Ground states of focusing Mean-Field Games on \mathbb{R}^N

Marco Cirant

Università di Padova

15 June 2017

joint work with A. Cesaroni (Università di Padova)

Setting

We consider a Mean-Field Game where the dynamics of a typical agent is driven by the controlled SDE

$$dX_{\rm s} = -v_{\rm s}ds + \sqrt{2\varepsilon} \, dB_{\rm s}$$
 on \mathbb{R}^N ,

where v_s is the control and B_s is a Brownian motion, and the cost, of long-time average form, is

$$\lim_{T\to\infty}\frac{1}{T}\mathbb{E}\int_0^T [L(v_s) + V(X_s) - m^{\alpha}(X_s)]ds.$$

In what follows,

 $\blacksquare \ \varepsilon, \alpha > 0,$

•
$$L(q) \sim |q|^{\gamma'}, \quad \gamma' = \frac{\gamma}{\gamma-1} > 1$$

•
$$0 \le V(x) \to \infty$$
 as $|x| \to \infty$

Equilibria of this MFG are intimately related to solutions (u, λ, m) of the following system

$$\begin{cases} -\varepsilon \Delta u + H(\nabla u) + \lambda = -m^{\alpha} + V(x) \\ -\varepsilon \Delta m - \operatorname{div}(m \nabla H(\nabla u)) = 0 & \text{on } \mathbb{R}^{N}, \\ \int_{\mathbb{R}^{N}} m = 1, \ m > 0 \end{cases}$$
(1)

which is a system of stationary coupled viscous HJB and Fokker-Planck equations, where $H(p) = L^*(p) \sim |p|^{\gamma}$.

Equilibria of this MFG are intimately related to solutions (u, λ, m) of the following system

$$\begin{cases} -\varepsilon \Delta u + H(\nabla u) + \lambda = -m^{\alpha} + V(x) \\ -\varepsilon \Delta m - \operatorname{div}(m \nabla H(\nabla u)) = 0 & \text{on } \mathbb{R}^{N}, \\ \int_{\mathbb{R}^{N}} m = 1, \ m > 0 \end{cases}$$
(1)

which is a system of stationary coupled viscous HJB and Fokker-Planck equations, where $H(p) = L^*(p) \sim |p|^{\gamma}$.

We will address the following problems:

- **1** For fixed $\varepsilon > 0$, prove the existence of a triple $(u_{\varepsilon}, \lambda_{\varepsilon}, m_{\varepsilon})$ to (1),
- 2 Study the behaviour of solutions as $\varepsilon \to 0$,
- 3 Understand (1) when $V \equiv 0$.

A large part of the literature is devoted to systems with competition, namely when the coupling in the cost is monotonically increasing w.r.t *m*. In this case,

- uniqueness of solutions holds,
- the coupling term is "regularising"

A large part of the literature is devoted to systems with competition, namely when the coupling in the cost is monotonically increasing w.r.t *m*. In this case,

- uniqueness of solutions holds,
- the coupling term is "regularising"

Few studies consider the opposite case, i.e. when agents are attracted toward congested areas. See, e.g. [Guéant, 09], [Gomes, Nurbekyan, Prazeres, 16], [C., 16], [C., Tonon, 17], ...

In this framework, uniqueness of equilibria has not to be expected, while existence is a delicate issue: if $\alpha >> 0$, non-existence phenomena show up.

Most of the (PDE) literature is restricted to \mathbb{T}^N . For a truly non-periodic setting, we mention

- [Arapostathis, Biswas, Carroll, 17]: bounded controls,
- [Bardi, Priuli, 14]: Linear-Quadratic case,
- [Gomes, Pimentel, 16]: local regularity,
- [Porretta, 16]: time-dependent problems,

Most of the (PDE) literature is restricted to \mathbb{T}^N . For a truly non-periodic setting, we mention

- [Arapostathis, Biswas, Carroll, 17]: bounded controls,
- [Bardi, Priuli, 14]: Linear-Quadratic case,
- [Gomes, Pimentel, 16]: local regularity,
- [Porretta, 16]: time-dependent problems,

At the PDE level, the main issue of \mathbb{R}^N is its lack of compactness.

From the point of view of the game, a typical player is subject to diffusion, which prevents a stable long-time behaviour.

In other words, an agent playing optimally moves according to

$$dX_{\rm s} = -\nabla H(\nabla u(X_{\rm s}))ds + \sqrt{2\varepsilon} \, dB_{\rm s},$$

and in a (M-F) equilibrium regime

$$\mathcal{L}(X_s) \to m \text{ as } s \to \infty,$$

where m is the overall population density.

