On the long time behavior of the master equation in Mean Field Games

P. Cardaliaguet
(Paris-Dauphine)
Joint work with A. Porretta (Roma Tor Vergata)
Mean Field Games and Related Topics - 4
Rome - June 14-16, 2017

The discounted MFG system

Given a positive discount factor $\delta>0$, we consider the MFG system

$$
(M F G-\delta) \quad\left\{\begin{array}{l}
-\partial_{t} u^{\delta}+\delta u^{\delta}-\Delta u^{\delta}+H\left(x, D u^{\delta}\right)=f\left(x, m^{\delta}(t)\right) \quad \text { in }(0,+\infty) \times \mathbb{T}^{d} \\
\partial_{t} m^{\delta}-\Delta m^{\delta}-\operatorname{div}\left(m^{\delta} H_{p}\left(x, D u^{\delta}\right)\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{T}^{d} \\
m^{\delta}(0, \cdot)=m_{0} \quad \text { in } \mathbb{T}^{d}, \quad u^{\delta} \text { bounded in }(0,+\infty) \times \mathbb{T}^{d}
\end{array}\right.
$$

where

- $u^{\delta}=u^{\delta}(t, x)$ and $m^{\delta}=m^{\delta}(t, x)$ are the unknown,
- $H=H(x, p): \mathbb{T}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a smooth, unif. convex in p, Hamiltonian,
- $f, g: \mathbb{T}^{d} \times \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$ are "smooth" and monotone, $\left(\mathcal{P}\left(\mathbb{T}^{d}\right)=\right.$ the set of Borel probability measures on $\left.\mathbb{T}^{d}\right)$
- $m_{0} \in \mathcal{P}\left(\mathbb{T}^{d}\right)$ is a smooth positive density

The MFG system has been introduced by Lasry-Lions and Huang-Caines-Malhamé to study optimal control problems with infinitely many controllers.

Interpretation.

If (u^{δ}, m^{δ}) solves the discounted MFG system,

- then u is the value function of a typical small player :

$$
u(t, x)=\inf _{\alpha} \mathbb{E}\left[\int_{0}^{+\infty} e^{-\delta s} L\left(X_{s}, \alpha_{s}\right)+F\left(X_{s}, m^{\delta}(s)\right) d s\right]
$$

where

$$
d X_{s}=\alpha_{s} d s+\sqrt{2} d W_{s} \text { for } s \in[t,+\infty), \quad X_{t}=x
$$

and L is the Fenchel conjugate of H :

$$
L(x, \alpha):=\sup _{p \in \mathbb{R}^{d}}-\alpha \cdot p-H(x, p)
$$

- and m^{δ} is the distribution of the players when they play in an optimal way : $m^{\delta}:=\mathcal{L}\left(Y_{s}\right)$ with

$$
d Y_{s}=-H_{p}\left(Y_{s}, D u\left(s, Y_{s}\right)\right) d s+\sqrt{2} d W_{s}, \quad s \in[0,+\infty), \quad \mathcal{L}\left(Y_{0}\right)=m_{0}
$$

The limit problem

Let $\left(u^{\delta}, m^{\delta}\right)$ be the solution to

$$
(M F G-\delta) \quad\left\{\begin{array}{l}
-\partial_{t} u^{\delta}+\delta u^{\delta}-\Delta u^{\delta}+H\left(x, D u^{\delta}\right)=f\left(x, m^{\delta}(t)\right) \quad \text { in }(0,+\infty) \times \mathbb{T}^{d} \\
\partial_{t} m^{\delta}-\Delta m^{\delta}-\operatorname{div}\left(m^{\delta} H_{p}\left(x, D u^{\delta}\right)\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{T}^{d} \\
m^{\delta}(0, \cdot)=m_{0} \quad \text { in } \mathbb{T}^{d}, \quad u^{\delta} \text { bounded in }(0,+\infty) \times \mathbb{T}^{d}
\end{array}\right.
$$

$$
\text { Study the limit as } \delta \rightarrow 0^{+} \text {of the pair }\left(u^{\delta}, m^{\delta}\right)
$$

- Motivation : classical question in economics/game theory (players infinitely patient).
- In contrast with similar problem for HJ equation, forward-backward system.

One expects that $\left(u^{\delta}, m^{\delta}\right)$ "converges" to the solution of the ergodic MFG problem

where now the unknown are $\bar{\lambda}, \bar{u}=\bar{u}(x)$ and $\bar{m}=\bar{m}(x)$.

The limit problem

Let $\left(u^{\delta}, m^{\delta}\right)$ be the solution to

$$
(M F G-\delta) \quad\left\{\begin{array}{l}
-\partial_{t} u^{\delta}+\delta u^{\delta}-\Delta u^{\delta}+H\left(x, D u^{\delta}\right)=f\left(x, m^{\delta}(t)\right) \quad \text { in }(0,+\infty) \times \mathbb{T}^{d} \\
\partial_{t} m^{\delta}-\Delta m^{\delta}-\operatorname{div}\left(m^{\delta} H_{p}\left(x, D u^{\delta}\right)\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{T}^{d} \\
m^{\delta}(0, \cdot)=m_{0} \quad \text { in } \mathbb{T}^{d}, \quad u^{\delta} \text { bounded in }(0,+\infty) \times \mathbb{T}^{d}
\end{array}\right.
$$

$$
\text { Study the limit as } \delta \rightarrow 0^{+} \text {of the pair }\left(u^{\delta}, m^{\delta}\right)
$$

- Motivation : classical question in economics/game theory (players infinitely patient).
- In contrast with similar problem for HJ equation, forward-backward system.

One expects that $\left(u^{\delta}, m^{\delta}\right)$ "converges" to the solution of the ergodic MFG problem

$$
(M F G-\operatorname{erg}) \quad \begin{cases}\bar{\lambda}-\Delta \bar{u}+H(x, D \bar{u})=f(x, \bar{m}) & \text { in } \mathbb{T}^{d} \\ -\Delta \bar{m}-\operatorname{div}\left(\bar{m} H_{p}(x, D \bar{u})\right)=0 & \text { in } \mathbb{T}^{d} \\ \bar{m} \geq 0 \quad \text { in } \mathbb{T}^{d}, \quad \int_{\mathbb{T}^{d}} \bar{m}=1 & \end{cases}
$$

where now the unknown are $\bar{\lambda}, \bar{u}=\bar{u}(x)$ and $\bar{m}=\bar{m}(x)$.

