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Nonzero-sum stochastic dynamic games

Inherent difficulties in obtaining (and showing existence of) Nash
equilibria in stochastic nonzero-sum dynamic games with asymmetric
information and a finite number, N, of players

I strategic interaction
I non-standard dynamic optimization by each player for characterization of

reaction functions
I iterative second guessing

Mean field game approach provides a way out
Two recent papers this talk is based on

I N. Saldi, T. Başar, M. Raginsky, "Markov-Nash equilibria in mean-field

games with discounted cost," arXiv:1612.07878, 14 January 2017.
I N. Saldi, T. Başar, M. Raginsky, "Approximate Nash equilibria in partially

observed stochastic games with mean-field interactions,"

arXiv:1705.02036, 4 May 2017.
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Part I

Fully-observed mean-field games
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Fully-observed mean-field game model

For i ∈ {1, . . . ,N}, Agent i has the following state dynamics:

xN
i (t + 1) = F

(
xN

i (t), aN
i (t), e(N)

t , vN
i (t)

)
,

where the noise process {vN
i (t)} is an i.i.d. sequence and has the same

distribution for each i and N.

xN
i (t) is the X-valued state variable, aN

i (t) is the A-valued control action

variable, and e(N)
t is the empirical distribution of the state configuration,

i.e.

e(N)
t ( · ) :=

1
N

N∑
i=1

δxN
i (t)( · ) ∈ P(X)

Agent i selects its actions {aN
i (t)} to minimize a functional given in

terms of the one-stage cost function c : X× A× P(X)→ [0,∞).
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Control policies

History spaces Ht = (X× A× P(X))t × (X× P(X)), t = 0, 1, 2, . . ..

A policy for a generic agent is a sequence π = {πt} of stochastic kernels

on A given Ht.

A policy is Markov if each πt is a Markov kernel on A given X.

The set of all policies for Agent i is denoted by Πi and the subset

consisting of all Markov policies by Mi.

Let Π(N) =
∏N

i=1 Πi and M(N) =
∏N

i=1 Mi.
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A special class of stochastic NZSDGs

Dynamics of a generic agent i:

xN
i (t + 1) =

1
N

N∑
j=1

f
(
xN

i (t), aN
i (t), xN

j (t)
)

+ g
(
xN

i (t), aN
i (t)

)
vN

i (t)

=

∫
X

f
(
xN

i (t), aN
i (t), y

)
e(N)

t (dy) + g
(
xN

i (t), aN
i (t)

)
vN

i (t)

=: F
(
xN

i (t), aN
i (t), e(N)

t , vi(t)
)
,

where {vN
i (t)} is a sequence of i.i.d. Gaussian random variables.

One-stage cost function of a generic agent i:

c(xN
i (t), aN

i (t), e(N)
t ) =

1
N

N∑
j=1

d
(
xN

i (t), aN
i (t), xN

j (t)
)

=

∫
X

d
(
xN

i (t), aN
i (t), y

)
e(N)

t (dy)
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Cost functions

For Agent i, the infinite-horizon discounted cost under a policy

π(N) ∈ Π(N) is given by

J(N)
i (π(N)) = Eπ(N)

[ ∞∑
t=0

βtc(xN
i (t), aN

i (t), e(N)
t )

]
,

where β ∈ (0, 1) is the discount factor.
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Nash equilibria

The standard notion of optimality is a player-by-player one:

Definition
A policy π(N∗) = (π1∗, . . . , πN∗) constitutes a Nash equilibrium if

J(N)
i (π(N∗)) = inf

πi∈Πi

J(N)
i (π

(N∗)
−i , πi)

for each i = 1, . . . ,N, where π
(N∗)
−i := (πj∗)j6=i.

Tamer Başar MFGs-Rome 2017 9 / 60



Nash equilibria

There are two challenges pertaining to Nash equilibria:
I Almost decentralized nature of the information structure of the problem.
I Curse of dimensionality: the solution of the problem becomes intractable

when the numbers of states/actions and/or agents are large.

Therefore, it is of interest to find an approximate decentralized

equilibrium with reduced complexity.

