Ground states of focusing Mean-Field Games on \mathbb{R}^{N}

Marco Cirant

Università di Padova

15 June 2017
joint work with A. Cesaroni (Università di Padova)

Setting

We consider a Mean-Field Game where the dynamics of a typical agent is driven by the controlled SDE

$$
d x_{s}=-v_{s} d s+\sqrt{2 \varepsilon} d B_{s} \quad \text { on } \mathbb{R}^{N}
$$

where v_{s} is the control and B_{s} is a Brownian motion, and the cost, of long-time average form, is

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \mathbb{E} \int_{0}^{T}\left[L\left(v_{s}\right)+V\left(X_{s}\right)-m^{\alpha}\left(X_{s}\right)\right] d s .
$$

In what follows,
■ $\varepsilon, \alpha>0$,

- $L(q) \sim|q|^{\gamma^{\prime}}, \quad \gamma^{\prime}=\frac{\gamma}{\gamma-1}>1$
- $0 \leq V(x) \rightarrow \infty$ as $|x| \rightarrow \infty$

Equilibria of this MFG are intimately related to solutions (u, λ, m) of the following system

$$
\left\{\begin{array}{l}
-\varepsilon \Delta u+H(\nabla u)+\lambda=-m^{\alpha}+V(x) \tag{1}\\
-\varepsilon \Delta m-\operatorname{div}(m \nabla H(\nabla u))=0 \\
\int_{\mathbb{R}^{N}} m=1, m>0
\end{array} \text { on } \mathbb{R}^{N}\right.
$$

which is a system of stationary coupled viscous HJB and Fokker-Planck equations, where $H(p)=L^{*}(p) \sim|p|^{\gamma}$.

Equilibria of this MFG are intimately related to solutions (u, λ, m) of the following system

$$
\left\{\begin{array}{l}
-\varepsilon \Delta u+H(\nabla u)+\lambda=-m^{\alpha}+V(x) \tag{1}\\
-\varepsilon \Delta m-\operatorname{div}(m \nabla H(\nabla u))=0 \\
\int_{\mathbb{R}^{N}} m=1, m>0
\end{array} \text { on } \mathbb{R}^{N}\right.
$$

which is a system of stationary coupled viscous HJB and Fokker-Planck equations, where $H(p)=L^{*}(p) \sim|p|^{\gamma}$.

We will address the following problems:
1 For fixed $\varepsilon>0$, prove the existence of a triple $\left(u_{\varepsilon}, \lambda_{\varepsilon}, m_{\varepsilon}\right)$ to (1),
2 Study the behaviour of solutions as $\varepsilon \rightarrow 0$,
3 Understand (1) when $V \equiv 0$.

Key point 1: the "focusing" coupling

A large part of the literature is devoted to systems with competition, namely when the coupling in the cost is monotonically increasing w.r.t m. In this case,

- uniqueness of solutions holds,

■ the coupling term is "regularising"

Key point 1: the "focusing" coupling

A large part of the literature is devoted to systems with competition, namely when the coupling in the cost is monotonically increasing w.r.t m. In this case,

- uniqueness of solutions holds,
- the coupling term is "regularising"

Few studies consider the opposite case, i.e. when agents are attracted toward congested areas. See, e.g. [Guéant, 09], [Gomes, Nurbekyan, Prazeres, 16], [c., 16], [C., Tonon, 17], ...

In this framework, uniqueness of equilibria has not to be expected, while existence is a delicate issue: if $\alpha \gg 0$, non-existence phenomena show up.

Key point 2: as a state space

Most of the (PDE) literature is restricted to \mathbb{T}^{N}. For a truly
non-periodic setting, we mention

- [Arapostathis, Biswas, Carroll, 17]: bounded controls,
- [Bardi, Priuli, 14]: Linear-Quadratic case,

■ [Gomes, Pimentel, 16]: local regularity,
■ [Porretta, 16]: time-dependent problems,

Key point 2: as a state space

Most of the (PDE) literature is restricted to \mathbb{T}^{N}. For a truly
non-periodic setting, we mention
■ [Arapostathis, Biswas, Carroll, 17]: bounded controls,
■ [Bardi, Priuli, 14]: Linear-Quadratic case,
■ [Gomes, Pimentel, 16]: local regularity,
■ [Porretta, 16]: time-dependent problems,

At the PDE level, the main issue of \mathbb{R}^{N} is its lack of compactness.
From the point of view of the game, a typical player is subject to diffusion, which prevents a stable long-time behaviour.

In other words, an agent playing optimally moves according to

$$
d X_{s}=-\nabla H\left(\nabla u\left(X_{s}\right)\right) d s+\sqrt{2 \varepsilon} d B_{s}
$$

and in a (M-F) equilibrium regime

$$
\mathcal{L}\left(X_{s}\right) \rightarrow m \quad \text { as } s \rightarrow \infty,
$$

where m is the overall population density.