In other words, an agent playing optimally moves according to

$$dX_{\rm s} = -\nabla H(\nabla u(X_{\rm s}))ds + \sqrt{2\varepsilon} \, dB_{\rm s},$$

and in a (M-F) equilibrium regime

$$\mathcal{L}(X_s) \to m$$
 as $s \to \infty$,

where m is the overall population density.

This is linked to $\exists !$ of m to

 $-\varepsilon\Delta m - \operatorname{div}(m\nabla H(\nabla u)) = 0 \quad \text{on } \mathbb{R}^N.$

In other words, an agent playing optimally moves according to

$$dX_{\rm s} = -\nabla H(\nabla u(X_{\rm s}))ds + \sqrt{2\varepsilon} \, dB_{\rm s},$$

and in a (M-F) equilibrium regime

$$\mathcal{L}(X_s) \to m$$
 as $s \to \infty$,

where m is the overall population density.

This is linked to $\exists!$ of m to

$$-\varepsilon \Delta m - \operatorname{div}(m \nabla H(\nabla u)) = 0$$
 on \mathbb{R}^N .

that is itself related to the existence of a Lyapunov function, i.e. $\varphi \in C^2(\mathbb{R}^N)$ such that

$$\varphi \to +\infty$$
 and $-\varepsilon \Delta \varphi + \nabla H(\nabla u) \cdot \nabla \varphi \to +\infty$ as $x \to \infty$.

The presence of the potential *V* is usually sufficient to compensate the lack of compactness: spatial preference discourages the agents to go far away.

The interaction of the individual with the population through the coupling $-m^{\alpha}$, i.e. the aggregation force, should be against dissipation.

The presence of the potential *V* is usually sufficient to compensate the lack of compactness: spatial preference discourages the agents to go far away.

The interaction of the individual with the population through the coupling $-m^{\alpha}$, i.e. the aggregation force, should be against dissipation.

```
So, we expect:
Existence of equilibria for all \varepsilon > 0, and m_{\varepsilon} concentrating around
minima of V as \varepsilon \to 0.
```

The presence of the potential *V* is usually sufficient to compensate the lack of compactness: spatial preference discourages the agents to go far away.

The interaction of the individual with the population through the coupling $-m^{\alpha}$, i.e. the aggregation force, should be against dissipation.

So, we expect: Existence of equilibria for all $\varepsilon > 0$, and m_{ε} concentrating around minima of V as $\varepsilon \to 0$.

What happens if $V \equiv 0$?

Tools - 1. Variational formulation

We will construct solutions to (1) via minimisers of the non-convex energy

$$\mathscr{E}(m,w) = \int_{\mathbb{R}^N} mL\left(-\frac{w}{m}\right) + V(x)m - \frac{1}{\alpha+1}m^{\alpha+1}dx,$$

subject to the constraint

$$(m,w) \in \mathcal{K}_{\varepsilon} := \left\{ -\varepsilon \Delta m + \operatorname{div}(w) = 0, \quad \int_{\mathbb{R}^N} m \, dx = 1, \quad m > 0 \right\}.$$

(see [Cardaliaguet et al. 13-16]).

Tools - 1. Variational formulation

We will construct solutions to (1) via minimisers of the non-convex energy

$$\mathscr{E}(m,w) = \int_{\mathbb{R}^N} mL\left(-\frac{w}{m}\right) + V(x)m - \frac{1}{\alpha+1}m^{\alpha+1}\,dx,$$

subject to the constraint

$$(m,w) \in \mathcal{K}_{\varepsilon} := \left\{ -\varepsilon \Delta m + \operatorname{div}(w) = 0, \quad \int_{\mathbb{R}^N} m \, dx = 1, \quad m > 0 \right\}.$$

(see [Cardaliaguet et al. 13-16]).

Question:
$$e_{\varepsilon}(M) = \inf_{\mathcal{H}_{\varepsilon}} \mathcal{E}(m, w) > -\infty$$
?

YES, if

$$0 < \alpha < \frac{\gamma'}{N}$$

(while $\inf \mathcal{E} = -\infty$ if $\alpha > \frac{\gamma'}{N}$).

In particular, in this regime there exist $C, \delta > 0$ s.t.

$$\left(\int_{\mathbb{R}^N} m^{\alpha+1}\right)^{1+\delta} dx \le C \int_{\mathbb{R}^N} mL\left(-\frac{w}{m}\right) dx$$

for all $(m, w) \in \mathcal{K}_{\varepsilon}$.

YES, if

$$0 < \alpha < \frac{\gamma'}{N}$$

(while $\inf \mathcal{E} = -\infty$ if $\alpha > \frac{\gamma'}{N}$).

