On the long time behavior of the master equation in Mean Field Games

P. Cardaliaguet

(Paris-Dauphine)

Joint work with A. Porretta (Roma Tor Vergata)

Mean Field Games and Related Topics - 4 Rome - June 14-16, 2017

Image: Image:

- **- -** - **-** - **-**

The discounted MFG system

Given a positive discount factor $\delta > 0$, we consider the MFG system

$$(MFG-\delta) \quad \begin{cases} -\partial_t u^{\delta} + \delta u^{\delta} - \Delta u^{\delta} + H(x, Du^{\delta}) = f(x, m^{\delta}(t)) \quad \text{in } (0, +\infty) \times \mathbb{T}^d \\ \partial_t m^{\delta} - \Delta m^{\delta} - \operatorname{div}(m^{\delta} H_{\rho}(x, Du^{\delta})) = 0 \quad \text{in } (0, +\infty) \times \mathbb{T}^d \\ m^{\delta}(0, \cdot) = m_0 \quad \text{in } \mathbb{T}^d, \quad u^{\delta} \text{ bounded in } (0, +\infty) \times \mathbb{T}^d \end{cases}$$

where

•
$$u^{\delta} = u^{\delta}(t, x)$$
 and $m^{\delta} = m^{\delta}(t, x)$ are the unknown,

- $H = H(x, p) : \mathbb{T}^d \times \mathbb{R}^d \to \mathbb{R}$ is a smooth, unif. convex in p, Hamiltonian,
- f,g: T^d × P(T^d) → ℝ are "smooth" and monotone,
 (P(T^d) = the set of Borel probability measures on T^d)
- $m_0 \in \mathcal{P}(\mathbb{T}^d)$ is a smooth positive density

The MFG system has been introduced by Lasry-Lions and Huang-Caines-Malhamé to study optimal control problems with infinitely many controllers.

Interpretation.

If (u^{δ}, m^{δ}) solves the discounted MFG system,

then u is the value function of a typical small player :

$$u(t,x) = \inf_{\alpha} \mathbb{E}\left[\int_{0}^{+\infty} e^{-\delta s} L(X_{s}, \alpha_{s}) + F(X_{s}, m^{\delta}(s)) ds\right]$$

where

$$dX_s = \alpha_s ds + \sqrt{2} dW_s$$
 for $s \in [t, +\infty)$, $X_t = x$

and L is the Fenchel conjugate of H:

$$L(x, \alpha) := \sup_{p \in \mathbb{R}^d} -\alpha \cdot p - H(x, p)$$

• and m^{δ} is the distribution of the players when they play in an optimal way : $m^{\delta} := \mathcal{L}(Y_s)$ with

$$dY_s = -H_\rho(Y_s, Du(s, Y_s))ds + \sqrt{2}dW_s, \qquad s \in [0, +\infty), \qquad \mathcal{L}(Y_0) = m_0.$$

The limit problem

Let (u^{δ}, m^{δ}) be the solution to

$$(MFG-\delta) \quad \begin{cases} -\partial_t u^{\delta} + \delta u^{\delta} - \Delta u^{\delta} + H(x, Du^{\delta}) = f(x, m^{\delta}(t)) & \text{in } (0, +\infty) \times \mathbb{T}^d \\ \partial_t m^{\delta} - \Delta m^{\delta} - \operatorname{div}(m^{\delta} H_p(x, Du^{\delta})) = 0 & \text{in } (0, +\infty) \times \mathbb{T}^d \\ m^{\delta}(0, \cdot) = m_0 & \text{in } \mathbb{T}^d, \quad u^{\delta} \text{ bounded in } (0, +\infty) \times \mathbb{T}^d \end{cases}$$

Study the limit as $\delta \rightarrow 0^+$ of the pair (u^{δ}, m^{δ}) .

Motivation : classical question in economics/game theory (players infinitely patient).
 In contrast with similar problem for HJ equation, forward-backward system.

One expects that (u^{δ}, m^{δ}) "converges" to the solution of the ergodic MFG problem

$$(MFG - erg) \qquad \begin{cases} \bar{\lambda} - \Delta \bar{u} + H(x, D\bar{u}) = f(x, \bar{m}) & \text{ in } \mathbb{T} \\ -\Delta \bar{m} - \operatorname{div}(\bar{m}H_{\rho}(x, D\bar{u})) = 0 & \text{ in } \mathbb{T}^{d} \\ \bar{m} \ge 0 & \text{ in } \mathbb{T}^{d}, \qquad \int_{\mathbb{T}^{d}} \bar{m} = 1 \end{cases}$$

where now the unknown are $\overline{\lambda}$, $\overline{u} = \overline{u}(x)$ and $\overline{m} = \overline{m}(x)$.

P. Cardaliaguet (Paris-Dauphine)

The limit problem

Let (u^{δ}, m^{δ}) be the solution to

$$(MFG-\delta) \qquad \left\{ \begin{array}{l} -\partial_t u^{\delta} + \delta u^{\delta} - \Delta u^{\delta} + H(x, Du^{\delta}) = f(x, m^{\delta}(t)) \quad \text{in } (0, +\infty) \times \mathbb{T}^d \\ \partial_t m^{\delta} - \Delta m^{\delta} - \operatorname{div}(m^{\delta} H_{\rho}(x, Du^{\delta})) = 0 \quad \text{in } (0, +\infty) \times \mathbb{T}^d \\ m^{\delta}(0, \cdot) = m_0 \quad \text{in } \mathbb{T}^d, \quad u^{\delta} \text{ bounded in } (0, +\infty) \times \mathbb{T}^d \end{array} \right.$$

Study the limit as $\delta \to 0^+$ of the pair (u^{δ}, m^{δ}) .

Motivation : classical question in economics/game theory (players infinitely patient).
 In contrast with similar problem for HJ equation, forward-backward system.

