A Semi-Lagrangian discretization of non linear Fokker Planck equations

E. Carlini
Università Sapienza di Roma

joint works with F.J. Silva

Mean Field Games and related topics 4, Dip. Matematica, Sapienza Università di Roma June 14-16, 2017

Outline

(1) A Semi-Lagrangian scheme for non linear Fokker-Planck equation
(2) Convergence Analysis
(3) Numerical simulations

- Linear case: Lotka Volterra model
- Non linear case: two interacting species
- Non linear implicit case: Mean Field Game model
- Non linear explicit case: a new Hughes type model

A nonlinear Fokker-Planck equation

The nonlinear FP equation

$$
\begin{cases}\partial_{t} m-\frac{1}{2} \sum_{i, j} \partial_{x_{i} x_{j}}\left(a_{i j}[m] m\right)+\operatorname{div}(b[m] m)=0 & \mathbb{R}^{d} \times \mathbb{R}^{+} \tag{1}\\ m(\cdot, 0)=m_{0}(\cdot) & \mathbb{R}^{d}\end{cases}
$$

describes the evolution of the law of the diffusion process $X(t)$

$$
\begin{align*}
\mathrm{d} X(s) & =b[m](X(s), s) \mathrm{d} s+\sigma[m](X(s), s) \mathrm{d} W(s) \\
X(0) & =x_{0} \tag{2}
\end{align*}
$$

where x_{0} is a random variable with law m_{0} independent from W and

A nonlinear Fokker-Planck equation

The nonlinear FP equation

$$
\begin{cases}\partial_{t} m-\frac{1}{2} \sum_{i, j} \partial_{x_{i} x_{j}}\left(a_{i j}[m] m\right)+\operatorname{div}(b[m] m)=0 & \mathbb{R}^{d} \times \mathbb{R}^{+} \tag{1}\\ m(\cdot, 0)=m_{0}(\cdot) & \mathbb{R}^{d}\end{cases}
$$

describes the evolution of the law of the diffusion process $X(t)$

$$
\begin{align*}
\mathrm{d} X(s) & =b[m](X(s), s) \mathrm{d} s+\sigma[m](X(s), s) \mathrm{d} W(s), \\
X(0) & =x_{0}, \tag{2}
\end{align*}
$$

where x_{0} is a random variable with law m_{0} independent from W and

- $\mathcal{P}_{p}\left(\mathbb{R}^{d}\right)$ denotes the probability measures $\mathcal{P}\left(\mathbb{R}^{d}\right)$ with bounded p moments;
- $b[m](x, t): C\left((0, T) \times \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)\right) \times \mathbb{R}^{+} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$ is a given vector field, depending non locally on m;
- $\sigma[m](x, t): C\left((0, T) \times \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)\right) \times \mathbb{R}^{+} \times \mathbb{R} \rightarrow \mathbb{R}^{d \times r}$,

$$
(A[m])_{i, j}=a_{i j}[m](x, t):=\left(\sigma[m] \sigma[m]^{\top}\right)_{i j}
$$

is the diffusion matrix (possible degenerate), depending non locally on m;

- the density of the initial law is given by m_{0} and it still denoted by m_{o}

Some applications

- Non local interactions due to collective phenomena (biophysics, social behavior)
- Hughes model: $b[m](x, t)=-f^{2}(m(x, t)) \nabla v[m](x, t)$ $v[m]$ is the solution of a stationary HJB

$$
|\nabla v|=\frac{1}{f(m(x, t))}
$$

In this case $b[m](x, t)$ depends on m at time t

Some applications

- Non local interactions due to collective phenomena (biophysics, social behavior)
- Hughes model: $b[m](x, t)=-f^{2}(m(x, t)) \nabla v[m](x, t)$ $v[m]$ is the solution of a stationary HJB

$$
|\nabla v|=\frac{1}{f(m(x, t))}
$$

In this case $b[m](x, t)$ depends on m at time t

- Mean Filed Games : $b[m](x, t)=-\nabla v[m](x, t)$ in the case $v[m]$ is the solution a backward HJB with $H(x, p)=\frac{1}{2}|p|^{2}$

$$
v[m](x, t)=\inf _{\alpha} \mathbb{E}\left[\int_{t}^{T}\left\{\frac{1}{2}|\alpha|^{2}+F\left(X^{x, t}(s), m(s)\right)\right\} \mathrm{d} s+G\left(X^{x, t}(T)(m(T)]\right.\right.
$$

Then $b[m](x, t)$ depends on m in all time $t \leq s \leq T$

Some applications

- a new Hughes type model:

$$
b[m](x, t):=-\nabla v[m](x, t)
$$

$v[m]$ is the solution of a backward HJB

$$
\left\{\begin{array}{l}
-\partial_{t} v-\frac{\sigma^{2}}{2} \Delta v+H(\nabla v)=F(x, s, m(t)) \quad \mathbb{R}^{d} \times(t, T) \\
v(x, T)=g(x, m(t))
\end{array}\right.
$$

