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Circadian Oscillators & Jet Lag

I Cells in Suprachiasmatic Nucleus (SCN) responsible for
circadian rhythm.

I Approximately 104 neuronal cells in a nucleus

I Each cell exhibits oscillatory dynamics.

I Each cell has a preferred frequency ω that varies from cell to
cell.

I E[ω] ≈ 2π
24.5

I Cells try to synchronize with each other, as well external
sources (e.g. the sun).

I Jet lag: How do cells resynchronize after travel between time
zones?

I Seasoned travelers:

jet lag is worse flying east than west !!!
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Where did we start?

SIAM News Magazine article

I Lu, Cardeña, Lee, Antonsen, Girvan, & Ott at University
of Maryland College Park, Resynchronization of circadian
oscillators and the east-west asymmetry of jet-lag, 2016.



Lu et al. use Kuramoto’s Model

I Large number of oscillators evolving according to:

dθi
dt

= ωi +
K

N

N∑
i=1

sin(θj − θi ) + F sin(ωS t + ρ(t)− θi )

I ωS = 2π
24 , ω̄ = E[ωi ] = 2π

24.5 . Time zone angle ρ(t) ∈ [0, 2π].

I Define order parameter, z(t):

z(t) =
1

N

N∑
i=1

e i [θi (t)−ωS t−ρ(t)]

(notice z(t) depends upon the empirical measure of the θi (t) !!!)

I Assuming ωi i.i.d. & ωi ∼ Cauchy(ω̄,∆), in the limit z satisfies:

ż =
1

2

[
(Kz + F )− z2(Kz + F )∗

]
− (∆ + i(ωS − ω̄))z
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Stylized Facts of the Model

I An individual is entrained to their time zone if z is at a stable
fixed point (z(t) constant).

I Changing your time zone corresponds to a rotation of z by
∆ρ = p1 − p2.

I The time to return to the stable fixed point can be identified
as the time to recover from jet lag.

I Lu et al. try to understand the east-west asymmetry.



Lu et al. Numerical Results. I

Taken from Lu et al.



Lu et al. Numerical Results. II

Jet Lag Recovery Time

Taken from Lu et al.



MFG Attempt at Synchronization

I Yin, Mehta, Meyn, & Shanbhag at University of Illinois at
Urbana-Champaign, Synchronization of coupled oscillators is a
game, 2012.



Yin et al: Synchronization is a Game

I Each oscillator’s phase evolves according to:

dθit = [ω̄ + αi
t ]dt + σdW i

t

I where

I W i = (W i
t )t≥0 are independent Wiener proesses

I αi = (αi
t)t≥0 is chosen to minimize the long run average cost:

J i (α1, · · · ,αN) = lim sup
T→∞

1

T

∫ T

0

[R
2
|αi

t |2+
1

N

N∑
j=1

1

2
sin2(

θit − θ
j
t

2
)
]
dt

The second term in the integral can be written as c̄(θit , µ
N
t ) with

c̄(θ, µ) =

∫ 2π

0

1

2
sin2

(
θ − θ′

2

)
µ(dθ′) and µN

t =
1

N

N∑
j=1

δθjt



Yin et al. MFG Formulation

I Can’t solve for finite N, so take limit N →∞
I Mean Field Game formulation:

I Fix flow µ = (µt)t≥0 of probability measures
I the typical oscillator’s phase evolves according to:

dθt = [ω̄ + αt ]dt + σdWt

α = (αt)t≥0 chosen to minimize

Jµ(α) = lim sup
T→∞

1

T

∫ T

0

[R
2
|αt |2 + c̄(θt , µt)

]
dt

I and satisfies µt = L(θt) for all t ≥ 0.



Yin et al. MFG Formulation, cont.

The solution (V , λ,µ) is obtained by solving the system:

I Hamilton-Jacobi-Bellman (HJB) equation:

∂tV + ω∂θV = −σ
2

2
∂2θθV + λ+

1

2R
(∂θV )2 − c̄(θ, µt)

I Fokker-Planck Kolmogorov equation:

∂tµt + ω∂θµt =
1

R
∂θ [(∂θV )µt ] +

σ2

2
∂2θθµt

I and the asymptotic consistency for λ:

λ = lim sup
T→∞

1

T

∫ T

0

∫ 2π

0

[
1

2R
(∂θV )2 + c̄(θt , µt)

]
µt(dθ)dt



Yin et al., Numerics

I Two types of solutions:

1. Time independent: incoherence solution

V (t, θ) = 0 and µ(t, θ) =
1

2π

2. Time-periodic solutions: traveling waves

I Perturbation analysis by linearization about the incoherence
solution.

I For R > Rc , the incoherence solution is linearly asymptotically
stable.

I From R = Rc bifurcates a family of (non-constant) traveling
wave solutions.

I No external source (e.g. the sun).



Goals of the Talk / Paper

I Mean field game formulation for the synchronization of
circadian oscillators in the presence of an external source.