One expects that (u^{δ}, m^{δ}) "converges" to the solution of the ergodic MFG problem

$$(MFG - erg) \qquad \begin{cases} \bar{\lambda} - \Delta \bar{u} + H(x, D\bar{u}) = f(x, \bar{m}) & \text{ in } \mathbb{T}^{d} \\ -\Delta \bar{m} - \operatorname{div}(\bar{m}H_{p}(x, D\bar{u})) = 0 & \text{ in } \mathbb{T}^{d} \\ \bar{m} \ge 0 & \text{ in } \mathbb{T}^{d}, \quad \int_{\mathbb{T}^{d}} \bar{m} = 1 \end{cases}$$

where now the unknown are $\bar{\lambda}$, $\bar{u} = \bar{u}(x)$ and $\bar{m} = \bar{m}(x)$.

Classical results for decoupled problems

• For the Fokker-Plank equation driven by a vector-field V :

$$\partial_t m - \Delta m - \operatorname{div}(mV(x)) = f(x)$$
 in $(0, \infty) \times \mathbb{T}^d$

(exponential) convergence of m(t) to the ergodic measure is well-known.

• For HJ equations : Let v = v(t, x) and $u^{\delta} = u^{\delta}(x)$ be the solution to

$$\partial_t v - \Delta v + H(x, Dv) = f(x) \text{ in } (0, +\infty) \times \mathbb{T}^d, \qquad u(0, \cdot) = u_0 \text{ in } \mathbb{T}^d$$

and

$$\delta u^{\delta} - \Delta u^{\delta} + H(x, Du^{\delta}) = 0$$
 in \mathbb{T}^d

- Convergence of δu^{δ} as $\delta \to 0$ and v(T)/T as $T \to +\infty$ to the ergodic constant $\overline{\lambda}$: Lions-Papanicolau-Varadhan, ...
- (Weak-KAM theory) Limit of $v(T) \overline{\lambda}T$ as $T \to +\infty$ to a corrector : Fathi, Roquejoffre, Fathi-Siconolfi, Barles-Souganidis, ...
- Convergence of $u^{\delta} \overline{\lambda}/\delta$ as $\delta \to 0^+$ to a corrector : Davini, Fathi, Iturriaga and Zavidovique, ...

For MFG systems

- For the MFG time-dependent system, convergence of v^T/T and m^T are known :
 - Lions (Cours in Collège de France)
 - Gomes-Mohr-Souza (discrete setting)
 - C.-Lasry-Lions-Porretta (viscous setting), C. (Hamilton-Jacobi)
 - Turnpike property (Samuelson, Porretta-Zuazua, Trélat,...)
- Similar results for δu^{δ} and m^{δ} are not known, but expected.
- Long-time behavior of $v(T, \cdot) \overline{\lambda}T$ vs limit of $u^{\delta} \overline{\lambda}/\delta$ not known so far.

(4) (3) (4) (4) (4)

General strategy of proof

• Let
$$(u^{\delta}, m^{\delta})$$
 be the solution to

$$(MFG-\delta) \begin{cases} -\partial_t u^{\delta} + \delta u^{\delta} - \Delta u^{\delta} + H(x, Du^{\delta}) = f(x, m^{\delta}(t)) & \text{in } (0, +\infty) \times \mathbb{T}^d \\ \partial_t m^{\delta} - \Delta m^{\delta} - \operatorname{div}(m^{\delta} H_p(x, Du^{\delta})) = 0 & \text{in } (0, +\infty) \times \mathbb{T}^d \\ m^{\delta}(0, \cdot) = m_0 & \text{in } \mathbb{T}^d, \quad u^{\delta} \text{ bounded in } (0, +\infty) \times \mathbb{T}^d \end{cases}$$

• As
$$(u^{\delta}, m^{\delta}) = (u^{\delta}(t, x), m^{\delta}(t, x))$$
, two possible limits :

- <u>When $\delta \rightarrow 0$ </u>: difficult (no obvious limit, dependence in m_0 unclear),
- When $t \to +\infty$: easier.

Expected limit : the stationary discounted problem

$$(MFG - bar - \delta) \qquad \begin{cases} \delta \bar{u}^{\delta} - \Delta \bar{u}^{\delta} + H(x, D\bar{u}^{\delta}) = f(x, \bar{m}^{\delta}) & \text{in } \mathbb{T}^{d} \\ -\Delta \bar{m}^{\delta} - \operatorname{div}(\bar{m}^{\delta} H_{p}(x, D\bar{u}^{\delta})) = 0 & \text{in } \mathbb{T}^{d} \end{cases}$$

æ

イロン イ理 とく ヨン イヨン

General strategy of proof (continued)

• Show that $\lim_{\delta \to 0^+} \delta \bar{u}^{\delta} = \bar{\lambda}$ and identification of the limit of $\bar{u}^{\delta} - \bar{\lambda}/\delta$.

- Collect all the equations $(MFG \delta)$ into a single equation : for $m_0 \in \mathcal{P}(\mathbb{T}^d)$, set $U^{\delta}(x, m_0) := u^{\delta}(0, x)$ where (u^{δ}, m^{δ}) solves $(MFG \delta)$ with $m(0) = m_0$.
- Then U^{δ} solves the discounted master equation.
 - get Lipschitz estimate on U^δ
 - by compactness arguments, prove that U^δ λ̄/δ converges to a solution U
 of the ergodic master equation
 (as δ → 0, up to subsequences).
- Put the previous steps together to derive the limit of $u^{\delta} \overline{\lambda}/\delta$.

Outline

- 2 The classical uncoupled setting
- 3 Small discount behavior of \bar{u}^{δ}
- 4 The discounted and ergodic master equations
- 5 Small discount behavior of u^{δ}

Detour on derivatives in the space of measures

We denote by $\mathcal{P}(\mathbb{T}^d)$ the set of Borel probability measures on $\mathbb{T}^d,$ endowed for the Monge-Kantorovich distance

$$\mathbf{d}_1(m,m') = \sup_{\phi} \int_{\mathbb{T}^d} \phi(y) \ d(m-m')(y),$$

where the supremum is taken over all Lipschitz continuous maps $\phi : \mathbb{T}^d \to \mathbb{R}$ with a Lipschitz constant bounded by 1.