In this case $b[m](x, t)$ depends on m only at time t.
We propose the following second order possibly degenerate system

$$
\begin{cases}\partial_{t} m-\Delta m-\operatorname{div}(\nabla H(\nabla v[m]) m)=0 & \text { in } \mathbb{R}^{d} \times(0, T), \\ \left.-\partial_{s} v(x, s)-\Delta v(x, s)+H(\nabla v[m](x, s))=F(x, s, m(t))\right) & \text { in } \mathbb{R}^{d} \times(t, T), \tag{3}\\ v(x, T)=G(x, m(t)) & \text { for } x \in \mathbb{R}^{d}, \\ m(\cdot, 0)=m_{0}(\cdot) \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right) & \end{cases}
$$

Numerical approximation of FP
 Some references

Linear FP

- Chang and Cooper (1970): finite difference scheme s.t. preserves positivity, equilibrium states and mass of the distribution (explicit version is stable under a parabolic type CFL condition)
- Kushner (1976): finite difference via probabilistic method
- Naess and Johnsen (1993) : Path Integration Method (time integration of the evolution probability density function, where the transition probability density is approximated by a Gaussian)
- Chen, Jakobsen and Naess (2016): Convergence Path Integration Method in L_{1}
- Jordan, Kinderlehrer, Otto (1998): variational scheme for FP equations for which the drift term is given by the gradient of a potential (JKO) (It preserves positivity, and mass of the distribution)

Numerical approximation of FP
 Some references

Non Linear FP

- Drozdov, Morillo (1995): finite difference scheme s.t. preserves equilibrium states and mass of the distribution (high order).
- Achdou,Camilli,Capuzzo Dolcetta (2012): implicit finite difference scheme s.t. preserves positivity, and mass of the distribution.
- Benamou, Carlier, Laborde (2015): semi implicit variant of JKO.

Numerical approximation based on SL for FP

We propose a Semi-Lagrangian (SL) scheme for non linear FP equation s.t.

- it is first order accurate (numerically)
- it allows for large time steps
- it preserves the positivity of the density and conserves its integral equals to 1
Ref. F.Camilli, F.Silva (2013), E.Carlini, F.Silva $(2014,2015)$
The scheme has been applied to numerically compute the solution of
- Mean Field Games model (with F. Silva)
- a regularized Hughes model for pedestrian flow (with A.Festa, F.Silva, M.T. Wolfram)
- Hughes model for pedestrian flow with different congestion penalty function (with A.Festa, F.Silva)

A Semi-Lagrangian scheme for non linear Fokker-Planck equation

Weak solution

For many problems of interest, (1) has only a formal meaning, henceforth we mean m is a weak solution of (1) if for all $\phi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ we have that

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t} \int_{\mathbb{R}^{d}} \phi(x) \mathrm{d} m(t)(x) \\
& =\int_{\mathbb{R}^{d}}\left(\frac{1}{2} \sum_{i, j} a_{i j} \partial_{x_{i} x_{j}} \phi(x)-\sum_{i} b_{i} \phi_{x_{i}}(x)\right) \mathrm{d} m(t)(x) \tag{4}\\
& =\int_{\mathbb{R}^{d}}\left(\frac{1}{2} \operatorname{tr}\left(A D^{2} \phi(x)\right)+b^{\top} \nabla \phi(x)\right) \mathrm{d} m(t)(x)
\end{align*}
$$

A Semi-discrete in time SL for a nonlinear 1d

 Fokker-Planck equationGiven Δt, we define $t_{k}=k \Delta t, k=0, \ldots, N$. We integrate (4) in time on $\left[t_{k}, t_{k+1}\right]$:

$$
\begin{align*}
& \int_{\mathbb{R}} \phi(x) \mathrm{d} m\left(t_{k+1}\right)=\int_{\mathbb{R}} \phi(x) \mathrm{d} m\left(t_{k}\right) \tag{5}\\
& +\int_{t_{k}}^{t_{k+1}} \int_{\mathbb{R}}\left(\frac{1}{2} \sigma^{2} D^{2} \phi(x)+b \nabla \phi(x)\right) \mathrm{d} m(t) \mathrm{d} t
\end{align*}
$$

Semi-discrete in time

We first approximate (5) as

$$
\begin{aligned}
& \int_{\mathbb{R}} \phi(x) \mathrm{d} m\left(t_{k+1}\right)= \\
& \int_{\mathbb{R}}\left(\phi(x)+\Delta t b\left(x, t_{k}\right) \nabla \phi(x)+\frac{\Delta t}{2} \sigma^{2}\left(x, t_{k}\right) D^{2} \phi(x)\right) \mathrm{d} m\left(t_{k}\right) .
\end{aligned}
$$

Note that the right hand side corresponds to a Taylor expansion. Hence we approximate

$$
\begin{aligned}
& \int_{\mathbb{R}} \phi(x) \mathrm{d} m\left(t_{k+1}\right) \simeq \\
& \frac{1}{2} \int_{\mathbb{R}}\left(\phi\left(x+\Delta t b\left(x, t_{k}\right)+\sqrt{\Delta t} \sigma^{2}\left(x, t_{k}\right)\right) \mathrm{d} m\left(t_{k}\right)+\right. \\
& \frac{1}{2} \int_{\mathbb{R}}\left(\phi\left(x+\Delta t b\left(x, t_{k}\right)-\sqrt{\Delta t} \sigma^{2}\left(x, t_{k}\right)\right) \mathrm{d} m\left(t_{k}\right)\right.
\end{aligned}
$$

