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1. Motivation



Uniqueness in MFG

•MFG of the general form{ time [0,T], state in Rd

◦ freeze a path (µt)t∈[0,T]{ representative player

dXt =
(
b(Xt, µt) + αt

)
dt + σdWt

 with X0 ∼ µ0 and σ ∈ {0, 1}, T >0

◦ cost functional of the form

J
(
α
)

= E
[
g
(
XT , µT

)
+

∫ T

0

(
f
(
Xt, µt

)
+ 1

2 |αt|
2
)
dt

]
◦ find (µt)t∈[0,T] such that µt = Law(Xoptimal

t )

• Standard example for uniqueness [Lasry-Lions]

◦ b independent of µ and f and g monotone in µ∫
Rd

(
f (x, µ) − f (x, µ′)

)
d
(
µ − µ′

)
(x) ≥ 0



Restoration of uniqueness

• General purpose is to restore uniqueness by forcing the equilibria by
a random noise

• Long history for ODEs

◦ ODE driven by bounded non-Lipschitz velocity field

Ẋt = b(t,Xt), with prescribed X0

 b continuous⇒ existence but uniqueness

◦ well-known: noise may restore ! [Veretennikov, Krylov...]

◦ perturb the dynamics by a Brownian motion (Bt)t≥0

dXt = b(t,Xt)dt + dBt

◦ based on smoothing properties of the heat kernel{ use the fact
that the PDE

∂tu(t, x) + 1
2∆u(t, x) + b(t, x) · Dxu(t, x) = f (t, x)

has a strong generalized solution if f is bounded



2. A toy example



Linear quadratic control problem
• Choose X0 = 0, σ = 1, d = 1 and dynamics of the form

dXt =
[(

cbXt + b(µt)
)

+ αt
]
dt + dWt

◦ cost functional of the form

J(α) = E
[

1
2
(
cgXT + g(µT )

)2
+

∫ T

0

[ 1
2
(
cf Xt + f (µt)

)2
+ 1

2α
2
t
]
dt

]
◦ coefficients cb, cf , cg may be arbitrarily chosen (say 1)

◦ σ may be 0 or 1{ does not matter in this toy example{
analysis relies on the convex structure of the problem

• General form of the optimizer over α when µ is fixed

αt = −ηtXt − ht

◦ η and h{ deterministic and η independent of µ!

◦ optimal trajectories

dXt =
(
(1−ηt)Xt + b(µt)−ht

)
dt + σdWt
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◦ σ may be 0 or 1{ does not matter in this toy example{
analysis relies on the convex structure of the problem

• General form of the optimizer over α when µ is fixed

αt = −ηtXt − ht

◦ η and h{ deterministic and η independent of µ!

◦ X is an O.-U. process{ marginal of X is Gaussian with fixed
variance{ fixed point on the mean only!



Search for equilibria
• Characterization of (η, h) for a given µ

◦ equation for η{ Riccati equation (with cb = cf = cg = 1)

η̇t = ηt
2 − 2ηt − 1, ηT = 1

◦ equation for h{ backward linear ODE

ḣt = −
(
(1 − ηt)ht + f (µt) + b(µt)ηt

)
, hT = g(µT )

• Equilibrium condition{ find µ s.t. µt is the marginal law of

dXt =
(
(1 − ηt)Xt + b(µt) − ht

)
dt + dWt

◦ key point is µt ∼ N(µ̄t, σ
2
t ) with

µ̄t =
∫
R

xdµt(x)
σt = σt(ηt) fixed

⇒ b(µt) = b̄(t, µ̄t), same for f and g

• End up with forward backward ODE

˙̄µt =
(
(1 − ηt)µ̄t + b̄(t, µ̄t) − ht

)
ḣt = −

(
(1 − ηt)ht + f̄ (t, µ̄t) + b̄(t, µ̄t)ηt

)
, hT = ḡ(µ̄T )



Uniqueness to the FB system

• FB system{ finite-dimensional writing of the MFG system

◦ Cauchy-Lipschitz theory in small time only

◦ may loose existence / uniqueness on a given time interval

• Characteristics system of finite-dimensional master equation

∂tv(t, x) +
(
(1 − η̄t)x + b̄(t, x) − v(t, xt)

)
∂xv(t, x)

+
(
(1 − ηt)v(t, x) + f̄ (t, x) + b̄(t, x)ηt

)
v(T , x) = g(x)

◦ if smooth solution ht = v(t, µ̄t)

•Well-posedness if b̄ ≡ 0, f̄ , ḡ↗⇒ ! of characteristics

◦ if not⇒ shocks may emerge in finite time...

