta \leadsto$ Riccati equation (with $c_{b}=c_{f}=c_{g}=1$)

$$
\dot{\eta}_{t}=\eta_{t}^{2}-2 \eta_{t}-1, \quad \eta_{T}=1
$$

- equation for $h \sim$ backward linear ODE

$$
\dot{h}_{t}=-\left(\left(1-\eta_{t}\right) h_{t}+f\left(\mu_{t}\right)+b\left(\mu_{t}\right) \eta_{t}\right), \quad h_{T}=g\left(\mu_{T}\right)
$$

- Equilibrium condition \leadsto find μ s.t. μ_{t} is the marginal law of

$$
d X_{t}=\left(\left(1-\eta_{t}\right) X_{t}+b\left(\mu_{t}\right)-h_{t}\right) d t+d W_{t}
$$

- key point is $\mu_{t} \sim \mathcal{N}\left(\bar{\mu}_{t}, \sigma_{t}^{2}\right)$ with $\begin{aligned} & \bar{\mu}_{t}=\int_{\mathbb{R}} x d \mu_{t}(x) \\ & \sigma_{t}=\sigma_{t}\left(\eta_{t}\right) \text { fixed }\end{aligned}$
$\Rightarrow b\left(\mu_{t}\right)=\bar{b}\left(t, \bar{\mu}_{t}\right)$, same for f and g
- End up with forward backward ODE

$$
\begin{aligned}
& \dot{\bar{\mu}}_{t}=\left(\left(1-\eta_{t}\right) \bar{\mu}_{t}+\bar{b}\left(t, \bar{\mu}_{t}\right)-h_{t}\right) \\
& \dot{h}_{t}=-\left(\left(1-\eta_{t}\right) h_{t}+\bar{f}\left(t, \bar{\mu}_{t}\right)+\bar{b}\left(t, \bar{\mu}_{t}\right) \eta_{t}\right), \quad h_{T}=\bar{g}\left(\bar{\mu}_{T}\right)
\end{aligned}
$$

Uniqueness to the FB system

- FB system \leadsto finite-dimensional writing of the MFG system
- Cauchy-Lipschitz theory in small time only
- may loose existence / uniqueness on a given time interval
- Characteristics system of finite-dimensional master equation

$$
\begin{aligned}
& \partial_{t} v(t, x)+\left(\left(1-\bar{\eta}_{t}\right) x+\bar{b}(t, x)-v\left(t, x_{t}\right)\right) \partial_{x} v(t, x) \\
& \quad+\left(\left(1-\eta_{t}\right) v(t, x)+\bar{f}(t, x)+\bar{b}(t, x) \eta_{t}\right) \\
& v(T, x)=g(x)
\end{aligned}
$$

- if smooth solution $n \rightarrow h_{t}=v\left(t, \bar{\mu}_{t}\right)$
- Well-posedness if $\bar{b} \equiv 0, \bar{f}, \bar{g} \nearrow \Rightarrow$! of characteristics
- if not \Rightarrow shocks may emerge in finite time...
- $\sigma=1$ does not help but Laplace in master restores uniquess
$\leadsto \rightarrow$ meaning?

Common noise

- Return to the FB system and add a noise

$$
\begin{aligned}
& d \bar{\mu}_{t}=\left(\left(1-\eta_{t}\right) \bar{\mu}_{t}+\bar{b}\left(t, \bar{\mu}_{t}\right)-h_{t}\right) d t+\epsilon d B_{t} \\
& d h_{t}=-\left(\left(1-\eta_{t}\right) h_{t}+\bar{f}\left(t, \bar{\mu}_{t}\right)+\bar{b}\left(t, \bar{\mu}_{t}\right) \eta_{t}\right) d t \\
& h_{T}=\bar{g}\left(\bar{\mu}_{T}\right)
\end{aligned}
$$

- B new Brownian motion \Perp of $W, \quad \epsilon>0$

Common noise

- Return to the FB system and add a noise

$$
\begin{aligned}
& d \bar{\mu}_{t}=\left(\left(1-\eta_{t}\right) \bar{\mu}_{t}+\bar{b}\left(t, \bar{\mu}_{t}\right)-h_{t}\right) d t+\epsilon d B_{t} \\
& d h_{t}=-\left(\left(1-\eta_{t}\right) h_{t}+\bar{f}\left(t, \bar{\mu}_{t}\right)+\bar{b}\left(t, \bar{\mu}_{t}\right) \eta_{t}\right) d t-d M_{t} \\
& h_{T}=\bar{g}\left(\bar{\mu}_{T}\right)
\end{aligned}
$$

- B new Brownian motion \Perp of $W, \quad \epsilon>0$
- M martingale term to force the solution to be adapted (theory of backward SDEs) \leadsto no major role in the sequel