This is where the MFG approach comes in handy.
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Approximate Markov-Nash equilibria

To that end, we adopt the following solution concept:

Definition

A policy π(N∗) ∈ M(N) is a Markov-Nash equilibrium if

J(N)
i (π(N∗)) = inf

πi∈Mi

J(N)
i (π

(N∗)
−i , πi)

for each i = 1, . . . ,N, and an ε-Markov-Nash equilibrium (for a given ε > 0)

if

J(N)
i (π(N∗)) ≤ inf

πi∈Mi

J(N)
i (π

(N∗)
−i , πi) + ε

for each i = 1, . . . ,N.
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Highlights–Main steps

A proof of existence of ε-Markov-Nash equilibria for games with

sufficiently many agents.

To this end, we first consider a mean-field game that arises in the

infinite-population limit N →∞.

We prove the existence of a mean-field equilibrium for this limiting

mean-field game.

Then, we show that the mean-field equilibrium is an approximate

Markov-Nash equilibrium for the original game problem with

sufficiently many agents.
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Relevant literature

History and literature on continuous-time mean-field games are well

known to this audience.

There are relatively few results on discrete-time mean-field games.

Most earlier works (Gomes et al.’10, Adlakha et al.’15, Elliot et al.’13,

Moon and Başar’15, Nourian and Nair’13) consider discrete or linear

models.

Biswas’15 considers average-cost setting with σ-compact Polish state

space. But, in this work, agents are only coupled through the cost

function.
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Mean field game (MFG)

Mean field game is the infinite-population limit N →∞ of the original

game.

We have a single agent and model the collective behavior of other agents

by an exogenous state-measure flow µ := (µt)t≥0 ∈ P(X)∞ with a given

initial condition µ0.

Given µ, a generic agent has the following state dynamics:

x(t + 1) = F
(
x(t), a(t), µt, v(t)

)
.

A generic agent selects its actions {a(t)} to minimize a functional given

in terms of the one-stage cost function c.
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Control policies for MFG

History spaces Gt = (X× A)t × X for t = 0, 1, . . ..

A policy is a sequence π = {πt} of stochastic kernels on A given Gt. The

set of all policies is denoted by Π.

A Markov policy is a sequence π = {πt} of stochastic kernels on A given

X. The set of Markov policies is denoted by M.
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Mean field equilibria

A policy π∗ ∈ M is optimal for µ if

Jµ(π∗) = inf
π∈Π

Jµ(π),

where

Jµ(π) := Eπ
[ ∞∑

t=0

βtc(x(t), a(t), µt)

]
.

LetM :=
{
µ ∈ P(X)∞ : µ0 is fixed

}
.
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Mean field equilibria

Define the set-valued mapping Φ :M→ 2M as

Φ(µ) = {π ∈ M : π is optimal for µ}.

Conversely, define a mapping Λ : M→M as follows: given π ∈ M,

µ := Λ(π) is constructed recursively as

µt+1( · ) =

∫
X×A

p( · |x(t), a(t), µt)πt(da(t)|x(t))µt(dx(t)).
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Mean field equilibria

We now introduce the notion of an equilibrium for the mean-field game:

Definition
A pair (π,µ) ∈ M×M is a mean-field equilibrium if π ∈ Φ(µ) and

µ = Λ(π).
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Notation

Let w : X→ R+ be a continuous moment function and α > 0.

(We assume w(x) ≥ 1 + dX(x, x0)p for some p ≥ 1 and x0 ∈ X; w can be

replaced by 1 if c is bounded.)

For any g : X→ R and µ ∈ P(X), define

‖g‖w := sup
x∈X

|g(x)|
w(x)

‖µ‖w := sup
‖g‖w≤1

∣∣∣∣∫
X

g(x)µ(dx)

∣∣∣∣.
For each t ≥ 0, define

P t
w(X) :=

{
µ ∈ P(X) :

∫
X

w(x)µ(dx) ≤ αtM
}
,

where
∫

X w(x)µ0(dx) =: M <∞.
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Assumption 1

(a) The cost function c is continuous.

(b) A is compact and X is locally compact.

(c) The stochastic kernel p is weakly continuous.

(d) We have

sup
(a,µ)∈A×P(X)

∫
X

w(y)p(dy|x, a, µ) ≤ αw(x).

(e) The function
∫

X w(y)p(dy|x, a, µ) is continuous in (x, a, µ).

(f) There exist γ ≥ 1 and a positive real number R such that for each t ≥ 0,

if we define Mt := γtR, then

sup
(a,µ)∈A×P t

w(X)

c(x, a, µ) ≤ Mtw(x).