In other words, an agent playing optimally moves according to

$$
d X_{s}=-\nabla H\left(\nabla u\left(X_{s}\right)\right) d s+\sqrt{2 \varepsilon} d B_{s},
$$

and in a ($M-F$) equilibrium regime

$$
\mathcal{L}\left(X_{s}\right) \rightarrow m \quad \text { as } s \rightarrow \infty,
$$

where m is the overall population density.
This is linked to \exists ! of m to

$$
-\varepsilon \Delta m-\operatorname{div}(m \nabla H(\nabla u))=0 \quad \text { on } \mathbb{R}^{N} .
$$

In other words, an agent playing optimally moves according to

$$
d X_{s}=-\nabla H\left(\nabla u\left(X_{s}\right)\right) d s+\sqrt{2 \varepsilon} d B_{s}
$$

and in a ($M-F$) equilibrium regime

$$
\mathcal{L}\left(X_{s}\right) \rightarrow m \quad \text { as } s \rightarrow \infty,
$$

where m is the overall population density.
This is linked to \exists ! of m to

$$
-\varepsilon \Delta m-\operatorname{div}(m \nabla H(\nabla u))=0 \quad \text { on } \mathbb{R}^{N} .
$$

that is itself related to the existence of a Lyapunov function, i.e. $\varphi \in C^{2}\left(\mathbb{R}^{N}\right)$ such that

$$
\varphi \rightarrow+\infty \quad \text { and } \quad-\varepsilon \Delta \varphi+\nabla H(\nabla u) \cdot \nabla \varphi \rightarrow+\infty \quad \text { as } x \rightarrow \infty .
$$

The presence of the potential V is usually sufficient to compensate the lack of compactness: spatial preference discourages the agents to go far away.

The interaction of the individual with the population through the coupling $-m^{\alpha}$, i.e. the aggregation force, should be against dissipation.

The presence of the potential V is usually sufficient to compensate the lack of compactness: spatial preference discourages the agents to go far away.

The interaction of the individual with the population through the coupling $-m^{\alpha}$, ie. the aggregation force, should be against dissipation.

So, we expect:
Existence of equilibria for all $\varepsilon>0$, and m_{ε} concentrating around minima of V as $\varepsilon \rightarrow 0$.

The presence of the potential V is usually sufficient to compensate the lack of compactness: spatial preference discourages the agents to go far away.

The interaction of the individual with the population through the coupling $-m^{\alpha}$, ie. the aggregation force, should be against dissipation.

So, we expect:
Existence of equilibria for all $\varepsilon>0$, and m_{ε} concentrating around minima of V as $\varepsilon \rightarrow 0$.

What happens if $V \equiv 0$?

Tools - 1. Variational formulation

We will construct solutions to (1) via minimisers of the non-convex energy

$$
\mathcal{E}(m, w)=\int_{\mathbb{R}^{N}} m L\left(-\frac{w}{m}\right)+V(x) m-\frac{1}{\alpha+1} m^{\alpha+1} d x
$$

subject to the constraint

$$
(m, w) \in \mathcal{K}_{\varepsilon}:=\left\{-\varepsilon \Delta m+\operatorname{div}(w)=0, \quad \int_{\mathbb{R}^{N}} m d x=1, \quad m>0\right\} .
$$

(see [Cardaliaguet et al. 13-16]).

Tools - 1. Variational formulation

We will construct solutions to (1) via minimisers of the non-convex energy

$$
\mathcal{E}(m, w)=\int_{\mathbb{R}^{N}} m L\left(-\frac{w}{m}\right)+V(x) m-\frac{1}{\alpha+1} m^{\alpha+1} d x
$$

subject to the constraint

$$
(m, w) \in \mathcal{K}_{\varepsilon}:=\left\{-\varepsilon \Delta m+\operatorname{div}(w)=0, \quad \int_{\mathbb{R}^{N}} m d x=1, \quad m>0\right\} .
$$

(see [Cardaliaguet et al. 13-16]).

Question: $\quad e_{\varepsilon}(M)=\inf _{\mathscr{K}_{\varepsilon}} \mathcal{E}(m, w)>-\infty$?

YES, if

$$
0<\alpha<\frac{\gamma^{\prime}}{N}
$$

(while $\inf \mathscr{E}=-\infty$ if $\alpha>\frac{\gamma^{\prime}}{N}$).
In particular, in this regime there exist $C, \delta>0$ s.t.

$$
\left(\int_{\mathbb{R}^{N}} m^{\alpha+1}\right)^{1+\delta} d x \leq C \int_{\mathbb{R}^{N}} m L\left(-\frac{w}{m}\right) d x
$$

for all $(m, w) \in \mathscr{K}_{\varepsilon}$.

YES, if

$$
0<\alpha<\frac{\gamma^{\prime}}{N}
$$

(while $\inf \mathscr{E}=-\infty$ if $\alpha>\frac{\gamma^{\prime}}{N}$).
In particular, in this regime there exist $C, \delta>0$ s.t.

$$
\left(\int_{\mathbb{R}^{N}} m^{\alpha+1}\right)^{1+\delta} d x \leq C \int_{\mathbb{R}^{N}} m L\left(-\frac{w}{m}\right) d x
$$

for all $(m, w) \in \mathscr{K}_{\varepsilon}$.
If, in addition,

$$
1<\gamma<\frac{N}{N-1}, \quad\left(\text { i.e. } \gamma^{\prime}>N\right)
$$

then

$$
\|m\|_{C^{0, \beta}\left(\mathbb{R}^{N}\right)} \leq C \int_{\mathbb{R}^{N}} m L\left(-\frac{w}{m}\right) d x
$$

