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1. Motivation



Uniqueness in MFG

o MFG of the general form ~» time [0, T], state in R4

o freeze a path (u,),c[0. 7~ representative player
dX[ = (b(Xt,ﬂf) alx a;)dl‘ + O_dW[

~» with Xg ~ ygpand oo € {0, 1}, T >0

o cost functional of the form
T
J(a) = E[g(XT,m) + f (FOXi ) + %Iazlz)dt]
0

o find (ﬂt)ze[(),T] such that My = Law(XtOPtimal)
e Standard example for uniqueness [Lasry-Lions]

o b independent of i and f and g monotone in u

fR () = e 1O~ 1)) 2 0



Restoration of uniqueness

e General purpose is to restore uniqueness by forcing the equilibria by
a random noise

e Long history for ODEs
o ODE driven by bounded non-Lipschitz velocity field
X, = b(t,X;), with prescribed X
~» b continuous = existence but vnigaeness
o well-known: noise may restore ! [Veretennikov, Krylov...]
o perturb the dynamics by a Brownian motion (B;),0
dX, = b(t, X,)dt + dB,

o based on smoothing properties of the heat kernel ~» use the fact
that the PDE

Ou(t,x) + %Au(t, x) + b(t,x) - Dyu(t,x) = f(t,x)

has a strong generalized solution if f is bounded



2. A toy example



Linear quadratic control problem

e Choose Xg = 0,0 = 1, d = 1 and dynamics of the form
dX, = [(coX; + b(uy)) + a;|dt + AW,

o cost functional of the form
T
(@) = B e + s + [ [HXs+1a0) + dofla

o coefficients ¢y, ¢7, ¢, may be arbitrarily chosen (say 1)

o o may be 0 or 1 ~» does not matter in this toy example ~»
analysis relies on the convex structure of the problem

o General form of the optimizer over @ when u is fixed
= -nX, — Iy
o i and h ~» deterministic and n independent of u!
o optimal trajectories

dX; = ((1-n0)X; + b(u)~h,)dt + ocdW,



Linear quadratic control problem

e Choose Xg = 0,0 = 1, d = 1 and dynamics of the form
dX, = [(coX; + b(uy)) + a;|dt + AW,

o cost functional of the form
T
(@) = B[ e + s + [ [HXs+1a0) + dofla

o coefficients ¢y, 7, ¢, may be arbitrarily chosen (say 1)

o o may be 0 or 1 ~ does not matter in this toy example ~»
analysis relies on the convex structure of the problem

e General form of the optimizer over @ when y is fixed
@ = -0 Xy — hy

o i and h ~» deterministic and n independent of !

o X is an O.-U. process ~» marginal of X is Gaussian with fixed
variance ~» fixed point on the mean only!



Search for equilibria

e Characterization of (7, /) for a given u
o equation for  ~» Riccati equation (with ¢;, = ¢y = ¢, = 1)
M= TIt -2n,-1, nr=1
o equation for s ~» backward linear ODE
~((1 =k + f ) + blums), b = glur)
¢ Equilibrium condition ~» find u s.t. 1, is the marginal law of
dX; = ((1 = 10X, + b(uy) = hy)dt + dW,

fodut(x)
= o(y) fixed

o key point is | i; ~ N(fi;, 02) | with 'ut

= b(u;) = b(t,i;), same for f and g
e End up with forward backward ODE
fir = ((1 = o + bt i) = hy)

he = =((1 = n)hy + F (6, ) + B fms), b = 2(ar)



Uniqueness to the FB system

e FB system ~» finite-dimensional writing of the MFG system
o Cauchy-Lipschitz theory in small time only
o may loose existence / uniqueness on a given time interval

e Characteristics system of finite-dimensional master equation

Ov(t,x) + (1 = f)x + b(t, x) — v(t, x;))O,V(t, X)
+ (1 =mov(t,x) + F(t, ) + bt, )
w(T, x) = g(x)

o if smooth solution ~» | 1, = v(t, j1;)

e Well-posedness if b = 0, f,g /' = ! of characteristics
o if not = shocks may emerge in finite time...
e 0 = 1 does not help but Laplace in master restores uniquess

~» meaning?