Classical results for decoupled problems

- For the Fokker-Plank equation driven by a vector-field V :

$$
\partial_{t} m-\Delta m-\operatorname{div}(m V(x))=f(x) \quad \text { in }(0, \infty) \times \mathbb{T}^{d}
$$

(exponential) convergence of $m(t)$ to the ergodic measure is well-known.

- For HJ equations: Let $v=v(t, x)$ and $u^{\delta}=u^{\delta}(x)$ be the solution to

$$
\partial_{t} v-\Delta v+H(x, D v)=f(x) \text { in }(0,+\infty) \times \mathbb{T}^{d}, \quad u(0, \cdot)=u_{0} \text { in } \mathbb{T}^{d}
$$

and

$$
\delta u^{\delta}-\Delta u^{\delta}+H\left(x, D u^{\delta}\right)=0 \quad \text { in } \mathbb{T}^{d}
$$

- Convergence of δu^{δ} as $\delta \rightarrow 0$ and $v(T) / T$ as $T \rightarrow+\infty$ to the ergodic constant $\bar{\lambda}$: Lions-Papanicolau-Varadhan, ...
- (Weak-KAM theory) Limit of $v(T)-\bar{\lambda} T$ as $T \rightarrow+\infty$ to a corrector : Fathi, Roquejoffre, Fathi-Siconolfi, Barles-Souganidis, ...
- Convergence of $u^{\delta}-\bar{\lambda} / \delta$ as $\delta \rightarrow 0^{+}$to a corrector : Davini, Fathi, Iturriaga and Zavidovique, ...

For MFG systems

- For the MFG time-dependent system, convergence of v^{T} / T and m^{T} are known :
- Lions (Cours in Collège de France)
- Gomes-Mohr-Souza (discrete setting)
- C.-Lasry-Lions-Porretta (viscous setting), C. (Hamilton-Jacobi)
- Turnpike property (Samuelson, Porretta-Zuazua, Trélat,...)
- Similar results for δu^{δ} and m^{δ} are not known, but expected.
- Long-time behavior of $v(T, \cdot)-\bar{\lambda} T$ vs limit of $u^{\delta}-\bar{\lambda} / \delta$ not known so far.

General strategy of proof

- Let $\left(u^{\delta}, m^{\delta}\right)$ be the solution to

$$
(M F G-\delta)\left\{\begin{array}{l}
-\partial_{t} u^{\delta}+\delta u^{\delta}-\Delta u^{\delta}+H\left(x, D u^{\delta}\right)=f\left(x, m^{\delta}(t)\right) \quad \text { in }(0,+\infty) \times \mathbb{T}^{d} \\
\partial_{t} m^{\delta}-\Delta m^{\delta}-\operatorname{div}\left(m^{\delta} H_{p}\left(x, D u^{\delta}\right)\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{T}^{d} \\
m^{\delta}(0, \cdot)=m_{0} \quad \text { in } \mathbb{T}^{d}, \quad u^{\delta} \text { bounded in }(0,+\infty) \times \mathbb{T}^{d}
\end{array}\right.
$$

- As $\left(u^{\delta}, m^{\delta}\right)=\left(u^{\delta}(t, x), m^{\delta}(t, x)\right)$, two possible limits :
- When $\delta \rightarrow 0$: difficult (no obvious limit, dependence in m_{0} unclear),
- When $t \rightarrow+\infty$: easier.

Expected limit : the stationary discounted problem

$$
(M F G-\operatorname{bar}-\delta) \quad\left\{\begin{array}{l}
\delta \bar{u}^{\delta}-\Delta \bar{u}^{\delta}+H\left(x, D \bar{u}^{\delta}\right)=f\left(x, \bar{m}^{\delta}\right) \quad \text { in } \mathbb{T}^{d} \\
-\Delta \bar{m}^{\delta}-\operatorname{div}\left(\bar{m}^{\delta} H_{p}\left(x, D \bar{u}^{\delta}\right)\right)=0 \quad \text { in } \mathbb{T}^{d}
\end{array}\right.
$$

General strategy of proof (continued)

- Show that $\lim _{\delta \rightarrow 0^{+}} \delta \bar{u}^{\delta}=\bar{\lambda}$ and identification of the limit of $\bar{u} \delta-\bar{\lambda} / \delta$.
- Collect all the equations (MFG - δ) into a single equation : for $m_{0} \in \mathcal{P}\left(\mathbb{T}^{d}\right)$, set $U^{\delta}\left(x, m_{0}\right):=u^{\delta}(0, x)$ where $\left(u^{\delta}, m^{\delta}\right)$ solves (MFG $\left.-\delta\right)$ with $m(0)=m_{0}$.
- Then U^{δ} solves the discounted master equation.
- get Lipschitz estimate on U^{δ}
- by compactness arguments, prove that $U^{\delta}-\bar{\lambda} / \delta$ converges to a solution \bar{U} of the ergodic master equation (as $\delta \rightarrow 0$, up to subsequences).
- Put the previous steps together to derive the limit of $u^{\delta}-\bar{\lambda} / \delta$.

Outline

(1) Derivatives and assumptions
(2) The classical uncoupled setting
(3) Small discount behavior of \bar{u}^{δ}

(4) The discounted and ergodic master equations

(5) Small discount behavior of u^{δ}

Detour on derivatives in the space of measures

We denote by $\mathcal{P}\left(\mathbb{T}^{d}\right)$ the set of Borel probability measures on \mathbb{T}^{d}, endowed for the Monge-Kantorovich distance

$$
\mathbf{d}_{1}\left(m, m^{\prime}\right)=\sup _{\phi} \int_{\mathbb{T}^{d}} \phi(y) d\left(m-m^{\prime}\right)(y)
$$

where the supremum is taken over all Lipschitz continuous maps $\phi: \mathbb{T}^{d} \rightarrow \mathbb{R}$ with a Lipschitz constant bounded by 1 .