Common noise

- Return to the FB system and add a noise

$$
\begin{aligned}
& d \bar{\mu}_{t}=\left(\left(1-\eta_{t}\right) \bar{\mu}_{t}+\bar{b}\left(t, \bar{\mu}_{t}\right)-h_{t}\right) d t+\epsilon d B_{t} \\
& d h_{t}=-\left(\left(1-\eta_{t}\right) h_{t}+\bar{f}\left(t, \bar{\mu}_{t}\right)+\bar{b}\left(t, \bar{\mu}_{t}\right) \eta_{t}\right) d t-d M_{t} \\
& h_{T}=\bar{g}\left(\bar{\mu}_{T}\right)
\end{aligned}
$$

- B new Brownian motion \Perp of $W, \quad \epsilon>0$
- M martingale term to force the solution to be adapted (theory of backward SDEs) \leadsto no major role in the sequel
- Known fact: If \bar{b}, \bar{f} and \bar{g} are Lipschitz and bounded $\Rightarrow \exists$!
- roughly speaking, add $\varepsilon^{2} \partial_{x x}^{2}$ in master equation

Common noise

- Return to the FB system and add a noise

$$
\begin{aligned}
& d \bar{\mu}_{t}=\left(\left(1-\eta_{t}\right) \bar{\mu}_{t}+\bar{b}\left(t, \bar{\mu}_{t}\right)-h_{t}\right) d t+\epsilon d B_{t} \\
& d h_{t}=-\left(\left(1-\eta_{t}\right) h_{t}+\bar{f}\left(t, \bar{\mu}_{t}\right)+\bar{b}\left(t, \bar{\mu}_{t}\right) \eta_{t}\right) d t-d M_{t} \\
& h_{T}=\bar{g}\left(\bar{\mu}_{T}\right)
\end{aligned}
$$

- B new Brownian motion \Perp of $W, \quad \epsilon>0$
- M martingale term to force the solution to be adapted (theory of backward SDEs) \leadsto no major role in the sequel
- Known fact: If \bar{b}, \bar{f} and \bar{g} are Lipschitz and bounded $\Rightarrow \exists$!
- roughly speaking, add $\varepsilon^{2} \partial_{x x}^{2}$ in master equation
- Interpretation of B in the definition of the equilibria?

$$
d X_{t}=\left(c_{b}\left(X_{t}+b\left(t, \mu_{t}\right)\right)+\alpha_{t}\right) d t+\sigma d W_{t}+\epsilon d B_{t}
$$

- fixed point condition $\leadsto \mu_{t}=\mathcal{L}\left(X_{t}^{\star, \mu} \mid B\right)$ and $\bar{\mu}_{t}=\mathbb{E}\left[X_{t}^{\star, \mu} \mid B\right]$
B is common noise!

3. A more general case $(\sigma=0)$

Framework

- Return to the general setting but $\sigma=0$
- representative player $\sim d X_{t}=\left(b\left(X_{t}, \mu_{t}\right)+\alpha_{t}\right) d t$
- cost functional

$$
J(\alpha)=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T}\left(f\left(X_{t}, \mu_{t}\right)+\frac{1}{2}\left|\alpha_{t}\right|^{2}\right) d t\right]
$$

- Optimal trajectories when $\left(\mu_{t}\right)_{0 \leq t \leq T}$ is frozen \leadsto Pontryagin

$$
\begin{aligned}
& d X_{t}=\left(b\left(X_{t}, \mu_{t}\right)-Y_{t}\right) d t \\
& d Y_{t}=-\left(\left[D_{x} b\left(X_{t}, \mu_{t}\right)\right]^{\top} Y_{t}+D_{x} f\left(X_{t}, \mu_{t}\right)\right) d t \\
& Y_{T}=D_{x} g\left(X_{T}, \mu_{t}\right)
\end{aligned}
$$

- $D_{x} b \equiv 0, D_{x} f$ and $D_{x} g$ non-decreasing and Lipschitz in $x \Rightarrow \exists$!

$$
\left(D_{x} f(x, \mu)-D_{x} f\left(x^{\prime}, \mu\right)\right) \cdot\left(x-x^{\prime}\right) \geq 0
$$

Framework

- Return to the general setting but $\sigma=0$
- representative player $\sim d X_{t}=\left(b\left(X_{t}, \mu_{t}\right)+\alpha_{t}\right) d t$
- cost functional

$$
J(\alpha)=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T}\left(f\left(X_{t}, \mu_{t}\right)+\frac{1}{2}\left|\alpha_{t}\right|^{2}\right) d t\right]
$$

- Optimal trajectories when $\left(\mu_{t}\right)_{0 \leq t \leq T}$ is frozen \leadsto Pontryagin

$$
\begin{aligned}
& d X_{t}=\left(b\left(X_{t}, \operatorname{Law}\left(X_{t}\right)\right)-Y_{t}\right) d t \\
& d Y_{t}=-\left(\left[D_{x} b\left(X_{t}, \operatorname{Law}\left(X_{t}\right)\right)\right]^{\top} Y_{t}+D_{x} f\left(X_{t}, \operatorname{Law}\left(X_{t}\right)\right)\right) d t \\
& Y_{T}=D_{x} g\left(X_{T}, \operatorname{Law}\left(X_{t}\right)\right)
\end{aligned}
$$

$\circ D_{x} b \equiv 0, D_{x} f$ and $D_{x} g$ non-decreasing and Lipschitz in $x \Rightarrow \exists$!

