
On the long time behavior of the master equation in

Mean Field Games

P. Cardaliaguet

(Paris-Dauphine)

Joint work with A. Porretta (Roma Tor Vergata)

Mean Field Games and Related Topics - 4
Rome - June 14-16, 2017

P. Cardaliaguet (Paris-Dauphine) Mean field games 1 / 36



The discounted MFG system

Given a positive discount factor δ > 0, we consider the MFG system

(MFG − δ)







−∂t u
δ + δuδ −∆uδ + H(x, Duδ) = f (x, mδ(t)) in (0,+∞)× T

d

∂t m
δ −∆mδ − div(mδHp(x, Duδ)) = 0 in (0,+∞)× T

d

mδ(0, ·) = m0 in T
d , uδ bounded in (0,+∞)× T

d

where

uδ = uδ(t, x) and mδ = mδ(t, x) are the unknown,

H = H(x, p) : Td × R
d → R is a smooth, unif. convex in p, Hamiltonian,

f , g : Td ×P(Td ) → R are “smooth" and monotone,
(P(Td ) = the set of Borel probability measures on T

d )

m0 ∈ P(Td ) is a smooth positive density

The MFG system has been introduced by Lasry-Lions and Huang-Caines-Malhamé to study
optimal control problems with infinitely many controllers.
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Interpretation.

If (uδ ,mδ) solves the discounted MFG system,

then u is the value function of a typical small player :

u(t, x) = inf
α

E

[
∫ +∞

0

e−δsL(Xs , αs) + F (Xs ,m
δ(s)) ds

]

where
dXs = αsds +

√
2dWs for s ∈ [t,+∞), Xt = x

and L is the Fenchel conjugate of H :

L(x, α) := sup
p∈Rd

−α · p − H(x, p)

and mδ is the distribution of the players when they play in an optimal way : mδ := L(Ys)
with

dYs = −Hp(Ys ,Du(s,Ys))ds +
√

2dWs, s ∈ [0,+∞), L(Y0) = m0.
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The limit problem

Let (uδ,mδ) be the solution to

(MFG − δ)







−∂t u
δ + δuδ −∆uδ + H(x, Duδ) = f (x, mδ(t)) in (0,+∞)× T

d

∂t m
δ −∆mδ − div(mδHp(x, Duδ)) = 0 in (0,+∞)× T

d

mδ(0, ·) = m0 in T
d , uδ bounded in (0,+∞)× T

d

Study the limit as δ → 0+ of the pair (uδ,mδ).

Motivation : classical question in economics/game theory (players infinitely patient).

In contrast with similar problem for HJ equation, forward-backward system.

One expects that (uδ ,mδ) “converges" to the solution of the ergodic MFG problem

(MFG − erg)















λ̄−∆ū + H(x,Dū) = f (x, m̄) in T
d

−∆m̄ − div(m̄Hp(x, Dū)) = 0 in T
d

m̄ ≥ 0 in T
d ,

∫

Td
m̄ = 1

where now the unknown are λ̄, ū = ū(x) and m̄ = m̄(x).
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Classical results for decoupled problems

For the Fokker-Plank equation driven by a vector-field V :

∂t m −∆m − div(mV (x)) = f (x) in (0,∞)× T
d

(exponential) convergence of m(t) to the ergodic measure is well-known.

For HJ equations : Let v = v(t, x) and uδ = uδ(x) be the solution to

∂t v −∆v + H(x,Dv) = f (x) in (0,+∞)× T
d , u(0, ·) = u0 in T

d

and
δuδ −∆uδ + H(x,Duδ) = 0 in T

d

Convergence of δuδ as δ → 0 and v(T )/T as T → +∞ to the ergodic constant λ̄ :
Lions-Papanicolau-Varadhan, ...

(Weak-KAM theory) Limit of v(T )− λ̄T as T → +∞ to a corrector : Fathi,
Roquejoffre, Fathi-Siconolfi, Barles-Souganidis, ...

Convergence of uδ − λ̄/δ as δ → 0+ to a corrector : Davini, Fathi, Iturriaga and
Zavidovique, ...
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For MFG systems

For the MFG time-dependent system, convergence of vT /T and mT are known :

Lions (Cours in Collège de France)
Gomes-Mohr-Souza (discrete setting)
C.-Lasry-Lions-Porretta (viscous setting), C. (Hamilton-Jacobi)
Turnpike property (Samuelson, Porretta-Zuazua, Trélat,...)

