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The discounted MFG system
Given a positive discount factor § > 0, we consider the MFG system

—8ud + 68U — AU’ + H(x, Du®) = f(x,m®(t))  in (0,+o0) x TY
(MFG —6) orm® — Am® — div(m® Hp(x, Du®)) =0 in (0, +o00) x T9
m’(0,-)=my inT9  wu’ bounded in (0, +oc0) x T4

where
@ ud = ui(t,x) and m® = mP(t, x) are the unknown,
@ H=H(x,p): T x R? — R is a smooth, unif. convex in p, Hamiltonian,

@ f,g:T? x P(T?) — R are “smooth" and monotone,
(P(T9) = the set of Borel probability measures on T¢)

@ my € P(T9) is a smooth positive density

The MFG system has been introduced by Lasry-Lions and Huang-Caines-Malhamé to study
optimal control problems with infinitely many controllers.
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Interpretation.

If (u®, m®) solves the discounted MFG system,
@ then u is the value function of a typical small player :

u(t, x) = infE [/ﬂo e %S L(Xs, as) + F(Xs, m’(s)) ds}
@ 0

where
dXs = asds + V2dWs for s € [t,+00),  X; = x

and L is the Fenchel conjugate of H :

L(x,a) :== sup —a- p— H(x, p)
pERI

@ and m’ is the distribution of the players when they play in an optimal way : m% := £(Ys)
with

dYs = —Hp(Ys, Du(s, Ys))ds + V2dWs, s [0,+00),  L(Ye) = m.
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The limit problem
Let (u®, m®) be the solution to
—8i® + 6u® — AU® + H(x, Du®) = f(x, m*(t))  in (0, +o0) x T¢

(MFG - 6) orm® — Am® — div(m® Hp(x, Du®)) =0 in (0, +o0) x T9
m%(0,-) = my in T9, u® bounded in (0, +00) x T9

‘ Study the limit as § — 0% of the pair (u®, m%).

@ Motivation : classical question in economics/game theory (players infinitely patient).
@ In contrast with similar problem for HJ equation, forward-backward system.
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The limit problem
Let (u®, m®) be the solution to
—8i® + 6u® — AU® + H(x, Du®) = f(x, m*(t))  in (0, +o0) x T¢

(MFG - 6) orm® — Am® — div(m® Hp(x, Du®)) =0 in (0, +o0) x T9
m%(0,-) = my in T9, u® bounded in (0, +00) x T9

‘ Study the limit as § — 0% of the pair (u®, m%).

@ Motivation : classical question in economics/game theory (players infinitely patient).
@ In contrast with similar problem for HJ equation, forward-backward system.

One expects that (u®, m?) “converges" to the solution of the ergodic MFG problem
X — AU+ H(x, Dt) = f(x,m)  inT¢
(MFG — erg) —AM — div(MHp(x, DT)) =0 inT9

m>0 inTY, m=1
Td

where now the unknown are X, U = &(x) and M = m(x).
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Classical results for decoupled problems

@ For the Fokker-Plank equation driven by a vector-field V :
om — Am — div(mV(x)) = f(x)  in (0,00) x TY

(exponential) convergence of m(t) to the ergodic measure is well-known.

@ For HJ equations : Let v = v(t, x) and u® = u®(x) be the solution to
v — Av + H(x, Dv) = f(x) in (0, +o0) x T4, 1(0,-) = Uy in T9
and
su® — Au® + H(x,Du®) =0  in T
@ Convergence of su® as § — 0and v(T)/T as T — +oc to the ergodic constant X :

Lions-Papanicolau-Varadhan, ...

@ (Weak-KAM theory) Limit of v(T) — AT as T — oo to a corrector : Fathi,
Roquejoffre, Fathi-Siconolfi, Barles-Souganidis, ...