YES, if

$$
0<\alpha<\frac{\gamma^{\prime}}{N}
$$

(while $\inf \mathscr{E}=-\infty$ if $\alpha>\frac{\gamma^{\prime}}{N}$).
In particular, in this regime there exist $C, \delta>0$ st.

$$
\left(\int_{\mathbb{R}^{N}} m^{\alpha+1}\right)^{1+\delta} d x \leq C \int_{\mathbb{R}^{N}} m L\left(-\frac{w}{m}\right) d x
$$

for all $(m, w) \in \mathscr{K}_{\varepsilon}$.
If, in addition,

$$
1<\gamma<\frac{N}{N-1}, \quad\left(\text { ie. } \gamma^{\prime}>N\right)
$$

then

$$
\|m\|_{C^{0, \beta}\left(\mathbb{R}^{N}\right)} \leq C \int_{\mathbb{R}^{N}} m L\left(-\frac{w}{m}\right) d x
$$

Proof: Gagliardo-Nirenberg inequality and elliptic regularity.

Tools - 2. Regularity of HJB equations

Suppose that v is a viscosity solution to

$$
-\varepsilon \Delta v+H(\nabla v)=F(x) \quad \text { on } \mathbb{R}^{N}
$$

where

$$
C_{F}^{-1}|x|^{b} \leq F(x) \leq C_{F}|x|^{b} \quad \text { for all }|x| \gg 0 \text { and some } b \geq 0,
$$

Theorem [Capuzzo Dolcetta, Leoni, Porretta, 10]
There exists $K>0$ such that

$$
|\nabla v(x)| \leq K(1+|x|)^{b / \gamma} \quad \text { on } \mathbb{R}^{N} .
$$

Tools - 2. Regularity of HJB equations

Suppose that v is a viscosity solution to

$$
-\varepsilon \Delta v+H(\nabla v)=F(x) \quad \text { on } \mathbb{R}^{N}
$$

where

$$
C_{F}^{-1}|x|^{b} \leq F(x) \leq C_{F}|x|^{b} \quad \text { for all }|x| \gg 0 \text { and some } b \geq 0,
$$

Theorem [Capuzzo Dolcetta, Leoni, Porretta, 10]
There exists $K>0$ such that

$$
|\nabla v(x)| \leq K(1+|x|)^{b / \gamma} \quad \text { on } \mathbb{R}^{N} .
$$

Theorem [Barles, Meireles, 16]
There exists $K_{1}>0$ such that

$$
v(x) \geq K_{1}\left(|x|^{1+\frac{b}{\gamma}}-1\right) \quad \text { on } \mathbb{R}^{N} .
$$

Existence of solutions, $\varepsilon>0$

Theorem 1.
Suppose that for some $b>0$,

$$
\alpha<\frac{\gamma^{\prime}}{N}, \quad \gamma<\frac{N}{N-1}, \quad C_{V}^{-1}|x|^{b} \leq V(x) \leq C_{V}|x|^{b} \quad \forall|x| \gg 0,
$$

Then, for every $\varepsilon>0$,
i) There exists a minimizer $\left(m_{\varepsilon}, w_{\varepsilon}\right) \in \mathscr{K}_{\varepsilon}$ of \mathcal{E}, that is

$$
\mathcal{E}\left(m_{\varepsilon}, w_{\varepsilon}\right)=\inf _{(m, w) \in \mathscr{X}_{\varepsilon}} \mathcal{E}(m, w) .
$$

ii) For any minimizer $\left(m_{\varepsilon}, w_{\varepsilon}\right) \in \mathscr{K}_{\varepsilon}$ of \mathcal{E}, there exists $\left(u_{\varepsilon}, \lambda_{\varepsilon}\right)$ such that $\left(u_{\varepsilon}, \lambda_{\varepsilon}, m_{\varepsilon}\right)$ is a classical solution to (1).

Note: $u_{\varepsilon} \rightarrow+\infty$ as $|x| \rightarrow \infty$.

Existence of solutions, $\varepsilon>0$

Proof: 1. Consider a minimizing sequence (m_{n}, w_{n}). Then, it is bounded in $W^{1, r}\left(\mathbb{R}^{N}\right) \times L^{\gamma^{\prime}}\left(\mathbb{R}^{N}\right)$. Since $\int_{\mathbb{R}^{N}} V m$ is bounded, for all $\eta>0$ there exists R >> 0 s.t.

$$
\int_{B_{R}(0)} m_{\varepsilon}(x) d x \geq 1-\eta,
$$

that gives convergence of $m_{n} \rightarrow \bar{m}$ in $L^{1}\left(\mathbb{R}^{N}\right) \cap L^{\alpha+1}\left(\mathbb{R}^{N}\right)$.
2. Full solution of (1) is obtained by considering

$$
\widetilde{\mathcal{E}}(m, w)=\int_{\mathbb{R}^{N}} m L\left(-\frac{w}{m}\right)+\left(V(x)-\bar{m}^{\alpha}\right) m d x
$$

and its dual formulation (Fenchel-Rockafellar).

The limit $\varepsilon \rightarrow 0$: a rescaling

As $\varepsilon \rightarrow 0$ one has to expect just weak-* convergence of m_{ε}.