Given $U: \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$, we consider 2 notions of derivatives :

- The directional derivative $\frac{\delta U}{\delta m}(m, y)$ (see, e.g., Mischler-Mouhot)
- The intrinsic derivative $D_{m} U(m, y)$ (see, e.g., Otto, Ambrosio-Gigli-Savaré, Lions)

Directional derivative

A map $U: \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$ is \mathcal{C}^{1} if there exists a continuous map $\frac{\delta U}{\delta m}: \mathcal{P}\left(\mathbb{T}^{d}\right) \times \mathbb{T}^{d} \rightarrow \mathbb{R}$ such that, for any $m, m^{\prime} \in \mathcal{P}\left(\mathbb{T}^{d}\right)$,

$$
U\left(m^{\prime}\right)-U(m)=\int_{0}^{1} \int_{\mathbb{T}^{d}} \frac{\delta U}{\delta m}\left((1-s) m+s m^{\prime}, y\right) d\left(m^{\prime}-m\right)(y) d s
$$

Note that $\frac{\delta U}{\delta m}$ is defined up to an additive constant. We adopt the normalization convention

$$
\int_{\mathbb{T}^{d}} \frac{\delta U}{\delta m}(m, y) d m(y)=0
$$

Intrinsic derivative

If $\frac{\delta U}{\delta m}$ is of class \mathcal{C}^{1} with respect to the second variable, the intrinsic derivative $D_{m} U: \mathcal{P}\left(\mathbb{T}^{d}\right) \times \mathbb{T}^{d} \rightarrow \mathbb{R}^{d}$ is defined by

$$
D_{m} U(m, y):=D_{y} \frac{\delta U}{\delta m}(m, y)
$$

For instance, if $U(m)=\int_{\mathbb{T}^{d}} g(x) d m(x)$, then $\frac{\delta U}{\delta m}(m, y)=g(y)-\int_{\mathbb{T}^{d}} g d m$ while $D_{m} U(m, y)=D g(y)$.

Remarks.

- The directional derivative is fruitful for computations.
- The intrinsic derivative encodes the variation of the map in $\mathcal{P}\left(\mathbb{T}^{d}\right)$. For instance :

$$
\left\|D_{m} U\right\|_{\infty}=\operatorname{Lip} U
$$

Standing assumptions

- $H: \mathbb{T}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is smooth, with :

$$
C^{-1} I_{d} \leq D_{p p}^{2} H(x, p) \leq C I_{d} \quad \text { for }(x, p) \in \mathbb{T}^{d} \times \mathbb{R}^{d}
$$

Moreover, there exists $\theta \in(0,1)$ and $C>0$ such that

$$
\left|D_{x x} H(x, p)\right| \leq C|p|^{1+\theta}, \quad\left|D_{x p} H(x, p)\right| \leq C|p|^{\theta}, \quad \forall(x, p) \in \mathbb{T}^{d} \times \mathbb{R}^{d}
$$

- the maps $f, g: \mathbb{T}^{d} \times \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$ are monotone : for any $m, m^{\prime} \in \mathcal{P}\left(\mathbb{T}^{d}\right)$,

$$
\int_{\mathbb{T}^{d}}\left(f(x, m)-f\left(x, m^{\prime}\right)\right) d\left(m-m^{\prime}\right)(x) \geq 0, \int_{\mathbb{T}^{d}}\left(g(x, m)-g\left(x, m^{\prime}\right)\right) d\left(m-m^{\prime}\right)(x) \geq 0
$$

- the maps f, g are \mathcal{C}^{1} in m : there exists $\alpha \in(0,1)$ such that

$$
\sup _{m \in \mathcal{P}\left(\mathbb{T}^{d}\right)}\left(\|f(\cdot, m)\|_{3+\alpha}+\left\|\frac{\delta f(\cdot, m, \cdot)}{\delta m}\right\|_{(3+\alpha, 3+\alpha)}\right)+\operatorname{Lip}_{3+\alpha}\left(\frac{\delta f}{\delta m}\right)<\infty
$$

and the same for g.

Example. If f is of the form :

$$
f(x, m)=\int_{\mathbb{R}^{d}} \Phi(z,(\rho \star m)(z)) \rho(x-z) d z
$$

where

- \star denotes the usual convolution product (in \mathbb{R}^{d}),
- $\Phi=\Phi(x, r)$ is a smooth map, nondecreasing w.r. to r,
- $\rho: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a smooth, even function with compact support.

Then f satisfies our conditions with

$$
\frac{\delta f}{\delta m}(x, m, z)=\int_{\mathbb{R}^{d}} \sum_{k \in \mathbb{Z}^{d}} \rho(y-z-k) \frac{\partial \Phi}{\partial m}(y, \rho * m(y)) \rho(x-y) d y
$$

Outline

(1) Derivatives and assumptions

(2) The classical uncoupled setting

(3) Small discount behavior of \bar{u}^{δ}

(4) The discounted and ergodic master equations

(5) Small discount behavior of u^{δ}

The classical ergodic theory

(Lions-Papanicolau-Varadhan, Evans, Arisawa-Lions,...)
For $\delta>0$, let u^{δ} solve the uncoupled HJ equation

$$
\delta u^{\delta}-\Delta u^{\delta}+H\left(x, D u^{\delta}\right)=f(x) \quad \text { in } \mathbb{T}^{d}
$$

Then

- $\left(\delta u^{\delta}\right)$ is bounded (maximum principle),
- $\left\|D u^{\delta}\right\|_{\infty}$ is bounded (growth condition on H or ellipticity)
- Thus, as $\delta \rightarrow 0^{+}$and up to a subsequence, $\left(\delta u^{\delta}\right)$ and ($\left.u^{\delta}-u^{\delta}(0)\right)$ converge to the ergodic constant $\bar{\lambda}$ and a corrector \bar{u} :

$$
\bar{\lambda}-\Delta \bar{u}+H(x, D \bar{u})=f(x) \quad \text { in } \mathbb{T}^{d} .
$$

- Uniqueness of $\bar{\lambda}$ and of \bar{u} (up to constants) (strong maximum principle).