- Implement the MFG condition
- solve forward-backward system with $\mu_{t}=\operatorname{Law}\left(X_{t}\right) \leadsto$ MKV
\circ if monotonicity in $\mu \Rightarrow \exists!$; if no monotonicity in μ ?

Randomizing the solution

- From now on $\leadsto b$ independent of x and $d=1$
- Force the dynamics to mollify in the direction of the measure
- pay attention: no reason to have a Gaussian structure \leadsto forcing must be infinite dimensional
- somehow must force the law \leadsto force the random variable itself seen as an element of L^{2} space
- Construct the initial condition on $L^{2}\left(\mathbb{S}^{1}\right)$ with $\mathbb{S}^{1}=$ circle
\circ random variables $X_{t}, Y_{t}: \mathbb{S}^{1} \rightarrow \mathbb{R}$ and $\operatorname{Law}\left(X_{t}\right)=\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}$
- Dynamics rewrite

$$
\begin{aligned}
& d X_{t}(x)=\left(b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right)-Y_{t}(x)\right) d t \\
& d Y_{t}(x)=-\partial_{x} f\left(X_{t}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right) d t \\
& Y_{T}(x)=\partial_{x} g\left(X_{T}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{T}^{-1}\right), \quad x \in \mathbb{S}^{1}
\end{aligned}
$$

force the dynamics with infinite dimensional white noise!

Infinite dimensional forward-backward

- Look at the system

$$
\begin{aligned}
& d X_{t}(x)=\left(b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right)-Y_{t}(x)\right) d t \\
& d Y_{t}(x)=-\partial_{x} f\left(X_{t}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right) d t \\
& Y_{T}(x)=\partial_{x} g\left(X_{T}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{T}^{-1}\right), \quad x \in \mathbb{S}^{1}
\end{aligned}
$$

Infinite dimensional forward-backward

- Look at the system

$$
\begin{array}{ll}
d X_{t}(x)=\left(b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right)-Y_{t}(x)\right) d t & +d B_{t}(x) \\
d Y_{t}(x)=-\partial_{x} f\left(X_{t}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right) d t & \\
Y_{T}(x)=\partial_{x} g\left(X_{T}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{T}^{-1}\right), \quad x \in \mathbb{S}^{1} &
\end{array}
$$

- B time space white noise on \mathbb{S}^{1}

$$
B_{t}(x)=B_{t}^{0}(x)+\sum_{n \geq 1} \sqrt{2}\left(\cos (2 \pi n x) B_{t}^{n,+}+\sin (2 \pi n x) B_{t}^{n,-}\right)
$$

$\leadsto\left(B^{n, \pm}\right)_{n \in \mathbb{N}}$ independent Brownian motions

Infinite dimensional forward-backward

- Look at the system

$$
\begin{aligned}
& d X_{t}(x)=\left(b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right)-Y_{t}(x)\right) d t+\partial_{x}^{2} X_{t}(x) d t+d B_{t}(x) \\
& d Y_{t}(x)=-\partial_{x} f\left(X_{t}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right) d t \\
& Y_{T}(x)=\partial_{x} g\left(X_{T}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{T}^{-1}\right), \quad x \in \mathbb{S}^{1}
\end{aligned}
$$

- B time space white noise on \mathbb{S}^{1}

$$
B_{t}(x)=B_{t}^{0}(x)+\sum_{n \geq 1} \sqrt{2}\left(\cos (2 \pi n x) B_{t}^{n,+}+\sin (2 \pi n x) B_{t}^{n,-}\right)
$$

$\leadsto\left(B^{n, \pm}\right)_{n \in \mathbb{N}}$ independent Brownian motions
$\circ B$ does not belong to $L^{2}\left(\mathbb{S}^{1}\right) \leadsto$ need friction term to force X_{t} to be in $L^{2}\left(\mathbb{S}^{1}\right) \Rightarrow \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}$ random measure

Infinite dimensional forward-backward

- Look at the system

$$
\begin{aligned}
& d X_{t}(x)=\left(b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right)-Y_{t}(x)\right) d t+\partial_{x}^{2} X_{t}(x) d t+d B_{t}(x) \\
& d Y_{t}(x)=-\partial_{x} f\left(X_{t}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right) d t+d M_{t}(x) \\
& Y_{T}(x)=\partial_{x} g\left(X_{T}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{T}^{-1}\right), \quad x \in \mathbb{S}^{1}
\end{aligned}
$$

- B time space white noise on \mathbb{S}^{1}

$$
B_{t}(x)=B_{t}^{0}(x)+\sum_{n \geq 1} \sqrt{2}\left(\cos (2 \pi n x) B_{t}^{n,+}+\sin (2 \pi n x) B_{t}^{n,-}\right)
$$