Common noise

e Return to the FB system and add a noise
dpi; = ((1 = o)t + b(t, fir) — hy)dt + edB,
dhy = =((1 = nhy +F(¢. ) + b(t. i)y dt
hr = g(ar)

o B new Brownian motion 1L of W, €>0
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backward SDEs) ~» no major role in the sequel
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Common noise

e Return to the FB system and add a noise
dpi; = ((1 = o)t + b(t, fir) — hy)dt + edB,
dh, = —((1 = n)hy + F(¢ ) + b(t. i)y )dt — dM,
hr = g(ar)
o B new Brownian motion 1L of W, €>0

o M martingale term to force the solution to be adapted (theory of
backward SDEs) ~» no major role in the sequel

e Known fact: If b, f and g are Lipschitz and bounded = 3!
o roughly speaking, add £%62, in master equation
o Interpretation of B in the definition of the equilibria?

dX, = (co(X; + b(t, ) + a;)dt + dW, + edB,

o fixed point condition ~» y; = £(X;**|B) and , = E[X,"*|B]

o | B is common noise! ‘




3. A more general case (o = 0)



Framework

e Return to the general setting but o = 0
o representative player ~» dX; = (b(Xy, ;) + a;)dt

o cost functional

J(a) = ]E[g(XT,uT) + LTV(XI,MI) + %|01t|2)d[]
e Optimal trajectories when (u,)o<;<7 1s frozen ~» Pontryagin
dX; = (b(X. 1) = ¥;)dt
dY, = —([Dxb X 11)] " Vs + Df (Xi. p17) )t

Y1 = Dyg(X1, p1)
o Db =0, D,f and D, g non-decreasing and Lipschitz in x = 3!

(Dxf(x, ) = Dof (&', p)) - (x = x) 2 0



Framework

e Return to the general setting but o = 0
o representative player ~» dX; = (b(Xy, ;) + a;)dt

o cost functional

J(a) = E[g(XT,m) + fo T(f(xt,uf) + %|a,|2)dt]
e Optimal trajectories when (u,)o<;<7 1s frozen ~» Pontryagin
dX; = (b(X,, Law(X))) - Y;)dt
dY, = —([Dxb(X,, Law(X)))]" Y, + Dyf (X;, Law(X,)) dt
Yr = Dg(Xr, Law(X)))
o Db =0, D,f and D,g non-decreasing and Lipschitz in x = 3!
e Implement the MFG condition

o solve forward-backward system with y, = Law(X;) »» MKV

o if monotonicity in ¢ = 3! ; if no monotonicity in u?



Randomizing the solution

e From now on ~» b independent of x and d = 1
e Force the dynamics to mollify in the direction of the measure

o pay attention: no reason to have a Gaussian structure ~» forcing
must be infinite dimensional

o somehow must force the law ~» force the random variable itself
seen as an element of L? space

e Construct the initial condition on L>(S') with S! = circle
o random variables X;, ¥; : S! — R and Law(X;) = Lebgi o X!

e Dynamics rewrite
dX,(x) = (b(Lebgi o X;'!) — Y,(x))dr

dY,(x) = =0 f(X,(x), Lebg o X; )dr
Yr(x) = 0,g(Xr(x), Lebg: OX}l), xeS!

o ‘ force the dynamics with infinite dimensional white noise!




Infinite dimensional forward-backward

e Look at the system
dX,(x) = (b(Lebgi 0 X;") — Y,(x))dt

dY,(x) = =0 f(X,(x), Lebgi o X; )dr
Yr(x) = d,8(Xr(x), Lebgi 0 X7'), xeS!
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o B time space white noise on S!
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n>1

~» (B™*),en independent Brownian motions



Infinite dimensional forward-backward

e Look at the system
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be in L*(S!) = Lebgi o X;! random measure



Infinite dimensional forward-backward

e Look at the system

dX,(x) = (b(Lebgi 0 X;") = Y,(x))dt + 0:X,(x)dt + dB,(x)
dY,(x) = =0 (X,(x), Lebgi o X, )dr + dM,(x)
Yr(x) = d,8(Xr(x), Lebgi 0 X7'), xeS!

o B time space white noise on S!