(g) αβγ < 1.
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Revisiting the special class of stochastic NZSDGs

Dynamics of a generic agent i:

xN
i (t + 1) =

1
N

N∑
j=1

f
(
xN

i (t), aN
i (t), xN

j (t)
)

+ g
(
xN

i (t), aN
i (t)

)
vN

i (t)

=

∫
X

f
(
xN

i (t), aN
i (t), y

)
e(N)

t (dy) + g
(
xN

i (t), aN
i (t)

)
vN

i (t)

=: F
(
xN

i (t), aN
i (t), e(N)

t , vi(t)
)
,

where {vN
i (t)} is a sequence of i.i.d. Gaussian random variables.

One-stage cost function of a generic agent i:

c(xN
i (t), aN

i (t), e(N)
t ) =

1
N

N∑
j=1

d
(
xN

i (t), aN
i (t), xN

j (t)
)

=

∫
X

d
(
xN

i (t), aN
i (t), y

)
e(N)

t (dy)
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Assumption 1 vis à vis the special class

Assumption 1 holds for the special class of NZSDGs, with w(x) = 1 + x2,

under the following conditions:

A is compact.

g is continuous, and f is bounded and continuous.

supa∈A g2(x, a) ≤ Lx2 for some L > 0.

sup(x,a,y)∈K×A×X d(x, a, y) <∞ for any compact K ⊂ X.

d(x, a, y) ≤ Rw(x)w(y) for some R > 0.

ωd(r)→ 0 as r → 0, where

ωd(r) = sup
y∈X

sup
|x−x′|+|a−a′|≤r

|d(x, a, y)− d(x′, a′, y)|

α2β < 1, where α = max{1 + ‖f‖,L}
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Existence of MF equilibrium

Theorem 1
Under Assumption 1, the mean-field game admits a mean-field equilibrium

(π,µ).

Sketch of proof (for the case of bounded c):

For any ν ∈ P(X× A)∞, let Jν∗,t denote the value function at time t of the

nonhomogeneous Markov decision process that a generic agent is faced with:

Jν∗,t(x) := inf
π∈M

Eπ
[ ∞∑

k=t

βkc(x(t), a(t), νt,1)

∣∣∣∣x(t) = x
]
.

Hence, using dynamic programming,

Jν∗,t(x) = min
a∈A

[
c(x, a, νt,1) + β

∫
X

Jν∗,t+1(y)p(dy|x, a, νt,1)

]
=: Tν

t Jν∗,t+1(x).
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Existence of MF equilibrium
Adopting the technique of Jovanovic-Rosental (JME’88), introduce a

set-valued mapping Γ : P(X× A)∞ → 2P(X×A)∞ by

Γ(ν) = C(ν) ∩ B(ν),

where

C(ν) :=

{
ν ′ : ν ′0,1 = µ0, ν ′t+1,1( · ) =

∫
X×A

p( · |x, a, νt,1)νt(dx, da)

}
and

B(ν) :=

{
ν ′ : ∀t ≥ 0, ν ′t

({
(x, a) : c(x, a, νt,1)

+ β

∫
X

Jν∗,t+1p(dy|x, a, νt,1) = Tν
t Jν∗,t+1(x)

})
= 1
}
.
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Existence of MF equilibrium

Suppose that Γ has a fixed point ν = (νt)t≥0. Construct a Markov policy

π = (πt)t≥0 by disintegrating each νt as νt(dx, da) = νt,1(dx)πt(da|x), and let

ν1 = (νt,1)t≥0. Then the pair (π,ν1) is a mean-field equilibrium. Hence, to

complete the proof it suffices to prove that Γ has a fixed point.

Let us define

P t
w(X× A) :=

{
ν ∈ P(X× A) : ν1 ∈ P t

w(X)
}
.

Note that P t
w(X× A) is compact. Let Ξ :=

∏∞
t=0 P t

w(X× A), which is convex

and compact with respect to the product topology. One can prove that for any

ν ∈ Ξ, we have Γ(ν) ⊂ Ξ.
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Existence of MF equilibrium

The final piece we need in order to deduce the existence of a fixed point of Γ

by an appeal to Kakutani’s fixed point theorem is the following: The graph of

Γ, i.e., the set

Gr(Γ) := {(ν, ξ) ∈ Ξ× Ξ : ξ ∈ Γ(ν)} ,

is closed.
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Existence of approximate Markov-Nash equilibrium

Define the following moduli of continuity:

ωp(r) := sup
(x,a)∈X×A

sup
µ,ν:

ρw(µ,ν)≤r

‖p( · |x, a, µ)− p( · |x, a, ν)‖w

ωc(r) := sup
(x,a)∈X×A

sup
µ,ν:

ρw(µ,ν)≤r

|c(x, a, µ)− c(x, a, ν)|.