In particular, in this regime there exist $C, \delta > 0$ s.t.

$$\left(\int_{\mathbb{R}^N} m^{\alpha+1}\right)^{1+\delta} dx \le C \int_{\mathbb{R}^N} mL\left(-\frac{w}{m}\right) dx$$

for all $(m, w) \in \mathcal{K}_{\varepsilon}$.

If, in addition,

$$1 < \gamma < \frac{N}{N-1}$$
, (i.e. $\gamma' > N$)

then

$$||m||_{C^{0,\beta}(\mathbb{R}^{N})} \leq C \int_{\mathbb{R}^{N}} mL\left(-\frac{w}{m}\right) dx$$

YES, if

$$0 < \alpha < \frac{\gamma'}{N}$$

(while $\inf \mathcal{E} = -\infty$ if $\alpha > \frac{\gamma'}{N}$).

In particular, in this regime there exist $C, \delta > 0$ s.t.

$$\left(\int_{\mathbb{R}^N} m^{\alpha+1}\right)^{1+\delta} dx \le C \int_{\mathbb{R}^N} mL\left(-\frac{w}{m}\right) dx$$

for all $(m, w) \in \mathcal{K}_{\varepsilon}$.

If, in addition,

$$1 < \gamma < \frac{N}{N-1}$$
, (i.e. $\gamma' > N$)

then

$$||m||_{C^{0,\beta}(\mathbb{R}^{N})} \leq C \int_{\mathbb{R}^{N}} mL\left(-\frac{w}{m}\right) dx$$

Proof: Gagliardo-Nirenberg inequality and elliptic regularity.

Tools - 2. Regularity of HJB equations

Suppose that v is a viscosity solution to

$$-\varepsilon \Delta v + H(\nabla v) = F(x)$$
 on \mathbb{R}^N ,

where

 $C_F^{-1}|x|^b \le F(x) \le C_F|x|^b$ for all |x| >> 0 and some $b \ge 0$,

Theorem [Capuzzo Dolcetta, Leoni, Porretta, 10]

There exists K > 0 such that

 $|\nabla v(x)| \leq K(1+|x|)^{b/\gamma}$ on \mathbb{R}^N .

Tools - 2. Regularity of HJB equations

Suppose that v is a viscosity solution to

$$-\varepsilon \Delta v + H(\nabla v) = F(x)$$
 on \mathbb{R}^N ,

where

 $C_F^{-1}|x|^b \le F(x) \le C_F|x|^b$ for all |x| >> 0 and some $b \ge 0$,

Theorem [Capuzzo Dolcetta, Leoni, Porretta, 10]

There exists K > 0 such that

$$|\nabla v(x)| \le K(1+|x|)^{b/\gamma}$$
 on \mathbb{R}^N .

Theorem [Barles, Meireles, 16]

There exists $K_1 > 0$ such that

$$v(x) \geq K_1(|x|^{1+\frac{b}{\gamma}}-1) \quad \text{on } \mathbb{R}^N.$$

Theorem 1.

Suppose that for some b > 0,

$$\alpha < \frac{\gamma'}{N}, \quad \gamma < \frac{N}{N-1}, \quad C_V^{-1} |x|^b \le V(x) \le C_V |x|^b \quad \forall |x| >> 0,$$

Then, for every $\varepsilon > 0$,

i) There exists a minimizer $(m_{\varepsilon}, w_{\varepsilon}) \in \mathcal{K}_{\varepsilon}$ of \mathcal{E} , that is

$$\mathscr{E}(m_{\varepsilon}, w_{\varepsilon}) = \inf_{(m, w) \in \mathcal{K}_{\varepsilon}} \mathscr{E}(m, w).$$

ii) For any minimizer $(m_{\varepsilon}, w_{\varepsilon}) \in \mathcal{K}_{\varepsilon}$ of \mathcal{E} , there exists $(u_{\varepsilon}, \lambda_{\varepsilon})$ such that $(u_{\varepsilon}, \lambda_{\varepsilon}, m_{\varepsilon})$ is a classical solution to (1).

Note: $u_{\varepsilon} \to +\infty$ as $|x| \to \infty$.

Proof: 1. Consider a minimizing sequence (m_n, w_n) . Then, it is bounded in $W^{1,r}(\mathbb{R}^N) \times L^{\gamma'}(\mathbb{R}^N)$. Since $\int_{\mathbb{R}^N} Vm$ is bounded, for all $\eta > 0$ there exists R >> 0 s.t.

$$\int_{B_R(0)} m_\varepsilon(x) dx \ge 1 - \eta,$$

that gives convergence of $m_n \to \overline{m}$ in $L^1(\mathbb{R}^N) \cap L^{\alpha+1}(\mathbb{R}^N)$.

2. Full solution of (1) is obtained by considering

$$\widetilde{\varepsilon}(m,w) = \int_{\mathbb{R}^N} mL\left(-\frac{w}{m}\right) + (V(x) - \bar{m}^{\alpha})m\,dx,$$

and its dual formulation (Fenchel-Rockafellar).