The limit $\varepsilon \rightarrow 0$: a rescaling

As $\varepsilon \rightarrow 0$ one has to expect just weak-* convergence of m_{ε}.
Consider the rescaled functions (x_{ε} will be chosen later)
$\tilde{m}_{\varepsilon}(\cdot)=\varepsilon^{\frac{N^{\prime}}{\gamma^{\prime}-\alpha N}} m\left(\varepsilon^{\frac{\gamma^{\prime}}{\gamma^{\prime}-a N}}+x_{\varepsilon}\right), \quad \tilde{u}_{\varepsilon}(\cdot)=\varepsilon^{\frac{N_{a}\left(\gamma^{\prime} \gamma^{\prime}\right)-\gamma^{\prime}}{\gamma^{\prime}-\alpha N}}\left(u\left(\varepsilon^{\frac{\gamma^{\prime}}{\gamma^{\prime}-\alpha N}} \cdot+x_{\varepsilon}\right)-u\left(x_{\varepsilon}\right)\right)$.
Since $\left(u_{\varepsilon}, m_{\varepsilon}\right)$ solves

$$
\left\{\begin{array}{l}
-\varepsilon \Delta u+H(\nabla u)+\lambda=-m^{\alpha}+V(x) \\
-\varepsilon \Delta m-\operatorname{div}(m \nabla H(\nabla u))=0 \\
\int_{\mathbb{R}^{N}} m=1, m>0
\end{array} \text { on } \mathbb{R}^{N},\right.
$$

The limit $\varepsilon \rightarrow 0$: a rescaling

As $\varepsilon \rightarrow 0$ one has to expect just weak-* convergence of m_{ε}.
Consider the rescaled functions (x_{ε} will be chosen later)
$\tilde{m}_{\varepsilon}(\cdot)=\varepsilon^{\frac{N^{\gamma}}{\gamma^{\prime}-a N}} m\left(\varepsilon^{\frac{\gamma^{\prime}}{\gamma^{\prime}-a N}}+x_{\varepsilon}\right), \quad \tilde{u}_{\varepsilon}(\cdot)=\varepsilon^{\frac{N_{\alpha}\left(\gamma^{\prime}-1\right)-\gamma^{\prime}}{\gamma^{\prime}-\alpha N}}\left(u\left(\varepsilon^{\frac{\gamma^{\prime}}{\gamma^{\prime}-a N}} \cdot+x_{\varepsilon}\right)-u\left(x_{\varepsilon}\right)\right)$.
Then $\left(\tilde{u}_{\varepsilon}, \tilde{m}_{\varepsilon}\right)$ solves

$$
\left\{\begin{array}{l}
-火 \Delta u+H_{\varepsilon}(\nabla u)+\lambda_{\varepsilon}=-m^{\alpha}+V_{\varepsilon} \\
-火 \Delta m-\operatorname{div}\left(m \nabla H_{\varepsilon}(\nabla u)\right)=0 \\
\int_{\mathbb{R}^{N}} m=1, m>0,
\end{array} \text { on } \mathbb{R}^{N},\right.
$$

where

$$
V_{\varepsilon}(\cdot)=\varepsilon^{\frac{N_{a} \gamma^{\prime}}{\gamma^{\prime}-\alpha N}} V\left(\varepsilon^{\frac{\gamma^{\prime}}{\gamma^{\prime}-\alpha N}}+X_{\varepsilon}\right), \quad H_{\varepsilon}(p) \sim|p|^{\gamma} .
$$

The limit $\varepsilon \rightarrow 0$: a partial convergence

Choose x_{ε} to be the global minimum of u_{ε}. Then,

$$
\tilde{u}_{\varepsilon}(0)=0, \quad \tilde{u}_{\varepsilon} \geq 0
$$

and
Proposition
Up to subsequences, $\left(\tilde{u}_{\varepsilon}, \tilde{m}_{\varepsilon}\right) \rightarrow(\bar{u}, \bar{m})$ classical solution to

$$
\left\{\begin{array}{l}
-\Delta \bar{u}+H_{0}(\nabla \bar{u})+\bar{\lambda}=-\bar{m}^{\alpha}+g(x) \tag{2}\\
-\Delta \bar{m}-\operatorname{div}\left(\bar{m} \nabla H_{0}(\nabla \bar{u})\right)=0 \quad \text { on } \mathbb{R}^{N} .
\end{array}\right.
$$

where g is a bounded function on \mathbb{R}^{N} and $H_{0}(p):=\lim _{\varepsilon \rightarrow 0} H_{\varepsilon}(p)$.

The limit $\varepsilon \rightarrow 0$: a partial convergence

Choose x_{ε} to be the global minimum of u_{ε}. Then,

$$
\tilde{u}_{\varepsilon}(0)=0, \quad \tilde{u}_{\varepsilon} \geq 0
$$

and

Proposition

Up to subsequences, $\left(\tilde{u}_{\varepsilon}, \tilde{m}_{\varepsilon}\right) \rightarrow(\bar{u}, \bar{m})$ classical solution to

$$
\left\{\begin{array}{l}
-\Delta \bar{u}+H_{0}(\nabla \bar{u})+\bar{\lambda}=-\bar{m}^{\alpha}+g(x) \tag{2}\\
-\Delta \bar{m}-\operatorname{div}\left(\bar{m} \nabla H_{0}(\nabla \bar{u})\right)=0 \quad \text { on } \mathbb{R}^{N} .
\end{array}\right.
$$

where g is a bounded function on \mathbb{R}^{N} and $H_{0}(p):=\lim _{\varepsilon \rightarrow 0} H_{\varepsilon}(p)$. Moreover, there exists $a \in(0,1]$ such that

$$
\int_{\mathbb{R}^{n}} \bar{m} d x=a .
$$

How to prove that $a=1$?

