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Setting

We consider a Mean-Field Game where the dynamics of a typical
agent is driven by the controlled SDE

dXs = −vsds+
√
2εdBs on RN,

where vs is the control and Bs is a Brownian motion, and the cost, of
long-time average form, is

lim
T→∞

1
T
E

∫ T

0
[L(vs) + V(Xs) −mα(Xs)]ds.

In what follows,

ε, α > 0,

L(q) ∼ |q|γ′ , γ′ = γ
γ−1 > 1

0 ≤ V(x)→ ∞ as |x| → ∞
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Equilibria of this MFG are intimately related to solutions (u, λ,m) of
the following system

−ε∆u+ H(∇u) + λ = −mα + V(x)
−ε∆m − div(m∇H(∇u)) = 0 on RN,∫
RN
m = 1, m > 0

(1)

which is a system of stationary coupled viscous HJB and
Fokker-Planck equations, where H(p) = L∗(p) ∼ |p|γ.

We will address the following problems:

1 For fixed ε > 0, prove the existence of a triple (uε, λε,mε) to (1),

2 Study the behaviour of solutions as ε→ 0,

3 Understand (1) when V ≡ 0.
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Key point 1: the “focusing” coupling −mα

A large part of the literature is devoted to systems with competition,
namely when the coupling in the cost is monotonically increasing
w.r.t m. In this case,

uniqueness of solutions holds,

the coupling term is “regularising”

Few studies consider the opposite case, i.e. when agents are
attracted toward congested areas. See, e.g. [Guéant, 09], [Gomes,
Nurbekyan, Prazeres, 16], [C., 16], [C., Tonon, 17], ...

In this framework, uniqueness of equilibria has not to be expected,
while existence is a delicate issue: if α >> 0, non-existence
phenomena show up.
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Key point 2: RN as a state space

Most of the (PDE) literature is restricted to TN. For a truly
non-periodic setting, we mention

[Arapostathis, Biswas, Carroll, 17]: bounded controls,

[Bardi, Priuli, 14]: Linear-Quadratic case,

[Gomes, Pimentel, 16]: local regularity,

[Porretta, 16]: time-dependent problems,

...

At the PDE level, the main issue of RN is its lack of compactness.

From the point of view of the game, a typical player is subject to
diffusion, which prevents a stable long-time behaviour.
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In other words, an agent playing optimally moves according to

dXs = −∇H(∇u(Xs))ds+
√
2εdBs,

and in a (M-F) equilibrium regime

L(Xs)→ m as s→ ∞,

where m is the overall population density.

This is linked to ∃! of m to

−ε∆m − div(m∇H(∇u)) = 0 on RN.

that is itself related to the existence of a Lyapunov function, i.e.
ϕ ∈ C2(RN) such that

ϕ→ +∞ and − ε∆ϕ+ ∇H(∇u) · ∇ϕ→ +∞ as x → ∞.
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The presence of the potential V is usually sufficient to compensate
the lack of compactness: spatial preference discourages the agents
to go far away.

The interaction of the individual with the population through the
coupling −mα, i.e. the aggregation force, should be against
dissipation.

So, we expect:
Existence of equilibria for all ε > 0, and mε concentrating around
minima of V as ε→ 0.

What happens if V ≡ 0?
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Tools - 1. Variational formulation

We will construct solutions to (1) via minimisers of the non-convex
energy

E(m,w) =
∫
RN
mL

(
−
w
m

)
+ V(x)m − 1

α+ 1
mα+1 dx,

subject to the constraint

(m,w) ∈ Kε :=
{
−ε∆m+ div(w) = 0,

∫
RN
mdx = 1, m > 0

}
.

(see [Cardaliaguet et al. 13-16]).

Question: eε(M) = inf
Kε

E(m,w) > −∞ ?
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YES, if
0 < α < γ

′

N
(while infE = −∞ if α > γ

′

N ).

In particular, in this regime there exist C, δ > 0 s.t.(∫
RN
mα+1

)1+δ
dx ≤ C

∫
RN
mL

(
−
w
m

)
dx

for all (m,w) ∈ Kε.

If, in addition,
1 < γ < N

N − 1
, (i.e. γ′ > N)

then
‖m‖C0,β(RN) ≤ C

∫
RN
mL

(
−
w
m

)
dx

Proof: Gagliardo-Nirenberg inequality and elliptic regularity.
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Tools - 2. Regularity of HJB equations

Suppose that v is a viscosity solution to

−ε∆v + H(∇v) = F(x) on RN,

where

C−1F |x|
b ≤ F(x) ≤ CF |x|b for all |x| >> 0 and some b ≥ 0,

Theorem [Capuzzo Dolcetta, Leoni, Porretta, 10]

There exists K > 0 such that

|∇v(x)| ≤ K(1+ |x|)b/γ on RN.