Fully-discrete in space

Given $\Delta x>0$ consider a space grid, for $i=1, \ldots, M$

$$
\begin{gather*}
E_{i}=\left[x_{i}-\frac{1}{2} \Delta x, x_{i}+\frac{1}{2} \Delta x\right], \\
m_{i, k}:=\int_{E_{i}} \mathrm{~d} m\left(t_{k}\right) . \tag{6}
\end{gather*}
$$

By the standard rectangular quadrature formula, we get

$$
\begin{align*}
& \sum_{j \in \mathbb{Z}} \phi\left(x_{j}\right) m_{j, k+1}= \tag{7}\\
& \quad \frac{1}{2} \sum_{j \in \mathbb{Z}} \phi\left(\Phi_{j}^{+}\right) m_{j, k}+\frac{1}{2} \sum_{j \in \mathbb{Z}} \phi\left(\Phi_{j}^{-}\right) m_{j, k}
\end{align*}
$$

where, for $\mu \in \mathbb{R}^{M}, j \in \mathbb{Z}, k=0, \ldots, N-1$, we have defined

$$
\begin{equation*}
\Phi_{j}^{ \pm}:=x_{j}+\Delta t b\left(x_{j}, t_{k}\right) \pm \sqrt{\Delta t} \sigma\left(x_{j}, t_{k}\right) \tag{8}
\end{equation*}
$$

Interpretation of the scheme by means of characteristics

Note that $\Phi_{j}^{ \pm}$defined in (12) (with $\left.\mu_{j}=m\left(x_{j}, t_{k}\right)\right)$ can be interpreted as a single Euler step approximation of

$$
\begin{align*}
\mathrm{d} X(s) & =b(X(s), s) \mathrm{d} s+\sigma(X(s), s) \mathrm{d} W(s), \quad s \in\left(t_{k}, t_{k+1}\right) \tag{9}\\
X\left(t_{k}\right) & =x_{j}
\end{align*}
$$

with a random walk discretization of the Brownian motion $W(\cdot)$. Indeed, considering a random value Z in \mathbb{R} such that f

$$
\begin{equation*}
\mathcal{P}(Z=1)=\mathcal{P}(Z=-1)=\frac{1}{2} \tag{10}
\end{equation*}
$$

the function $\Phi_{j}^{ \pm}$corresponds to one realization of

$$
x_{j}+\Delta t b\left(x_{j}, t_{k}\right) \pm \sqrt{2 \Delta t} \sigma\left(x_{j}, t_{k}\right) Z
$$

Fully-discrete in space

Figure: P 1 -basis function, β_{i}

Given $i \in \mathbb{Z}$ and setting in (7) $\phi=\beta_{i}$ we have for all $i \in \mathbb{Z}$

$$
\left\{\begin{align*}
m_{i, k+1} & =G\left(m_{k}, i, k\right) \tag{11}\\
& =\frac{1}{2} \sum_{j \in \mathbb{Z}}\left(\beta_{i}\left(\Phi_{j}^{+}\right)+\beta_{i}\left(\Phi_{j}^{-}\right)\right) m_{j, k} \\
m_{i, 0} & =\int_{E_{i}} m_{0}(x) \mathrm{d} x
\end{align*}\right.
$$

Fully-discrete Non Linear

In the non linear case, we have

$$
\begin{equation*}
\Phi_{j}^{ \pm}[m]:=x_{j}+\Delta t b[m]\left(x_{j}, t_{k}\right) \pm \sqrt{\Delta t} \sigma[m]\left(x_{j}, t_{k}\right) \tag{12}
\end{equation*}
$$

Fully-discrete Non Linear

In the non linear case, we have

$$
\begin{equation*}
\Phi_{j}^{ \pm}[m]:=x_{j}+\Delta t b[m]\left(x_{j}, t_{k}\right) \pm \sqrt{\Delta t} \sigma[m]\left(x_{j}, t_{k}\right) \tag{12}
\end{equation*}
$$

Find $m=\left\{m_{i, k}\right\}$ s.t.

$$
\left\{\begin{align*}
m_{i, k+1} & =G\left(m_{k}, i, k\right) \tag{13}\\
& =\frac{1}{2} \sum_{j \in \mathbb{Z}}\left(\beta_{i}\left(\Phi_{j}^{+}[m]\right)+\beta_{i}\left(\Phi_{j}^{-}[m]\right)\right) m_{j, k} \\
m_{i, 0} & =\int_{E_{i}} m_{0}(x) \mathrm{d} x
\end{align*}\right.
$$

- Non-negative : $m_{i, k} \geq 0$ for $k=0, \ldots, N-1, i \in \mathbb{Z}$
- Mass conservative : $\Delta x \sum_{i} m_{i, k}=1$ for $k=0, \ldots, N-1$
- Generalizable to any dimension
- Generalizable to handle Dirichlet and Neumann Boundary conditions
- Generalizable to handle degeneracy of the diffusion matrix

Existence and Uniqueness of the SL scheme

Proposition (Existence)

There exists at least one solution $\left\{m_{i, k}\right\}$ of (13).