Similar results for δuδ and mδ are not known, but expected.

Long-time behavior of v(T , ·)− λ̄T vs limit of uδ − λ̄/δ not known so far.
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General strategy of proof

Let (uδ,mδ) be the solution to

(MFG − δ)







−∂t u
δ + δuδ −∆uδ + H(x, Duδ) = f (x, mδ(t)) in (0,+∞)× T

d

∂t m
δ −∆mδ − div(mδHp(x,Duδ)) = 0 in (0,+∞)× T

d

mδ(0, ·) = m0 in T
d , uδ bounded in (0,+∞)× T

d

As (uδ,mδ) = (uδ(t, x), mδ(t, x)), two possible limits :

When δ → 0 : difficult (no obvious limit, dependence in m0 unclear),

When t → +∞ : easier.

Expected limit : the stationary discounted problem

(MFG − bar − δ)

{

δūδ −∆ūδ + H(x, Dūδ) = f (x, m̄δ) in T
d

−∆m̄δ − div(m̄δHp(x,Dūδ)) = 0 in T
d
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General strategy of proof (continued)

Show that lim
δ→0+

δūδ = λ̄ and identification of the limit of ūδ − λ̄/δ.

Collect all the equations (MFG − δ) into a single equation : for m0 ∈ P(Td ), set
Uδ(x,m0) := uδ(0, x) where (uδ,mδ) solves (MFG − δ) with m(0) = m0.

Then Uδ solves the discounted master equation.

get Lipschitz estimate on Uδ

by compactness arguments, prove that Uδ − λ̄/δ converges to a solution Ū of the
ergodic master equation
(as δ → 0, up to subsequences).

Put the previous steps together to derive the limit of uδ − λ̄/δ.
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Derivatives and assumptions

Detour on derivatives in the space of measures

We denote by P(Td ) the set of Borel probability measures on T
d , endowed for the

Monge-Kantorovich distance

d1(m,m′) = sup
φ

∫

Td
φ(y) d(m − m′)(y),

where the supremum is taken over all Lipschitz continuous maps φ : Td → R with a Lipschitz
constant bounded by 1.

Given U : P(Td ) → R, we consider 2 notions of derivatives :

The directional derivative δU
δm

(m, y)
(see, e.g., Mischler-Mouhot)

The intrinsic derivative DmU(m, y)
(see, e.g., Otto, Ambrosio-Gigli-Savaré, Lions)
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Derivatives and assumptions

Directional derivative

A map U : P(Td ) → R is C1 if there exists a continuous map
δU

δm
: P(Td )× T

d → R such that,

for any m,m′ ∈ P(Td ),

U(m′)− U(m) =

∫ 1

0

∫

Td

δU

δm
((1 − s)m + sm′, y)d(m′ − m)(y)ds.

Note that δU
δm

is defined up to an additive constant. We adopt the normalization convention

∫

Td

δU

δm
(m, y)dm(y) = 0.

Intrinsic derivative

If
δU

δm
is of class C1 with respect to the second variable, the intrinsic derivative

DmU : P(Td ) × T
d → R

d is defined by

DmU(m, y) := Dy
δU

δm
(m, y)
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Derivatives and assumptions

For instance, if U(m) =

∫

Td
g(x)dm(x), then

δU

δm
(m, y) = g(y)−

∫

Td
gdm while

DmU(m, y) = Dg(y).

Remarks.

The directional derivative is fruitful for computations.

The intrinsic derivative encodes the variation of the map in P(Td ). For instance :

‖DmU‖∞ = Lip U
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Derivatives and assumptions

Standing assumptions

H : Td × R
d → R is smooth, with :

C−1Id ≤ D2
ppH(x, p) ≤ CId for (x, p) ∈ T

d × R
d .