B/(x) = BY(x) + ) V2(cos(2mnx)B}"* + sin(2rnx)B;")

n>1

~» (B™*),en independent Brownian motions

o B does not belong to L*(S") ~ need friction term to force X; to
be in L*(S!) = Lebgi o X;! random measure

o M L*(S")-valued martingale w.r.t filtration generated by B

o the initial condition X is constructed on S! ~» the probability
space carrying Xy also carries the x-position of the white noise



Infinite dimensional forward-backward

e ook at the system

dX,(x) = (b(Lebgi 0 X;") = Y,(x))dt + 0:X,(x)dt + dB,(x)
dY,(x) = =0 f(X,(x), Lebgi o X, )dr + dM,(x)
Yr(x) = d,8(Xr(x),Lebgi 0 X7'), xeS!
e Equivalent to forcing Fourier modes
dX"* = (b(Lebgi o X; )60 - ¥["*)dt — (2nn)*X]"*dt + dB}*
dY"* = ~(Bf (X,(), Lebg 0 X; 1)) “dr + dM*
. _10\LE
Y7 = (0xg(Xr ("), Lebgi o X71))



Infinite dimensional forward-backward

e Look at the system
dX,(x) = (b(Lebg 0 X;') = Y,(x))dt + 97X, (x)dt + dB,(x)
dY,(x) = =0 f(X,(x), Lebgi o X; Vdr + dM,(x)
Yr(x) = d:g(X7(x), Lebgi 0 X7'), xeS!

e Formal stochastic Pontryagin for the optimization of

f g(Ur(x), Lebgi o X7')dx
Sl

T
+ f f [f(Ut(x),LebsloXt_l)+%|a',(x)|2]dxdt
0 st

o over dU,(x) = b(Lebg1 o X, )dt + a,(x)dt + 9°X,(x)dt + dB(x)
o (ay()); progressively measurable process with values in L2(SY

~» rigorously

!
Ui(x) = X;(x) + f (as(x) = Ys(x))ds
0



Solvability results

e Assumptions
o 0yf, 0xg non-decreasing in x ~» convex optimization

o b, 0,f, 0,g bounded and Lipschitz ~» use the 2-Wasserstein
distance to fit the L2 framework

e Statement: Existence and uniqueness for any initial condition

Y: = V(¢t,X;), V mild solution of master equation on L*(ShH

e Form of the master equation
oV, X) + DV, X) - b(Lebsl o X‘l) - DV(t,X) - V(t,X)
+ f (X, Lebgi o X 1) + LV(£,X) = 0
V(T X) = 3,8(X. Lebgi 0 X ™)
o where D is Fréchet derivative and L is O.-U. operator on LX(SY

LU(t,X) = $Trace(D*U(t, X)) + (DU (t, X), *X) > a1,



Sketch of proof

e Cauchy Lipschitz theory works in small time

o small time ~» depends upon Lipschitz constant of terminal
condition V(T -)

e Aim at propagating
o need a priori bound for Lipschitz constant of V(z, -)
o given by the smoothing property of O.-U. operator

sup |D(eo)h)| < Ct'* sup |o(h)|
heL2(SY) heL2(S)

o control the Lipschitz constant away from the boundary using
mild formulation

V'(1,) = eT L[ (3xg(, Lebgi o 7HY'|
+ f ' "M (£ (-, Lebg o --‘))”]ds

¥ f ' OOH ((b(Lebgt 0~ = Vs, ), DV'(5.))) |ds
t



4. Link with MFG



Approximating particle system

e Consider N particles
o particle k located at exp(i27k/N) on S'

o Xk ~» state of particle number k

¢ Discrete version of the stochastic forward-backward system

o mean field plus local interactions to nearest neighbors

dxF = (b( @ )- ¥+ NPXH 4 XN 2XK))dr + VNGB
,Ut t ' ' t !