Given $U: \mathcal{P}(\mathbb{T}^d) \to \mathbb{R}$, we consider 2 notions of derivatives :

- The directional derivative δU/δm(m, y) (see, e.g., Mischler-Mouhot)
- The intrinsic derivative D_mU(m, y) (see, e.g., Otto, Ambrosio-Gigli-Savaré, Lions)

Directional derivative

A map $U : \mathcal{P}(\mathbb{T}^d) \to \mathbb{R}$ is \mathcal{C}^1 if there exists a continuous map $\frac{\delta U}{\delta m} : \mathcal{P}(\mathbb{T}^d) \times \mathbb{T}^d \to \mathbb{R}$ such that, for any $m, m' \in \mathcal{P}(\mathbb{T}^d)$,

$$U(m') - U(m) = \int_0^1 \int_{\mathbb{T}^d} \frac{\delta U}{\delta m} ((1-s)m + sm', y)d(m'-m)(y)ds$$

Note that $\frac{\delta U}{\delta m}$ is defined up to an additive constant. We adopt the normalization convention

$$\int_{\mathbb{T}^d} \frac{\delta U}{\delta m}(m, y) dm(y) = 0.$$

Intrinsic derivative

If $\frac{\delta U}{\delta m}$ is of class C^1 with respect to the second variable, the intrinsic derivative $D_m U : \mathcal{P}(\mathbb{T}^d) \times \mathbb{T}^d \to \mathbb{R}^d$ is defined by

$$D_m U(m, y) := D_y \frac{\delta U}{\delta m}(m, y)$$

P. Cardaliaguet (Paris-Dauphine)

For instance, if
$$U(m) = \int_{\mathbb{T}^d} g(x) dm(x)$$
, then $\frac{\delta U}{\delta m}(m, y) = g(y) - \int_{\mathbb{T}^d} g dm$ while $D_m U(m, y) = Dg(y)$.

Remarks.

- The directional derivative is fruitful for computations.
- The intrinsic derivative encodes the variation of the map in $\mathcal{P}(\mathbb{T}^d)$. For instance :

$$\|D_m U\|_{\infty} = Lip \ U$$

Ξ.

Standing assumptions

• $H: \mathbb{T}^d \times \mathbb{R}^d \to \mathbb{R}$ is smooth, with :

$$C^{-1}I_d \leq D^2_{\rho\rho}H(x,\rho) \leq CI_d \quad \text{for } (x,\rho) \in \mathbb{T}^d \times \mathbb{R}^d.$$

Moreover, there exists $\theta \in (0, 1)$ and C > 0 such that

 $|D_{xx}H(x,p)| \leq C|p|^{1+\theta}, \qquad |D_{xp}H(x,p)| \leq C|p|^{\theta}, \qquad \forall (x,p) \in \mathbb{T}^d \times \mathbb{R}^d.$

• the maps $f, g : \mathbb{T}^d \times \mathcal{P}(\mathbb{T}^d) \to \mathbb{R}$ are monotone : for any $m, m' \in \mathcal{P}(\mathbb{T}^d)$,

$$\int_{\mathbb{T}^d} (f(x,m) - f(x,m')) d(m-m')(x) \ge 0, \ \int_{\mathbb{T}^d} (g(x,m) - g(x,m')) d(m-m')(x) \ge 0$$

• the maps f, g are C^1 in m: there exists $\alpha \in (0, 1)$ such that

$$\sup_{m\in\mathcal{P}(\mathbb{T}^d)}\left(\left\|f(\cdot,m)\right\|_{3+\alpha}+\left\|\frac{\delta f(\cdot,m,\cdot)}{\delta m}\right\|_{(3+\alpha,3+\alpha)}\right)+\operatorname{Lip}_{3+\alpha}(\frac{\delta f}{\delta m}) < \infty.$$

and the same for g.

P. Cardaliaguet (Paris-Dauphine)

Example. If f is of the form :

$$f(x,m) = \int_{\mathbb{R}^d} \Phi(z,(\rho \star m)(z))\rho(x-z)dz,$$

where

- \star denotes the usual convolution product (in \mathbb{R}^d),
- $\Phi = \Phi(x, r)$ is a smooth map, nondecreasing w.r. to r,
- $\rho: \mathbb{R}^d \to \mathbb{R}$ is a smooth, even function with compact support.

Then f satisfies our conditions with

$$\frac{\delta f}{\delta m}(x,m,z) = \int_{\mathbb{R}^d} \sum_{k \in \mathbb{Z}^d} \rho(y-z-k) \frac{\partial \Phi}{\partial m}(y,\rho * m(y)) \rho(x-y) dy$$

Outline

The classical uncoupled setting

- Small discount behavior of $ar{u}^{\delta}$
- 4 The discounted and ergodic master equations
- 5 Small discount behavior of u^{δ}

(4) (5) (4) (5)

The classical ergodic theory

(Lions-Papanicolau-Varadhan, Evans, Arisawa-Lions,...)

For $\delta > 0$, let u^{δ} solve the uncoupled HJ equation

$$\delta u^{\delta} - \Delta u^{\delta} + H(x, Du^{\delta}) = f(x)$$
 in \mathbb{T}^d .

Then

- (δu^{δ}) is bounded (maximum principle),
- $||Du^{\delta}||_{\infty}$ is bounded (growth condition on *H* or ellipticity)
- Thus, as $\delta \to 0^+$ and up to a subsequence, (δu^{δ}) and $(u^{\delta} u^{\delta}(0))$ converge to the ergodic constant $\overline{\lambda}$ and a corrector \overline{u} :

$$\bar{\lambda} - \Delta \bar{u} + H(x, D\bar{u}) = f(x)$$
 in \mathbb{T}^d .

• Uniqueness of $\overline{\lambda}$ and of \overline{u} (up to constants) (strong maximum principle).

The small discount behavior

For $\delta > 0$, let u^{δ} solve the uncoupled HJ equation

$$\delta u^{\delta} - \Delta u^{\delta} + H(x, Du^{\delta}) = f(x)$$
 in \mathbb{T}^d .