• σ = 1 does not help but Laplace in master restores uniquess

 meaning?



Common noise
• Return to the FB system and add a noise

dµ̄t =
(
(1 − ηt)µ̄t + b̄(t, µ̄t) − ht

)
dt + εdBt

dht = −
(
(1 − ηt)ht + f̄ (t, µ̄t) + b̄(t, µ̄t)ηt

)
dt

− dMt

hT = ḡ(µ̄T )

◦ B new Brownian motion ⊥⊥ of W, ε > 0

◦ M martingale term to force the solution to be adapted (theory of
backward SDEs){ no major role in the sequel

• Known fact: If b̄, f̄ and ḡ are Lipschitz and bounded⇒ ∃!

◦ roughly speaking, add ε2∂2
xx in master equation

• Interpretation of B in the definition of the equilibria?

dXt =
(
cb

(
Xt + b(t, µt)

)
+ αt

)
dt + σdWt + εdBt

◦ fixed point condition{ µt = L(X?,µ
t |B) and µ̄t = E[X?,µ

t |B]

◦ B is common noise!
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3. A more general case (σ = 0)



Framework
• Return to the general setting but σ = 0

◦ representative player{ dXt =
(
b(Xt, µt) + αt

)
dt

◦ cost functional

J
(
α
)

= E
[
g
(
XT , µT

)
+

∫ T

0

(
f
(
Xt, µt

)
+ 1

2 |αt|
2
)
dt

]
• Optimal trajectories when (µt)0≤t≤T is frozen{ Pontryagin

dXt =
(
b
(
Xt, µt

)
− Yt

)
dt

dYt = −
([

Dxb
(
Xt, µt

)]>Yt + Dxf
(
Xt, µt

))
dt

YT = Dxg
(
XT , µt

)
◦ Dxb ≡ 0, Dxf and Dxg non-decreasing and Lipschitz in x⇒ ∃!(

Dxf (x, µ) − Dxf (x′, µ)
)
· (x − x′) ≥ 0

• Implement the MFG condition

◦ solve forward-backward system with µt = Law(Xt) MKV

◦ if monotonicity in µ⇒ ∃! ; if no monotonicity in µ?
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J
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= E
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g
(
XT , µT
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∫ T

0

(
f
(
Xt, µt

)
+ 1

2 |αt|
2
)
dt

]
• Optimal trajectories when (µt)0≤t≤T is frozen{ Pontryagin

dXt =
(
b
(
Xt,Law(Xt)

)
− Yt

)
dt

dYt = −
([

Dxb
(
Xt,Law(Xt)

)]>Yt + Dxf
(
Xt,Law(Xt)

))
dt

YT = Dxg
(
XT ,Law(Xt)

)
◦ Dxb ≡ 0, Dxf and Dxg non-decreasing and Lipschitz in x⇒ ∃!

• Implement the MFG condition

◦ solve forward-backward system with µt = Law(Xt) MKV

◦ if monotonicity in µ⇒ ∃! ; if no monotonicity in µ?



Randomizing the solution
• From now on{ b independent of x and d = 1

• Force the dynamics to mollify in the direction of the measure

◦ pay attention: no reason to have a Gaussian structure{ forcing
must be infinite dimensional

◦ somehow must force the law{ force the random variable itself
seen as an element of L2 space

• Construct the initial condition on L2(S1) with S1 = circle

◦ random variables Xt,Yt : S1 → R and Law(Xt) = LebS1 ◦ X−1
t

• Dynamics rewrite

dXt(x) =
(
b
(
LebS1 ◦ X−1

t
)
− Yt(x)

)
dt

dYt(x) = −∂xf
(
Xt(x),LebS1 ◦ X−1

t
)
dt

YT (x) = ∂xg
(
XT (x),LebS1 ◦ X−1

T
)
, x ∈ S1

◦ force the dynamics with infinite dimensional white noise!