The small discount behavior

For $\delta>0$, let u^{δ} solve the uncoupled HJ equation

$$
\delta u^{\delta}-\Delta u^{\delta}+H\left(x, D u^{\delta}\right)=f(x) \quad \text { in } \mathbb{T}^{d}
$$

Then $u^{\delta}-\delta^{-1} \bar{\lambda}$ actually converges as $\delta \rightarrow 0$ to the unique solution \bar{u} of the ergodic cell problem

$$
\bar{\lambda}-\Delta \bar{u}+H(x, D \bar{u})=f(x) \quad \text { in } \mathbb{T}^{d}
$$

such that $\int_{\mathbb{T}^{d}} \bar{u} \bar{m}=0$, where \bar{m} solves

$$
-\Delta \bar{m}-\operatorname{div}\left(\bar{m} H_{p}(x, D \bar{u})\right)=0 \quad \text { in } \mathbb{T}^{d}, \quad \bar{m} \geq 0, \int_{\mathbb{T}^{d}} \bar{m}=1
$$

Proved by

- Davini, Fathi, Iturriaga and Zavidovique for the first order problem,
- Mitake and Tran (see also Mitake and Tran -- Ishii, Mitake and Tran) for the viscous case

Outline

(1) Derivatives and assumptions

(2) The classical uncoupled setting
(3) Small discount behavior of \bar{u}^{δ}

(4) The discounted and ergodic master equations

(5) Small discount behavior of u^{δ}

The stationary discounted MFG system

It takes the form

$$
(M F G-\operatorname{bar}-\delta) \quad\left\{\begin{array}{l}
\delta \bar{u}^{\delta}-\Delta \bar{u}^{\delta}+H\left(x, D \bar{u}^{\delta}\right)=f\left(x, \bar{m}^{\delta}\right) \quad \text { in } \mathbb{T}^{d} \\
-\Delta \bar{m}^{\delta}-\operatorname{div}\left(\bar{m}^{\delta} H_{p}\left(x, D \bar{u}^{\delta}\right)\right)=0 \quad \text { in } \mathbb{T}^{d}
\end{array}\right.
$$

Proposition

There exists $\delta_{0}>0$ such that, if $\delta \in\left(0, \delta_{0}\right)$, there is a unique solution $\left(\bar{u}^{\delta}, \bar{m}^{\delta}\right)$ to (MFG - bar $-\delta$).

Moreover, for any $\delta \in\left(0, \delta_{0}\right)$,

$$
\left\|\delta \bar{u}^{\delta}-\bar{\lambda}\right\|_{\infty}+\left\|D\left(\bar{u}^{\delta}-\bar{u}\right)\right\|_{L^{2}}+\left\|\bar{m}^{\delta}-\bar{m}\right\|_{L^{2}} \leq C \delta^{1 / 2} .
$$

for some constant $C>0$, where $(\bar{\lambda}, \bar{u}, \bar{m})$ solves the ergodic MFG system

$$
(M F G-\operatorname{ergo}) \quad \begin{cases}\bar{\lambda}-\Delta \bar{u}+H(x, D \bar{u})=f(x, \bar{m}) & \text { in } \mathbb{T}^{d} \\ -\Delta \bar{m}-\operatorname{div}\left(\bar{m} H_{p}(x, D \bar{u})\right)=0 & \text { in } \mathbb{T}^{d}\end{cases}
$$

Link with the discounted MFG system

The solution $\left(\bar{u}^{\delta}, \bar{m}^{\delta}\right)$ of the (MFG - bar $-\delta$) system can be obtained the limit of the solution (u^{δ}, m^{δ}) of

$$
(M F G-\delta) \quad\left\{\begin{array}{l}
-\partial_{t} u^{\delta}+\delta u^{\delta}-\Delta u^{\delta}+H\left(x, D u^{\delta}\right)=f\left(x, m^{\delta}(t)\right) \quad \text { in }(0,+\infty) \times \mathbb{T}^{d} \\
\partial_{t} m^{\delta}-\Delta m^{\delta}-\operatorname{div}\left(m^{\delta} H_{p}\left(x, D u^{\delta}\right)\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{T}^{d} \\
m^{\delta}(0, \cdot)=m_{0} \quad \text { in } \mathbb{T}^{d}, \quad u^{\delta} \text { bounded in }(0,+\infty) \times \mathbb{T}^{d}
\end{array}\right.
$$

Theorem

Under our standing assumptions, if $\delta \in\left(0, \delta_{0}\right)$, then

$$
\left\|D\left(u^{\delta}(t)-\bar{u}^{\delta}\right)\right\|_{L \infty} \leq C e^{-\gamma t} \quad \forall t \geq 0
$$

and

$$
\left\|m^{\delta}(t)-\bar{m}^{\delta}\right\|_{L \infty} \leq C e^{-\gamma t} \quad \forall t \geq 1
$$

where $\gamma, \delta_{0}>0$ and $C>0$ are independent of m_{0}.

Towards a limit of $\bar{u}^{\delta}-\bar{\lambda} / \delta$

- Plugg the ansatz :

$$
\bar{u}^{\delta} \sim \frac{\bar{\lambda}}{\delta}+\bar{u}+\bar{\theta}+\delta \bar{v}, \quad \bar{m}^{\delta} \sim \bar{m}+\delta \bar{\mu},
$$

into the equation for $\left(\bar{u}^{\delta}, \bar{m}^{\delta}\right)$:

$$
\left\{\begin{array}{lc}
\delta \bar{u}^{\delta}-\Delta \bar{u}^{\delta}+H\left(x, D \bar{u}^{\delta}\right)=f\left(x, \bar{m}^{\delta}\right) & \text { in } \mathbb{T}^{d} \\
-\Delta \bar{m}^{\delta}-\operatorname{div}\left(\bar{m}^{\delta} H_{p}\left(x, D \bar{u}^{\delta}\right)\right)=0 & \text { in } \mathbb{T}^{d}
\end{array}\right.
$$

- One has:

$$
\left\{\begin{array}{l}
\bar{\lambda}+\delta \bar{u}+\delta \bar{\theta}+\delta^{2} \bar{v}-\Delta(\bar{u}+\delta \bar{v})+H(x, D(\bar{u}+\delta \bar{v}))=f(x, \bar{m}+\delta \bar{\mu}) \\
-\Delta(\bar{m}+\delta \bar{\mu})-\operatorname{div}\left((\bar{m}+\delta \bar{\mu}) H_{p}(x, D(\bar{u}+\delta \bar{v}))\right)=0
\end{array}\right.
$$