Uniqueness: if the scheme is explicit in the time steps the uniqueness of solution, as well as the existence, of the scheme is straightforward.

$$
\left\{\begin{aligned}
m_{i, k+1} & =G\left(m_{k}, i, k\right) \\
& =\frac{1}{2} \sum_{j \in \mathbb{Z}}\left(\beta_{i}\left(\Phi_{j}^{+}\left[m_{k}\right]\right)+\beta_{i}\left(\Phi_{j}^{-}\left[m_{k}\right]\right)\right) m_{j, k} \\
m_{i, 0} & =\int_{E_{i}} m_{0}(x) \mathrm{d} x
\end{aligned}\right.
$$

In the general case, the scheme is implicit in the time steps and the uniqueness of solutions is generally not true and its fulfilment depends on the continuous problem.

Dual Problem and Dual Scheme in the linear case

Kolmogorov forward equation (FP)

$$
\left\{\begin{array}{l}
\partial_{t} m=\frac{1}{2} \sum_{i, j} \partial_{x_{i} x_{j}}\left(a_{i j}(x) m\right)-\operatorname{div}(b(x) m) \quad \mathbb{R}^{d} \times(0, T] \\
m(\cdot, 0)=m_{0}
\end{array}\right.
$$

Kolmogorov backward equation(KB):

$$
\begin{cases}-\partial_{t} u=\frac{1}{2} \sum_{i, j} a_{i j}(x) \partial_{x_{i} x_{j}} u+b(x)^{\top} \nabla u & \mathbb{R}^{d} \times(0, T] \tag{14}\\ u(\cdot, T)=u_{T}\end{cases}
$$

Dual Problems

Kolmogorov forward equation (FP)
$\begin{cases}\partial_{t} m=\frac{1}{2} \sum_{i, j} \partial_{x_{i} x_{j}}\left(a_{i j}(x) m\right)-\operatorname{div}(b(x) m)=L^{*}(m) & \mathbb{R}^{d} \times(0, T] \\ m(\cdot, 0)=m_{0} & \end{cases}$
Kolmogorov backward equation (KB):

$$
\left\{\begin{array}{l}
-\partial_{t} u=\frac{1}{2} \sum_{i, j} a_{i j}(x) \partial_{x_{i} x_{j}} u+b(x)^{\top} \nabla u=L(u) \quad \mathbb{R}^{d} \times(0, T] \\
u(\cdot, T)=u_{T}
\end{array}\right.
$$

Dual Problems

Kolmogorov forward equation (FP)
$\begin{cases}\partial_{t} m=\frac{1}{2} \sum_{i, j} \partial_{x_{i} x_{j}}\left(a_{i j}(x) m\right)-\operatorname{div}(b(x) m)=L^{*}(m) & \mathbb{R}^{d} \times(0, T] \\ m(\cdot, 0)=m_{0} & \end{cases}$
Kolmogorov backward equation (KB):

$$
\left\{\begin{array}{l}
-\partial_{t} u=\frac{1}{2} \sum_{i, j} a_{i j}(x) \partial_{x_{i} x_{j}} u+b(x)^{\top} \nabla u=L(u) \quad \mathbb{R}^{d} \times(0, T] \\
u(\cdot, T)=u_{T}
\end{array}\right.
$$

L^{*} is the dual of L with respect to the L_{2} inner product:

$$
\int L(f) g \mathrm{~d} x=\int L^{*}(g) f \mathrm{~d} x
$$

Dual Schemes

The SL scheme for FP can be written in vectorial form as

$$
\mu_{k+1}:=B^{*} \mu_{k}
$$

where, $\mu_{k}=\left(\mu_{j, k}\right)_{k}$ and $\left(B^{*}\right)_{i, j}=\frac{1}{2}\left(\beta_{i}\left(\Phi_{j,+}\right)+\beta_{i}\left(\Phi_{j,-}\right)\right)$.
The SL scheme for KB
$v_{i, k}=\frac{1}{2}\left(I\left[v_{k+1}\right]\left(\Phi_{i,+}\right)+I\left[v_{k+1}\right]\left(\Phi_{i,-}\right)\right)=\frac{1}{2} \sum_{j \in \mathbb{Z}}\left[\beta_{j}\left(\Phi_{i,+}\right)+\beta_{j}\left(\Phi_{i,-}\right)\right] v_{j, k+1}$
can also be written in vectorial form as

$$
v_{k}:=B v_{k+1},
$$

where, $v_{k}=\left(v_{j, k}\right)_{k}$

Dual Schemes

The SL scheme for FP can be written in vectorial form as

$$
\mu_{k+1}:=B^{*} \mu_{k}
$$

where, $\mu_{k}=\left(\mu_{j, k}\right)_{k}$ and $\left(B^{*}\right)_{i, j}=\frac{1}{2}\left(\beta_{i}\left(\Phi_{j,+}\right)+\beta_{i}\left(\Phi_{j,-}\right)\right)$.
The SL scheme for KB
$v_{i, k}=\frac{1}{2}\left(I\left[v_{k+1}\right]\left(\Phi_{i,+}\right)+I\left[v_{k+1}\right]\left(\Phi_{i,-}\right)\right)=\frac{1}{2} \sum_{j \in \mathbb{Z}}\left[\beta_{j}\left(\Phi_{i,+}\right)+\beta_{j}\left(\Phi_{i,-}\right)\right] v_{j, k+1}$
can also be written in vectorial form as

$$
v_{k}:=B v_{k+1},
$$

where, $v_{k}=\left(v_{j, k}\right)_{k}$ and $B^{\top}=B^{*}$, i.e.