Infinite dimensional forward-backward
• Look at the system

dXt(x) =
(
b
(
LebS1 ◦ X−1

t
)
− Yt(x)

)
dt

+ ∂2
xXt(x)dt + dBt(x)

dYt(x) = −∂xf
(
Xt(x),LebS1 ◦ X−1

t
)
dt

+ dMt(x)

YT (x) = ∂xg
(
XT (x),LebS1 ◦ X−1

T
)
, x ∈ S1

◦ B time space white noise on S1

Bt(x) = B0
t (x) +

∑
n≥1

√
2
(
cos(2πnx)Bn,+

t + sin(2πnx)Bn,−
t

)
 (Bn,±)n∈N independent Brownian motions

◦ B does not belong to L2(S1){ need friction term to force Xt to
be in L2(S1)⇒ LebS1 ◦ X−1

t random measure

◦ M L2(S1)-valued martingale w.r.t filtration generated by B

◦ the initial condition X0 is constructed on S1 { the probability
space carrying X0 also carries the x-position of the white noise
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Infinite dimensional forward-backward
• Look at the system

dXt(x) =
(
b
(
LebS1 ◦ X−1

t
)
− Yt(x)

)
dt + ∂2

xXt(x)dt + dBt(x)

dYt(x) = −∂xf
(
Xt(x),LebS1 ◦ X−1

t
)
dt + dMt(x)

YT (x) = ∂xg
(
XT (x),LebS1 ◦ X−1

T
)
, x ∈ S1

• Equivalent to forcing Fourier modes

dXn,±
t =

(
b
(
LebS1 ◦ X−1

t
)
δ0

n − Yn,±
t

)
dt− (2πn)2Xn,±

t dt + dBn,±
t

dYn,±
t = −

(
∂xf

(
Xt(·),LebS1 ◦ X−1

t
))n,±

dt + dMn,±
t

Yn,±
T =

(
∂xg

(
XT (·),LebS1 ◦ X−1

T
))n,±



Infinite dimensional forward-backward
• Look at the system

dXt(x) =
(
b
(
LebS1 ◦ X−1

t
)
− Yt(x)

)
dt + ∂2

xXt(x)dt + dBt(x)

dYt(x) = −∂xf
(
Xt(x),LebS1 ◦ X−1

t
)
dt + dMt(x)

YT (x) = ∂xg
(
XT (x),LebS1 ◦ X−1

T
)
, x ∈ S1

• Formal stochastic Pontryagin for the optimization of∫
S1

g
(
UT (x),LebS1 ◦ X−1

T
)
dx

+

∫ T

0

∫
S1

[
f
(
Ut(x),LebS1 ◦ X−1

t
)

+ 1
2 |αt(x)|2

]
dxdt

◦ over dUt(x) = b(LebS1 ◦ X−1
t )dt + αt(x)dt + ∂2

xXt(x)dt + dBt(x)

◦ (αt(·))t progressively measurable process with values in L2(S1)

 rigorously

Ut(x) = Xt(x) +

∫ t

0

(
αs(x) − Ys(x)

)
ds



Solvability results
• Assumptions

◦ ∂xf , ∂xg non-decreasing in x convex optimization

◦ b, ∂xf , ∂xg bounded and Lipschitz use the 2-Wasserstein
distance to fit the L2 framework

• Statement: Existence and uniqueness for any initial condition

Yt = V(t,Xt),V mild solution of master equation on L2(S1)

• Form of the master equation

∂tV(t,X) + DV(t,X) · b
(
LebS1 ◦ X−1

)
− DV(t,X) · V(t,X)

+ ∂xf
(
X,LebS1 ◦ X−1

)
+ LV(t,X) = 0

V(T ,X) = ∂xg
(
X,LebS1 ◦ X−1

)
◦ where D is Fréchet derivative and L is O.-U. operator on L2(S1)

LU(t,X) = 1
2 Trace

(
D2U(t,X)