Moreover, there exists θ ∈ (0, 1) and C > 0 such that

|Dxx H(x, p)| ≤ C|p|1+θ, |DxpH(x, p)| ≤ C|p|θ, ∀(x, p) ∈ T
d × R

d .

the maps f , g : Td × P(Td ) → R are monotone : for any m,m′ ∈ P(Td ),

∫

Td
(f (x, m) − f (x, m′))d(m − m′)(x) ≥ 0,

∫

Td
(g(x,m) − g(x,m′))d(m − m′)(x) ≥ 0

the maps f , g are C1 in m : there exists α ∈ (0, 1) such that

sup
m∈P(Td )

(

‖f (·,m)‖3+α +

∥

∥

∥

∥

δf (·, m, ·)
δm

∥

∥

∥

∥

(3+α,3+α)

)

+ Lip3+α(
δf

δm
) < ∞.

and the same for g.
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Derivatives and assumptions

Example. If f is of the form :

f (x, m) =

∫

Rd
Φ(z, (ρ ⋆ m)(z))ρ(x − z)dz,

where

⋆ denotes the usual convolution product (in R
d ),

Φ = Φ(x, r) is a smooth map, nondecreasing w.r. to r ,

ρ : Rd → R is a smooth, even function with compact support.

Then f satisfies our conditions with

δf

δm
(x,m, z) =

∫

Rd

∑

k∈Zd

ρ(y − z − k)
∂Φ

∂m
(y , ρ ∗ m(y))ρ(x − y)dy
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The classical uncoupled setting
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The classical uncoupled setting

The classical ergodic theory

(Lions-Papanicolau-Varadhan, Evans, Arisawa-Lions,...)

For δ > 0, let uδ solve the uncoupled HJ equation

δuδ −∆uδ + H(x,Duδ) = f (x) in T
d .

Then

(δuδ) is bounded (maximum principle),

‖Duδ‖∞ is bounded (growth condition on H or ellipticity)

Thus, as δ → 0+ and up to a subsequence, (δuδ) and (uδ − uδ(0)) converge to the
ergodic constant λ̄ and a corrector ū :

λ̄−∆ū + H(x,Dū) = f (x) in T
d .

Uniqueness of λ̄ and of ū (up to constants) (strong maximum principle).
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The classical uncoupled setting

The small discount behavior

For δ > 0, let uδ solve the uncoupled HJ equation

δuδ −∆uδ + H(x,Duδ) = f (x) in T
d .

Then uδ − δ−1λ̄ actually converges as δ → 0 to the unique solution ū of the ergodic cell problem

λ̄−∆ū + H(x,Dū) = f (x) in T
d

such that

∫

Td
ūm̄ = 0, where m̄ solves

−∆m̄ − div (m̄Hp(x, Dū)) = 0 in T
d , m̄ ≥ 0,

∫

Td
m̄ = 1.

Proved by

Davini, Fathi, Iturriaga and Zavidovique for the first order problem,

Mitake and Tran (see also Mitake and Tran —- Ishii, Mitake and Tran) for the viscous case
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Small discount behavior of ūδ
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Small discount behavior of ūδ

The stationary discounted MFG system

It takes the form

(MFG − bar − δ)

{

δūδ −∆ūδ + H(x, Dūδ) = f (x, m̄δ) in T
d

−∆m̄δ − div(m̄δHp(x,Dūδ)) = 0 in T
d

Proposition

There exists δ0 > 0 such that, if δ ∈ (0, δ0), there is a unique solution (ūδ, m̄δ) to
(MFG − bar − δ).

Moreover, for any δ ∈ (0, δ0),

‖δūδ − λ̄‖∞ + ‖D(ūδ − ū)‖L2 + ‖m̄δ − m̄‖L2 ≤ Cδ1/2.

for some constant C > 0, where (λ̄, ū, m̄) solves the ergodic MFG system

(MFG − ergo)

{

λ̄−∆ū + H(x,Dū) = f (x, m̄) in T
d

−∆m̄ − div(m̄Hp(x,Dū)) = 0 in T
d
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Small discount behavior of ūδ

Link with the discounted MFG system

The solution (ūδ , m̄δ) of the (MFG − bar − δ) system can be obtained the limit of the solution
(uδ,mδ) of

(MFG − δ)