Then $u^{\delta} - \delta^{-1} \overline{\lambda}$ actually converges as $\delta \to 0$ to the unique solution \overline{u} of the ergodic cell problem

$$\bar{\lambda} - \Delta \bar{u} + H(x, D\bar{u}) = f(x)$$
 in \mathbb{T}^d

such that $\int_{\mathbb{T}^d} \bar{u}\bar{m} = 0$, where \bar{m} solves

$$-\Delta \bar{m} - \operatorname{div}\left(\bar{m}H_{\rho}(x,D\bar{u})\right) = 0 \quad \text{in } \mathbb{T}^{d}, \quad \bar{m} \geq 0, \ \int_{\mathbb{T}^{d}} \bar{m} = 1.$$

Proved by

- Davini, Fathi, Iturriaga and Zavidovique for the first order problem,
- Mitake and Tran (see also Mitake and Tran Ishii, Mitake and Tran) for the viscous case

Outline

- Derivatives and assumptions
- 2 The classical uncoupled setting
- Small discount behavior of $ar{u}^{\delta}$
- 4 The discounted and ergodic master equations
- 5 Small discount behavior of u^{δ}

The stationary discounted MFG system

It takes the form

$$(MFG - bar - \delta) \qquad \begin{cases} \delta \bar{u}^{\delta} - \Delta \bar{u}^{\delta} + H(x, D\bar{u}^{\delta}) = f(x, \bar{m}^{\delta}) & \text{in } \mathbb{T}^{d} \\ -\Delta \bar{m}^{\delta} - \operatorname{div}(\bar{m}^{\delta} H_{p}(x, D\bar{u}^{\delta})) = 0 & \text{in } \mathbb{T}^{d} \end{cases}$$

Proposition

There exists $\delta_0 > 0$ such that, if $\delta \in (0, \delta_0)$, there is a unique solution $(\bar{u}^{\delta}, \bar{m}^{\delta})$ to $(MFG - bar - \delta)$.

Moreover, for any $\delta \in (0, \delta_0)$,

$$\|\delta \bar{u}^{\delta}-\bar{\lambda}\|_{\infty}+\|D(\bar{u}^{\delta}-\bar{u})\|_{L^{2}}+\|\bar{m}^{\delta}-\bar{m}\|_{L^{2}}\leq C\delta^{1/2}.$$

for some constant C > 0, where $(\bar{\lambda}, \bar{u}, \bar{m})$ solves the ergodic MFG system

$$(MFG - ergo) \qquad \begin{cases} \bar{\lambda} - \Delta \bar{u} + H(x, D\bar{u}) = f(x, \bar{m}) & \text{in } \mathbb{T}^d \\ -\Delta \bar{m} - \operatorname{div}(\bar{m}H_p(x, D\bar{u})) = 0 & \text{in } \mathbb{T}^d \end{cases}$$

P. Cardaliaguet (Paris-Dauphine)

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Link with the discounted MFG system

The solution $(\bar{u}^{\delta}, \bar{m}^{\delta})$ of the $(MFG - bar - \delta)$ system can be obtained the limit of the solution (u^{δ}, m^{δ}) of

$$(MFG-\delta) \qquad \begin{cases} -\partial_t u^{\delta} + \delta u^{\delta} - \Delta u^{\delta} + H(x, Du^{\delta}) = f(x, m^{\delta}(t)) & \text{in } (0, +\infty) \times \mathbb{T}^d \\ \partial_t m^{\delta} - \Delta m^{\delta} - \operatorname{div}(m^{\delta} H_{\rho}(x, Du^{\delta})) = 0 & \text{in } (0, +\infty) \times \mathbb{T}^d \\ m^{\delta}(0, \cdot) = m_0 & \text{in } \mathbb{T}^d, \quad u^{\delta} \text{ bounded in } (0, +\infty) \times \mathbb{T}^d \end{cases}$$

Theorem

Under our standing assumptions, if $\delta \in (0, \delta_0)$, then

$$\|D(u^{\delta}(t) - \bar{u}^{\delta})\|_{L^{\infty}} \leq Ce^{-\gamma t} \quad \forall t \geq 0$$

and

$$\|m^{\delta}(t) - \bar{m}^{\delta}\|_{L^{\infty}} \leq C e^{-\gamma t} \quad \forall t \geq 1,$$

where γ , $\delta_0 > 0$ and C > 0 are independent of m_0 .

э

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

Plugg the ansatz :

$$ar{u}^{\delta} \sim rac{ar{\lambda}}{\delta} + ar{u} + ar{ heta} + \delta ar{v}, \qquad ar{m}^{\delta} \sim ar{m} + \delta ar{\mu},$$

into the equation for $(\bar{u}^{\delta}, \bar{m}^{\delta})$:

$$\begin{cases} \delta \bar{u}^{\delta} - \Delta \bar{u}^{\delta} + H(x, D\bar{u}^{\delta}) = f(x, \bar{m}^{\delta}) & \text{ in } \mathbb{T}^{d} \\ -\Delta \bar{m}^{\delta} - \operatorname{div}(\bar{m}^{\delta} H_{\rho}(x, D\bar{u}^{\delta})) = 0 & \text{ in } \mathbb{T}^{d} \end{cases}$$

One has :

$$\begin{cases} \bar{\lambda} + \delta \bar{u} + \delta \bar{\theta} + \delta^2 \bar{v} - \Delta(\bar{u} + \delta \bar{v}) + H(x, D(\bar{u} + \delta \bar{v})) = f(x, \bar{m} + \delta \bar{\mu}) \\ -\Delta(\bar{m} + \delta \bar{\mu}) - \operatorname{div}((\bar{m} + \delta \bar{\mu})H_p(x, D(\bar{u} + \delta \bar{v}))) = 0 \end{cases}$$

P. Cardaliaguet (Paris-Dauphine)

æ

Plugg the ansatz :

$$ar{u}^{\delta} \sim rac{ar{\lambda}}{\delta} + ar{u} + ar{ heta} + \delta ar{v}, \qquad ar{m}^{\delta} \sim ar{m} + \delta ar{\mu},$$

into the equation for $(\bar{u}^{\delta}, \bar{m}^{\delta})$:

$$\begin{cases} \delta \bar{u}^{\delta} - \Delta \bar{u}^{\delta} + H(x, D\bar{u}^{\delta}) = f(x, \bar{m}^{\delta}) & \text{ in } \mathbb{T}^{d} \\ -\Delta \bar{m}^{\delta} - \operatorname{div}(\bar{m}^{\delta} H_{p}(x, D\bar{u}^{\delta})) = 0 & \text{ in } \mathbb{T}^{d} \end{cases}$$