N
1 5-'
N 2, %%

dyk = 8xf( K i)dt + dmartingale,, V% = d,g(X%, @)

discrete Laplace

~» B, ... BN independent Brownian motions

(k+1)/N
VNdB* = N dB,(x)
k/N



Approximating particle system

e Consider N particles
o particle k located at exp(i27k/N) on S'

o Xk ~» state of particle number k

¢ Discrete version of the stochastic forward-backward system

o mean field plus local interactions to nearest neighbors

dXE = (b(E) - ¥ + N3 (X! + X1 — 2X8))dr + VNdB!

discrete Laplace
ok _ ok =N . ok _ ok -N
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Approximating particle system

e Consider N particles
o particle k located at exp(i27k/N) on S'

o Xk ~» state of particle number k

¢ Discrete version of the stochastic forward-backward system
o mean field plus local interactions to nearest neighbors

dXE = (b(EY) - ¥+ N3 (X! + X1 — 2X8))dr + VNdB!

discrete Laplace
ok _ gk =N . ok _ vk -N
dY; = -0 (X}, i )dt + dmartingale,, Yy = 0,8(X7, A7)

~> B!, ..., BN independent Brownian motions
(k+1)/N
VNdB = N dBy(x)
kN
. (k+1)/N
~» ansatz ~» Xf ~N X (x) dx
—— k/N S——

discrete state limiting state



Approximating particle system

e Consider N particles
o particle k located at exp(i27k/N) on S'

o Xk ~» state of particle number k

¢ Discrete version of the stochastic forward-backward system

o mean field plus local interactions to nearest neighbors

dXE = (b(EY) - ¥ + N3 (X! + X1 — 2X0))dr + VNdB!

discrete Laplace
dYF = -0 f(X¥, iY)dt + dmartingale,, Y% = 9,g(Xk, @Y

~» Bl ... BN independent Brownian motions
(k+1)/N
VNdB* = N dB,(x)
k/N
N-1
2 Flayn eerymy ~ Xi

>~
I

0



Connection with a game

e Connect the previous particle system with a game?
o natural candidate ~» replace —Y* by a general control @*
o difficulty ~» local interaction too sensitive to variations of a*

e Strategy ~» consider N particles per site instead of 1 = N? particles
) Xf J ~ state of Jjth particle at site k

e Consider controlled dynamics

dXM = (b(y7)+af=’+N2 Z(x““ux" Ly 2x’”))dt+ VNdB
Jj=1

N-1 N
o empirical measure u = N -2 Z Z O ki
k=0 j=1
o cost to k

g0, ) + f (ot ) + S1alP)as]



Connection with a game

e Connect the previous particle system with a game?
o natural candidate ~» replace —Y* by a general control &*
o difficulty ~» local interaction too sensitive to variations of a*

e Strategy ~» consider N particles per site instead of 1 = N? particles
° Xf 7 ~> state of jth particle at site k

e Consider controlled dynamics
N
. . 1 . L .
X = (b)) + o + NZN Do XY - 2x79))de + VNdBE
j=1

e Use limiting system as nearly Nash for the game?
o (k+1)/N
o open-loop version ,” = N Y, (x)dx
k/N



Connection with a game

e Connect the previous particle system with a game?
o natural candidate ~» replace —Y* by a general control @*
o difficulty ~» local interaction too sensitive to variations of a*

e Strategy ~» consider N particles per site instead of 1 = N? particles
) Xf J ~ state of Jjth particle at site k

e Consider controlled dynamics

X’ = (b(uY) + o)’ + N~ Z(X“” + X"~ 2x,"))dt + VNdB
Fl
e Use limiting system as nearly Nash for the game?