As $\varepsilon \to 0$ one has to expect just weak-* convergence of m_{ε} .

As $\varepsilon \to 0$ one has to expect just weak-* convergence of m_{ε} . Consider the rescaled functions (x_{ε} will be chosen later)

$$\tilde{m}_{\varepsilon}(\cdot) = \varepsilon^{\frac{N\gamma'}{\gamma'-\alpha N}} m(\varepsilon^{\frac{\gamma'}{\gamma'-\alpha N}} \cdot + X_{\varepsilon}), \quad \tilde{u}_{\varepsilon}(\cdot) = \varepsilon^{\frac{N\alpha(\gamma'-1)-\gamma'}{\gamma'-\alpha N}} \left(u(\varepsilon^{\frac{\gamma'}{\gamma'-\alpha N}} \cdot + X_{\varepsilon}) - u(X_{\varepsilon}) \right).$$

Since $(u_{\varepsilon}, m_{\varepsilon})$ solves

$$\begin{cases} -\varepsilon \Delta u + H(\nabla u) + \lambda = -m^{\alpha} + V(x) \\ -\varepsilon \Delta m - \operatorname{div}(m \nabla H(\nabla u)) = 0 & \text{on } \mathbb{R}^{N}, \\ \int_{\mathbb{R}^{N}} m = 1, \ m > 0 \end{cases}$$

As $\varepsilon \to 0$ one has to expect just weak-* convergence of m_{ε} . Consider the rescaled functions (x_{ε} will be chosen later)

$$\tilde{m}_{\varepsilon}(\cdot) = \varepsilon^{\frac{N\gamma'}{\gamma'-aN}} m(\varepsilon^{\frac{\gamma'}{\gamma'-aN}} \cdot + X_{\varepsilon}), \quad \tilde{u}_{\varepsilon}(\cdot) = \varepsilon^{\frac{Na(\gamma'-1)-\gamma'}{\gamma'-aN}} \left(u(\varepsilon^{\frac{\gamma'}{\gamma'-aN}} \cdot + X_{\varepsilon}) - u(X_{\varepsilon}) \right).$$

Then $(\tilde{u}_{\varepsilon}, \tilde{m}_{\varepsilon})$ solves

$$\begin{cases} -\bigstar \Delta u + H_{\varepsilon}(\nabla u) + \lambda_{\varepsilon} = -m^{\alpha} + V_{\varepsilon} \\ -\bigstar \Delta m - \operatorname{div}(m\nabla H_{\varepsilon}(\nabla u)) = 0 & \text{on } \mathbb{R}^{N}, \\ \int_{\mathbb{R}^{N}} m = 1, \ m > 0, \end{cases}$$

where

$$V_{\varepsilon}(\cdot) = \varepsilon^{\frac{N\alpha\gamma'}{\gamma'-\alpha N}} V(\varepsilon^{\frac{\gamma'}{\gamma'-\alpha N}} \cdot + x_{\varepsilon}), \qquad H_{\varepsilon}(p) \sim |p|^{\gamma}.$$

The limit $\varepsilon \to 0$: a partial convergence

Choose x_{ε} to be the global minimum of u_{ε} . Then,

$$\tilde{u}_{\varepsilon}(0) = 0, \quad \tilde{u}_{\varepsilon} \ge 0$$

and

Proposition

Up to subsequences, $(\tilde{u}_{\varepsilon}, \tilde{m}_{\varepsilon}) \rightarrow (\bar{u}, \bar{m})$ classical solution to

$$\begin{cases} -\Delta \bar{u} + H_0(\nabla \bar{u}) + \bar{\lambda} = -\bar{m}^{\alpha} + g(X) \\ -\Delta \bar{m} - \operatorname{div}(\bar{m} \nabla H_0(\nabla \bar{u})) = 0 \quad \text{on } \mathbb{R}^N. \end{cases}$$
(2)

where g is a bounded function on \mathbb{R}^N and $H_0(p) := \lim_{\epsilon \to 0} H_{\epsilon}(p)$.

The limit $\varepsilon \to 0$: a partial convergence

Choose x_{ε} to be the global minimum of u_{ε} . Then,

$$\tilde{u}_{\varepsilon}(0) = 0, \quad \tilde{u}_{\varepsilon} \ge 0$$

and

Proposition

Up to subsequences, $(\tilde{u}_{\varepsilon}, \tilde{m}_{\varepsilon}) \rightarrow (\bar{u}, \bar{m})$ classical solution to

$$\begin{cases} -\Delta \bar{u} + H_0(\nabla \bar{u}) + \bar{\lambda} = -\bar{m}^{\alpha} + g(x) \\ -\Delta \bar{m} - \operatorname{div}(\bar{m} \nabla H_0(\nabla \bar{u})) = 0 \quad \text{on } \mathbb{R}^N. \end{cases}$$
(2)

where g is a bounded function on \mathbb{R}^N and $H_0(p) := \lim_{\epsilon \to 0} H_{\epsilon}(p)$. Moreover, there exists $a \in (0, 1]$ such that

$$\int_{\mathbb{R}^n} \bar{m} \, dx = a.$$

How to prove that a = 1?