• We recognize the equation for (\bar{u}, \bar{m}) :

$$\begin{cases} \bar{\lambda} + \delta \bar{u} + \delta \bar{\theta} + \delta^2 \bar{v} - \Delta(\bar{u} + \delta \bar{v}) + H(x, D(\bar{u} + \delta \bar{v})) = f(x, \bar{m} + \delta \bar{\mu}) \\ -\Delta(\bar{m} + \delta \bar{\mu}) - \operatorname{div}((\bar{m} + \delta \bar{\mu})H_p(x, D(\bar{u} + \delta \bar{v}))) = 0 \end{cases}$$

æ

イロン イ理 とく ヨン イヨン

Plugg the ansatz :

$$ar{u}^{\delta}\sim rac{ar{\lambda}}{\delta}+ar{u}+ar{ heta}+\deltaar{v}, \qquad ar{m}^{\delta}\simar{m}+\deltaar{\mu},$$

into the equation for $(\bar{u}^{\delta}, \bar{m}^{\delta})$:

$$\begin{cases} \delta \bar{u}^{\delta} - \Delta \bar{u}^{\delta} + H(x, D\bar{u}^{\delta}) = f(x, \bar{m}^{\delta}) & \text{ in } \mathbb{T}^{d} \\ -\Delta \bar{m}^{\delta} - \operatorname{div}(\bar{m}^{\delta} H_{p}(x, D\bar{u}^{\delta})) = 0 & \text{ in } \mathbb{T}^{d} \end{cases}$$

• Expending and simplifying :

$$\begin{cases} \delta \bar{u} + \delta \bar{\theta} + \delta^2 \bar{v} - \Delta(\delta \bar{v}) + H_p(x, D\bar{u}) \cdot (\delta \bar{v}) = \frac{\delta f}{\delta m}(x, \bar{m})(\delta \bar{\mu}) \\ -\Delta(\delta \bar{\mu}) - \operatorname{div}((\delta \bar{\mu})H_p(x, D\bar{u})) - \operatorname{div}(\bar{m}H_{pp}(x, D\bar{u})(\delta \bar{v}))) = 0 \end{cases}$$

P. Cardaliaguet (Paris-Dauphine)

æ

Plugg the ansatz :

$$ar{u}^{\delta}\sim rac{ar{\lambda}}{\delta}+ar{u}+ar{ heta}+\deltaar{v}, \qquad ar{m}^{\delta}\simar{m}+\deltaar{\mu},$$

into the equation for $(\bar{u}^{\delta}, \bar{m}^{\delta})$:

$$\begin{cases} \delta \bar{u}^{\delta} - \Delta \bar{u}^{\delta} + H(x, D\bar{u}^{\delta}) = f(x, \bar{m}^{\delta}) & \text{ in } \mathbb{T}^{d} \\ -\Delta \bar{m}^{\delta} - \operatorname{div}(\bar{m}^{\delta} H_{p}(x, D\bar{u}^{\delta})) = 0 & \text{ in } \mathbb{T}^{d} \end{cases}$$

• Dividing by δ and omitting the term of lower order :

$$\begin{cases} \bar{u} + \bar{\theta} - \Delta \bar{v} + H_p(x, D\bar{u}) \cdot D\bar{v} = \frac{\delta f}{\delta m}(x, \bar{m})(\bar{\mu}) \\ -\Delta \bar{\mu} - \operatorname{div}(\bar{\mu}H_p(x, D\bar{u})) - \operatorname{div}(\bar{m}H_{pp}(x, D\bar{u})\bar{v})) = 0 \end{cases}$$

æ

Proposition

There exists a unique constant $\bar{\theta}$ for which the following has a solution $(\bar{v}, \bar{\mu})$:

$$\begin{cases} \bar{u} + \bar{\theta} - \Delta \bar{v} + H_{\rho}(x, D\bar{u}) . D\bar{v} = \frac{\delta f}{\delta m}(x, \bar{m})(\bar{\mu}) & \text{in } \mathbb{T}^{d} \\ -\Delta \bar{\mu} - \operatorname{div}(\bar{\mu}H_{\rho}(x, D\bar{u})) - \operatorname{div}(\bar{m}H_{\rho\rho}(x, D\bar{u})D\bar{v}) = 0 & \text{in } \mathbb{T}^{d} \\ \int_{\mathbb{T}^{d}} \bar{\mu} = \int_{\mathbb{T}^{d}} \bar{v} = 0 \end{cases}$$

We can identify the limit of $\bar{u}^{\delta} - \bar{\lambda}/\delta$:

Proposition

Let $(\bar{\lambda}, \bar{u}, \bar{m})$, $(\bar{u}^{\delta}, \bar{m}^{\delta})$ and $(\bar{\theta}, \bar{\nu}, \bar{\mu})$ be as above. Then

$$\lim_{\delta \to 0^+} \|\bar{u}^{\delta} - \frac{\bar{\lambda}}{\delta} - \bar{u} - \bar{\theta}\|_{\infty} + \|\bar{m}^{\delta} - \bar{m}\|_{\infty} = 0.$$

æ

<ロト < 四ト < 回ト < 回ト < 回ト < 回ト < □ > .