The limit $\varepsilon \rightarrow 0$: a partial convergence

Choose x_{ε} to be the global minimum of u_{ε}. Then,

$$
\tilde{u}_{\varepsilon}(0)=0, \quad \tilde{u}_{\varepsilon} \geq 0
$$

and

Proposition

Up to subsequences, $\left(\tilde{u}_{\varepsilon}, \tilde{m}_{\varepsilon}\right) \rightarrow(\bar{u}, \bar{m})$ classical solution to

$$
\left\{\begin{array}{l}
-\Delta \bar{u}+H_{0}(\nabla \bar{u})+\bar{\lambda}=-\bar{m}^{\alpha}+g(x) \tag{2}\\
-\Delta \bar{m}-\operatorname{div}\left(\bar{m} \nabla H_{0}(\nabla \bar{u})\right)=0 \quad \text { on } \mathbb{R}^{N} .
\end{array}\right.
$$

where g is a bounded function on \mathbb{R}^{N} and $H_{0}(p):=\lim _{\varepsilon \rightarrow 0} H_{\varepsilon}(p)$. Moreover, there exists $a \in(0,1]$ such that

$$
\int_{\mathbb{R}^{n}} \bar{m} d x=a .
$$

Using $e^{\bar{u}}$ as a Lyapunov function, exponential decay of \bar{m} follows.

The limit $\varepsilon \rightarrow 0$: concentration-compactness

Note that $\left(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon}\right)$ are minimizers of a rescaled energy $\varepsilon_{\varepsilon}$, that is

$$
\mathcal{E}_{\varepsilon}\left(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon}\right)=\inf _{(m, w) \in \mathcal{K}} \S_{\varepsilon}(m, w)
$$

The limit $\varepsilon \rightarrow 0$: concentration-compactness

Note that $\left(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon}\right)$ are minimizers of a rescaled energy $\mathcal{E}_{\varepsilon}$, that is

$$
\S_{\varepsilon}\left(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon}\right)=\inf _{(m, w) \in \mathcal{K}} \S_{\varepsilon}(m, w)
$$

Moreover, $\varepsilon_{\varepsilon}$ is sub-additive, that is, if $a<1$,

$$
\mathscr{E}_{\varepsilon}\left(\tilde{m}_{\varepsilon}, \tilde{W}_{\varepsilon}\right)=\inf _{\int m=1} \mathscr{E}_{\varepsilon}<\inf _{\int m=a} \mathscr{E}_{\varepsilon}+\inf _{\int m=1-a} \mathscr{E}_{\varepsilon} .
$$

The limit $\varepsilon \rightarrow 0$:

Note that $\left(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon}\right)$ are minimizers of a rescaled energy $\varepsilon_{\varepsilon}$, that is

$$
\S_{\varepsilon}\left(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon}\right)=\inf _{(m, w) \in \mathscr{K}} \S_{\varepsilon}(m, w)
$$

Moreover, $\varepsilon_{\varepsilon}$ is sub-additive, that is, if $a<1$,

$$
\mathscr{E}_{\varepsilon}\left(\tilde{m}_{\varepsilon}, \tilde{W}_{\varepsilon}\right)=\inf _{\int m=1} \mathscr{E}_{\varepsilon}<\inf _{\int m=a} \mathscr{E}_{\varepsilon}+\inf _{\int m=1-a} \mathscr{E}_{\varepsilon} .
$$

The concentration-compactness Lemma [Lions, 84] states that for some $R=R_{\varepsilon} \rightarrow \infty, \int_{B_{R}(0)} \tilde{m}_{\varepsilon} \simeq a$ and $\int_{\mathbb{R}^{N} \backslash B_{2 R}(0)} \tilde{m}_{\varepsilon} \simeq 1-a$, so

$$
\tilde{m}_{\varepsilon} \simeq \chi_{B_{R}(0)} \tilde{m}_{\varepsilon}+\chi_{\mathbb{R}^{N} \backslash B_{2 R}(0)} \tilde{m}_{\varepsilon} .
$$

The limit $\varepsilon \rightarrow 0$:

Note that $\left(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon}\right)$ are minimizers of a rescaled energy $\mathcal{E}_{\varepsilon}$, that is

$$
\mathscr{E}_{\varepsilon}\left(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon}\right)=\inf _{(m, w) \in \mathscr{K}} \mathcal{E}_{\varepsilon}(m, w)
$$

Moreover, $\varepsilon_{\varepsilon}$ is sub-additive, that is, if $a<1$,

$$
\mathscr{E}_{\varepsilon}\left(\tilde{m}_{\varepsilon}, \tilde{W}_{\varepsilon}\right)=\inf _{\int m=1} \mathscr{E}_{\varepsilon}<\inf _{\int m=a} \mathscr{E}_{\varepsilon}+\inf _{\int m=1-a} \mathscr{E}_{\varepsilon} .
$$