$$
\left(B v^{k+1}, \mu^{k}\right)=\left(v^{k+1}, B^{*} \mu^{k}\right)
$$

Unstructured grids

Let \mathcal{T} be a triangulation of Ω, with Δx the maximum diameter of the triangles. We call $\left\{\beta_{i} ; i=1, \ldots, M\right\}$ the set of affine shape functions related to the triangular mesh, such that $\beta_{i}\left(x_{j}\right)=\delta_{i, j}$ and $\sum_{i} \beta_{i}(x)=1$ for each $x \in \bar{\Omega}$.

$$
\begin{gathered}
\text { Median dual control volume } \\
E_{i}:=\bigcup_{T \in \mathcal{T}: x_{i} \in \partial T} E_{i, T}, \\
E_{i, T}:=\left\{x \in T: \beta_{j}(x) \leq \beta_{i}(x)\right. \\
j \neq i\} .
\end{gathered}
$$

Control Volume

We approximate the solution m by a sequence $\left\{m_{k}\right\}_{k}$, such that

$$
m_{i, k} \simeq \int_{E_{i}} \mathrm{~d} m\left(t_{k}\right)
$$

Convergence Analysis

Topology

Let us denote

$$
m^{\Delta x, \Delta t}(t):=\left(\frac{t-t_{k}}{\Delta t}\right) m_{k+1}+\left(\frac{t_{k+1}-t}{\Delta t}\right) m_{k} \text { si } t \in\left[t_{k}, t_{k+1}[.\right.
$$

a proper extension in $\mathbb{R}^{d} \times[0, T]$ of the discrete approximation $m_{i, k}$ and \mathcal{P}_{1} a propability space, metrized by the Kantorowich-Rubinstein distance:

$$
d_{1}\left(\mu_{1}, \mu_{2}\right):=\sup \left\{\int_{\mathbb{R}^{d}} f(x) \mathrm{d}\left(\mu_{1}(x)-\mu_{2}(x)\right) ;\|\nabla f\|_{\infty} \leq 1\right\} .
$$

Stability

Proposition

Suppose b and σ continuous and s.t. there exists $C>0$

$$
|b(x, t, \mu)| \leq C|x| \quad|\sigma(x, t, \mu)| \leq C|x|,
$$

for any x, t, μ and $\Delta t \geq \bar{C}(\Delta x)^{2}, \bar{C} \geq 0$. Then, $\exists C>0$ (independent of $(\Delta x, \Delta t)$) s. t.:

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}|x|^{2} \mathrm{~d} m_{\Delta x, \Delta t}(t) \leq C \quad \forall t \in[0, T] \tag{15}
\end{equation*}
$$

Proposition

Suppose that $\frac{(\Delta x)^{2}}{\Delta t} \rightarrow 0$. Then, there exists a constant $C>0$ (independent of $(\Delta x, \Delta t)$) such that:

$$
\begin{aligned}
d_{1}\left(m_{\Delta x, \Delta t}(t), m_{\Delta x, \Delta t}(s)\right) \leq & C|t-s|^{\frac{1}{2}} \forall t, s \in[0, T] \\
& (\leq C|t-s|, \sigma=0)
\end{aligned}
$$

Stability and Consistency

Proposition (Weak consistency)

Assuming that b and σ are continuous and Lipschitz w.r.t. x, for every $\phi \in C_{0}^{\infty}(\mathbb{R})$ if $\left(\Delta x_{n}, \Delta t_{n}\right)$ is s.t. as $n \rightarrow \infty\left(\Delta x_{n}, \Delta t_{n}\right) \rightarrow 0$ and $\frac{\left(\Delta x_{n}\right)^{2}}{\Delta t_{n}} \rightarrow 0$, and

$$
m_{\Delta x_{n}, \Delta t_{n}} \rightarrow m \text { in } \quad C\left(0, T ; \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)\right)
$$

then for k^{n} such that $t_{k^{n}} \rightarrow t$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{d}} \phi(x)\left[d m_{\Delta x_{n}, \Delta t_{n}}\left(t_{k^{n}+1}\right)-d m_{\Delta x_{n}, \Delta t_{n}}(0)\right] \\
& =\int_{\mathbb{R}} \int_{0}^{t}\left[\frac{1}{2} \operatorname{tr}\left(A[m](x, s) D^{2} \phi\right)+b[m](x, s)^{\top} \nabla \phi\right] \mathrm{d} m(s) .
\end{aligned}
$$

Convergence

Theorem

Suppose that $\frac{\left(\Delta x_{n}\right)^{2}}{\Delta t_{n}} \rightarrow 0, b$ and σ continuous functions Lipschtiz w.r. to x and there exists $C>0$ such that for any x, t, μ

$$
|b(x, t, \mu)| \leq C|x| \quad|\sigma(x, t, \mu)| \leq C|x|,
$$

then

$$
m_{\Delta x, \Delta t} \rightarrow m
$$

in $C\left([0, T], \mathcal{P}_{1}\right)$, where m is solution of (1) and $m_{\Delta x, \Delta t}$ is a sequence of solution of (13) (extended to a general dimension d).