Towards a limit of $\bar{u}^{\delta}-\bar{\lambda} / \delta$

- Plugg the ansatz :

$$
\bar{u}^{\delta} \sim \frac{\bar{\lambda}}{\delta}+\bar{u}+\bar{\theta}+\delta \bar{v}, \quad \bar{m}^{\delta} \sim \bar{m}+\delta \bar{\mu}
$$

into the equation for $\left(\bar{u}^{\delta}, \bar{m}^{\delta}\right)$:

$$
\begin{cases}\delta \bar{u}^{\delta}-\Delta \bar{u}^{\delta}+H\left(x, D \bar{u}^{\delta}\right)=f\left(x, \bar{m}^{\delta}\right) & \text { in } \mathbb{T}^{d} \\ -\Delta \bar{m}^{\delta}-\operatorname{div}\left(\bar{m}^{\delta} H_{p}\left(x, D \bar{u}^{\delta}\right)\right)=0 & \text { in } \mathbb{T}^{d}\end{cases}
$$

- We recognize the equation for (\bar{u}, \bar{m}) :

$$
\left\{\begin{array}{l}
\bar{\lambda}+\delta \bar{u}+\delta \bar{\theta}+\delta^{2} \bar{v}-\Delta(\bar{u}+\delta \bar{v})+H(x, D(\bar{u}+\delta \bar{v}))=f(x, \bar{m}+\delta \bar{\mu}) \\
-\Delta(\bar{m}+\delta \bar{\mu})-\operatorname{div}\left((\bar{m}+\delta \bar{\mu}) H_{p}(x, D(\bar{u}+\delta \bar{v}))\right)=0
\end{array}\right.
$$

Towards a limit of $\bar{u}^{\delta}-\bar{\lambda} / \delta$

- Plugg the ansatz :

$$
\bar{u}^{\delta} \sim \frac{\bar{\lambda}}{\delta}+\bar{u}+\bar{\theta}+\delta \bar{v}, \quad \bar{m}^{\delta} \sim \bar{m}+\delta \bar{\mu},
$$

into the equation for $\left(\bar{u}^{\delta}, \bar{m}^{\delta}\right)$:

$$
\begin{cases}\delta \bar{u}^{\delta}-\Delta \bar{u}^{\delta}+H\left(x, D \bar{u}^{\delta}\right)=f\left(x, \bar{m}^{\delta}\right) & \text { in } \mathbb{T}^{d} \\ -\Delta \bar{m}^{\delta}-\operatorname{div}\left(\bar{m}^{\delta} H_{p}\left(x, D \bar{u}^{\delta}\right)\right)=0 & \text { in } \mathbb{T}^{d}\end{cases}
$$

- Expending and simplifying :

$$
\left\{\begin{array}{l}
\delta \bar{u}+\delta \bar{\theta}+\delta^{2} \bar{v}-\Delta(\delta \bar{v})+H_{p}(x, D \bar{u}) \cdot(\delta \bar{v})=\frac{\delta f}{\delta m}(x, \bar{m})(\delta \bar{\mu}) \\
\left.-\Delta(\delta \bar{\mu})-\operatorname{div}\left((\delta \bar{\mu}) H_{p}(x, D \bar{u})\right)-\operatorname{div}\left(\bar{m} H_{p p}(x, D \bar{u})(\delta \bar{v})\right)\right)=0
\end{array}\right.
$$

Towards a limit of $\bar{u}^{\delta}-\bar{\lambda} / \delta$

- Plugg the ansatz :

$$
\bar{u}^{\delta} \sim \frac{\bar{\lambda}}{\delta}+\bar{u}+\bar{\theta}+\delta \bar{v}, \quad \bar{m}^{\delta} \sim \bar{m}+\delta \bar{\mu},
$$

into the equation for $\left(\bar{u}^{\delta}, \bar{m}^{\delta}\right)$:

$$
\begin{cases}\delta \bar{u}^{\delta}-\Delta \bar{u}^{\delta}+H\left(x, D \bar{u}^{\delta}\right)=f\left(x, \bar{m}^{\delta}\right) & \text { in } \mathbb{T}^{d} \\ -\Delta \bar{m}^{\delta}-\operatorname{div}\left(\bar{m}^{\delta} H_{p}\left(x, D \bar{u}^{\delta}\right)\right)=0 & \text { in } \mathbb{T}^{d}\end{cases}
$$

- Dividing by δ and omitting the term of lower order:

$$
\left\{\begin{array}{l}
\bar{u}+\bar{\theta}-\Delta \bar{v}+H_{p}(x, D \bar{u}) \cdot D \bar{v}=\frac{\delta f}{\delta m}(x, \bar{m})(\bar{\mu}) \\
\left.-\Delta \bar{\mu}-\operatorname{div}\left(\bar{\mu} H_{p}(x, D \bar{u})\right)-\operatorname{div}\left(\bar{m} H_{p p}(x, D \bar{u}) \bar{v}\right)\right)=0
\end{array}\right.
$$

Proposition

There exists a unique constant $\bar{\theta}$ for which the following has a solution $(\bar{v}, \bar{\mu})$:

$$
\left\{\begin{array}{l}
\bar{u}+\bar{\theta}-\Delta \bar{v}+H_{p}(x, D \bar{u}) \cdot D \bar{v}=\frac{\delta f}{\delta m}(x, \bar{m})(\bar{\mu}) \quad \text { in } \mathbb{T}^{d} \\
-\Delta \bar{\mu}-\operatorname{div}\left(\bar{\mu} H_{p}(x, D \bar{u})\right)-\operatorname{div}\left(\bar{m} H_{p p}(x, D \bar{u}) D \bar{v}\right)=0 \quad \text { in } \mathbb{T}^{d} \\
\int_{\mathbb{T}^{d}} \bar{\mu}=\int_{\mathbb{T}^{d}} \bar{v}=0
\end{array}\right.
$$

We can identify the limit of $\bar{u}^{\delta}-\bar{\lambda} / \delta$

Proposition

Let $(\bar{\lambda}, \bar{u}, \bar{m}),\left(\bar{u}^{\delta}, \bar{m}^{\delta}\right)$ and $(\bar{\theta}, \bar{v}, \bar{\mu})$ be as above. Then

Proposition

There exists a unique constant $\bar{\theta}$ for which the following has a solution $(\bar{v}, \bar{\mu})$:

$$
\left\{\begin{array}{l}
\bar{u}+\bar{\theta}-\Delta \bar{v}+H_{p}(x, D \bar{u}) \cdot D \bar{v}=\frac{\delta f}{\delta m}(x, \bar{m})(\bar{\mu}) \quad \text { in } \mathbb{T}^{d} \\
-\Delta \bar{\mu}-\operatorname{div}\left(\bar{\mu} H_{p}(x, D \bar{u})\right)-\operatorname{div}\left(\bar{m} H_{p p}(x, D \bar{u}) D \bar{v}\right)=0 \quad \text { in } \mathbb{T}^{d} \\
\int_{\mathbb{T}^{d}} \bar{\mu}=\int_{\mathbb{T}^{d}} \bar{v}=0
\end{array}\right.
$$