The concentration-compactness Lemma [Lions, 84] states that for some $R=R_{\varepsilon} \rightarrow \infty, \int_{B_{R}(0)} \tilde{m}_{\varepsilon} \simeq a$ and $\int_{\mathbb{R}^{N} \backslash B_{2 R}(0)} \tilde{m}_{\varepsilon} \simeq 1-a$, so

$$
\tilde{m}_{\varepsilon} \simeq \chi_{B_{R}(0)} \tilde{m}_{\varepsilon}+\chi_{\mathbb{R}^{N} \backslash B_{2 R}(0)} \tilde{m}_{\varepsilon} .
$$

If we were able to prove

$$
\mathcal{E}_{\varepsilon}\left(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon}\right) \simeq \mathscr{E}_{\varepsilon}\left(\chi_{B_{R}(0)} \tilde{m}_{\varepsilon}, W_{1}\right)+\mathscr{E}_{\varepsilon}\left(\chi_{\mathbb{R}^{N} \backslash B_{2 R}(0)} \tilde{m}_{\varepsilon}, W_{2}\right)
$$

The limit $\varepsilon \rightarrow 0$:

Note that $\left(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon}\right)$ are minimizers of a rescaled energy $\mathscr{E}_{\varepsilon}$, that is

$$
\mathscr{E}_{\varepsilon}\left(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon}\right)=\inf _{(m, w) \in \mathscr{K}} \mathcal{E}_{\varepsilon}(m, w)
$$

Moreover, $\varepsilon_{\varepsilon}$ is sub-additive, that is, if $a<1$,

$$
\mathscr{E}_{\varepsilon}\left(\tilde{m}_{\varepsilon}, \tilde{W}_{\varepsilon}\right)=\inf _{\int m=1} \mathscr{E}_{\varepsilon}<\inf _{\int m=a} \mathscr{E}_{\varepsilon}+\inf _{\int m=1-a} \mathscr{E}_{\varepsilon} .
$$

The concentration-compactness Lemma [Lions, 84] states that for some $R=R_{\varepsilon} \rightarrow \infty, \int_{B_{R}(0)} \tilde{m}_{\varepsilon} \simeq a$ and $\int_{\mathbb{R}^{N} \backslash B_{2 R}(0)} \tilde{m}_{\varepsilon} \simeq 1-a$, so

$$
\tilde{m}_{\varepsilon} \simeq \chi_{B_{R}(0)} \tilde{m}_{\varepsilon}+\chi_{\mathbb{R}^{N} \backslash B_{2 R}(0)} \tilde{m}_{\varepsilon} .
$$

If we were able to prove
$\mathscr{E}_{\varepsilon}\left(\tilde{m}_{\varepsilon}, \tilde{W}_{\varepsilon}\right) \simeq \mathscr{E}_{\varepsilon}\left(\chi_{B_{R}(0)} \tilde{m}_{\varepsilon}, W_{1}\right)+\mathscr{E}_{\varepsilon}\left(\chi_{\mathbb{R}^{N} \backslash B_{2 R}(0)} \tilde{m}_{\varepsilon}, W_{2}\right) \gtrsim \inf _{\int m=a} \mathscr{E}_{\varepsilon}+\inf _{\int m=1-a} \mathscr{E}_{\varepsilon}$,
we would contradict sub-additivity, so $\tilde{m}_{\varepsilon} \rightarrow \bar{m}$ in $L^{1}\left(\mathbb{R}^{N}\right)$.

Instead of splitting \tilde{m}_{ε} via cut-offs, we write

$$
\begin{aligned}
& \tilde{m}_{\varepsilon}=\bar{m}+\left(m_{\varepsilon}-\bar{m}\right) \\
& \tilde{w}_{\varepsilon}=\bar{w}+\left(w_{\varepsilon}-\bar{w}\right)
\end{aligned}
$$

Instead of splitting \tilde{m}_{ε} via cut-offs, we write

$$
\begin{aligned}
& \tilde{m}_{\varepsilon} \simeq \bar{m}+\left(m_{\varepsilon}-\bar{m}+v_{\varepsilon}(x)\right) \\
& \tilde{w}_{\varepsilon} \simeq \bar{w}+\left(w_{\varepsilon}-\bar{w}+\nabla v_{\varepsilon}(x)\right),
\end{aligned}
$$

where $v(x)$ decays exponentially and vanishes as $\varepsilon \rightarrow 0$.