Proposition

There exists a unique constant $\bar{\theta}$ for which the following has a solution $(\bar{v}, \bar{\mu})$:

$$\begin{cases} \bar{u} + \bar{\theta} - \Delta \bar{v} + H_{\rho}(x, D\bar{u}) . D\bar{v} = \frac{\delta f}{\delta m}(x, \bar{m})(\bar{\mu}) & \text{ in } \mathbb{T}^{d} \\ -\Delta \bar{\mu} - \operatorname{div}(\bar{\mu}H_{\rho}(x, D\bar{u})) - \operatorname{div}(\bar{m}H_{\rho\rho}(x, D\bar{u})D\bar{v}) = 0 & \text{ in } \mathbb{T}^{d} \\ \int_{\mathbb{T}^{d}} \bar{\mu} = \int_{\mathbb{T}^{d}} \bar{v} = 0 \end{cases}$$

We can identify the limit of $ar{u}^\delta - ar{\lambda}/\delta$:

Proposition

Let $(\bar{\lambda}, \bar{u}, \bar{m})$, $(\bar{u}^{\delta}, \bar{m}^{\delta})$ and $(\bar{\theta}, \bar{v}, \bar{\mu})$ be as above. Then

$$\lim_{\bar{\iota}\to 0^+}\|\bar{u}^\delta-\frac{\bar{\lambda}}{\delta}-\bar{u}-\bar{\theta}\|_\infty+\|\bar{m}^\delta-\bar{m}\|_\infty=0.$$

イロン イ理 とく ヨン イヨン

• This shows that $\bar{u}^{\delta} - \bar{\lambda}/\delta$ converges as $\delta \to 0^+$ to $\bar{u} + \bar{\theta}$, where $\bar{\theta}$ is the unique constant such that the system

$$\begin{cases} \bar{u} + \bar{\theta} - \Delta \bar{v} + H_{\rho}(x, D\bar{u}) . D\bar{v} = \frac{\delta f}{\delta m}(x, \bar{m})(\bar{\mu}) & \text{in } \mathbb{T}^{d} \\ -\Delta \bar{\mu} - \operatorname{div}(\bar{\mu}H_{\rho}(x, D\bar{u})) - \operatorname{div}(\bar{m}H_{\rho\rho}(x, D\bar{u})D\bar{v}) = 0 & \text{in } \mathbb{T}^{d} \\ \int_{\mathbb{T}^{d}} \bar{\mu} = \int_{\mathbb{T}^{d}} \bar{v} = 0 \end{cases}$$

has a solution $(\bar{v}, \bar{\mu})$.

• In the uncoupled case (f = f(x)), we have $\int_{\mathbb{T}^d} (\bar{u} + \bar{\theta})\bar{m} = 0$, because $\frac{\delta f}{\delta m} = 0$ and, if we multiply the equation for \bar{v} by \bar{m} and integrate, we get

$$0 = \int_{\mathbb{T}^d} \bar{m}(\bar{u} + \bar{\theta} - \Delta \bar{v} + H_p(x, D\bar{u}).D\bar{v})$$

=
$$\int_{\mathbb{T}^d} \bar{m}(\bar{u} + \bar{\theta}) + \int_{\mathbb{T}^d} \bar{v}(-\Delta \bar{m} - \operatorname{div}(\bar{m}H_p(x, D\bar{u})))$$

=
$$\int_{\mathbb{T}^d} \bar{m}(\bar{u} + \bar{\theta})$$

So one recovers the condition of Davini, Fathi, Iturriaga and Zavidovique.

Outline

- Derivatives and assumptions
- 2 The classical uncoupled setting
- Small discount behavior of $ar{u}^{\delta}$
- 4 The discounted and ergodic master equations
- 5 Small discount behavior of u^{δ}

The discounted master equation

In order to study the limit behavior of (u^{δ}, m^{δ}) , we use the discounted master equation :

$$\begin{cases} \delta U^{\delta} - \Delta_{x} U^{\delta} + H(x, D_{x} U^{\delta}) - f(x, m) \\ - \int_{\mathbb{T}^{d}} \operatorname{div}_{y} \left[D_{m} U^{\delta} \right] dm(y) + \int_{\mathbb{T}^{d}} D_{m} U^{\delta} \cdot H_{p}(y, D_{x} U^{\delta}) dm(y) = 0 \\ \operatorname{in} \mathbb{T}^{d} \times \mathcal{P}(\mathbb{T}^{d}) \end{cases}$$

where $U^{\delta} = U^{\delta}(x, m) : \mathbb{T}^{d} \times \mathcal{P}(\mathbb{T}^{d}) \to \mathbb{R}$.

Theorem (C.-Delarue-Lasry-Lions, 2015)

Under our assumptions, the discounted master equation has a unique classical solution U^{δ} .

Previous results in that direction : Lasry-Lions, Gangbo-Swiech, Chassagneux-Crisan-Delarue,...

Idea of proof : Let us set

$$U^{\delta}(x,m_0):=u^{\delta}(0,x),$$

where (u^{δ}, m^{δ}) solves

$$(MFG-\delta) \begin{cases} -\partial_t u^{\delta} + \delta u^{\delta} - \Delta u^{\delta} + H(x, Du^{\delta}) = f(x, m^{\delta}(t)) & \text{in } (0, +\infty) \times \mathbb{T}^d \\ \partial_t m^{\delta} - \Delta m^{\delta} - \operatorname{div}(m^{\delta} H_p(x, Du^{\delta})) = 0 & \text{in } (0, +\infty) \times \mathbb{T}^d \\ m^{\delta}(0, \cdot) = m_0 & \text{in } \mathbb{T}^d, \quad u^{\delta} \text{ bounded in } (0, +\infty) \times \mathbb{T}^d \end{cases}$$

Then one expects that U^{δ} solves the master equation because :

$$U^{\delta}(x, m^{\delta}(t)) = u^{\delta}(t, x) \qquad \forall t \geq 0.$$

Taking the derivative in t = 0:

$$\int_{\mathbb{T}^d} \frac{\delta U^{\delta}}{\delta m}(x, m_0, y) \partial_t m^{\delta}(0, dy) = \partial_t u(0, x),$$

so that

$$\int_{\mathbb{T}^d} \frac{\delta U^{\delta}}{\delta m}(x, m_0, y)(\Delta m_0 + \operatorname{div}(m_0 H_p(y, Du^{\delta}(0))) = \delta u^{\delta}(0) - \Delta u^{\delta}(0) + H(x, Du^{\delta}(0)) - f(x, m_0).$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Integrating by parts gives the master equation.