−∂t u
δ + δuδ −∆uδ + H(x, Duδ) = f (x, mδ(t)) in (0,+∞)× T

d

∂t m
δ −∆mδ − div(mδHp(x, Duδ)) = 0 in (0,+∞)× T

d

mδ(0, ·) = m0 in T
d , uδ bounded in (0,+∞)× T

d

Theorem

Under our standing assumptions, if δ ∈ (0, δ0), then

‖D(uδ(t) − ūδ)‖L∞ ≤ Ce−γt ∀t ≥ 0

and
‖mδ(t) − m̄δ‖L∞ ≤ Ce−γt ∀t ≥ 1,

where γ, δ0 > 0 and C > 0 are independent of m0.
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Small discount behavior of ūδ

Towards a limit of ūδ
− λ̄/δ

Plugg the ansatz :

ūδ ∼ λ̄

δ
+ ū + θ̄ + δv̄ , m̄δ ∼ m̄ + δµ̄,

into the equation for (ūδ , m̄δ) :







δūδ −∆ūδ + H(x, Dūδ) = f (x, m̄δ) in T
d

−∆m̄δ − div(m̄δHp(x, Dūδ)) = 0 in T
d

One has :







λ̄+ δū + δθ̄ + δ2v̄ −∆(ū + δv̄) + H(x,D(ū + δv̄)) = f (x, m̄ + δµ̄)

−∆(m̄ + δµ̄)− div((m̄ + δµ̄)Hp(x, D(ū + δv̄))) = 0
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− λ̄/δ

Plugg the ansatz :
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




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





λ̄+ δū + δθ̄ + δ2v̄ −∆(ū + δv̄) + H(x,D(ū + δv̄)) = f (x, m̄ + δµ̄)

−∆(m̄ + δµ̄)− div((m̄ + δµ̄)Hp(x, D(ū + δv̄))) = 0
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ūδ ∼ λ̄

δ
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


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Small discount behavior of ūδ

Proposition

There exists a unique constant θ̄ for which the following has a solution (v̄ , µ̄) :



























ū + θ̄ −∆v̄ + Hp(x,Dū).Dv̄ =
δf

δm
(x, m̄)(µ̄) in T

d

−∆µ̄− div(µ̄Hp(x,Dū)) − div(m̄Hpp(x, Dū)Dv̄) = 0 in T
d

∫

Td µ̄ =
∫

Td v̄ = 0

We can identify the limit of ūδ − λ̄/δ :

Proposition

Let (λ̄, ū, m̄), (ūδ, m̄δ) and (θ̄, v̄ , µ̄) be as above. Then

lim
δ→0+

‖ūδ − λ̄

δ
− ū − θ̄‖∞ + ‖m̄δ − m̄‖∞ = 0.
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Small discount behavior of ūδ
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ū + θ̄ −∆v̄ + Hp(x,Dū).Dv̄ =
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Let (λ̄, ū, m̄), (ūδ, m̄δ) and (θ̄, v̄ , µ̄) be as above. Then

lim
δ→0+
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Small discount behavior of ūδ

This shows that ūδ − λ̄/δ converges as δ → 0+ to ū + θ̄, where θ̄ is the unique constant
such that the system



























ū + θ̄ −∆v̄ + Hp(x,Dū).Dv̄ =
δf

δm
(x, m̄)(µ̄) in T

d

−∆µ̄− div(µ̄Hp(x,Dū)) − div(m̄Hpp(x, Dū)Dv̄) = 0 in T
d

∫

Td µ̄ =
∫

Td v̄ = 0

has a solution (v̄ , µ̄).

In the uncoupled case (f = f (x)), we have

∫

Td
(ū + θ̄)m̄ = 0,

because δf
δm

= 0 and, if we multiply the equation for v̄ by m̄ and integrate, we get

0 =

∫

Td
m̄(ū + θ̄ −∆v̄ + Hp(x,Dū).Dv̄)

=

∫

Td
m̄(ū + θ̄) +

∫

Td
v̄(−∆m̄ − div(m̄Hp(x, Dū)))

=

∫

Td
m̄(ū + θ̄)

So one recovers the condition of Davini, Fathi, Iturriaga and Zavidovique.
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The discounted and ergodic master equations

The discounted master equation

In order to study the limit behavior of (uδ ,mδ), we use the discounted master equation :















δUδ −∆x Uδ + H(x, Dx Uδ)− f (x, m)

−
∫

Td
divy

[

DmUδ
]

dm(y) +

∫

Td
DmUδ · Hp(y ,Dx Uδ) dm(y) = 0

in T
d × P(Td )

where Uδ = Uδ(x, m) : Td × P(Td ) → R.