)
+

〈
DU(t,X), ∂2X

〉
L2(S1)



Sketch of proof
• Cauchy Lipschitz theory works in small time

◦ small time depends upon Lipschitz constant of terminal
conditionV(T , ·)

• Aim at propagating

◦ need a priori bound for Lipschitz constant ofV(t, ·)

◦ given by the smoothing property of O.-U. operator

sup
h∈L2(S1)

∣∣∣D(
etLϕ

)
(h)

∣∣∣ ≤ Ct−1/2 sup
h∈L2(S1)

∣∣∣ϕ(h)
∣∣∣

◦ control the Lipschitz constant away from the boundary using
mild formulation

Vn(t, ·) = e(T−t)L
[(
∂xg(·,LebS1 ◦ ·

−1)
)n]

+

∫ T

t
e(s−t)L

[(
∂xf (·,LebS1 ◦ ·

−1)
)n]

ds

+

∫ T

t
e(s−t)L

[(〈
b(LebS1 ◦ ·

−1) −V(s, ·),DVn(s, ·)
〉)n]

ds



4. Link with MFG



Approximating particle system
• Consider N particles

◦ particle k located at exp(i2πk/N) on S1

◦ X̄k
t { state of particle number k

• Discrete version of the stochastic forward-backward system

◦ mean field plus local interactions to nearest neighbors

dX̄k
t =

(
b
(

µ̄N
t︸︷︷︸

1
N

N∑
i=1

δX̄i
t

)
− Ȳk

t + N2(X̄k+1
t + X̄k−1

t − 2X̄k
t
)︸                        ︷︷                        ︸

discrete Laplace

)
dt +

√
NdBk

t

dȲk
t = −∂xf

(
X̄k

t , µ̄
N
t
)
dt + dmartingalet, Ȳk

T = ∂xg
(
X̄k

T , µ̄
N
T
)

 B1, . . . , BN independent Brownian motions

√
NdBk

t = N
∫ (k+1)/N

k/N
dBt(x)
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X0(x)dx (X0 C

0)
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t︸︷︷︸
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k/N
Xt(x)︸︷︷︸

limiting state

dx
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(
X̄k

T , µ̄
N
T
)

 B1, . . . , BN independent Brownian motions

√
NdBk

t = N
∫ (k+1)/N

k/N
dBt(x)

 
N−1∑
k=0

X̄k
t 1[k/N,(k+1)/N) ≈ Xt



Connection with a game
• Connect the previous particle system with a game?

◦ natural candidate{ replace −Ȳk by a general control ᾱk

◦ difficulty{ local interaction too sensitive to variations of ᾱk

• Strategy{ consider N particles per site instead of 1⇒ N2 particles

◦ Xk,j
t { state of jth particle at site k

• Consider controlled dynamics

dXk,j
t =

(
b
(
µN

t
)

+ α
k,j
t + N2 1

N

N∑
j=1

(
Xk+1,j

t + Xk−1,j
t − 2Xk,j

t
))

dt +
√

NdBk
t

◦ empirical measure µN
t = N−2

N−1∑
k=0

N∑
j=1

δXk,j
t

◦ cost to k

E
[
g(Xk,j

T , µ̄
N
T ) +

∫ T

0

(
f (Xk,j

s , µ̄
N
s ) +

1
2
|α

k,j
s |

2
)
ds

]
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• Use limiting system as nearly Nash for the game?

◦ open-loop version αk,j
t = N

∫ (k+1)/N

k/N
Yt(x)dx

◦ open/closed-loop

• Statement: form approximate Nash equilibrium

◦ Sketch of proof [Gyongy, Nualart...] { use discrete semi-group
and L∞ stability of solutions w.r.t. L2 norms of the controls
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α
k,j
t = N

∫ (k+1)/N

k/N
V

( 1
N

N−1∑
k=0

N∑
j=1

Xk,j
t 1[k/N,(k+1)/N)(·)

)
︸                                     ︷︷                                     ︸

∈ L2(S1)

(x)dx
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• Statement: form approximate Nash equilibrium
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5. Zero noise limit