P. Cardaliaguet (Paris-Dauphine)

э

The key Lipschitz estimate

Let U^{δ} be the solution of the discounted master equation

$$\begin{cases} \delta U^{\delta} - \Delta_{x} U^{\delta} + H(x, D_{x} U^{\delta}) - f(x, m) \\ - \int_{\mathbb{T}^{d}} \operatorname{div}_{y} \left[D_{m} U^{\delta} \right] dm(y) + \int_{\mathbb{T}^{d}} D_{m} U^{\delta} \cdot H_{p}(y, D_{x} U^{\delta}) dm(y) = 0 \\ & \text{in } \mathbb{T}^{d} \times \mathcal{P}(\mathbb{T}^{d}) \end{cases}$$

Proposition

There is a constant C, depending on the data only, such that

$$\left\| D_m U^{\delta}(\cdot, m, \cdot) \right\|_{2+\alpha, 1+\alpha} \leq C.$$

In particular, $U^{\delta}(\cdot, \cdot)$ is uniformly Lipschitz continuous.

Difficulty : equation for U^{δ} neither coercive nor elliptic in *m*.

P. Cardaliaguet (Paris-Dauphine)

Idea of proof

Representation formulas. Fix $m_0 \in \mathcal{P}(\mathbb{T}^d)$ a initial condition and (u^{δ}, m^{δ}) the associated solution of the discounted MFG system :

$$\begin{cases} -\partial_t u^{\delta} + \delta u^{\delta} - \Delta u^{\delta} + H(x, Du^{\delta}) = f(x, m^{\delta}(t)) & \text{in } (0, +\infty) \times \mathbb{T}^d \\ \partial_t m^{\delta} - \Delta m^{\delta} - \operatorname{div}(m^{\delta} H_p(x, Du^{\delta})) = 0 & \text{in } (0, +\infty) \times \mathbb{T}^d \\ m^{\delta}(0, \cdot) = m_0 \text{ in } \times \mathbb{T}^d, \quad u^{\delta} \text{ bounded.} \end{cases}$$

For any smooth map μ_0 with $\int_{\mathbb{T}^d} m_0 = 0$, one can show that

$$\int_{\mathbb{T}^d} \frac{\delta U^{\delta}}{\delta m}(x, m_0, y) \mu_0(y) dy = w(0, x),$$

where (w, μ) is the unique solution to the linearized system

$$\begin{cases} -\partial_t w + \delta w - \Delta w + H_{\rho}(x, Du^{\delta}) . Dw = \frac{\delta f}{\delta m}(x, m^{\delta}(t))(\mu(t)) & \text{ in } (0, +\infty) \times \mathbb{T}^d \\ \partial_t \mu - \Delta \mu - \operatorname{div}(\mu H_{\rho}(x, Du^{\delta})) - \operatorname{div}(m^{\delta} H_{\rho\rho}(x, Du^{\delta}) Dw) = 0 & \text{ in } (0, +\infty) \times \mathbb{T}^d \\ \mu(0, \cdot) = \mu_0 \text{ in } \mathbb{T}^d, & w \text{ bounded.} \end{cases}$$

<ロ> <問> <問> < 回> < 回> 、

Key step for the estimate :

$$\left\| D_m U^{\delta}(\cdot, m, \cdot) \right\|_{2+\alpha, 1+\alpha} \leq C.$$

Lemma

There exist $\theta, \delta_0 > 0$ and a constant C > 0 such that, if $\delta \in (0, \delta_0)$, then the solution (w, μ) to the linearized system with $\int_{\mathbb{T}^d} \mu_0 = 0$ satisfies

 $\|Dw(t)\|_{L^2} \le C(1+t)e^{-\theta t}\|\mu_0\|_{L^2} \quad \forall t \ge 0$

and

$$\|\mu(t)\|_{L^2} \leq C(1+t)e^{-\theta t}\|\mu_0\|_{L^2} \quad \forall t \geq 1.$$

As a consequence, for any $\alpha \in (0, 1)$, there is a constant *C* (independent of δ) such that

$$\sup_{t\geq 0} \|w(t)\|_{C^{2+\alpha}} \leq C \|\mu_0\|_{(C^{2+\alpha})'}.$$

Relies on the monotonicity formula and exponential decay of some viscous transport equation.

イロン イ理 とく ヨン イヨン

The ergodic master equation

As in the classical framework, we have (up to a subsequence) :

- δU^{δ} converges to a constant λ ,
- $U^{\delta} U^{\delta}(\cdot, \bar{m})$ converges to a Lipschitz continuous map \bar{U} .

Proposition

The constant $ar{\lambda}$ and the limit $ar{U}$ satisfy the master cell-problem :

$$\begin{split} \lambda &- \Delta_{X} \bar{U}(x,m) + H(x, D_{X} \bar{U}(x,m)) - \int_{\mathbb{T}^{d}} \operatorname{div}(D_{m} \bar{U}(x,m)) dm \\ &+ \int_{\mathbb{T}^{d}} D_{m} \bar{U}(x,m) \cdot H_{\rho}(x, D_{X} \bar{U}(x,m)) dm = f(x,m) \quad \text{ in } \mathbb{T}^{d} \times \mathcal{P}(\mathbb{T}^{d}) \end{split}$$

(in a weak sense).

Moreover, if $(\bar{\lambda}, \bar{u}, \bar{m})$ is the solution to the ergodic MFG system then

$$\bar{\lambda} = \lambda$$
 and $D_x \bar{U}(x, \bar{m}) = D\bar{u}(x)$ $\forall x \in \mathbb{T}^d$.

The ergodic master equation

As in the classical framework, we have (up to a subsequence) :

- δU^{δ} converges to a constant λ ,
- $U^{\delta} U^{\delta}(\cdot, \bar{m})$ converges to a Lipschitz continuous map \bar{U} .

Proposition

The constant $\bar{\lambda}$ and the limit \bar{U} satisfy the master cell-problem :

$$\lambda - \Delta_{x} \overline{U}(x, m) + H(x, D_{x} \overline{U}(x, m)) - \int_{\mathbb{T}^{d}} \operatorname{div}(D_{m} \overline{U}(x, m)) dm + \int_{\mathbb{T}^{d}} D_{m} \overline{U}(x, m) \cdot H_{\rho}(x, D_{x} \overline{U}(x, m)) dm = f(x, m) \quad \text{in } \mathbb{T}^{d} \times \mathcal{P}(\mathbb{T}^{d})$$

(in a weak sense).