We can identify the limit of $\bar{u}^{\delta}-\bar{\lambda} / \delta$:

Proposition

Let $(\bar{\lambda}, \bar{u}, \bar{m}),\left(\bar{u}^{\delta}, \bar{m}^{\delta}\right)$ and $(\bar{\theta}, \bar{v}, \bar{\mu})$ be as above. Then

$$
\lim _{\delta \rightarrow 0^{+}}\left\|\bar{u}^{\delta}-\frac{\bar{\lambda}}{\delta}-\bar{u}-\bar{\theta}\right\|_{\infty}+\left\|\bar{m}^{\delta}-\bar{m}\right\|_{\infty}=0
$$

- This shows that $\bar{u}^{\delta}-\bar{\lambda} / \delta$ converges as $\delta \rightarrow 0^{+}$to $\bar{u}+\bar{\theta}$, where $\bar{\theta}$ is the unique constant such that the system

$$
\left\{\begin{array}{l}
\bar{u}+\bar{\theta}-\Delta \bar{v}+H_{p}(x, D \bar{u}) \cdot D \bar{v}=\frac{\delta f}{\delta m}(x, \bar{m})(\bar{\mu}) \quad \text { in } \mathbb{T}^{d} \\
-\Delta \bar{\mu}-\operatorname{div}\left(\bar{\mu} H_{p}(x, D \bar{u})\right)-\operatorname{div}\left(\bar{m} H_{p p}(x, D \bar{u}) D \bar{v}\right)=0 \quad \text { in } \mathbb{T}^{d} \\
\int_{\mathbb{T}^{d}} \bar{\mu}=\int_{\mathbb{T}^{d}} \bar{v}=0
\end{array}\right.
$$

has a solution $(\bar{v}, \bar{\mu})$.

- In the uncoupled case $(f=f(x))$, we have $\int_{\mathbb{T}^{d}}(\bar{u}+\bar{\theta}) \bar{m}=0$, because $\frac{\delta f}{\delta m}=0$ and, if we multiply the equation for \bar{v} by \bar{m} and integrate, we get

$$
\begin{aligned}
0 & =\int_{\mathbb{T}^{d}} \bar{m}\left(\bar{u}+\bar{\theta}-\Delta \bar{v}+H_{p}(x, D \bar{u}) \cdot D \bar{v}\right) \\
& =\int_{\mathbb{T}^{d}} \bar{m}(\bar{u}+\bar{\theta})+\int_{\mathbb{T}^{d}} \bar{v}\left(-\Delta \bar{m}-\operatorname{div}\left(\bar{m} H_{p}(x, D \bar{u})\right)\right) \\
& =\int_{\mathbb{T}^{d}} \bar{m}(\bar{u}+\bar{\theta})
\end{aligned}
$$

So one recovers the condition of Davini, Fathi, Iturriaga and Zavidovique.

Outline

(1) Derivatives and assumptions

(2) The classical uncoupled setting
(3) Small discount behavior of \bar{u}^{δ}
(4) The discounted and ergodic master equations

(5) Small discount behavior of u^{δ}

The discounted master equation

In order to study the limit behavior of $\left(u^{\delta}, m^{\delta}\right)$, we use the discounted master equation :

$$
\left\{\begin{array}{l}
\delta U^{\delta}-\Delta_{x} U^{\delta}+H\left(x, D_{x} U^{\delta}\right)-f(x, m) \\
\quad-\int_{\mathbb{T}^{d}} \operatorname{div}_{y}\left[D_{m} U^{\delta}\right] d m(y)+\int_{\mathbb{T}^{d}} D_{m} U^{\delta} \cdot H_{p}\left(y, D_{x} U^{\delta}\right) d m(y)=0 \\
\text { in } \mathbb{T}^{d} \times \mathcal{P}\left(\mathbb{T}^{d}\right)
\end{array}\right.
$$

where $U^{\delta}=U^{\delta}(x, m): \mathbb{T}^{d} \times \mathcal{P}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$.

Theorem (C.-Delarue-Lasry-Lions, 2015)

Under our assumptions, the discounted master equation has a unique classical solution U^{δ}.

Previous results in that direction : Lasry-Lions, Gangbo-Swiech, Chassagneux-Crisan-Delarue,...

Idea of proof: Let us set

$$
U^{\delta}\left(x, m_{0}\right):=u^{\delta}(0, x)
$$

where $\left(u^{\delta}, m^{\delta}\right)$ solves

$$
(M F G-\delta)\left\{\begin{array}{l}
-\partial_{t} u^{\delta}+\delta u^{\delta}-\Delta u^{\delta}+H\left(x, D u^{\delta}\right)=f\left(x, m^{\delta}(t)\right) \quad \text { in }(0,+\infty) \times \mathbb{T}^{d} \\
\partial_{t} m^{\delta}-\Delta m^{\delta}-\operatorname{div}\left(m^{\delta} H_{p}\left(x, D u^{\delta}\right)\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{T}^{d} \\
m^{\delta}(0, \cdot)=m_{0} \quad \text { in } \mathbb{T}^{d}, \quad u^{\delta} \text { bounded in }(0,+\infty) \times \mathbb{T}^{d}
\end{array}\right.
$$

Then one expects that U^{δ} solves the master equation because :

$$
U^{\delta}\left(x, m^{\delta}(t)\right)=u^{\delta}(t, x) \quad \forall t \geq 0
$$

Taking the derivative in $t=0$:

$$
\int_{\mathbb{T}^{d}} \frac{\delta U^{\delta}}{\delta m}\left(x, m_{0}, y\right) \partial_{t} m^{\delta}(0, d y)=\partial_{t} u(0, x)
$$

so that
$\int_{\mathbb{T}^{d}} \frac{\delta U^{\delta}}{\delta m}\left(x, m_{0}, y\right)\left(\Delta m_{0}+\operatorname{div}\left(m_{0} H_{p}\left(y, D u^{\delta}(0)\right)\right)=\delta u^{\delta}(0)-\Delta u^{\delta}(0)+H\left(x, D u^{\delta}(0)\right)-f\left(x, m_{0}\right)\right.$.
Integrating by parts gives the master equation.