The limit $\varepsilon \to 0$: a partial convergence

Choose x_{ε} to be the global minimum of u_{ε} . Then,

$$\tilde{u}_{\varepsilon}(0) = 0, \quad \tilde{u}_{\varepsilon} \ge 0$$

and

Proposition

Up to subsequences, $(\tilde{u}_{\varepsilon}, \tilde{m}_{\varepsilon}) \rightarrow (\bar{u}, \bar{m})$ classical solution to

$$\begin{cases} -\Delta \bar{u} + H_0(\nabla \bar{u}) + \bar{\lambda} = -\bar{m}^{\alpha} + g(x) \\ -\Delta \bar{m} - \operatorname{div}(\bar{m} \nabla H_0(\nabla \bar{u})) = 0 \quad \text{on } \mathbb{R}^N. \end{cases}$$
(2)

where g is a bounded function on \mathbb{R}^N and $H_0(p) := \lim_{\epsilon \to 0} H_{\epsilon}(p)$. Moreover, there exists $a \in (0, 1]$ such that

$$\int_{\mathbb{R}^n} \bar{m} \, dx = a.$$

Using $e^{\bar{u}}$ as a Lyapunov function, exponential decay of \bar{m} follows.

Note that $(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon})$ are minimizers of a rescaled energy $\mathcal{E}_{\varepsilon}$, that is

$$\mathscr{E}_{\varepsilon}(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon}) = \inf_{(m,w)\in\mathscr{K}} \mathscr{E}_{\varepsilon}(m, w)$$

Note that $(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon})$ are minimizers of a rescaled energy $\mathcal{E}_{\varepsilon}$, that is

$$\mathcal{E}_{\varepsilon}(\tilde{m}_{\varepsilon},\tilde{w}_{\varepsilon}) = \inf_{(m,w)\in\mathcal{K}} \mathcal{E}_{\varepsilon}(m,w)$$

Moreover, $\mathcal{E}_{\varepsilon}$ is sub-additive, that is, if a < 1,

$$\mathscr{E}_{\varepsilon}(\tilde{m}_{\varepsilon},\tilde{w}_{\varepsilon}) = \inf_{\int m=1} \mathscr{E}_{\varepsilon} < \inf_{\int m=a} \mathscr{E}_{\varepsilon} + \inf_{\int m=1-a} \mathscr{E}_{\varepsilon}.$$

Note that $(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon})$ are minimizers of a rescaled energy $\mathcal{E}_{\varepsilon}$, that is

$$\mathscr{E}_{\varepsilon}(\widetilde{m}_{\varepsilon},\widetilde{w}_{\varepsilon}) = \inf_{(m,w)\in\mathscr{K}} \mathscr{E}_{\varepsilon}(m,w)$$

Moreover, $\mathcal{E}_{\varepsilon}$ is sub-additive, that is, if a < 1,

$$\mathscr{E}_{\varepsilon}(\widetilde{m}_{\varepsilon},\widetilde{w}_{\varepsilon}) = \inf_{\int m=1} \mathscr{E}_{\varepsilon} < \inf_{\int m=a} \mathscr{E}_{\varepsilon} + \inf_{\int m=1-a} \mathscr{E}_{\varepsilon}.$$

The concentration-compactness Lemma [Lions, 84] states that for some $R = R_{\varepsilon} \to \infty$, $\int_{B_R(0)} \tilde{m}_{\varepsilon} \simeq a$ and $\int_{\mathbb{R}^N \setminus B_{2R}(0)} \tilde{m}_{\varepsilon} \simeq 1 - a$, so $\tilde{m}_{\varepsilon} \simeq \chi_{B_R(0)} \tilde{m}_{\varepsilon} + \chi_{\mathbb{R}^N \setminus B_{2R}(0)} \tilde{m}_{\varepsilon}$.