$\leadsto\left(B^{n, \pm}\right)_{n \in \mathbb{N}}$ independent Brownian motions
$\circ B$ does not belong to $L^{2}\left(\mathbb{S}^{1}\right) \leadsto$ need friction term to force X_{t} to be in $L^{2}\left(\mathbb{S}^{1}\right) \Rightarrow \operatorname{Leb}_{\mathbb{S} 1} \circ X_{t}^{-1}$ random measure

- $M L^{2}\left(\mathbb{S}^{1}\right)$-valued martingale w.r.t filtration generated by B
- the initial condition X_{0} is constructed on $\mathbb{S}^{1} \leadsto$ the probability space carrying X_{0} also carries the x-position of the white noise

Infinite dimensional forward-backward

- Look at the system

$$
\begin{aligned}
& d X_{t}(x)=\left(b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right)-Y_{t}(x)\right) d t+\partial_{x}^{2} X_{t}(x) d t+d B_{t}(x) \\
& d Y_{t}(x)=-\partial_{x} f\left(X_{t}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right) d t+d M_{t}(x) \\
& Y_{T}(x)=\partial_{x} g\left(X_{T}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{T}^{-1}\right), \quad x \in \mathbb{S}^{1}
\end{aligned}
$$

- Equivalent to forcing Fourier modes

$$
\begin{aligned}
& d X_{t}^{n, \pm}=\left(b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right) \delta_{n}^{0}-Y_{t}^{n, \pm}\right) d t-(2 \pi n)^{2} X_{t}^{n, \pm} d t+d B_{t}^{n, \pm} \\
& d Y_{t}^{n, \pm}=-\left(\partial_{x} f\left(X_{t}(\cdot), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right)\right)^{n, \pm} d t+d M_{t}^{n, \pm} \\
& Y_{T}^{n, \pm}=\left(\partial_{x} g\left(X_{T}(\cdot), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{T}^{-1}\right)\right)^{n, \pm}
\end{aligned}
$$

Infinite dimensional forward-backward

- Look at the system

$$
\begin{aligned}
& d X_{t}(x)=\left(b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right)-Y_{t}(x)\right) d t+\partial_{x}^{2} X_{t}(x) d t+d B_{t}(x) \\
& d Y_{t}(x)=-\partial_{x} f\left(X_{t}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right) d t+d M_{t}(x) \\
& Y_{T}(x)=\partial_{x} g\left(X_{T}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{T}^{-1}\right), \quad x \in \mathbb{S}^{1}
\end{aligned}
$$

- Formal stochastic Pontryagin for the optimization of

$$
\begin{aligned}
& \int_{\mathbb{S}^{1}} g\left(U_{T}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{T}^{-1}\right) d x \\
& \quad+\int_{0}^{T} \int_{\mathbb{S}^{1}}\left[f\left(U_{t}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right)+\frac{1}{2}\left|\alpha_{t}(x)\right|^{2}\right] d x d t
\end{aligned}
$$

\circ over $d U_{t}(x)=b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right) d t+\alpha_{t}(x) d t+\partial_{x}^{2} X_{t}(x) d t+d B_{t}(x)$
$\circ\left(\alpha_{t}(\cdot)\right)_{t}$ progressively measurable process with values in $L^{2}\left(\mathbb{S}^{1}\right)$
\leadsto rigorously

$$
U_{t}(x)=X_{t}(x)+\int_{0}^{t}\left(\alpha_{s}(x)-Y_{s}(x)\right) d s
$$

Solvability results

- Assumptions
- $\partial_{x} f, \partial_{x} g$ non-decreasing in $x \leadsto$ convex optimization $\circ b, \partial_{x} f, \partial_{x} g$ bounded and Lipschitz $\rightsquigarrow \rightarrow$ use the 2-Wasserstein distance to fit the L^{2} framework
- Statement: Existence and uniqueness for any initial condition

$$
Y_{t}=\mathcal{V}\left(t, X_{t}\right), \mathcal{V} \text { mild solution of master equation on } L^{2}\left(\mathbb{S}^{1}\right)
$$

- Form of the master equation

$$
\begin{aligned}
& \partial_{t} \mathcal{V}(t, X)+D \mathcal{V}(t, X) \cdot b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ X^{-1}\right)-D \mathcal{V}(t, X) \cdot \mathcal{V}(t, X) \\
& \quad+\partial_{x} f\left(X, \operatorname{Leb}_{\mathbb{S}^{1}} \circ X^{-1}\right)+L \mathcal{V}(t, X)=0 \\
& \mathcal{V}(T, X)=\partial_{x} g\left(X, \operatorname{Leb}_{\mathbb{S}^{1}} \circ X^{-1}\right)
\end{aligned}
$$

- where D is Fréchet derivative and L is O.-U. operator on $L^{2}\left(\mathbb{S}^{1}\right)$

$$
L U(t, X)=\frac{1}{2} \operatorname{Trace}\left(D^{2} U(t, X)\right)+\left\langle D U(t, X), \partial^{2} X\right\rangle_{L^{2}\left(\mathbb{S}^{1}\right)}
$$