1. Formulate the dynamics of neuronal oscillators as a mean field
game.

2. Understand the long time behavior for oscillators that remain
in the same time zone.

3. Quantify jet lag recovery.
4. Compare jet lag recovery for east versus west travel.
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Synchronization of Circadian Rhythms

an Ergodic MFG Model for Staying in the same Time Zone

I Fix flow µ = (µt)t≥0 of probability measures

I The typical oscillator’s phase evolves according to:

dθt = [ω̄ + αt ]dt + σdWt

α = (αt)t≥0 chosen to minimize

Jµ(α) = lim sup
T→∞

1

T

∫ T

0

(
R

2
α2
t + c̄(θt , µt) + csun(t, θt)

)
dt

with c̄ as before and

csun(t, θ) =
F

2
sin2

(
ωS t + ρ(t)− θt

2

)
I Finally find µ to satisfy µt = L(θt) for all t ≥ 0.



HJB + FPK System

The solution (V , λ,µ) is obtained by solving the system:

I Hamilton-Jacobi-Bellman (HJB) equation:

∂tV + ω∂θV = −σ
2

2
∂2θθV + λ+

1

2R
(∂θV )2 − c̄(θ, µt)− csun(t, θt)

I Fokker-Planck Kolmogorov equation:

∂tµt + ω∂θµt =
1

R
∂θ [(∂θV )µt ] +

σ2

2
∂2θθµt

I and the asymptotic consistency for λ:

λ = lim sup
T→∞

1

T

∫ T

0

∫ 2π

0

[
1

2R
(∂θV )2 + c̄(θt , µt) + csun(t, θt)

]
µt(dθ)dt



Moving Frame of Reference (ρ(t) ≡ p constant)

Change of variables:

φ = θ − ωS t, Ṽ (t, φ) = V (t, θ), µ̃t(φ) = µt(θ).

New system:

∂tṼ +(−ωS +ω)∂φṼ = −σ
2

2
∂2φφṼ +λ+

1

2R
(∂φṼ )2− c̄(φ, µ̃t)−csun(φ, p)

∂t µ̃t + (−ωS + ω)∂φµ̃t =
1

R
∂φ

[
(∂φṼ )µ̃t

]
+
σ2

2
∂2φφµ̃t

with c̄ as before and

csun(φ, p) =
F

2
sin2

(
φ− p

2

)



Existence & Uniqueness?

I Existence:
I c̄(φ, µ), and csun(φ, p) are continuous, bounded, and periodic

on [0, 2π]. (Lasry - Lions, 2007)

I Uniqueness:
I (φ, µ) ↪→ c̄(φ, µ) is not L-monotone.
I c̄(φ, µ) = h ∗ µ where ∗ denotes convolution.

I h(φ) = 1
2

sin2(φ/2) is not convex.



Stationary Solutions

I The coefficients and cost functions no longer depend on time.

I limt→∞ µ̃
(p)
t (dφ) = µ∗(p)(dφ) and limt→∞ Ṽ (p)(t, φ) = V ∗(p)(φ).

I Let µ∗(dφ) = µ∗(0)(dφ) and V ∗(φ) = V ∗(0)(φ) be the stationary
solution for p = 0.

I For a different time zone longitude p, the invariant solution is
µ∗(p)(dφ) = µ∗(dφ− p), V ∗(p)(φ) = V ∗(φ− p).
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I Let µ∗(dφ) = µ∗(0)(dφ) and V ∗(φ) = V ∗(0)(φ) be the stationary
solution for p = 0.

I For a different time zone longitude p, the invariant solution is
µ∗(p)(dφ) = µ∗(dφ− p), V ∗(p)(φ) = V ∗(φ− p).



Stationary Solutions

I The coefficients and cost functions no longer depend on time.

I limt→∞ µ̃
(p)
t (dφ) = µ∗(p)(dφ) and limt→∞ Ṽ (p)(t, φ) = V ∗(p)(φ).
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Jet Lag Recovery

I Imagine we spend a long time in time zone p = 0

I Synchronization settles in unique invariant solution (µ∗(dφ),V ∗(φ)) of
ergodic MFG.

I Imagine travel is immediate:

ρ(0) = 0

ρ(t) = p, ∀t > 0
(1)

I After being entrained to time zone p = 0, new synchronization starting
from µ̃

(p)
0 (dφ) = µ∗(dφ).

I ( µ̃
(p)
t (dφ))0≤t≤T finite (as short as possible) horizon MFG equilibrium

with initial condition µ̃
(p)
0 (dφ) = µ∗(dφ).

I We expect limt→∞ µ̃
(p)
t (dφ) = µ∗(p)(dφ) = µ∗(φ− p)

though we would hope that one should recover from jet-lag before T =∞ !
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Jet Lag Recovery Time

I Definition 1: choose ε > 0 small and set:

τ 1p := inf{t > 0 : d(µ̃
(p)
t , µ∗(· − p)) < ε} (2)

For east versus west travel, we compare τ 1p and τ 1−p.

I In the spirit of Lu et al, define:

z st =

∫ 2π

0

e iφµ∗(dφ) (3)

zt =

∫ 2π

0

e iφµ̃
(p)
t (dφ) (4)

I Definition 2:

τ 2p := inf{t > 0 : |zt − e ipz st | < ε} (5)



Numerical Analysis

I Numerical approximations for two problems:
1. Stationary solution: (µ∗(dφ),V ∗(φ)).