@ Convergence of u® — \/§ as § — 07 to a corrector : Davini, Fathi, lturriaga and
Zavidovique, ...
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For MFG systems

@ For the MFG time-dependent system, convergence of v’ /T and m’ are known :

@ Lions (Cours in Collége de France)

@ Gomes-Mohr-Souza (discrete setting)

@ C.-Lasry-Lions-Porretta (viscous setting), C. (Hamilton-Jacobi)
@ Turnpike property (Samuelson, Porretta-Zuazua, Trélat,...)

@ Similar results for su® and m? are not known, but expected.

@ Long-time behavior of v(T,-) — XT vs limit of u® — X/ not known so far.
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General strategy of proof

@ Let (u%, m%) be the solution to
—8p® + 5u® — AU® + H(x, Du®) = f(x,m’(t))  in (0, +o0) x T¢

(MFG —6) { oym® — Am® — div(m® Hp(x, Du®)) =0  in (0, 400) x T?
md(0,-) = my in T9, u® bounded in (0, +00) x T

@ As (u¥, md) = (UO(t, x), m*(t, x)), two possible limits :

@ When § — 0 : difficult (no obvious limit, dependence in my unclear),
@ When t — +o0 : easier.
Expected limit : the stationary discounted problem

=5 =5 =8y _ =0 —
(MFG — bar — 5) { 5u° — AW + H(x, D) = f(x,m’)  inT

—Am® — div(m® Hp(x, Di°)) =0  inTY
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General strategy of proof (continued)
@ Show that 5Iirg+ 50° = X and identification of the limit of T® — X/4.
—

@ Collect all the equations (MFG — §) into a single equation : for my € P(T9), set
U%(x, mp) := u%(0, x) where (u®, m®) solves (MFG — &) with m(0) = my.

@ Then U9 solves the discounted master equation.

@ get Lipschitz estimate on U9

@ by compactness arguments, prove that U® — X/ converges to a solution U of the
ergodic master equation
(as & — 0, up to subsequences).

@ Put the previous steps together to derive the limit of u® — X /4.
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Derivatives and assumptions
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Derivatives and assumptions

Detour on derivatives in the space of measures

We denote by P(T9) the set of Borel probability measures on T¢, endowed for the
Monge-Kantorovich distance

dy(mm') = sup [ oty) om —m)(»),

where the supremum is taken over all Lipschitz continuous maps ¢ : T¢ — R with a Lipschitz
constant bounded by 1.

Given U : P(T9) — R, we consider 2 notions of derivatives :

@ The directional derivative 3% (m, y)
(see, e.g., Mischler-Mouhot)

@ The intrinsic derivative DnU(m, y)
(see, e.g., Otto, Ambrosio-Gigli-Savaré, Lions)
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Derivatives and assumptions

Directional derivative

Amap U: P(T?) — Ris C' if there exists a continuous map Z—z : P(T9) x T — R such that,
for any m, m’ € P(T9),

um') —U(m) = // —(1—s)m+sm,y)d(m—m)(y)ds

d om

Note that |s defined up to an additive constant. We adopt the normalization convention

[, e m.yydmiy) =o.

Intrinsic derivative

If % is of class C! with respect to the second variable, the intrinsic derivative
DmU : P(T9) x T9 — R is defined by

U
DnU(m, y) := Dy%(”h Y)
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Derivatives and assumptions

For instance, if U(m) = / g(x)dm(x), then ﬂ(m, y)y=9(y) - / gdm while
Td om Td
DmU(m, y) = Dg(y)-

Remarks.
@ The directional derivative is fruitful for computations.

@ The intrinsic derivative encodes the variation of the map in 2(T9). For instance :

[DmUlloc = Lip U
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Derivatives and assumptions

Standing assumptions

@ H:T9 x R — R is smooth, with :
C 'y < D3,H(x,p) < Cly  for (x,p) € T x RY.
Moreover, there exists 6 € (0,1) and C > 0 such that
DacH(x, p)| < ClpI™™,  [DypH(x,p)l < Clpl®,  ¥(x,p) € T¢ x RY.