Sketch of proof

- Cauchy Lipschitz theory works in small time
- small time \leadsto depends upon Lipschitz constant of terminal condition $\mathcal{V}(T, \cdot)$
- Aim at propagating
- need a priori bound for Lipschitz constant of $\mathcal{V}(t, \cdot)$
- given by the smoothing property of O.-U. operator

$$
\sup _{h \in L^{2}\left(\mathbb{S}^{1}\right)}\left|D\left(e^{t L} \varphi\right)(h)\right| \leq C t^{-1 / 2} \sup _{h \in L^{2}\left(\mathbb{S}^{1}\right)}|\varphi(h)|
$$

- control the Lipschitz constant away from the boundary using mild formulation

$$
\begin{aligned}
\mathcal{V}^{n}(t, \cdot)= & e^{(T-t) L}\left[\left(\partial_{x} g\left(\cdot, \operatorname{Leb}_{\mathbb{S}^{1}} \circ \cdot^{-1}\right)\right)^{n}\right] \\
& +\int_{t}^{T} e^{(s-t) L}\left[\left(\partial_{x} f\left(\cdot, \operatorname{Leb}_{\mathbb{S}^{1}} \circ \cdot \cdot^{-1}\right)\right)^{n}\right] d s \\
& +\int_{t}^{T} e^{(s-t) L}\left[\left(\left\langle b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ \cdot^{-1}\right)-\mathcal{V}(s, \cdot), D \mathcal{V}^{n}(s, \cdot)\right\rangle\right)^{n}\right] d s
\end{aligned}
$$

4. Link with MFG

Approximating particle system

- Consider N particles
- particle k located at $\exp (i 2 \pi k / N)$ on \mathbb{S}^{1}
- $\bar{X}_{t}^{k} \leadsto$ state of particle number k

- Discrete version of the stochastic forward-backward system
- mean field plus local interactions to nearest neighbors

$$
\begin{aligned}
& d \bar{X}_{t}^{k}=(b(\underbrace{\bar{\mu}_{t}^{N}}_{\text {discrete Laplace }})-\bar{Y}_{t}^{k}+\underbrace{N^{2}\left(\bar{X}_{t}^{k+1}+\bar{X}_{t}^{k-1}-2 \bar{X}_{t}^{k}\right)}) d t+\sqrt{N} d B_{t}^{k} \\
& \frac{1}{N} \sum_{i=1}^{N} \delta_{\bar{X}_{t}^{i}} \\
& d \bar{Y}_{t}^{k}=-\partial_{x} f\left(\bar{X}_{t}^{k}, \bar{\mu}_{t}^{N}\right) d t+d \text { martingale }_{t}, \quad \bar{Y}_{T}^{k}=\partial_{x} g\left(\bar{X}_{T}^{k}, \bar{\mu}_{T}^{N}\right) \\
& \leadsto B^{1}, \ldots, B^{N} \text { independent Brownian motions }
\end{aligned}
$$

$$
\sqrt{N} d B_{t}^{k}=N \int_{k / N}^{(k+1) / N} d B_{t}(x)
$$

Approximating particle system

- Consider N particles
- particle k located at $\exp (i 2 \pi k / N)$ on \mathbb{S}^{1}
- $\bar{X}_{t}^{k} \leadsto$ state of particle number k

- Discrete version of the stochastic forward-backward system
- mean field plus local interactions to nearest neighbors

$$
\begin{aligned}
& d \bar{X}_{t}^{k}=(b\left(\bar{\mu}_{t}^{N}\right)-\bar{Y}_{t}^{k}+\underbrace{N^{2}\left(\bar{X}_{t}^{k+1}+\bar{X}_{t}^{k-1}-2 \bar{X}_{t}^{k}\right)}_{\text {discrete Laplace }}) d t+\sqrt{N} d B_{t}^{k} \\
& d \bar{Y}_{t}^{k}=-\partial_{x} f\left(\bar{X}_{t}^{k}, \bar{\mu}_{t}^{N}\right) d t+d \text { martingale }, \quad \bar{Y}_{T}^{k}=\partial_{x} g\left(\bar{X}_{T}^{k}, \bar{\mu}_{T}^{N}\right)
\end{aligned}
$$

$\leadsto B^{1}, \ldots, B^{N}$ independent Brownian motions

$$
\sqrt{N} d B_{t}^{k}=N \int_{k / N}^{(k+1) / N} d B_{t}(x)
$$

\leadsto initial condition $\leadsto \bar{X}_{0}^{k}=N \int_{k / N}^{(k+1) / N} X_{0}(x) d x \quad\left(X_{0} C^{0}\right)$

Approximating particle system

- Consider N particles
- particle k located at $\exp (i 2 \pi k / N)$ on \mathbb{S}^{1}
- $\bar{X}_{t}^{k} \leadsto$ state of particle number k