Moreover, if $(\bar{\lambda}, \bar{u}, \bar{m})$ is the solution to the ergodic MFG system then

$$\bar{\lambda} = \lambda$$
 and $D_x \bar{U}(x, \bar{m}) = D\bar{u}(x)$ $\forall x \in \mathbb{T}^d$.

Remarks.

- One also shows that \overline{U} is unique up to a constant.
- So the limits, up to subsequences, of $U^{\delta} U^{\delta}(\cdot, \bar{m})$ is determined only up to a constant.
- To fix this constant, we use the identification of the limit of $\bar{u}^{\delta} \bar{\lambda}/\delta$.

Outline

- Derivatives and assumptions
- 2 The classical uncoupled setting
- 3 Small discount behavior of $ar{u}^{\delta}$
- 4 The discounted and ergodic master equations
- 5 Small discount behavior of u^{δ}

(4) (5) (4) (5)

Link between U^{δ} and \bar{u}^{δ}

Let U^{δ} be the solution to the discounted master equation :

$$\delta U^{\delta} - \Delta_{x} U^{\delta} + H(x, D_{x} U^{\delta}) - \int_{\mathbb{T}^{d}} \operatorname{div}(D_{m} U^{\delta}) dm + \int_{\mathbb{T}^{d}} D_{m} U^{\delta} \cdot H_{p}(x, D_{x} U^{\delta}(x, m)) dm = f(x, m) \text{ in } \mathbb{T}^{d} \times \mathcal{P}(\mathbb{T}^{d}).$$

and $(\bar{u}^{\delta}, \bar{m}^{\delta})$ be the solution to discounted stationary problem :

$$(MFG - bar - \delta) \qquad \begin{cases} \delta \bar{u}^{\delta} - \Delta \bar{u}^{\delta} + H(x, D\bar{u}^{\delta}) = f(x, \bar{m}^{\delta}) & \text{in } \mathbb{T}^{d} \\ -\Delta \bar{m}^{\delta} - \operatorname{div}(\bar{m}^{\delta} H_{p}(x, D\bar{u}^{\delta})) = 0 & \text{in } \mathbb{T}^{d} \end{cases}$$

Then, by construction of U^{δ} ,

$$U^{\delta}(\cdot, \bar{m}^{\delta}) = \bar{u}^{\delta}$$

because $(\bar{u}^{\delta}, \bar{m}^{\delta})$ is a stationary solution of the discounted MFG system (*MFG* – δ).

The main result

Let U^{δ} be the solution to the discounted master equation :

$$\begin{split} \delta U^{\delta} &- \Delta_{x} U^{\delta} + H(x, D_{x} U^{\delta}) - \int_{\mathbb{T}^{d}} \operatorname{div}(D_{m} U^{\delta}) dm \\ &+ \int_{\mathbb{T}^{d}} D_{m} U^{\delta} . H_{p}(x, D_{x} U^{\delta}(x, m)) dm = f(x, m) \text{ in } \mathbb{T}^{d} \times \mathcal{P}(\mathbb{T}^{d}). \end{split}$$

Theorem

As $\delta \to 0^+$, $U^{\delta} - \bar{\lambda}/\delta$ converges uniformly to the solution \bar{U} to the master cell problem such that $\bar{U}(x, \bar{m}) = \bar{u}(x) + \bar{\theta}$, where $\bar{\theta}$ is the unique constant for which the following linearized ergodic problem has a solution ($\bar{v}, \bar{\mu}$):

$$\begin{cases} \bar{u} + \bar{\theta} - \Delta \bar{v} + H_{\rho}(x, D\bar{u}) . D\bar{v} = \frac{\delta f}{\delta m}(x, \bar{m})(\bar{\mu}) & \text{in } \mathbb{T}^{d} \\ -\Delta \bar{\mu} - \operatorname{div}(\bar{\mu}H_{\rho}(x, D\bar{u})) - \operatorname{div}(\bar{m}H_{\rho\rho}(x, D\bar{u})D\bar{v}) = 0 & \text{in } \mathbb{T}^{d} \\ \int_{\mathbb{T}^{d}} \bar{\mu} = \int_{\mathbb{T}^{d}} \bar{v} = 0 \end{cases}$$

The small discount behavior of v^{δ}

Fix $m_0 \in \mathcal{P}(\mathbb{T}^d)$ and let (u^{δ}, m^{δ}) be the solution to the discounted MFG system :

$$(MFG-\delta) \qquad \left\{ \begin{array}{l} -\partial_t u^{\delta} + \delta u^{\delta} - \Delta u^{\delta} + H(x, Du^{\delta}) = f(x, m^{\delta}(t)) \quad \text{in } (0, +\infty) \times \mathbb{T}^d \\ \partial_t m^{\delta} - \Delta m^{\delta} - \operatorname{div}(m^{\delta} H_p(x, Du^{\delta})) = 0 \quad \text{in } (0, +\infty) \times \mathbb{T}^d \\ m^{\delta}(0, \cdot) = m_0 \quad \text{in } \mathbb{T}^d, \quad u^{\delta} \text{ bounded in } (0, +\infty) \times \mathbb{T}^d \end{array} \right.$$

Corollary

We have, for any $t \ge 0$,

$$\lim_{\delta\to 0} u^{\delta}(t,x) - \bar{\lambda}/\delta = \bar{U}(x,m(t)),$$

uniformly with respect to x, where \bar{U} is the solution of the ergodic cell problem given in the main Theorem and (m(t)) solves the McKean-Vlasov equation

$$\partial_t m - \Delta m - \operatorname{div}(mH_p(x, D\overline{U}(x, m))) = 0 \text{ in } (0, +\infty) \times \mathbb{T}^d, \qquad m(0) = m_0.$$

Conclusion

We have established the small discount behavior of the discounted MFG system/master equation.

We also show in the paper the long time behavior of the time-dependent MFG system/master equation.

Open problems :

- First order setting.
- Convergence in the non-monotone setting.