The key Lipschitz estimate

Let U^{δ} be the solution of the discounted master equation

$$
\left\{\begin{array}{l}
\delta U^{\delta}-\Delta_{x} U^{\delta}+H\left(x, D_{x} U^{\delta}\right)-f(x, m) \\
-\int_{\mathbb{T}^{d}} \operatorname{div}_{y}\left[D_{m} U^{\delta}\right] d m(y)+\int_{\mathbb{T}^{d}} D_{m} U^{\delta} \cdot H_{p}\left(y, D_{x} U^{\delta}\right) d m(y)=0 \\
\text { in } \mathbb{T}^{d} \times \mathcal{P}\left(\mathbb{T}^{d}\right)
\end{array}\right.
$$

Proposition

There is a constant C, depending on the data only, such that

$$
\left\|D_{m} U^{\delta}(\cdot, m, \cdot)\right\|_{2+\alpha, 1+\alpha} \leq C .
$$

In particular, $U^{\delta}(\cdot, \cdot)$ is uniformly Lipschitz continuous.

Difficulty : equation for U^{δ} neither coercive nor elliptic in m.

Idea of proof

Representation formulas. Fix $m_{0} \in \mathcal{P}\left(\mathbb{T}^{d}\right)$ a initial condition and (u^{δ}, m^{δ}) the associated solution of the discounted MFG system :

$$
\left\{\begin{array}{l}
-\partial_{t} u^{\delta}+\delta u^{\delta}-\Delta u^{\delta}+H\left(x, D u^{\delta}\right)=f\left(x, m^{\delta}(t)\right) \quad \text { in }(0,+\infty) \times \mathbb{T}^{d} \\
\partial_{t} m^{\delta}-\Delta m^{\delta}-\operatorname{div}\left(m^{\delta} H_{p}\left(x, D u^{\delta}\right)\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{T}^{d} \\
m^{\delta}(0, \cdot)=m_{0} \text { in } \times \mathbb{T}^{d}, \quad u^{\delta} \text { bounded. }
\end{array}\right.
$$

For any smooth map μ_{0} with $\int_{\mathbb{T}^{d}} m_{0}=0$, one can show that

$$
\int_{\mathbb{T}^{d}} \frac{\delta U^{\delta}}{\delta m}\left(x, m_{0}, y\right) \mu_{0}(y) d y=w(0, x)
$$

where (w, μ) is the unique solution to the linearized system

$$
\begin{cases}-\partial_{t} w+\delta w-\Delta w+H_{p}\left(x, D u^{\delta}\right) \cdot D w=\frac{\delta f}{\delta m}\left(x, m^{\delta}(t)\right)(\mu(t)) & \text { in }(0,+\infty) \times \mathbb{T}^{d} \\ \partial_{t} \mu-\Delta \mu-\operatorname{div}\left(\mu H_{p}\left(x, D u^{\delta}\right)\right)-\operatorname{div}\left(m^{\delta} H_{p p}\left(x, D u^{\delta}\right) D w\right)=0 & \text { in }(0,+\infty) \times \mathbb{T}^{d} \\ \mu(0, \cdot)=\mu_{0} \text { in } \mathbb{T}^{d}, \quad w \text { bounded. } & \end{cases}
$$

Key step for the estimate :

$$
\left\|D_{m} U^{\delta}(\cdot, m, \cdot)\right\|_{2+\alpha, 1+\alpha} \leq C
$$

Lemma

There exist $\theta, \delta_{0}>0$ and a constant $C>0$ such that, if $\delta \in\left(0, \delta_{0}\right)$, then the solution (w, μ) to the linearized system with $\int_{\mathbb{T}^{d}} \mu_{0}=0$ satisfies

$$
\|D w(t)\|_{L^{2}} \leq C(1+t) e^{-\theta t}\left\|\mu_{0}\right\|_{L^{2}} \quad \forall t \geq 0
$$

and

$$
\|\mu(t)\|_{L^{2}} \leq C(1+t) e^{-\theta t}\left\|\mu_{0}\right\|_{L^{2}} \quad \forall t \geq 1 .
$$

As a consequence, for any $\alpha \in(0,1)$, there is a constant C (independent of δ) such that

$$
\sup _{t \geq 0}\|w(t)\|_{C^{2+\alpha}} \leq C\left\|\mu_{0}\right\|_{\left(C^{2+\alpha}\right)^{\prime}}
$$

Relies on the monotonicity formula and exponential decay of some viscous transport equation.

The ergodic master equation

As in the classical framework, we have (up to a subsequence) :

- δU^{δ} converges to a constant λ,
- $U^{\delta}-U^{\delta}(\cdot, \bar{m})$ converges to a Lipschitz continuous map \bar{U}.

Proposition

The constant $\bar{\lambda}$ and the limit \bar{U} satisfy the master cell-problem

(in a weak sense).

Moreover, if $(\bar{\lambda}, \bar{u}, \bar{m})$ is the solution to the ergodic MFG system then
and
$D_{X} \bar{U}(x, \bar{m})=D \bar{u}(x)$

The ergodic master equation

As in the classical framework, we have (up to a subsequence) :

- δU^{δ} converges to a constant λ,
- $U^{\delta}-U^{\delta}(\cdot, \bar{m})$ converges to a Lipschitz continuous map \bar{U}.

Proposition

The constant $\bar{\lambda}$ and the limit \bar{U} satisfy the master cell-problem :

$$
\begin{aligned}
& \lambda-\Delta_{x} \bar{U}(x, m)+H\left(x, D_{x} \bar{U}(x, m)\right)-\int_{\mathbb{T}^{d}} \operatorname{div}\left(D_{m} \bar{U}(x, m)\right) d m \\
& \quad+\int_{\mathbb{T}^{d}} D_{m} \bar{U}(x, m) \cdot H_{p}\left(x, D_{x} \bar{U}(x, m)\right) d m=f(x, m) \quad \text { in } \mathbb{T}^{d} \times \mathcal{P}\left(\mathbb{T}^{d}\right)
\end{aligned}
$$

(in a weak sense).
Moreover, if $(\bar{\lambda}, \bar{u}, \bar{m})$ is the solution to the ergodic MFG system then

$$
\bar{\lambda}=\lambda \quad \text { and } \quad D_{x} \bar{U}(x, \bar{m})=D \bar{u}(x) \quad \forall x \in \mathbb{T}^{d}
$$

Remarks.