- Discrete version of the stochastic forward-backward system
- mean field plus local interactions to nearest neighbors

$$
d \bar{X}_{t}^{k}=(b\left(\bar{\mu}_{t}^{N}\right)-\bar{Y}_{t}^{k}+\underbrace{N^{2}\left(\bar{X}_{t}^{k+1}+\bar{X}_{t}^{k-1}-2 \bar{X}_{t}^{k}\right)}_{\text {discrete Laplace }}) d t+\sqrt{N} d B_{t}^{k}
$$

$$
d \bar{Y}_{t}^{k}=-\partial_{x} f\left(\bar{X}_{t}^{k}, \bar{\mu}_{t}^{N}\right) d t+d \text { martingale }_{t}, \quad \bar{Y}_{T}^{k}=\partial_{x} g\left(\bar{X}_{T}^{k}, \bar{\mu}_{T}^{N}\right)
$$

$\leadsto B^{1}, \ldots, B^{N}$ independent Brownian motions

$$
\sqrt{N} d B_{t}^{k}=N \int_{k / N}^{(k+1) / N} d B_{t}(x)
$$

\leadsto ansatz $\leadsto \underbrace{\bar{X}_{t}^{k}}_{\text {discrete state }} \approx N \int_{k / N}^{(k+1) / N} \underbrace{X_{t}(x)}_{\text {limiting state }} d x$

Approximating particle system

- Consider N particles
- particle k located at $\exp (i 2 \pi k / N)$ on \mathbb{S}^{1}
- $\bar{X}_{t}^{k} \leadsto$ state of particle number k

- Discrete version of the stochastic forward-backward system
- mean field plus local interactions to nearest neighbors

$$
\begin{aligned}
& d \bar{X}_{t}^{k}=(b\left(\bar{\mu}_{t}^{N}\right)-\bar{Y}_{t}^{k}+\underbrace{N^{2}\left(\bar{X}_{t}^{k+1}+\bar{X}_{t}^{k-1}-2 \bar{X}_{t}^{k}\right)}_{\text {discrete Laplace }}) d t+\sqrt{N} d B_{t}^{k} \\
& d \bar{Y}_{t}^{k}=-\partial_{x} f\left(\bar{X}_{t}^{k}, \bar{\mu}_{t}^{N}\right) d t+d \text { martingale }_{t}, \quad \bar{Y}_{T}^{k}=\partial_{x} g\left(\bar{X}_{T}^{k}, \bar{\mu}_{T}^{N}\right)
\end{aligned}
$$

$\leadsto B^{1}, \ldots, B^{N}$ independent Brownian motions

$$
\sqrt{N} d B_{t}^{k}=N \int_{k / N}^{(k+1) / N} d B_{t}(x)
$$

$$
\leadsto \sum_{k=0}^{N-1} \bar{X}_{t}^{k} \mathbf{1}_{[k / N,(k+1) / N)} \approx X_{t}
$$

Connection with a game

- Connect the previous particle system with a game?
- natural candidate \sim replace $-\bar{Y}^{k}$ by a general control $\bar{\alpha}^{k}$
- difficulty \sim local interaction too sensitive to variations of $\bar{\alpha}^{k}$
- Strategy \leadsto consider N particles per site instead of $1 \Rightarrow N^{2}$ particles
- $X_{t}^{k, j} \leadsto$ state of j th particle at site k
- Consider controlled dynamics

$$
d X_{t}^{k, j}=\left(b\left(\mu_{t}^{N}\right)+\alpha_{t}^{k, j}+N^{2} \frac{1}{N} \sum_{j=1}^{N}\left(X_{t}^{k+1, j}+X_{t}^{k-1, j}-2 X_{t}^{k, j}\right)\right) d t+\sqrt{N} d B_{t}^{k}
$$

- empirical measure $\mu_{t}^{N}=N^{-2} \sum_{k=0}^{N-1} \sum_{j=1}^{N} \delta_{X_{t}^{k, j}}$
- cost to k

$$
\mathbb{E}\left[g\left(X_{T}^{k, j}, \bar{\mu}_{T}^{N}\right)+\int_{0}^{T}\left(f\left(X_{s}^{k, j}, \bar{\mu}_{s}^{N}\right)+\frac{1}{2}\left|\alpha_{s}^{k_{, j}}\right|^{2}\right) d s\right]
$$

Connection with a game

- Connect the previous particle system with a game?
- natural candidate \sim replace $-\bar{Y}^{k}$ by a general control $\bar{\alpha}^{k}$
- difficulty \sim local interaction too sensitive to variations of $\bar{\alpha}^{k}$
- Strategy \leadsto consider N particles per site instead of $1 \Rightarrow N^{2}$ particles - $X_{t}^{k, j} \leadsto$ state of j th particle at site k
- Consider controlled dynamics

$$
d X_{t}^{k, j}=\left(b\left(\mu_{t}^{N}\right)+\alpha_{t}^{k, j}+N^{2} \frac{1}{N} \sum_{j=1}^{N}\left(X_{t}^{k+1, j}+X_{t}^{k-1, j}-2 X_{t}^{k, j}\right)\right) d t+\sqrt{N} d B_{t}^{k}
$$