Idea of the proof

- By stability properties, if $\left(\Delta x_{n}, \Delta t_{n}\right) \rightarrow(0,0)$ and $\frac{\left(\Delta x_{n}\right)^{2}}{\Delta t_{n}} \rightarrow 0$, there exists $m \in C\left([0, T] ; \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)\right)$ s.t.

$$
m_{n}:=m^{\Delta x_{n}, \Delta t_{n}} \rightarrow m
$$

- To prove that m is a solution of the Fokker-Planck, given t and $t_{k(n)}$ s.t. $t \in\left[t_{k(n)}, t_{k(n)+1}[\right.$ we consider

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}} \phi(x) \mathrm{d} m_{n}\left(t_{k(n)}\right)(x) \\
& =\int_{\mathbb{R}^{d}} \phi(x) \mathrm{d} m_{0}(x)+\sum_{k=0}^{k(n)-1} \int_{\mathbb{R}^{d}} \phi(x) \mathrm{d}\left(m_{n}\left(t_{k+1}\right)-m_{n}\left(t_{k}\right)\right) .
\end{aligned}
$$

By consistency

$$
=\int_{\mathbb{R}^{d}} \phi(x) \mathrm{d} m_{n}(0)(x)+\int_{0}^{t_{k(n)}} \int_{\mathbb{R}^{d}} L_{\phi}^{n}\left[m_{n}\right] \mathrm{d} m_{n}(s)(x) \mathrm{d} s+O\left(\frac{\left(\Delta x_{n}\right)^{2}}{\Delta t_{n}}+\sqrt{\Delta t_{n}}\right)
$$

where, if $s \in\left[t_{k}, t_{k+1}[\right.$,

$$
L_{\phi}^{n}\left[m_{n}\right](x, s):=\frac{1}{2} \sum_{i, j} a_{i, j}\left[m_{n}\right]\left(x, t_{k}\right) \partial_{i j}^{2} \phi(x)+b\left[m_{n}\right]\left(x, t_{k}\right) \cdot \nabla \phi(x) .
$$

- If $\left(\Delta x_{n}\right)^{2} / \Delta t_{n} \rightarrow 0$ for all $s \in[0, T]$ we have

$$
L_{\phi}^{n}\left[m_{n}\right](\cdot, s) \rightarrow \frac{1}{2} \sum_{i, j} a_{i, j}[m](\cdot, s) \partial_{i j}^{2} \phi(x)+b[m](\cdot, s) \cdot \nabla \phi(x)
$$

uniformly on compact of \mathbb{R}^{d}, then we can pass to the limit and we get that m solves the Fokker-Planck equation.

Remark:

- if b et σ are not smooth, it is necessary to regularize them, by using mollifiers. This situation arise naturally when b (and or σ) is not explicitly given and we have to approximate it.

We will apply this technique to approximate the solution of Mean Field Game Problem.

- We can not apply this convergence analysis to local non linearity, since we have only weak convergence of the measure $m_{n} \rightharpoonup m$

Numerical simulations

Linear case: Lotka Volterra model with seasonality

A two-species prey-predator system

$$
\begin{aligned}
\mathrm{d} u & =(-u+u v) \mathrm{d} t \\
\mathrm{~d} v & =\left((1+\lambda \sin (t)) v-u v-\gamma v^{2}\right) \mathrm{d} t
\end{aligned}
$$

- $u \simeq$ predator which death and growth rate is equal to 1 .
- $v \simeq$ prey, which growth has periodic variations $1+\lambda \sin (t)$ due for instance to seasons, they are also subject to self-limitations, represented by the term v^{2} with rate γ.

The sinusoidal term makes the joint probability density function periodically non stationary

Remark: the coefficient of the o.d.e. does not verifies the assumption of the convergence theorem, however the scheme seems working well.

Lotka Volterra model with seasonality

The model can be simplified by the logarithmic transformation $x_{1}=\ln u, x_{2}=\ln v$ into

$$
\begin{align*}
\mathrm{d} x_{1} & =\left(-1+\exp \left(x_{2}\right)\right) \mathrm{d} t \\
\mathrm{~d} x_{2} & \left.=(1+\lambda \sin (t))-\exp \left(x_{1}\right)-\gamma \exp \left(x_{2}\right)\right) \mathrm{d} t \tag{16}
\end{align*}
$$

To allow very large time step and maintain accuracy, we modify our scheme: by defining a second time step δ, such that $\Delta t=P \delta$, with $P \in \mathbb{N}^{+}$.
This new time step is used to compute the discrete flow on each time interval of size Δt, in the following way:

$$
\Phi_{j, k}^{P}:=z_{k}^{P}\left(x_{j}\right)
$$

where

$$
z_{k}^{p+1}\left(x_{j}\right)=z_{k}^{p}\left(x_{j}\right)+\delta b\left(x_{j}, t_{k}+p \delta\right), \quad z_{k}^{0}=x_{j}
$$

and $p=0, \ldots, P-1$.

Lotka Volterra model with seasonality

We show the time averaged of the density on $t \in[100,150]$ computed with $\Delta x=0.03, \Delta t=4 \Delta x, P=16$.