Instead of splitting \tilde{m}_{ε} via cut-offs, we write

$$
\begin{aligned}
& \tilde{m}_{\varepsilon} \simeq \bar{m}+\left(m_{\varepsilon}-\bar{m}+v_{\varepsilon}(x)\right) \\
& \tilde{w}_{\varepsilon} \simeq \bar{w}+\left(w_{\varepsilon}-\bar{w}+\nabla v_{\varepsilon}(x)\right),
\end{aligned}
$$

where $v(x)$ decays exponentially and vanishes as $\varepsilon \rightarrow 0$.
($\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon}$) then splits into two (couples of) admissible competitors, and with some technical work,

$$
\begin{aligned}
\mathcal{E}_{\varepsilon}\left(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon}\right) \simeq \mathscr{E}_{\varepsilon}(\bar{m}, \bar{w})+\mathscr{E}_{\varepsilon}\left(m_{\varepsilon}-\bar{m}+v_{\varepsilon}, W_{\varepsilon}\right. & \left.-\bar{w}+\nabla v_{\varepsilon}\right) \\
& \gtrsim \inf _{\int m=a} \mathscr{E}_{\varepsilon}+\inf _{\int m=1-a} \mathcal{E}_{\varepsilon},
\end{aligned}
$$

contradicting sub-additivity of $\mathscr{E}_{\varepsilon}$.

tracking the concentration point x_{ε}

By the previous compactness argument, for all $\eta>0$ there exists $R \gg 0$ s.t.

$$
\int_{B_{R}(0)} \tilde{m}_{\varepsilon} d x \geq 1-\eta,
$$

namely,

$$
\int_{\mid x-x_{\varepsilon} \leq R \leq \varepsilon} m_{\varepsilon} d x \geq 1-\eta,
$$

that is: most of the mass of m_{ε} is located around a small ball centered at x_{ε}.

tracking the concentration point x_{ε}

By the previous compactness argument, for all $\eta>0$ there exists $R \gg 0$ s.t.

$$
\int_{B_{R}(0)} \tilde{m}_{\varepsilon} d x \geq 1-\eta,
$$

namely,

$$
\int_{\left\lvert\, x-x_{\varepsilon} \leq R \varepsilon^{\frac{\gamma^{\prime}-a N}{\prime}}\right.} m_{\varepsilon} d x \geq 1-\eta,
$$

that is: most of the mass of m_{ε} is located around a small ball centered at x_{ε}.

To track x_{ε}, we exploit that \tilde{m}_{ε} is a minimizer of $\mathcal{E}_{\varepsilon}$.
Heuristically, x_{ε} should approach $\operatorname{argmin}_{\mathbb{R}^{N}} V(x)$.

tracking the concentration point x_{ε}

To complete this program, we will assume also that V has a finite number of minima, that is, for some $\hat{b}>0, x_{j} \in \mathbb{R}^{N}, j=1, \ldots, n$,

$$
V(x)=h(x) \prod_{j=1}^{n}\left|x-x_{j}\right|^{\hat{b}}, \quad C_{V}^{-1} \leq h(x) \leq C_{V} \text { on } \mathbb{R}^{N} .
$$

Note that

$$
\min _{\mathbb{R}^{N}} V=0
$$

Suppose also

$$
C_{H}\left(|p|^{\gamma}-1\right) \leq H(p) \leq C_{H}|p|^{\gamma},
$$

and
either $H(p)=C_{H}|p|^{\gamma}$, or $n \hat{b}<\frac{\gamma}{2}$.

On one hand, if one chooses suitable competitors (m, w),

$$
\mathcal{E}\left(m_{\varepsilon}, w_{\varepsilon}\right) \leq \mathcal{E}(m, w) \rightsquigarrow \int_{\mathbb{R}^{N}} V m_{\varepsilon} d x \rightarrow 0
$$

On the other hand, for some $\delta \rightarrow 0$,

$$
\frac{1}{2} \inf _{B_{\delta}\left(x_{\varepsilon}\right)} V(X) \leq \int_{B_{\delta}\left(X_{\varepsilon}\right)} V m_{\varepsilon},
$$

therefore

$$
V\left(x_{\varepsilon}\right) \rightarrow 0 .
$$

as $\varepsilon \rightarrow 0$.

On one hand, if one chooses suitable competitors (m, w),

$$
\mathcal{E}\left(m_{\varepsilon}, w_{\varepsilon}\right) \leq \mathcal{E}(m, w) \rightsquigarrow \int_{\mathbb{R}^{N}} V m_{\varepsilon} d x \rightarrow 0
$$

On the other hand, for some $\delta \rightarrow 0$,

$$
\frac{1}{2} \inf _{B_{\delta}\left(x_{\varepsilon}\right)} V(x) \leq \int_{B_{\delta}\left(x_{\varepsilon}\right)} V m_{\varepsilon},
$$

therefore

$$
V\left(x_{\varepsilon}\right) \rightarrow 0 .
$$

as $\varepsilon \rightarrow 0$.
To summarize...

$\varepsilon \rightarrow 0$: the convergence result

Theorem 2. Under the standing assumptions, there exist sequences $\varepsilon \rightarrow 0$ and x_{ε}, such that for all $\eta>0$ there exists R s.t.,

$$
\int_{\mid x-x_{\varepsilon} \leq \leq R \varepsilon} m_{\varepsilon} \frac{\gamma^{\prime}-a N}{} m^{\prime} d x \geq 1-\eta,
$$

and for some $J=1, \ldots, n, C>0$,

$$
\left|x_{\varepsilon}-x_{ر}\right| \leq C \varepsilon^{\frac{\gamma^{\prime}}{\left.n \gamma^{\prime}-N \alpha\right)}} .
$$