- Use limiting system as nearly Nash for the game?

$$
\circ \text { open-loop version } \alpha_{t}^{k, j}=N \int_{k / N}^{(k+1) / N} Y_{t}(x) d x
$$

Connection with a game

- Connect the previous particle system with a game?
- natural candidate \sim replace $-\bar{Y}^{k}$ by a general control $\bar{\alpha}^{k}$
- difficulty \leadsto local interaction too sensitive to variations of $\bar{\alpha}^{k}$
- Strategy \leadsto consider N particles per site instead of $1 \Rightarrow N^{2}$ particles
- $X_{t}^{k, j} \leadsto$ state of j th particle at site k
- Consider controlled dynamics

$$
d X_{t}^{k, j}=\left(b\left(\mu_{t}^{N}\right)+\alpha_{t}^{k, j}+N^{2} \frac{1}{N} \sum_{j=1}^{N}\left(X_{t}^{k+1, j}+X_{t}^{k-1, j}-2 X_{t}^{k, j}\right)\right) d t+\sqrt{N} d B_{t}^{k}
$$

- Use limiting system as nearly Nash for the game?
- closed-loop

$$
\alpha_{t}^{k, j}=N \int_{k / N}^{(k+1) / N} \underbrace{\mathcal{V}\left(\frac{1}{N} \sum_{k=0}^{N-1} \sum_{j=1}^{N} X_{t}^{k, j} \mathbf{1}_{[k / N,(k+1) / N)}(\cdot)\right)(x) d x}_{\in L^{2}\left(\mathbb{S}^{1}\right)}
$$

Connection with a game

- Connect the previous particle system with a game?
- natural candidate \leadsto replace $-\bar{Y}^{k}$ by a general control $\bar{\alpha}^{k}$
- difficulty \leadsto local interaction too sensitive to variations of $\bar{\alpha}^{k}$
- Strategy \leadsto consider N particles per site instead of $1 \Rightarrow N^{2}$ particles
$\circ X_{t}^{k, j} \leadsto$ state of j th particle at site k
- Consider controlled dynamics

$$
d X_{t}^{k, j}=\left(b\left(\mu_{t}^{N}\right)+\alpha_{t}^{k, j}+N^{2} \frac{1}{N} \sum_{j=1}^{N}\left(X_{t}^{k+1, j}+X_{t}^{k-1, j}-2 X_{t}^{k, j}\right)\right) d t+\sqrt{N} d B_{t}^{k}
$$

- Use limiting system as nearly Nash for the game?
- open/closed-loop
- Statement: form approximate Nash equilibrium
- Sketch of proof [Gyongy, Nualart...] \leadsto use discrete semi-group and L^{∞} stability of solutions w.r.t. L^{2} norms of the controls

5. Zero noise limit

Small noise system

- Consider small viscosity $\varepsilon>0$

$$
\begin{aligned}
& d X_{t}(x)=\left(b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right)-Y_{t}(x)\right) d t+\varepsilon^{2} \partial_{x}^{2} X_{t}(x) d t+\varepsilon d B_{t}(x) \\
& d Y_{t}(x)=-\partial_{x} f\left(X_{t}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right) d t+\text { dmartingale }_{t} \\
& Y_{T}(x)=\partial_{x} g\left(X_{T}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{T}^{-1}\right), \quad x \in \mathbb{S}^{1} \\
& \circ\left(X_{t}, Y_{t}\right)_{0 \leq t \leq T} \leadsto\left(X_{t}^{\varepsilon}, Y_{t}^{\varepsilon}\right)_{0 \leq t \leq T}
\end{aligned}
$$

- Limits as $\varepsilon \searrow 0$? (initial law of X_{0} being fixed)

$$
\circ\left(\left(\mu_{t}^{\varepsilon}=\operatorname{Leb}_{\mathbb{S}^{1}} \circ\left(X_{t}^{\varepsilon}\right)^{-1}\right)_{0 \leq t \leq T}\right)_{\varepsilon \in(0,1)} \text { tight on } C\left([0, T], \mathcal{P}_{2}(\mathbb{R})\right)
$$

- Claim: Weak limits $\left(\mu_{t}\right)_{0 \leq t \leq T}$ are random equilibria of original MFG
- $\left(\mu_{t}\right)_{0 \leq t \leq T}$ random process $\Perp X_{0} \sim \mu_{0}, \mathbb{F} \leadsto$ canonical filtration

$$
d X_{t}=\left(b\left(X_{t}, \mu_{t}\right)+\alpha_{t}\right) d t, \quad X_{0} \sim \mu_{0}
$$

- with cost $J(\boldsymbol{\alpha})=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T}\left(f\left(X_{t}, \mu_{t}\right)+\frac{1}{2}\left|\alpha_{t}\right|^{2}\right) d t\right]$

$$
\mu_{t}=\mathcal{L}\left(X_{t}^{\star,} \mid\left(\mu_{s}\right)_{0 \leq s \leq t}\right), \quad t \in[0, T]
$$