o closed-loop
(k+1)/N

-1 N
1 .
kJ =N Z fo Jl[k/N,(k+1)/N)(‘))(X)dx

k: j=1

e L2(Sh



Connection with a game

e Connect the previous particle system with a game?
o natural candidate ~»> replace —Y* by a general control a*
o difficulty ~» local interaction too sensitive to variations of a*

e Strategy ~» consider N particles per site instead of 1 = N? particles
) Xf‘j ~» state of jth particle at site k

e Consider controlled dynamics
‘ . A . : :
Xy = (b)) + ol + N Do+ XY = 2x,9) )de + VNdBE
j=1

e Use limiting system as nearly Nash for the game?
o open/closed-loop
e Statement: form approximate Nash equilibrium

o Sketch of proof [Gyongy, Nualart...] ~» use discrete semi-group
and L stability of solutions w.r.t. L*> norms of the controls



5. Zero noise limit



Small noise system

e Consider small viscosity € > 0
dX,(x) = (b(Lebg 0 X;") = Y,(x))dt + &> 02X, (x)dt + edBy(x)
dYy(x) = =0,/ (X,(x), Lebgi o Xt_l)dt + dmartingale,
Y7(x) = d,8(X7(x),Lebgi 0 X7'), xeS!
o (X, Yo<i<T ~ (Xf, Yf)OStST
e Limits as € N\, 07 (initial law of X being fixed)
o (U6 = Lebgi o (X9 osi<r)peo.1) tight on C([0, T1, Po(R))
e Claim: Weak limits (u;)p<;<r are random equilibria of original MFG

o (tr)o<t<r random process L Xy ~ uo, F ~» canonical filtration

dX; = (b ) + ar)dt,  Xo ~ po
o with cost J(@) = E[¢(Xr. ur) + [ (fXeupt) + Sl

e = L (uposs<i), 1 €10,T]



6. Selection of equilibria: An example



Selection of equilibria

e Use vanishing viscosity to select equilibria

o focus on simpler (but typical of LQ models) case (Xo = 0)

T
dX, = aydt + dW,, J(@) = E|Xrg(ur) + cog(ur)” + % f afdt]
0
e Same analysis as before ~ ODE system
fu==h., h=0. hr=g(@r) (i0=0)

-X xe[-1,1]

o choose g(x) = { —sign(x) =1

e Equilibria parametrized by A = hy © A = g(-TA)
oT > 1 (1 =time to observe a shock) = A € {-1,0, 1}

A=0=J%=0, A==zl=J%=-TA* +c,A* + JTA?

o if ¢, large then equilibrium of lower costis A = 0!



Vanishing viscosity

e Restore uniqueness by adding a common noise

di€ = —hedt + edB,,
dhi = dM;, hy = g(@7)

e PDE interpretation ~» h{ = ve(t, fif)

o v¢ solves viscous Burgers equation

2
€
0V — v o, + EVE =0, Vv({T,)=¢g

o known fact: v¢(#, x) — —sign(x) as e \ O fort < T -1

e Statement:

As €\, 0 (i), converges (in law) to 16, + 36s,

o donotsee A = 0!




Sketch of proof

€

E-!- -«(Y..{/..v /Vl\rv'l.

O o e @ = e

e In time ¢, the particle should go beyond €2~ with high probability

o then, the drift is very close to =1 ~» the particle follows the drift
with very high probability



T.Ifo=1...



With independent Brownian motions

e In the previous example ~» no Brownian motion in the dynamics

o difficulty ~» would require to define W(x), for x € S!, but hardly
compatible with adaptedness constraints

e Strategy is to disentangle the dynamics of the representative player
and the dynamics of the environment

o dynamics of the representative player
dX; = b(Lebgi oy, V)dt + aydt + dW,
~ typical form of a; = a(t, X;, v,(-)) with y,(-) in L*(S")
~» cost of f(Xz, x(-)) and g(X7, x7(-))
o dynamics of the environment on L*(S")
dy(x) = b(Lebgi oy, )dr + (e, x:(x), xi(-))dt
+ Ay (x)dt + dw(x) + dB(x)
~> w Brownian constructed on (S', Leb) and B white noise on S!

o fix ¢ and find @°Pi™ = fixed point y = @°Ptimal