@ the maps f,g : T¢ x P(T9) — R are monotone : for any m, m’ € P(T¢),
/d(f(X, m) — f(x,m'))d(m — m')(x) > 0, /d(g(X, m) —g(x,m'"))d(m — m')(x) > 0
T T

@ the maps f, g are C' in m : there exists o € (0, 1) such that

5f(7 m, )
sup | (-, Mlgsa + Hi
meP(Td) < o ém

) + Li ( o ) <
iPgya(s=) < oo
(3+a,3+a) Tt sm

and the same for g.
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Derivatives and assumptions

Example. If f is of the form :

fe.m) = [ (2. (px m@)0(x — 2)dz.

where
@ « denotes the usual convolution product (in RY),
@ & = &(x,r) is a smooth map, nondecreasing w.r. to r,
@ p:RY - Ris a smooth, even function with compact support.

Then f satisfies our conditions with

prom) = [ 5 oy =z )5 (oo my)otx - y)dy
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The classical uncoupled setting
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The classical uncoupled setting

The classical ergodic theory

(Lions-Papanicolau-Varadhan, Evans, Arisawa-Lions,...)
For § > 0, let u® solve the uncoupled HJ equation
ou® — Au® + H(x, Du®) = f(x)  inTY.

Then
@ (sud) is bounded (maximum principle),

@ ||Du’||~ is bounded (growth condition on H or ellipticity)

@ Thus, as § — 0F and up to a subsequence, (§u®) and (u® — u’(0)) converge to the
ergodic constant A and a corrector & :

X — Ab+ H(x,Du) = f(x)  inTC.

@ Uniqueness of X and of &I (up to constants) (strong maximum principle).
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The classical uncoupled setting

The small discount behavior

For § > 0, let u® solve the uncoupled HJ equation
sub — AU’ + H(x, Du®) = f(x)  inTY.
Then u® — 61X actually converges as § — 0 to the unique solution & of the ergodic cell problem

X — AU+ H(x,Dt) = f(x)  inTY

such that / um = 0, where m solves
Td

—AM—div(MHp(x, DB)) =0 in T, mzo,/mzm
Td

Proved by
@ Davini, Fathi, lturriaga and Zavidovique for the first order problem,
@ Mitake and Tran (see also Mitake and Tran —- Ishii, Mitake and Tran) for the viscous case
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Small discount behavior of &°
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Small discount behavior of &°

The stationary discounted MFG system

It takes the form

=5 _ ATS =6y =6 - md
(MFG — bar — 5) { 3U° — ATU° + H(x,Du®) = f(x,m’)  inT

—Am — div(m® Hp(x, DG®)) =0  in T

There exists 6, > 0 such that, if § € (0, dy), there is a unique solution (&?, M%) to
(MFG — bar — ).

Moreover, for any ¢ € (0, &),
165° — Xloo + 1D(@° — Bl 2 + 17 — ]|,z < C5'/2.

for some constant C > 0, where (), T, /) solves the ergodic MFG system

>

— AU+ H(x, D) = f(x,m)  in TY

(MFG — ergo) { —Am — div(MHp(x, DT)) =0 inT¢
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Small discount behavior of &°

Link with the discounted MFG system

The solution (%, M%) of the (MFG — bar — &) system can be obtained the limit of the solution
(u?, md) of

—8u® + 6u® — AU + H(x, Du®) = f(x,m’(t))  in (0, 4o00) x T¢
(MFG — §) am® — Am® — div(m® Hp(x, Du®)) =0 in (0, +o0) x T¢
m%(0,-) = my in T9, u® bounded in (0, +00) x T9

Theorem
Under our standing assumptions, if § € (0, dp), then

ID(u () = T)llioe < Ce™™ V>0

and
(ImP(t) — M®|| o0 < Ce™7 Vit >1,

where v, 6o > 0 and C > 0 are independent of mq.
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Small discount behavior of &°

Towards a limit of 7% — \/§

@ Plugg the ansatz : ~
A m® ~ m+ 8i,
6
into the equation for (7%, M%) :
6w’ — AL® + H(x, Di®) = f(x,m®)  inT?