Theorem [Barles, Meireles, 16]

There exists K1 > 0 such that

v(x) ≥ K1(|x|1+
b
γ − 1) on RN.
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Existence of solutions, ε > 0

Theorem 1.
Suppose that for some b > 0,

α <
γ′

N
, γ <

N
N − 1

, C−1V |x|
b ≤ V(x) ≤ CV |x|b ∀|x| >> 0,

Then, for every ε > 0,
i) There exists a minimizer (mε,wε) ∈ Kε of E, that is

E(mε,wε) = inf
(m,w)∈Kε

E(m,w).

ii) For any minimizer (mε,wε) ∈ Kε of E, there exists (uε, λε)
such that (uε, λε,mε) is a classical solution to (1).

Note: uε → +∞ as |x| → ∞.
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Existence of solutions, ε > 0

Proof: 1. Consider a minimizing sequence (mn,wn). Then, it is
bounded in W1,r(RN) × Lγ′(RN). Since

∫
RN
Vm is bounded, for all η > 0

there exists R >> 0 s.t. ∫
BR(0)

mε(x)dx ≥ 1 − η,

that gives convergence of mn → m̄ in L1(RN) ∩ Lα+1(RN).

2. Full solution of (1) is obtained by considering

Ẽ(m,w) =
∫
RN
mL

(
−
w
m

)
+ (V(x) − m̄α)mdx,

and its dual formulation (Fenchel-Rockafellar).
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The limit ε→ 0: a rescaling

As ε→ 0 one has to expect just weak-* convergence of mε.

Consider the rescaled functions (xε will be chosen later)

m̃ε(·) = ε
Nγ′
γ′−αNm(ε

γ′

γ′−αN ·+xε), ũε(·) = ε
Nα(γ′−1)−γ′
γ′−αN

(
u(ε

γ′

γ′−αN ·+xε) − u(xε)
)
.
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Then (ũε, m̃ε) solves
−�Aε∆u+ Hε(∇u) + λε = −mα + Vε
−�Aε∆m − div(m∇Hε(∇u)) = 0 on RN,∫
RN
m = 1, m > 0,

where
Vε(·) = ε

Nαγ′
γ′−αN V(ε

γ′

γ′−αN ·+xε), Hε(p) ∼ |p|γ.

13



The limit ε→ 0: a partial convergence

Choose xε to be the global minimum of uε. Then,

ũε(0) = 0, ũε ≥ 0

and

Proposition
Up to subsequences, (ũε, m̃ε)→ (ū, m̄) classical solution to−∆ū+ H0(∇ū) + λ̄ = −m̄α + g(x)

−∆m̄ − div(m̄∇H0(∇ū)) = 0 on RN.
(2)

where g is a bounded function on RN and H0(p) := limε→0 Hε(p).

Moreover, there exists a ∈ (0, 1] such that∫
Rn
m̄ dx = a.
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Using eū as a Lyapunov function, exponential decay of m̄ follows. 14



The limit ε→ 0: concentration-compactness

Note that (m̃ε, w̃ε) are minimizers of a rescaled energy Eε, that is

Eε(m̃ε, w̃ε) = inf
(m,w)∈K

Eε(m,w)

Moreover, Eε is sub-additive, that is, if a < 1,

Eε(m̃ε, w̃ε) = inf∫
m=1

Eε < inf∫
m=a

Eε + inf∫
m=1−a

Eε.

The concentration-compactness Lemma [Lions, 84] states that for
some R = Rε → ∞,

∫
BR(0)

m̃ε ' a and
∫
RN\B2R(0)

m̃ε ' 1 − a, so

m̃ε ' χBR(0)m̃ε + χRN\B2R(0)m̃ε.

If we were able to prove

Eε(m̃ε, w̃ε) ' Eε(χBR(0)m̃ε,w1)+Eε(χRN\B2R(0)m̃ε,w2) & inf∫
m=a

Eε+ inf∫
m=1−a

Eε,

we would contradict sub-additivity, so m̃ε → m̄ in L1(RN).
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Instead of splitting m̃ε via cut-offs, we write

m̃ε = m̄+ (mε − m̄)

w̃ε = w̄ + (wε − w̄)
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tracking the concentration point xε

By the previous compactness argument, for all η > 0 there exists
R >> 0 s.t. ∫

BR(0)
m̃εdx ≥ 1 − η,

namely, ∫
|x−xε |≤Rε

γ′

γ′−αN
mε dx ≥ 1 − η,

that is: most of the mass of mε is located around a small ball
centered at xε.

To track xε, we exploit that m̃ε is a minimizer of Eε.

Heuristically, xε should approach argminRNV(x).
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tracking the concentration point xε

To complete this program, we will assume also that V has a finite
number of minima, that is, for some b̂ > 0, xj ∈ RN, j = 1, . . . ,n,

V(x) = h(x)
n∏
j=1

|x − xj|b̂, C−1V ≤ h(x) ≤ CV on R
N.