Moreover, $\left(\varepsilon^{\frac{N_{a}\left(\gamma^{\prime}-1\right)-\gamma^{\prime}}{\gamma^{\prime}-a N}} u_{\varepsilon}\left(\varepsilon^{\frac{\gamma^{\prime}}{\gamma^{\prime}-a N}} \cdot+x_{\varepsilon}\right), \varepsilon^{\frac{N_{0} \gamma^{\prime}}{\gamma^{2}-a N}} m_{\varepsilon}\left(\varepsilon^{\frac{\gamma^{\prime}}{\gamma^{\prime}-a N}} \cdot+x_{\varepsilon}\right)\right)$ converges to a classical solution of

$$
\left\{\begin{array}{l}
-\Delta u+H_{0}(\nabla u)+\bar{\lambda}=-m^{\alpha} \\
-\Delta m-\operatorname{div}\left(m \nabla H_{0}(\nabla u)\right)=0 \\
\int_{\mathbb{R}^{v}} m=1, \quad m>0 .
\end{array}\right.
$$

By-products

- If one introduces the " V-free energy"

$$
\overline{\mathcal{E}}(m, w)=\int_{\mathbb{R}^{N}} m L_{0}\left(-\frac{w}{m}\right)-\frac{1}{\alpha+1} m^{\alpha+1} d x
$$

then

$$
\mathcal{E}_{\varepsilon}\left(\tilde{m}_{\varepsilon}, \tilde{w}_{\varepsilon}\right) \rightarrow \bar{\delta}(\bar{m}, \bar{w})=\min _{(m, w) \in \mathcal{K}, m\left(1+\left.|x|\right|^{b}\right) \in L^{1}\left(\mathbb{R}^{N}\right)} \bar{\varepsilon}(m, w)
$$

- There exists a classical solution, or ground state, to

$$
\left\{\begin{array}{l}
-\Delta u+H_{0}(\nabla u)+\bar{\lambda}=-m^{\alpha} \\
-\Delta m-\operatorname{div}\left(m \nabla H_{0}(\nabla u)\right)=0 \\
\int_{\mathbb{R}^{v}} m=1, \quad m>0 .
\end{array}\right.
$$

A comment on Lyapunov functions and ergodicity

Solutions of V-free MFG cannot be unique, by translation invariance. More subtle is uniqueness of m for fixed u to

$$
-\Delta m-\operatorname{div}\left(m \nabla H_{0}(\nabla u)\right)=0, \quad \int_{\mathbb{R}^{N}} m=1, \quad m>0
$$

namely if (u, λ, m_{1}) and (u, λ, m_{2}) are sols of (1), then $m_{1} \equiv m_{2}$.

A comment on Lyapunov functions and ergodicity

Solutions of V-free MFG cannot be unique, by translation invariance. More subtle is uniqueness of m for fixed u to

$$
-\Delta m-\operatorname{div}\left(m \nabla H_{0}(\nabla u)\right)=0, \quad \int_{\mathbb{R}^{N}} m=1, \quad m>0
$$

namely if (u, λ, m_{1}) and (u, λ, m_{2}) are sols of (1), then $m_{1} \equiv m_{2}$.
This holds true because $\varphi(x)=u(x)$ (and $\varphi(x)=e^{u(x)}$) satisfies

$$
\varphi \rightarrow+\infty \quad \text { and } \quad-\varepsilon \Delta \varphi+\nabla H(\nabla u) \cdot \nabla \varphi \rightarrow+\infty \quad \text { as } x \rightarrow \infty,
$$

that implies also ergodicity of the optimal trajectories.

Final remarks

Symmetry of solutions to MFG on \mathbb{R}^{N} is a completely open problem, but break of symmetry may show up if ε is small.

Final remarks

Symmetry of solutions to MFG on \mathbb{R}^{N} is a completely open problem, but break of symmetry may show up if ε is small.

Some technical assumptions can be relaxed, e.g. $\gamma^{\prime}>N, V$ with a finite number of minima...

Final remarks

Symmetry of solutions to MFG on \mathbb{R}^{N} is a completely open problem, but break of symmetry may show up if ε is small.

Some technical assumptions can be relaxed, e.g. $\gamma^{\prime}>N, V$ with a finite number of minima...
... but $\alpha<\gamma^{\prime} / N$ is much more structural: if it fails, ε is not bounded by below (stability issues, ...)

Final remarks

Symmetry of solutions to MFG on \mathbb{R}^{N} is a completely open problem, but break of symmetry may show up if ε is small.

Some technical assumptions can be relaxed, e.g. $\gamma^{\prime}>N, V$ with a finite number of minima...
... but $\alpha<\gamma^{\prime} / N$ is much more structural: if it fails, ε is not bounded by below (stability issues, ...)
behaviour of other critical points of \mathcal{E} ?

Final remarks

Symmetry of solutions to MFG on \mathbb{R}^{N} is a completely open problem, but break of symmetry may show up if ε is small.

Some technical assumptions can be relaxed, e.g. $\gamma^{\prime}>N, V$ with a finite number of minima...
... but $\alpha<\gamma^{\prime} / N$ is much more structural: if it fails, ε is not bounded by below (stability issues, ...)
behaviour of other critical points of \mathcal{E} ?
behaviour of time-dependent systems? (joint work w. D. Tonon)

Thank you for your attention.