Theorem (C.-Delarue-Lasry-Lions, 2015)

Under our assumptions, the discounted master equation has a unique classical solution Uδ .

Previous results in that direction : Lasry-Lions, Gangbo-Swiech, Chassagneux-Crisan-Delarue,...
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The discounted and ergodic master equations

Idea of proof : Let us set
Uδ(x,m0) := uδ(0, x),

where (uδ ,mδ) solves

(MFG − δ)







−∂t u
δ + δuδ −∆uδ + H(x,Duδ) = f (x, mδ(t)) in (0,+∞)× T

d

∂t m
δ −∆mδ − div(mδHp(x,Duδ)) = 0 in (0,+∞)× T

d

mδ(0, ·) = m0 in T
d , uδ bounded in (0,+∞)× T

d

Then one expects that Uδ solves the master equation because :

Uδ(x,mδ(t)) = uδ(t, x) ∀t ≥ 0.

Taking the derivative in t = 0 :

∫

Td

δUδ

δm
(x,m0, y)∂t m

δ(0, dy) = ∂t u(0, x),

so that

∫

Td

δUδ

δm
(x,m0, y)(∆m0 + div(m0Hp(y ,Duδ(0))) = δuδ(0)−∆uδ(0)+H(x, Duδ(0))− f (x, m0).

Integrating by parts gives the master equation. �
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The discounted and ergodic master equations

The key Lipschitz estimate

Let Uδ be the solution of the discounted master equation















δUδ −∆x Uδ + H(x, Dx Uδ)− f (x, m)

−
∫

Td
divy

[

DmUδ
]

dm(y) +

∫

Td
DmUδ · Hp(y ,Dx Uδ) dm(y) = 0

in T
d × P(Td )

Proposition

There is a constant C, depending on the data only, such that

∥

∥

∥
DmUδ(·,m, ·)

∥

∥

∥

2+α,1+α
≤ C.

In particular, Uδ(·, ·) is uniformly Lipschitz continuous.

Difficulty : equation for Uδ neither coercive nor elliptic in m.
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The discounted and ergodic master equations

Idea of proof

Representation formulas. Fix m0 ∈ P(Td ) a initial condition and (uδ,mδ) the associated
solution of the discounted MFG system :







−∂t u
δ + δuδ −∆uδ + H(x,Duδ) = f (x, mδ(t)) in (0,+∞)× T

d

∂t m
δ −∆mδ − div(mδHp(x,Duδ)) = 0 in (0,+∞)× T

d

mδ(0, ·) = m0 in × T
d , uδ bounded.

For any smooth map µ0 with
∫

Td m0 = 0, one can show that

∫

Td

δUδ

δm
(x, m0, y)µ0(y)dy = w(0, x),

where (w , µ) is the unique solution to the linearized system















−∂t w + δw −∆w + Hp(x, Duδ).Dw =
δf

δm
(x, mδ(t))(µ(t)) in (0,+∞)× T

d

∂tµ−∆µ− div(µHp(x, Duδ)) − div(mδHpp(x,Duδ)Dw) = 0 in (0,+∞)× T
d

µ(0, ·) = µ0 in T
d , w bounded.
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The discounted and ergodic master equations

Key step for the estimate :
∥

∥

∥
DmUδ(·,m, ·)

∥

∥

∥

2+α,1+α
≤ C.

Lemma

There exist θ, δ0 > 0 and a constant C > 0 such that, if δ ∈ (0, δ0), then the solution (w , µ) to
the linearized system with

∫

Td µ0 = 0 satisfies

‖Dw(t)‖L2 ≤ C(1 + t)e−θt‖µ0‖L2 ∀t ≥ 0

and
‖µ(t)‖L2 ≤ C(1 + t)e−θt‖µ0‖L2 ∀t ≥ 1.

As a consequence, for any α ∈ (0, 1), there is a constant C (independent of δ) such that

sup
t≥0

‖w(t)‖C2+α ≤ C‖µ0‖(C2+α)′ .