Small noise system
• Consider small viscosity ε > 0

dXt(x) =
(
b
(
LebS1 ◦ X−1

t
)
− Yt(x)

)
dt + ε2∂2

xXt(x)dt + εdBt(x)

dYt(x) = −∂xf
(
Xt(x),LebS1 ◦ X−1

t
)
dt + dmartingalet

YT (x) = ∂xg
(
XT (x),LebS1 ◦ X−1

T
)
, x ∈ S1

◦ (Xt,Yt)0≤t≤T { (Xε
t ,Y

ε
t )0≤t≤T

• Limits as ε↘ 0? (initial law of X0 being fixed)

◦
(
(µεt = LebS1 ◦ (Xε

t )−1)0≤t≤T
)
ε∈(0,1) tight on C

(
[0,T],P2(R)

)
• Claim: Weak limits (µt)0≤t≤T are random equilibria of original MFG

◦ (µt)0≤t≤T random process ⊥⊥ X0 ∼ µ0, F{ canonical filtration

dXt =
(
b(Xt, µt) + αt

)
dt, X0 ∼ µ0

◦ with cost J(α) = E
[
g(XT , µT ) +

∫ T
0

(
f (Xt, µt) + 1

2 |αt|
2
)
dt

]
µt = L

(
X?,µ

t |(µs)0≤s≤t
)
, t ∈ [0,T]



6. Selection of equilibria: An example



Selection of equilibria
• Use vanishing viscosity to select equilibria

◦ focus on simpler (but typical of LQ models) case (X0 = 0)

dXt = αtdt + dWt, J(α) = E
[
XTg(µT ) + cgg(µT )2 + 1

2

∫ T

0
α2

t dt
]

• Same analysis as before{ ODE system

˙̄µt = −ht, ḣt = 0, hT = ḡ(µ̄T )
(
µ̄0 = 0

)
◦ choose ḡ(x) =

{
−x x ∈ [−1, 1]
−sign(x) |x| ≥ 1

• Equilibria parametrized by A = hT ⇔ A = ḡ
(
−TA

)
◦ T > 1 (1 = time to observe a shock)⇒ A ∈ {−1, 0, 1}

A = 0⇒ Jopt = 0, A = ±1⇒ Jopt = −TA2 + cgA2 + 1
2 TA2

◦ if cg large then equilibrium of lower cost is A = 0!



Vanishing viscosity
• Restore uniqueness by adding a common noise

dµ̄εt = −hεt dt + εdBt,

dhεt = dMε
t , hεT = ḡ

(
µ̄εT

)
• PDE interpretation{ hεt = vε(t, µ̄εt )

◦ vε solves viscous Burgers equation

∂tvε − vε∂xvε +
ε2

2
vε = 0, vε(T , ·) = ḡ

◦ known fact: vε(t, x)→ −sign(x) as ε ↘ 0 for t < T − 1

• Statement: As ε ↘ 0 (µ̄εt )t converges (in law) to 1
2δ(t)t + 1

2δ(−t)t

◦ do not see A = 0!

0



Sketch of proof
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• In time ε, the particle should go beyond ε2− with high probability

◦ then, the drift is very close to ±1 the particle follows the drift
with very high probability



7. If σ = 1...



With independent Brownian motions
• In the previous example{ no Brownian motion in the dynamics

◦ difficulty{ would require to define W(x), for x ∈ S1, but hardly
compatible with adaptedness constraints

• Strategy is to disentangle the dynamics of the representative player
and the dynamics of the environment

◦ dynamics of the representative player

dXt = b
(
LebS1 ◦ χt

−1)dt + αtdt + dWt

 typical form of αt = α
(
t,Xt, χt(·)

)
with χt(·) in L2(S1)

 cost of f
(
Xt, χt(·)

)
and g

(
XT , χT (·)

)
◦ dynamics of the environment on L2(S1)

dχt(x) = b
(
LebS1 ◦ χt

−1)dt + ψ
(
t, χt(x), χt(·)

)
dt

+ ∆χt(x)dt + dwt(x) + dBt(x)

 w Brownian constructed on (S1,Leb) and B white noise on S1

◦ fix ψ and find αoptimal ⇒ fixed point ψ = αoptimal