Note that $(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon})$ are minimizers of a rescaled energy $\mathcal{E}_{\varepsilon}$, that is

$$\mathscr{E}_{\varepsilon}(\widetilde{m}_{\varepsilon},\widetilde{w}_{\varepsilon}) = \inf_{(m,w)\in\mathscr{K}} \mathscr{E}_{\varepsilon}(m,w)$$

Moreover, $\mathcal{E}_{\varepsilon}$ is sub-additive, that is, if a < 1,

$$\mathscr{E}_{\varepsilon}(\widetilde{m}_{\varepsilon},\widetilde{w}_{\varepsilon}) = \inf_{\int m=1} \mathscr{E}_{\varepsilon} < \inf_{\int m=a} \mathscr{E}_{\varepsilon} + \inf_{\int m=1-a} \mathscr{E}_{\varepsilon}.$$

The concentration-compactness Lemma [Lions, 84] states that for some $R = R_{\varepsilon} \to \infty$, $\int_{B_R(0)} \tilde{m}_{\varepsilon} \simeq a$ and $\int_{\mathbb{R}^N \setminus B_{2R}(0)} \tilde{m}_{\varepsilon} \simeq 1 - a$, so $\tilde{m}_{\varepsilon} \simeq \chi_{B_R(0)} \tilde{m}_{\varepsilon} + \chi_{\mathbb{R}^N \setminus B_{2R}(0)} \tilde{m}_{\varepsilon}$.

If we were able to prove

 $\mathcal{E}_{\varepsilon}(\tilde{m}_{\varepsilon},\tilde{w}_{\varepsilon})\simeq \mathcal{E}_{\varepsilon}(\chi_{B_{\mathbb{R}}(0)}\tilde{m}_{\varepsilon},w_{1})+\mathcal{E}_{\varepsilon}(\chi_{\mathbb{R}^{\mathbb{N}}\setminus B_{2\mathbb{R}}(0)}\tilde{m}_{\varepsilon},w_{2})$

Note that $(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon})$ are minimizers of a rescaled energy $\mathcal{E}_{\varepsilon}$, that is

$$\mathscr{E}_{\varepsilon}(\widetilde{m}_{\varepsilon},\widetilde{w}_{\varepsilon}) = \inf_{(m,w)\in\mathscr{K}} \mathscr{E}_{\varepsilon}(m,w)$$

Moreover, $\mathcal{E}_{\varepsilon}$ is sub-additive, that is, if a < 1,

$$\mathscr{E}_{\varepsilon}(\widetilde{m}_{\varepsilon},\widetilde{w}_{\varepsilon}) = \inf_{\int m=1} \mathscr{E}_{\varepsilon} < \inf_{\int m=a} \mathscr{E}_{\varepsilon} + \inf_{\int m=1-a} \mathscr{E}_{\varepsilon}.$$

The concentration-compactness Lemma [Lions, 84] states that for some $R = R_{\varepsilon} \to \infty$, $\int_{B_R(0)} \tilde{m}_{\varepsilon} \simeq a$ and $\int_{\mathbb{R}^N \setminus B_{2R}(0)} \tilde{m}_{\varepsilon} \simeq 1 - a$, so $\tilde{m}_{\varepsilon} \simeq \chi_{B_R(0)} \tilde{m}_{\varepsilon} + \chi_{\mathbb{R}^N \setminus B_{2R}(0)} \tilde{m}_{\varepsilon}$.

If we were able to prove

$$\mathcal{E}_{\varepsilon}(\tilde{m}_{\varepsilon},\tilde{w}_{\varepsilon})\simeq\mathcal{E}_{\varepsilon}(\chi_{B_{R}(0)}\tilde{m}_{\varepsilon},w_{1})+\mathcal{E}_{\varepsilon}(\chi_{\mathbb{R}^{N}\setminus B_{2R}(0)}\tilde{m}_{\varepsilon},w_{2})\gtrsim\inf_{\int m=a}\mathcal{E}_{\varepsilon}+\inf_{\int m=1-a}\mathcal{E}_{\varepsilon},$$

we would contradict sub-additivity, so $\tilde{m}_{\varepsilon} \to \bar{m}$ in $L^{1}(\mathbb{R}^{N})$.

Instead of splitting \tilde{m}_{ε} via cut-offs, we write

$$egin{aligned} & ilde{m}_arepsilon &= ar{m} + (m_arepsilon - ar{m}) \ & ilde{w}_arepsilon &= ar{w} + (w_arepsilon - ar{w}) \end{aligned}$$

Instead of splitting \tilde{m}_{ε} via cut-offs, we write

$$\begin{split} \tilde{m}_{\varepsilon} &\simeq \bar{m} + (m_{\varepsilon} - \bar{m} + \nu_{\varepsilon}(\mathbf{x})) \\ \tilde{w}_{\varepsilon} &\simeq \bar{w} + (w_{\varepsilon} - \bar{w} + \nabla \nu_{\varepsilon}(\mathbf{x})), \end{split}$$

where v(x) decays exponentially and vanishes as $\varepsilon \to 0$.