Figure: Time averaged solution of the distribution of (16) with $\Delta x=0.03, \Delta t=4 \Delta x, P=16$, using the parameters $\lambda=0.1$ and $\gamma=0.05$

Interacting species

Let m_{1} and m_{2} be the densities of two interacting species

$$
\left\{\begin{array}{l}
\partial_{t} m_{1}-\operatorname{div}\left(m_{1}\left(\nabla E^{\prime}\left(m_{1}\right)+\nabla U_{1}\left[m_{1}, m_{2}\right]\right)\right)=0 \\
\partial_{t} m_{2}-\operatorname{div}\left(m_{2}\left(\nabla E^{\prime}\left(m_{2}\right)+\nabla U_{2}\left[m_{1}, m_{2}\right]\right)\right)=0 \\
\text { b.c. }
\end{array}\right.
$$

Internal energy

$$
E(m)=\frac{1}{2} m^{3} \quad \text { and } \quad \operatorname{div}\left(m\left(\nabla E^{\prime}(m)\right)=\Delta m^{3}\right.
$$

We need to regularize the non linear diffusion term:

$$
b_{1}[m]:=\nabla E^{\prime}\left(m_{1}\right) \star K_{\varepsilon}=\frac{3}{2} \nabla m^{2} \star K_{\varepsilon}
$$

where $K_{\varepsilon}=C \varepsilon \sqrt{2 \pi} \exp \left(-|x|^{2}\right) /\left(2 \varepsilon^{2}\right)$ is a regularizing gaussian kernel with $\varepsilon=0.01$ and $C>0$ such that $\max K_{\varepsilon}=1$
Ref. J.D.Benamou, G. Carlier, M.Laborde

Interacting species

Cross interaction potential

$$
\begin{aligned}
& U_{1}\left[m_{1}, m_{2}\right]=W_{11} \star m_{1}+W_{21} \star m_{2} \\
& U_{2}\left[m_{1}, m_{2}\right]=W_{12} \star m_{1}+W_{22} \star m_{2}
\end{aligned}
$$

where $W_{11}=W_{21}=W_{22}=\frac{|x|^{2}}{2}$ and $W_{12}=-\frac{|x|^{2}}{2}$.
Then

- $-\nabla U_{1}=-\nabla W_{11} \star m_{1}-\nabla W_{21} \star m_{2}=-x \star\left(m_{1}+m_{2}\right)$
(self-attraction + attraction toward m_{2})
- $-\nabla U_{2}=-\nabla W_{12} \star m_{1}-\nabla W_{22} \star m_{2}=-x \star\left(-m_{1}+m_{2}\right)$
(repulsion from $m_{1}+$ self-attraction)

Interacting species

Cross interaction potential

$$
\begin{aligned}
& U_{1}\left[m_{1}, m_{2}\right]=W_{11} \star m_{1}+W_{21} \star m_{2} \\
& U_{2}\left[m_{1}, m_{2}\right]=W_{12} \star m_{1}+W_{22} \star m_{2}
\end{aligned}
$$

where $W_{11}=W_{21}=W_{22}=\frac{|x|^{2}}{2}$ and $W_{12}=-\frac{|x|^{2}}{2}$.
Then

- $-\nabla U_{1}=-\nabla W_{11} \star m_{1}-\nabla W_{21} \star m_{2}=-x \star\left(m_{1}+m_{2}\right)$
(self-attraction + attraction toward m_{2})
- $-\nabla U_{2}=-\nabla W_{12} \star m_{1}-\nabla W_{22} \star m_{2}=-x \star\left(-m_{1}+m_{2}\right)$
(repulsion from $m_{1}+$ self-attraction)
We solve the system on $\Omega=[-1,1] \times[-1,1]$ and $[0, T]=[0,40]$, we set $h=0.02$ and $\Delta t=h / 6$, Homogenous Neumann Condition

Interacting species

Interacting species

A degenerate second order Mean Field Game system

Model introduced independently by Huang-Malhamé-Caines and, independently, by Lasry-Lions in 2006.

$$
\left\{\begin{array}{l}
-\partial_{t} v-\frac{1}{2} \sigma^{2}(t) \Delta v+\frac{1}{2}|\nabla v|^{2}=F(x, m(t)), \quad \text { in } \mathbb{R} \times(0, T), \tag{17}\\
\partial_{t} m-\frac{1}{2} \sigma^{2}(t) \Delta m-\operatorname{div}(\nabla v m)=0, \quad \text { in } \mathbb{R} \times(0, T), \\
v(x, T)=G(x, m(T)) \quad \text { for } x \in \mathbb{R}, \quad m(0)=m_{0}
\end{array}\right.
$$

In this case the velocity field in the FP is

$$
b[m](x, t)=\nabla v[m](x, t)
$$

where $v[m]$ is the solution of the first equation in the system.
Since $b[m](x, t)$ depends on m in all time $t \leq s \leq T$ we gets an Implicit scheme: Fixed Point Iterations needed to solve it.