{ —Am® —div(M’ Hp(x, DU%) =0  inTY

@ Onehas:
X+ 60+ 80 + 6%V — AT+ §V) + H(x, D(T + §¥)) = f(x, M+ Of)

{ —A(M+6) — div((m + 6f)Hp(x, D(U + 6V))) =0

21/36
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Small discount behavior of &°

Towards a limit of 7% — \/§

@ Plugg the ansatz : ~
‘5~§+u+§+5v, m® ~ m+ 8@,
into the equation for (7%, M%) :
6w — AL® + H(x, D®) = f(x,m%)  inTY
in T9

{ —Am® — div(m® Hp(x, DI%)) =0
@ We recognize the equation for (T, M) :
X+ 60 + 60 + 62V — A(T + 6V) + H(x, D(T + 6¥)) = f(x, M+ 573)

{ — A+ 5fa) — div((M + 6i)Hp(x, D(T + 67))) = 0

21/36
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Small discount behavior of &°

Towards a limit of 7% — \/§

@ Plugg the ansatz :

into the equation for (7%, M%) :
§T° — AT® + H(x, Di®) = f(x,m®)  inT?

{ —Am® — div(M® Hp(x, Di®)) =0  inTY

@ Expending and simplifying :
_ = oo _ _ _ of o
OU + 00 + 0V — A(6V) + Hp(x, D) - (6V) = %(X, m)(0f)

—A(67) — div((87i)Hp(x, DT)) — div(MHgp(x, DT)(57))) = O

21/36
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Small discount behavior of &°

Towards a limit of 7% — \/§

@ Plugg the ansatz :

into the equation for (7%, M%) :
§T° — AT® + H(x, Di®) = f(x,m®)  inT?
{ —Am® — div(M® Hp(x, Di®)) =0  inTY
@ Dividing by 6 and omitting the term of lower order :

G40 — AV + Hp(x, D) - Dv = %(x, m) ()

—AJi — div(iiHp(x, D)) — div(MHpp(x, DT)V)) = 0

21/36
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Small discount behavior of &°

There exists a unique constant 4 for which the following has a solution (v, fz) :

U+ 0 — AV + Hp(x, DU).DV = %(X, m)(z)  inT?

—Afi — div(aHp(x, D)) — div(MHpp(x, DU)DV) =0 in TY

deﬁ=deV=0
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Small discount behavior of &°

There exists a unique constant @ for which the following has a solution (v, i) :

U+ 60— AV + Hp(x, Di).DV = %(x, m)(#)  inTY

—Afi — div(iHp(x, DI)) — div(MHpp(X, DG)DV) =0  in T9

deﬁ=deV=0

We can identify the limit of ® — X/ :

Proposition

Let (X, o, m), (w®, m%) and (0, v, ) be as above. Then

lim 3% — 2 — 0 — 0o + | — Ml|oo = 0.

6—0F
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Small discount behavior of &°

@ This shows that 7® — X/4 converges as § — 0T to U + 8, where 0 is the unique constant
such that the system

U460 — AV + Hp(x, Du).DV = ;—,;(x, my(E)  inTY
—Afi — div(aHp(x, DT)) — div(MHpp(x, DG)DV) =0  in TY
fqrd = fnrd v=20

has a solution (v, &).