Instead of splitting \tilde{m}_{ε} via cut-offs, we write

$$\tilde{m}_{\varepsilon} \simeq \bar{m} + (m_{\varepsilon} - \bar{m} + \nu_{\varepsilon}(x)) \tilde{w}_{\varepsilon} \simeq \bar{w} + (w_{\varepsilon} - \bar{w} + \nabla \nu_{\varepsilon}(x)),$$

where v(x) decays exponentially and vanishes as $\varepsilon \to 0$.

 $(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon})$ then splits into two (couples of) admissible competitors, and with some technical work,

$$\begin{split} \mathscr{E}_{\varepsilon}(\tilde{m}_{\varepsilon},\tilde{w}_{\varepsilon}) &\simeq \mathscr{E}_{\varepsilon}(\bar{m},\bar{w}) + \mathscr{E}_{\varepsilon}(m_{\varepsilon} - \bar{m} + \nu_{\varepsilon},w_{\varepsilon} - \bar{w} + \nabla\nu_{\varepsilon}) \\ &\gtrsim \inf_{\int m = a} \mathscr{E}_{\varepsilon} + \inf_{\int m = 1 - a} \mathscr{E}_{\varepsilon}, \end{split}$$

contradicting sub-additivity of $\mathcal{E}_{\varepsilon}$.

tracking the concentration point X_{ε}

By the previous compactness argument, for all $\eta > 0$ there exists R >> 0 s.t.

•

$$\int_{B_R(0)} \tilde{m}_{\varepsilon} dx \ge 1 - \eta,$$

namely,

$$\int_{|x-\mathbf{x}_{\varepsilon}| \leq R\varepsilon^{\frac{\gamma'}{\gamma'-\alpha N}}} m_{\varepsilon} \, dx \geq 1-\eta,$$

that is: most of the mass of m_{ε} is located around a small ball centered at x_{ε} .

tracking the concentration point X_{ε}

By the previous compactness argument, for all $\eta > 0$ there exists R >> 0 s.t.

$$\int_{B_{R}(0)} \tilde{m}_{\varepsilon} dx \geq 1 - \eta,$$

namely,

$$\int_{|x-\mathbf{x}_{\varepsilon}| \leq R_{\varepsilon}^{\frac{\gamma'}{\gamma' - \alpha N}}} m_{\varepsilon} \, dx \geq 1 - \eta,$$

that is: most of the mass of m_{ε} is located around a small ball centered at x_{ε} .

To track x_{ε} , we exploit that \tilde{m}_{ε} is a minimizer of $\mathcal{E}_{\varepsilon}$.

۰.

Heuristically, x_{ε} should approach $\operatorname{argmin}_{\mathbb{R}^N} V(x)$.

tracking the concentration point X_{ε}

To complete this program, we will assume also that V has a finite number of minima, that is, for some $\hat{b} > 0, x_j \in \mathbb{R}^N, j = 1, ..., n$,

$$V(x) = h(x) \prod_{j=1}^{n} |x - x_j|^{\hat{b}}, \qquad C_V^{-1} \le h(x) \le C_V \text{ on } \mathbb{R}^N.$$

Note that

$$\min_{\mathbb{R}^N} V = 0.$$

Suppose also

$$C_H(|p|^{\gamma}-1) \leq H(p) \leq C_H|p|^{\gamma},$$

and

either
$$H(p) = C_H |p|^{\gamma}$$
, or $n\hat{b} < \frac{\gamma}{2}$.

On one hand, if one chooses suitable competitors (m, w),

$$\mathscr{E}(m_{\varepsilon}, w_{\varepsilon}) \leq \mathscr{E}(m, w) \quad \rightsquigarrow \quad \int_{\mathbb{R}^{N}} Vm_{\varepsilon} dx \to 0$$

On the other hand, for some $\delta \rightarrow 0$,

$$\frac{1}{2}\inf_{B_{\delta}(\mathsf{X}_{\varepsilon})}V(x)\leq\int_{B_{\delta}(\mathsf{X}_{\varepsilon})}Vm_{\varepsilon},$$

therefore

$$V(X_{\varepsilon}) \to 0.$$

as $\varepsilon \to 0$.

On one hand, if one chooses suitable competitors (m, w),

$$\mathscr{E}(m_{\varepsilon}, w_{\varepsilon}) \leq \mathscr{E}(m, w) \quad \rightsquigarrow \quad \int_{\mathbb{R}^{N}} Vm_{\varepsilon} dx \to 0$$

On the other hand, for some $\delta \rightarrow 0$,

$$\frac{1}{2}\inf_{B_{\delta}(\mathbf{X}_{\varepsilon})}V(x)\leq\int_{B_{\delta}(\mathbf{X}_{\varepsilon})}Vm_{\varepsilon},$$

therefore

$$V(X_{\varepsilon}) \to 0.$$

as $\varepsilon \to 0$.