Note that
min
RN

V = 0.

Suppose also
CH(|p|γ − 1) ≤ H(p) ≤ CH|p|γ,

and
either H(p) = CH|p|γ, or nb̂ < γ

2
.
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On one hand, if one chooses suitable competitors (m,w),

E(mε,wε) ≤ E(m,w)  

∫
RN
Vmεdx → 0

On the other hand, for some δ→ 0,

1
2
inf
Bδ(xε)

V(x) ≤
∫
Bδ(xε)

Vmε,

therefore
V(xε)→ 0.

as ε→ 0.

To summarize...
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ε→ 0: the convergence result

Theorem 2. Under the standing assumptions, there exist sequences
ε→ 0 and xε, such that for all η > 0 there exists R s.t.,∫

|x−xε |≤Rε
γ′

γ′−αN
mε dx ≥ 1 − η,

and for some J = 1, . . . ,n , C > 0,

|xε − xJ| ≤ Cε
γ′

n(γ′−Nα) .

Moreover, (ε
Nα(γ′−1)−γ′
γ′−αN uε(ε

γ′

γ′−αN ·+xε), ε
Nαγ′
γ′−αNmε(ε

γ′

γ′−αN ·+xε)) converges to
a classical solution of

−∆u+ H0(∇u) + λ̄ = −mα

−∆m − div(m∇H0(∇u)) = 0∫
RN
m = 1, m > 0.
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By-products

If one introduces the “V-free energy”

E(m,w) =
∫
RN
mL0

(
−
w
m

)
−

1
α+ 1

mα+1dx

then

Eε(m̃ε, w̃ε)→ E(m̄, w̄) = min
(m,w)∈K,m(1+|x|b)∈L1(RN)

E(m,w)

There exists a classical solution, or ground state, to
−∆u+ H0(∇u) + λ̄ = −mα

−∆m − div(m∇H0(∇u)) = 0∫
RN
m = 1, m > 0.
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A comment on Lyapunov functions and ergodicity

Solutions of V-free MFG cannot be unique, by translation invariance.

More subtle is uniqueness of m for fixed u to

−∆m − div(m∇H0(∇u)) = 0,
∫
RN
m = 1, m > 0

namely if (u, λ,m1) and (u, λ,m2) are sols of (1), then m1 ≡ m2.

This holds true because ϕ(x) = u(x) (and ϕ(x) = eu(x)) satisfies

ϕ→ +∞ and − ε∆ϕ+ ∇H(∇u) · ∇ϕ→ +∞ as x → ∞,

that implies also ergodicity of the optimal trajectories.
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Final remarks

Symmetry of solutions to MFG on RN is a completely open problem,
but break of symmetry may show up if ε is small.

Some technical assumptions can be relaxed, e.g. γ′ > N, V with a
finite number of minima...

... but α < γ′/N is much more structural: if it fails, E is not bounded
by below (stability issues, ...)

behaviour of other critical points of E?

behaviour of time-dependent systems? (joint work w. D. Tonon)

23



Final remarks

Symmetry of solutions to MFG on RN is a completely open problem,
but break of symmetry may show up if ε is small.

Some technical assumptions can be relaxed, e.g. γ′ > N, V with a
finite number of minima...

... but α < γ′/N is much more structural: if it fails, E is not bounded
by below (stability issues, ...)

behaviour of other critical points of E?

behaviour of time-dependent systems? (joint work w. D. Tonon)

23



Final remarks

Symmetry of solutions to MFG on RN is a completely open problem,
but break of symmetry may show up if ε is small.

Some technical assumptions can be relaxed, e.g. γ′ > N, V with a
finite number of minima...

... but α < γ′/N is much more structural: if it fails, E is not bounded
by below (stability issues, ...)

behaviour of other critical points of E?

behaviour of time-dependent systems? (joint work w. D. Tonon)

23



Final remarks

Symmetry of solutions to MFG on RN is a completely open problem,
but break of symmetry may show up if ε is small.

Some technical assumptions can be relaxed, e.g. γ′ > N, V with a
finite number of minima...

... but α < γ′/N is much more structural: if it fails, E is not bounded
by below (stability issues, ...)

behaviour of other critical points of E?

behaviour of time-dependent systems? (joint work w. D. Tonon)

23



Final remarks

Symmetry of solutions to MFG on RN is a completely open problem,
but break of symmetry may show up if ε is small.

Some technical assumptions can be relaxed, e.g. γ′ > N, V with a
finite number of minima...

... but α < γ′/N is much more structural: if it fails, E is not bounded
by below (stability issues, ...)

behaviour of other critical points of E?

behaviour of time-dependent systems? (joint work w. D. Tonon)

23



Thank you for your attention.
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