I to initialize the (finite horizon) recovery MFG

2. Finite Horizon Problem:
I with T large enough to allow for jet-lag recovery

(µ̃
(p)
t (dφ),Ṽ (p)(t, φ)) where

(µ̃
(p)
0 (dφ),Ṽ (p)(0, φ))=(µ∗(dφ),V ∗(φ)).

I Naive Finite Difference Scheme:
I Iterate HJB and Fokker-Planck-Kolmogorov.
I Extra twist in ergodic case (no initial or terminal condition!)



Numerical Analysis: Stationary Problem

I Unknowns: constant λ, and grid functions µj and Vj .

(−ωS +ω+αj)(∂φV )j +
σ2

2
(∂2φφV )j = λ−R

2
α2
j −c̄(φ, µ)−csun(φ, 0)

(6)∑
j

Vj = 0 (7)

αj = − 1

R
(∂φV )j (8)

(−ωS + ω + αj)(∂φµ)j + (∂φα)jµj −
σ2

2
(∂2φφµ)j = 0 (9)∑

j

µj∆x = 1 (10)

µj ≥ 0 (11)



Numerical Analysis: Stationary Problem

I Step 0: start with some guess for µj ≈ µ∗(φj), and αj ,
0 ≤ j ≤ N.

I Step 1: Solve equations (6) and (7) for Vj and λ. Linear
system with N + 1 equations and N + 1 unknowns.

I Step 2: Evaluate equation (8) for αj .

I Step 3: Solve equations (9) and (10) for µ′j . Linear system
with N + 1 equations and N unknowns.

I Repeat Steps 1 through 3 until λ ≈ λ′, V ≈ V ′, and µ ≈ µ′.
More specifically,

max
j

{
|µj − µ′j |

µ′j
: µ′j > ε

}
< ε (12)



Numerical Results: Stationary Problem

(a) µ∗(φ) (b) V ∗(φ)

Figure: Stationary Solutions



Numerical Analysis: Finite Horizon Problem

I Choose horizon T large enough (say 3 weeks)

I Choose for µ0 the invariant distribution of the original time
zone

I Choose a flow µ = (µt)0≤t≤T consistent with µ0
I Solve HJB

I Solve Fokker-Planck-Kolmogorov with gradient of value
function

I Update the flow µ and iterate until fixed point is reached

VOILA !



Monte Carlo Simulations

Traveling East, p = 8ωS , ω̄ = 2π/25



Traveling East, ω̄ = 2π/25



Traveling West, ω̄ = 2π/25



Traveling East, ω̄ = 2π/36



Traveling East, ω̄ = 2π/28



Traveling East, ω̄ = 2π/18



Traveling West, ω̄ = 2π/36



Traveling West, ω̄ = 2π/28



Traveling West, ω̄ = 2π/18



Jet Lag Recovery Cost

I Instead of comparing the time to recover from jet lag,
compare the cost associated with jet lag recovery:

f (t) = fα(t) + fosc(t) + fsun(t)

fα(t) =

∫ 2π

0

(
R

2
α(t, φ)2

)
µ̃(p)(t, dφ)

fosc(t) =

∫ 2π

0
c̄(φ, µ̃(p)(t, ·))µ̃(p)(t, dφ)

fsun(t) =

∫ 2π

0
csun(φ)µ̃(p)(t, dφ)

(13)

I Note: limt→∞ f (t) = λ



Numerical Results: Jet Lag Recovery Cost
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0.0
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0.4
0.6

Costs of the Control
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f_α

West Travel
East Travel

Figure: fα(t)



Numerical Results: Jet Lag Recovery Cost

(a) fosc(t) (b) fsun(t)

Figure: Eastward travel in red. Westward travel in blue. 9 time zones.



Summary

I Introduction of a MFG model for the synchronization of
circadian rhythms with an external source (e.g. the sun).

I Reduction to an ergodic model and identification of
stationary solutions.

I Introduction of notions of
I time to recover from jet lag
I jet lag recovery cost.

I Numerical results:
I mild differences in recovery time for eastward and westward

travels,
I greater recovery cost for eastward travel than westward

travels.

I Preliminary results: we just scratched the surface !
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Realistic Challenges

I Factors affecting circadian rhythm:
I Irregular work and sleep schedules.
I Bodily hormones.
I Sunlight exposure

I Factors affecting the feeling of jet lag
I Traveling is terrible (crowded, low air pressure, time

consuming).
I Traveling during the day or night
I Returning home versus traveling somewhere foreign.

I Identification of the Model Parameters
I R, F , and σ are difficult to identify
I R, F , and σ change from an individual to another.



Remark about Uniqueness

I Because

c̄(φ, µ) = h ∗ µ with h(φ) =
1

2
sin2(φ/2)

we can write the problem as a potential game:

I Which can be solved as the optimal control of a McKV SDE
I Existence and uniqueness of a solution if h is

I even
I twice continuously differentiable
I convex

I The only missing requirement is convexity.
I the only periodic convex function is a constant!
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