6. Selection of equilibria: An example

Selection of equilibria

- Use vanishing viscosity to select equilibria
- focus on simpler (but typical of LQ models) case ($X_{0}=0$)

$$
d X_{t}=\alpha_{t} d t+d W_{t}, \quad J(\alpha)=\mathbb{E}\left[X_{T} g\left(\mu_{T}\right)+c_{g} g\left(\mu_{T}\right)^{2}+\frac{1}{2} \int_{0}^{T} \alpha_{t}^{2} d t\right]
$$

- Same analysis as before \leadsto ODE system

$$
\begin{aligned}
& \qquad \dot{\bar{\mu}}_{t}=-h_{t}, \quad \dot{h_{t}}=0, \\
& \circ h_{T}=\bar{g}\left(\bar{\mu}_{T}\right) \quad\left(\bar{\mu}_{0}=0\right) \\
& \circ \text { choose } \bar{g}(x)= \begin{cases}-x & x \in[-1,1] \\
-\operatorname{sign}(x) & |x| \geq 1\end{cases}
\end{aligned}
$$

- Equilibria parametrized by $A=h_{T} \Leftrightarrow A=\bar{g}(-T A)$
- $T>1(1=$ time to observe a shock $) \Rightarrow A \in\{-1,0,1\}$

$$
A=0 \Rightarrow J^{o p t}=0, \quad A= \pm 1 \Rightarrow J^{o p t}=-T A^{2}+c_{g} A^{2}+\frac{1}{2} T A^{2}
$$

- if c_{g} large then equilibrium of lower cost is $A=0$!

Vanishing viscosity

- Restore uniqueness by adding a common noise

$$
\begin{aligned}
& d \bar{\mu}_{t}^{\epsilon}=-h_{t}^{\epsilon} d t+\epsilon d B_{t}, \\
& d h_{t}^{\epsilon}=d M_{t}^{\epsilon}, \quad h_{T}^{\epsilon}=\bar{g}\left(\bar{\mu}_{T}^{\epsilon}\right)
\end{aligned}
$$

- PDE interpretation $\leadsto h_{t}^{\epsilon}=v^{\epsilon}\left(t, \bar{\mu}_{t}^{\epsilon}\right)$
- v^{ϵ} solves viscous Burgers equation

$$
\partial_{t} v^{\epsilon}-v^{\epsilon} \partial_{x} v^{\epsilon}+\frac{\epsilon^{2}}{2} v^{\epsilon}=0, \quad v^{\epsilon}(T, \cdot)=\bar{g}
$$

- known fact: $v^{\epsilon}(t, x) \rightarrow-\operatorname{sign}(x)$ as $\epsilon \searrow 0$ for $t<T-1$
- Statement: As $\epsilon \searrow 0\left(\bar{\mu}_{t}^{\epsilon}\right)_{t}$ converges (in law) to $\frac{1}{2} \delta_{(t)_{t}}+\frac{1}{2} \delta_{(-t)_{t}}$
- do not see $A=0$!

Sketch of proof

- In time ϵ, the particle should go beyond ϵ^{2-} with high probability
- then, the drift is very close to $\pm 1 \leadsto$ the particle follows the drift with very high probability

7．If $\sigma=1 \ldots$

With independent Brownian motions

- In the previous example \sim no Brownian motion in the dynamics
- difficulty \leadsto would require to define $W(x)$, for $x \in \mathbb{S}^{1}$, but hardly compatible with adaptedness constraints
- Strategy is to disentangle the dynamics of the representative player and the dynamics of the environment
- dynamics of the representative player

$$
d X_{t}=b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ \chi_{t}^{-1}\right) d t+\alpha_{t} d t+d W_{t}
$$

\leadsto typical form of $\alpha_{t}=\alpha\left(t, X_{t}, \chi_{t}(\cdot)\right)$ with $\chi_{t}(\cdot)$ in $L^{2}\left(\mathbb{S}^{1}\right)$
\leadsto cost of $f\left(X_{t}, \chi_{t}(\cdot)\right)$ and $g\left(X_{T}, \chi_{T}(\cdot)\right)$

- dynamics of the environment on $L^{2}\left(\mathbb{S}^{1}\right)$

$$
\begin{aligned}
d \chi_{t}(x)= & b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ \chi_{t}^{-1}\right) d t+\psi\left(t, \chi_{t}(x), \chi_{t}(\cdot)\right) d t \\
& +\Delta \chi_{t}(x) d t+d w_{t}(x)+d B_{t}(x)
\end{aligned}
$$

$\leadsto w$ Brownian constructed on $\left(\mathbb{S}^{1}\right.$, Leb) and B white noise on \mathbb{S}^{1}
\circ fix ψ and find $\alpha^{\text {optimal }} \Rightarrow$ fixed point $\psi=\alpha^{\text {optimal }}$