Convergence result

We approximate $\nabla v[m]\left(x, t_{k}\right)$ by $\nabla v_{\Delta x, \Delta t}^{\varepsilon}[m]\left(x, t_{k}\right)$ where $v_{\Delta x, \Delta t}^{\varepsilon}\left(\cdot, t_{k}\right)$ is a regularization of the linear interpolation $v_{\cdot, k}$, which solve a SL scheme for HJB, then

$$
b[m]\left(x_{i}, t_{k}\right) \sim-\nabla v_{\Delta x, \Delta t}^{\varepsilon}[m]\left(x_{i}, t_{k}\right) .
$$

- If $\sigma=0$ then $\nabla v_{\Delta x_{n}, \Delta t_{n}}^{\varepsilon_{n}}\left[m_{n}\right] \rightarrow \nabla v[m]$ a.e.
- If $\sigma \neq 0$ then $\nabla v_{\Delta x_{n}, \Delta t_{n}}^{\varepsilon_{n}}\left[m_{n}\right] \rightarrow \nabla v[m]$ uniformly
- The first property has been used in Carlini-Silva'14 (resp.

Carlini-Silva'15) to prove the convergence when $\sigma=0$ and $d=1$ (resp. $\sigma=\sigma(t)$ and $d=1$).

- The second property allow us to prove convergence in general dimension for the case $\sigma \neq 0$.

Numerical test First order MFG

Domain $\Omega \times(0, T)=(-3,3) \times(0,5)$.
Running cost

$$
F(x, t, m(t))=d(x, \mathcal{D})^{2} V_{\delta}(x, m(t))
$$

$V_{\delta}(x, m)=\left(\phi_{\delta} \star\left(\phi_{\delta} \star m\right)\right)(x), \phi_{\delta}(x):=\frac{1}{\delta \sqrt{2 \pi}} \exp \left(-x^{2} /\left(2 \delta^{2}\right)\right.$.
$d(x, \mathcal{D})$ is the distance function from the set $\mathcal{D}:=[-2,-2.5] \cup[1,1.5]$.
Final cost: $G(x, T, m(T))=F(x, T, m(T))$
Initial mass distribution:

$$
m_{0}(x)=\frac{\nu(x)}{\int_{\Omega} \nu(x) d x} \text { with } \nu(x)=e^{-x^{2} / 0.2}
$$

Regularizing kernel $\phi_{\varepsilon}(x)$, with $\varepsilon=0.15$.
Diffusion term $\sigma=0$, first order MFG system
Discretization step $\Delta x=\Delta t=0.02$ and $\delta=0.01$.
Fix point: computed by a learning procedure as proposed by Cardaliaguet and Hadikhanloo.

Numerical test First order MFG

Figure: Density evolution 3d and 2d view in the (x, t) domain

Numerical test First order MFG

Figure: Density at time $t=0,0.6, T$ (black squares on the x axis represents the 'meeting areas')

A new Hughes type model

In this model the velocity field in the FP is

$$
b[m](x, t)=\nabla v[m](x, t)
$$

where $v[m]$ is the solution of the first equation in the system.

$$
\begin{cases}\left.-\partial_{s} v(x, s)+\frac{1}{2}|\nabla v(x, s)|^{2}=F(x, s, m(t))\right) & \text { in } \mathbb{R} \times(t, T), \tag{18}\\ \partial_{t} m-\operatorname{div}(\nabla v m)=0 & \text { in } \mathbb{R} \times(0, T), \\ v(x, T)=G(x, m(t)) & \text { for } x \in \mathbb{R},\end{cases}
$$

where

$$
F(x, s, m(t))=d(x, \mathcal{P})^{2} V_{\delta}(x, m(t))
$$

Since $b[m](x, t)$ depends on $m(s)$ only in time past $0 \leq s \leq t$ we get an Explicit scheme

Numerical test new Hughes type model

Figure: Density evolution 3d and 2d view in the (x, t) domain

Numerical test new Hughes type mode

Figure: Density at time $t=0,30 h, T$ (black squares on the x axis represents the 'meeting areas')

Numerical test new Hughes type mode

Figure: MFG(left) vs Hughes type model (right)

References

- E.Carlini, F.J. Silva, A fully discrete semi-Lagrangian scheme for a first order mean field games problem, SIAM Journal on Numerical Analysis, 52 (1), pp. 45-67, 2014.
- E.Carlini, F.J. Silva, A Semi-Lagrangian scheme for a degenerate second order Mean Field Game system, DCDS-A, 2015.
- E.Carlini, F.J. Silva, A Semi-Lagrangian scheme for the Fokker-Planck equation. Proceeding of the conference CPDE' 16. Ifac Papersonline, 49 (8), pp. 272-277, 2016.
- E.Carlini, A. Festa, F.J. Silva, M.T. Wolfram, A Semi-Lagrangian scheme for a modified version of the Hughes model for pedestrian flow, Dynamic Games and Applications, Springer, 2016.

References

- E.Carlini, F.J. Silva, A fully discrete semi-Lagrangian scheme for a first order mean field games problem, SIAM Journal on Numerical Analysis, 52 (1), pp. 45-67, 2014.
- E.Carlini, F.J. Silva, A Semi-Lagrangian scheme for a degenerate second order Mean Field Game system, DCDS-A, 2015.
- E.Carlini, F.J. Silva, A Semi-Lagrangian scheme for the Fokker-Planck equation. Proceeding of the conference CPDE' 16. Ifac Papersonline, 49 (8), pp. 272-277, 2016.
- E.Carlini, A. Festa, F.J. Silva, M.T. Wolfram, A Semi-Lagrangian scheme for a modified version of the Hughes model for pedestrian flow, Dynamic Games and Applications, Springer, 2016.

THANK YOU