Relies on the monotonicity formula and exponential decay of some viscous transport equation.
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The discounted and ergodic master equations

The ergodic master equation

As in the classical framework, we have (up to a subsequence) :

δUδ converges to a constant λ,

Uδ − Uδ(·, m̄) converges to a Lipschitz continuous map Ū.

Proposition

The constant λ̄ and the limit Ū satisfy the master cell-problem :

λ−∆x Ū(x,m) + H(x, Dx Ū(x, m)) −
∫

Td
div(DmŪ(x,m))dm

+

∫

Td
DmŪ(x,m).Hp(x, ,Dx Ū(x,m))dm = f (x, m) in T

d ×P(Td )

(in a weak sense).

Moreover, if (λ̄, ū, m̄) is the solution to the ergodic MFG system then

λ̄ = λ and Dx Ū(x, m̄) = Dū(x) ∀x ∈ T
d .
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The discounted and ergodic master equations

Remarks.

One also shows that Ū is unique up to a constant.

So the limits, up to subsequences, of Uδ − Uδ(·, m̄) is determined only up to a constant.

To fix this constant, we use the identification of the limit of ūδ − λ̄/δ.
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Small discount behavior of uδ
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Small discount behavior of uδ

Link between Uδ and ūδ

Let Uδ be the solution to the discounted master equation :

δUδ −∆x Uδ + H(x,Dx Uδ)−
∫

Td
div(DmUδ)dm

+

∫

Td
DmUδ.Hp(x,Dx Uδ(x,m))dm = f (x, m) in T

d × P(Td ).

and (ūδ , m̄δ) be the solution to discounted stationary problem :

(MFG − bar − δ)

{

δūδ −∆ūδ + H(x, Dūδ) = f (x, m̄δ) in T
d

−∆m̄δ − div(m̄δHp(x,Dūδ)) = 0 in T
d

Then, by construction of Uδ ,
Uδ(·, m̄δ) = ūδ,

because (ūδ , m̄δ) is a stationary solution of the discounted MFG system (MFG − δ).
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Small discount behavior of uδ

The main result

Let Uδ be the solution to the discounted master equation :

δUδ −∆x Uδ + H(x,Dx Uδ)−
∫

Td
div(DmUδ)dm

+

∫

Td
DmUδ.Hp(x,Dx Uδ(x,m))dm = f (x, m) in T

d × P(Td ).

Theorem

As δ → 0+, Uδ − λ̄/δ converges uniformly to the solution Ū to the master cell problem such that
Ū(x, m̄) = ū(x) + θ̄, where θ̄ is the unique constant for which the following linearized ergodic
problem has a solution (v̄ , µ̄) :















ū + θ̄ −∆v̄ + Hp(x,Dū).Dv̄ =
δf

δm
(x, m̄)(µ̄) in T

d

−∆µ̄− div(µ̄Hp(x,Dū)) − div(m̄Hpp(x, Dū)Dv̄) = 0 in T
d

∫

Td µ̄ =
∫

Td v̄ = 0
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Small discount behavior of uδ

The small discount behavior of v δ

Fix m0 ∈ P(Td ) and let (uδ ,mδ) be the solution to the discounted MFG system :

(MFG − δ)







−∂t u
δ + δuδ −∆uδ + H(x, Duδ) = f (x, mδ(t)) in (0,+∞)× T

d

∂t m
δ −∆mδ − div(mδHp(x, Duδ)) = 0 in (0,+∞)× T

d

mδ(0, ·) = m0 in T
d , uδ bounded in (0,+∞)× T

d

Corollary

We have, for any t ≥ 0,
lim
δ→0

uδ(t, x)− λ̄/δ = Ū(x,m(t)),

uniformly with respect to x , where Ū is the solution of the ergodic cell problem given in the main
Theorem and (m(t)) solves the McKean-Vlasov equation

∂t m −∆m − div(mHp(x, DŪ(x, m))) = 0 in (0,+∞)× T
d , m(0) = m0.
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Small discount behavior of uδ

Conclusion

We have established the small discount behavior of the discounted MFG system/master
equation.
We also show in the paper the long time behavior of the time-dependent MFG system/master
equation.

Open problems :

First order setting.

Convergence in the non-monotone setting.
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