To summarize...

$\varepsilon \rightarrow 0$: the convergence result

Theorem 2. Under the standing assumptions, there exist sequences $\varepsilon \to 0$ and x_{ε} , such that for all $\eta > 0$ there exists *R* s.t.,

$$\int_{|x-x_{\varepsilon}|\leq R\varepsilon^{\frac{\gamma'}{\gamma'-\alpha N}}} m_{\varepsilon} \, dx \geq 1-\eta,$$

and for some $J = 1, \ldots, n$, C > 0,

$$|X_{\varepsilon} - X_j| \leq C \varepsilon^{\frac{\gamma'}{n(\gamma' - N\alpha)}}.$$

Moreover, $\left(\varepsilon^{\frac{Na(\gamma'-1)-\gamma'}{\gamma'-aN}}u_{\varepsilon}(\varepsilon^{\frac{\gamma'}{\gamma'-aN}}\cdot+x_{\varepsilon}),\varepsilon^{\frac{Na\gamma'}{\gamma'-aN}}m_{\varepsilon}(\varepsilon^{\frac{\gamma'}{\gamma'-aN}}\cdot+x_{\varepsilon})\right)$ converges to a classical solution of

$$\begin{cases} -\Delta u + H_0(\nabla u) + \overline{\lambda} = -m^{\alpha} \\ -\Delta m - \operatorname{div}(m\nabla H_0(\nabla u)) = 0 \\ \int_{\mathbb{R}^N} m = 1, \quad m > 0. \end{cases}$$

By-products

■ If one introduces the "V-free energy"

$$\overline{\mathscr{E}}(m,w) = \int_{\mathbb{R}^N} mL_0\left(-\frac{w}{m}\right) - \frac{1}{\alpha+1}m^{\alpha+1}dx$$

then

$$\mathcal{E}_{\varepsilon}(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon}) \to \overline{\mathcal{E}}(\bar{m}, \bar{w}) = \min_{(m, w) \in \mathcal{K}, \ m(1+|x|^{\flat}) \in L^{1}(\mathbb{R}^{N})} \overline{\mathcal{E}}(m, w)$$

■ There exists a classical solution, or ground state, to

$$\begin{cases} -\Delta u + H_0(\nabla u) + \bar{\lambda} = -m^{\alpha} \\ -\Delta m - \operatorname{div}(m\nabla H_0(\nabla u)) = 0 \\ \int_{\mathbb{R}^N} m = 1, \quad m > 0. \end{cases}$$

Solutions of V-free MFG cannot be unique, by translation invariance. More subtle is uniqueness of *m* for fixed *u* to

$$-\Delta m - \operatorname{div}(m \nabla H_0(\nabla u)) = 0, \quad \int_{\mathbb{R}^N} m = 1, \quad m > 0$$

namely if (u, λ, m_1) and (u, λ, m_2) are sols of (1), then $m_1 \equiv m_2$.

Solutions of V-free MFG cannot be unique, by translation invariance. More subtle is uniqueness of *m* for fixed *u* to

$$-\Delta m - \operatorname{div}(m \nabla H_0(\nabla u)) = 0, \quad \int_{\mathbb{R}^N} m = 1, \quad m > 0$$

namely if (u, λ, m_1) and (u, λ, m_2) are sols of (1), then $m_1 \equiv m_2$. This holds true because $\varphi(x) = u(x)$ (and $\varphi(x) = e^{u(x)}$) satisfies

$$\varphi \to +\infty$$
 and $-\varepsilon \Delta \varphi + \nabla H(\nabla u) \cdot \nabla \varphi \to +\infty$ as $x \to \infty$,

that implies also ergodicity of the optimal trajectories.

Some technical assumptions can be relaxed, e.g. $\gamma' > N, V$ with a finite number of minima...

Some technical assumptions can be relaxed, e.g. $\gamma' > N, V$ with a finite number of minima...

... but $\alpha < \gamma'/N$ is much more structural: if it fails, & is not bounded by below (stability issues, ...)

Some technical assumptions can be relaxed, e.g. $\gamma' > N, V$ with a finite number of minima...

... but $\alpha < \gamma'/N$ is much more structural: if it fails, & is not bounded by below (stability issues, ...)

behaviour of other critical points of &?

Some technical assumptions can be relaxed, e.g. $\gamma' > N, V$ with a finite number of minima...

... but $\alpha < \gamma'/N$ is much more structural: if it fails, & is not bounded by below (stability issues, ...)

behaviour of other critical points of &?

behaviour of time-dependent systems? (joint work w. D. Tonon)

Thank you for your attention.