@ In the uncoupled case (f = f(x)), we have / (u+0)m =0,
Td

because f—,; = 0 and, if we multiply the equation for v by m and integrate, we get

o
Il

/d (T + 6 — AV + Ho(x, DT).DV)
]d (T + 0) + /Td V(= A — div(MHp(x, DT)))

an(D—f—é)

T

So one recovers the condition of Davini, Fathi, lturriaga and Zavidovique.
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The discounted and ergodic master equations

The discounted master equation

In order to study the limit behavior of (u®, m%), we use the discounted master equation :

SU® — AxU® + H(x, DyU®) — f(x, m)
- /d divy [DnU°] dm(y) + /d DmUP - Ho(y, DU®) dm(y) = 0
T T
in T9 x P(T9)

where U? = U%(x, m) : T9 x P(T9) — R.

Theorem (C.-Delarue-Lasry-Lions, 2015)

Under our assumptions, the discounted master equation has a unique classical solution U?.

Previous results in that direction : Lasry-Lions, Gangbo-Swiech, Chassagneux-Crisan-Delarue,...
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The discounted and ergodic master equations

Idea of proof : Let us set
U5(X7 mo) = u5(07 X)7

where (u®, m®) solves
—ouu® + 6u® — Au® + H(x, Du®) = f(x,m’(t))  in (0, +o0) x T¢
(MFG—6) ¢ am® — Am® — div(m® Hp(x, Du®)) =0  in (0, +o0) x T¢
m%(0,-) = my in T9, u® bounded in (0, +00) x T9
Then one expects that U? solves the master equation because :

Uo(x,m’(t)) = ub(t,x)  vt>O0.

Taking the derivative int =0 :
sU8 5
[, o (e mo.y)0um? (0. ) = 2100, ),
so that
su° . 5 5 5 5
I, (6 Mo,y = div(mo (. DU (0))) = 57 (0) ~ AU (0) + H(x, Du?(0)) ~ fx, mo).
T

Integrating by parts gives the master equation. O
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The discounted and ergodic master equations

The key Lipschitz estimate

Let U? be the solution of the discounted master equation

SU% — AxU® + H(x, DxU%) — f(x, m)
- /d divy [DnU?] dm(y) + /d DmUP - Hp(y, DxU®) dm(y) = 0
T T
in T9 x P(T9)

Proposition
There is a constant C, depending on the data only, such that

HDmU‘S(.’ m, .)H2+a,1+a =@

In particular, U%(-, -) is uniformly Lipschitz continuous.

Difficulty : equation for U? neither coercive nor elliptic in m.

P. Cardaliaguet (Paris-Dauphine) Mean field games 27/36



The discounted and ergodic master equations

Idea of proof

Representation formulas. Fix my € P(T9) a initial condition and (u?, m’) the associated
solution of the discounted MFG system :

om® — Am® — div(m® Hp(x, Du®)) =0 in (0, 400) x T

—0puS 4+ 6ud — Au® + H(x, Du®) = f(x,m*(t))  in (0, +oco) x T?
mi(0,-) = mgy in x T9, u% bounded.

For any smooth map pq with [74 mg = 0, one can show that
suUd
——— X, mo, dy = 07 )
L, o Moo (v)dly = w(0.)
where (w, 1) is the unique solution to the linearized system
5 of 5 : d
—o0iw + 6w — Aw + Hp(x, Du°).Dw = 5—m(x, m°(t))(u(t)) in (0, +00) x T
A — D — div(uHp(x, Du’)) — div(m® Hpp(x, Du®)Dw) =0 in (0, 400) x TY

w(0,-) = pg in TY, w bounded.
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The discounted and ergodic master equations

Key step for the estimate :
Hnmué(.,m, )H <c.

2+a,1+a

Lemma

There exist 6, g > 0 and a constant C > 0 such that, if § € (0, dg), then the solution (w, i) to
the linearized system with [14 po = 0 satisfies

IDw(t)l 2 < C(1 +t)e " luoll,z  Vt=>0

and
el < C(1+t)e™uolle  VE>1.