- One also shows that \bar{U} is unique up to a constant.
- So the limits, up to subsequences, of $U^{\delta}-U^{\delta}(\cdot, \bar{m})$ is determined only up to a constant.
- To fix this constant, we use the identification of the limit of $\bar{u}^{\delta}-\bar{\lambda} / \delta$.

Outline

(1) Derivatives and assumptions

(2) The classical uncoupled setting
(3) Small discount behavior of \bar{u}^{δ}
(4) The discounted and ergodic master equations
(5) Small discount behavior of u^{δ}

Link between U^{δ} and \bar{u}^{δ}

Let U^{δ} be the solution to the discounted master equation :

$$
\begin{aligned}
\delta U^{\delta}-\Delta_{x} & U^{\delta}+H\left(x, D_{x} U^{\delta}\right)-\int_{\mathbb{T}^{d}} \operatorname{div}\left(D_{m} U^{\delta}\right) d m \\
& \quad+\int_{\mathbb{T}^{d}} D_{m} U^{\delta} \cdot H_{p}\left(x, D_{x} U^{\delta}(x, m)\right) d m=f(x, m) \text { in } \mathbb{T}^{d} \times \mathcal{P}\left(\mathbb{T}^{d}\right)
\end{aligned}
$$

and $\left(\bar{u}^{\delta}, \bar{m}^{\delta}\right)$ be the solution to discounted stationary problem :

$$
(M F G-\operatorname{bar}-\delta) \quad\left\{\begin{array}{l}
\delta \bar{u}^{\delta}-\Delta \bar{u}^{\delta}+H\left(x, D \bar{u}^{\delta}\right)=f\left(x, \bar{m}^{\delta}\right) \quad \text { in } \mathbb{T}^{d} \\
-\Delta \bar{m}^{\delta}-\operatorname{div}\left(\bar{m}^{\delta} H_{p}\left(x, D \bar{u}^{\delta}\right)\right)=0 \quad \text { in } \mathbb{T}^{d}
\end{array}\right.
$$

Then, by construction of U^{δ},

$$
U^{\delta}\left(\cdot, \bar{m}^{\delta}\right)=\bar{u}^{\delta},
$$

because $\left(\bar{u}^{\delta}, \bar{m}^{\delta}\right)$ is a stationary solution of the discounted MFG system (MFG- δ).

The main result

Let U^{δ} be the solution to the discounted master equation :

$$
\begin{aligned}
\delta U^{\delta}-\Delta_{x} & U^{\delta}+H\left(x, D_{x} U^{\delta}\right)-\int_{\mathbb{T}^{d}} \operatorname{div}\left(D_{m} U^{\delta}\right) d m \\
& \quad+\int_{\mathbb{T}^{d}} D_{m} U^{\delta} \cdot H_{p}\left(x, D_{x} U^{\delta}(x, m)\right) d m=f(x, m) \text { in } \mathbb{T}^{d} \times \mathcal{P}\left(\mathbb{T}^{d}\right)
\end{aligned}
$$

Theorem

As $\delta \rightarrow 0^{+}, U^{\delta}-\bar{\lambda} / \delta$ converges uniformly to the solution \bar{U} to the master cell problem such that $\bar{U}(x, \bar{m})=\bar{u}(x)+\bar{\theta}$, where $\bar{\theta}$ is the unique constant for which the following linearized ergodic problem has a solution $(\bar{v}, \bar{\mu})$:

$$
\left\{\begin{array}{l}
\bar{u}+\bar{\theta}-\Delta \bar{v}+H_{p}(x, D \bar{u}) \cdot D \bar{v}=\frac{\delta f}{\delta m}(x, \bar{m})(\bar{\mu}) \quad \text { in } \mathbb{T}^{d} \\
-\Delta \bar{\mu}-\operatorname{div}\left(\bar{\mu} H_{p}(x, D \bar{u})\right)-\operatorname{div}\left(\bar{m} H_{p p}(x, D \bar{u}) D \bar{v}\right)=0 \quad \text { in } \mathbb{T}^{d} \\
\int_{\mathbb{T}^{d}} \bar{\mu}=\int_{\mathbb{T}^{d}} \bar{v}=0
\end{array}\right.
$$

The small discount behavior of v^{δ}

Fix $m_{0} \in \mathcal{P}\left(\mathbb{T}^{d}\right)$ and let $\left(u^{\delta}, m^{\delta}\right)$ be the solution to the discounted MFG system :

$$
(M F G-\delta) \quad\left\{\begin{array}{l}
-\partial_{t} u^{\delta}+\delta u^{\delta}-\Delta u^{\delta}+H\left(x, D u^{\delta}\right)=f\left(x, m^{\delta}(t)\right) \quad \text { in }(0,+\infty) \times \mathbb{T}^{d} \\
\partial_{t} m^{\delta}-\Delta m^{\delta}-\operatorname{div}\left(m^{\delta} H_{p}\left(x, D u^{\delta}\right)\right)=0 \quad \text { in }(0,+\infty) \times \mathbb{T}^{d} \\
m^{\delta}(0, \cdot)=m_{0} \quad \text { in } \mathbb{T}^{d}, \quad u^{\delta} \text { bounded in }(0,+\infty) \times \mathbb{T}^{d}
\end{array}\right.
$$

Corollary

We have, for any $t \geq 0$,

$$
\lim _{\delta \rightarrow 0} u^{\delta}(t, x)-\bar{\lambda} / \delta=\bar{U}(x, m(t))
$$

uniformly with respect to x, where \bar{U} is the solution of the ergodic cell problem given in the main Theorem and $(m(t))$ solves the McKean-Vlasov equation

$$
\partial_{t} m-\Delta m-\operatorname{div}\left(m H_{p}(x, D \bar{U}(x, m))\right)=0 \text { in }(0,+\infty) \times \mathbb{T}^{d}, \quad m(0)=m_{0}
$$

Conclusion

We have established the small discount behavior of the discounted MFG system/master equation.
We also show in the paper the long time behavior of the time-dependent MFG system/master equation.

Open problems :

- First order setting.
- Convergence in the non-monotone setting.