As a consequence, for any « € (0, 1), there is a constant C (independent of §) such that

sup [[w(t)l|ca+a < Cllpoll(caray -
>0

Relies on the monotonicity formula and exponential decay of some viscous transport equation.

P. Cardaliaguet (Paris-Dauphine) Mean field games 29/36



The discounted and ergodic master equations

The ergodic master equation

As in the classical framework, we have (up to a subsequence) :
@ sU converges to a constant A,
@ U — US(-, m) converges to a Lipschitz continuous map U.
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The discounted and ergodic master equations

The ergodic master equation

As in the classical framework, we have (up to a subsequence) :
@ §U° converges to a constant ),
@ U — US(-, m) converges to a Lipschitz continuous map U.

Proposition
The constant X and the limit U satisfy the master cell-problem :
X — AxU(x, m) + H(x, DxU(x, m)) — /d div(DmU(x, m))dm
T

+ /d DmU(x, m).Hp(x, , DxU(x, m))dm = f(x,m)  inT? x P(TY)
T

(in a weak sense).

Moreover, if (X, U, m) is the solution to the ergodic MFG system then

X=X and DyU(x,m)=Du(x) VxeTC.
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The discounted and ergodic master equations

Remarks.

@ One also shows that U is unique up to a constant.
@ So the limits, up to subsequences, of U® — U4 (-, i) is determined only up to a constant.

@ To fix this constant, we use the identification of the limit of % — X /4.
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Small discount behavior of u®
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Small discount behavior of u®

Link between U? and o?

Let U? be the solution to the discounted master equation :

SUP — AxUP + H(x, DyUP) —/ div(DmU?Ydm
Td

+/ DmUP . Hp(x, Dy U (x, m))dm = f(x, m) in T x P(T%).
Td
and (&°, M) be the solution to discounted stationary problem :

=5 =5 =5y _ =0 —
(MFG — bar — 5) { §u° — AT° + H(x,Du’) = f(x,m*)  inT

—Am® — div(m® Hp(x, Di®)) =0  inTY
Then, by construction of U?,
U(S(', r—né) — D57

because (%, M%) is a stationary solution of the discounted MFG system (MFG — §).
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Small discount behavior of u®

The main result

Let U? be the solution to the discounted master equation :

SU% — AxUS + H(x, Dy U%) — /d div(DmU®)dm
T

+/ D UP . Hp(x, Dy U® (x, m))dm = f(x, m) in T x P(T).
Td

Theorem

Asé — 0, us — 5\_/6 converges uniformly to the solution U to the master cell problem such that
U(x, m) = u(x) + 6, where 6 is the unique constant for which the following linearized ergodic
problem has a solution (v, zz) :

U+ 6 — AV + Hp(x, DU).DV = %(X, m)(@)  inT?
—Afi — div(Hp(x, D)) — div(MHpp(x, DU)DV) =0  in TY
Jra = Jra V=0
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Small discount behavior of u®

The small discount behavior of v°®

Fix my € P(T9) and let (u®, m®) be the solution to the discounted MFG system :
—8® + 8u® — AU® + H(x, Du®) = f(x, m*(t))  in (0, +o0) x T¢

(MFG - 6) orm® — Am® — div(m® Hp(x, Du®)) =0 in (0, +o00) x T¢
mé(0,-) = my in T9, u® bounded in (0, +00) x T

Corollary

We have, for any t > 0, _ _
alimo ul(t, x) — X8 = U(x, m(t)),
—

uniformly with respect to x, where U is the solution of the ergodic cell problem given in the main
Theorem and (m(t)) solves the McKean-Vlasov equation

dym — Am — div(mHp(x, DU(x, m))) = 0'in (0, 400) x T9,  m(0) = my.
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Conclusion

We have established the small discount behavior of the discounted MFG system/master
equation.

We also show in the paper the long time behavior of the time-dependent MFG system/master
equation.

Open problems :

@ First order setting.

@ Convergence in the non-monotone setting.
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