For any function g : Pw(X)→ R, we define the w-norm of g as follows:

‖g‖∗w := sup
µ∈Pw(X)

|g(µ)|∫
X wdµ

.
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Assumption 2

(h) ωp(r)→ 0 and ωc(r)→ 0 as r → 0. Moreover, for any µ ∈ Pw(X), the

functions

ωp(ρw( · , µ)) : Pw(X)→ R

ωc(ρw( · , µ)) : Pw(X)→ R

have finite w-norm.

(i) There exists a positive real number B such that

sup
(a,µ)∈A×Pw(X)

∫
X

v2(y)p(dy|x, a, µ) ≤ Bv2(x).
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Revisiting the special class of stochastic NZSDGs

Dynamics of a generic agent i:

xN
i (t + 1) =

1
N

N∑
j=1

f
(
xN

i (t), aN
i (t), xN

j (t)
)

+ g
(
xN

i (t), aN
i (t)

)
vN

i (t)

=

∫
X

f
(
xN

i (t), aN
i (t), y

)
e(N)

t (dy) + g
(
xN

i (t), aN
i (t)

)
vN

i (t)

=: F
(
xN

i (t), aN
i (t), e(N)

t , vi(t)
)
,

where {vN
i (t)} is a sequence of i.i.d. Gaussian random variables.

One-stage cost function of a generic agent i:

c(xN
i (t), aN

i (t), e(N)
t ) =

1
N

N∑
j=1

d
(
xN

i (t), aN
i (t), xN

j (t)
)

=

∫
X

d
(
xN

i (t), aN
i (t), y

)
e(N)

t (dy)
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Assumption 2 vis à vis the special class

Assumption 2 holds for the special class of NZSSDGs under the following

conditions:

d(x, a, y) is (uniformly) Hölder continuous in y with exponent p and

Hölder constant Kd.

f (x, a, y) is (uniformly) Hölder continuous in y with exponent p and

Hölder constant Kf .

g is bounded and inf(x,a)∈X×A |g(x, a)| > 0.
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Main result

Theorem 2
Suppose that Assumptions 1 and 2 hold. Then, for any ε > 0, there exists a

positive integer N(ε), such that, for each N ≥ N(ε), the policy

π(N) = {π, π, . . . , π} is an ε-Markov-Nash equilibrium for the game with N

agents.
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Logic of the proof

We first show that as N →∞ the empirical distribution of the agents’
states at each time t converges to a deterministic limit given by the
mean-field equilibrium distribution of the state at time t.

I This allows us to deduce that the evolution of the state of a generic agent

closely tracks the equilibrium state-measure flow in the infinite-population

limit.

We then show that the infinite population limit is insensitive to

individual-agent deviations from the mean-field equilibrium policy.

Tamer Başar MFGs-Rome 2017 32 / 60



Sketch of the proof (for bounded c)

Let (π,µ) denote the mean-field equilibrium. One can prove that for all t ≥ 0,

L(e(N)
t )→ δµt weakly in P(P(X)), as N →∞. Using this, we obtain

lim
N→∞

J(N)
1 (π(N)) = Jµ(π) = inf

π′∈Π
Jµ(π′). (1)
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Sketch of the proof (continued)

Let {π̃(N)}N≥1 ⊂ M1 be an arbitrary sequence of Markov policies for Agent 1

and let ẽ(N)
t denote the corresponding empirical distribution. Then, we can

prove that for each t ≥ 0, L(ẽ(N)
t )→ δµt weakly in P(P(X)), as N →∞.

Using this, we obtain

lim
N→∞

∣∣J(N)
1 (π̃(N), π, . . . , π)− Jµ(π̃(N))

∣∣ = 0. (2)
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Sketch of the proof (continued)

Given ε > 0, for each N ≥ 1, let π̃(N) ∈ M1 be such that

J(N)
1 (π̃(N), π, . . . , π) < inf

π′∈M1
J(N)

1 (π′, π, . . . , π) +
ε

3
.

Then, by (1) and (2), we have

lim
N→∞

J(N)
1 (π̃(N), π, . . . , π) = lim

N→∞
Jµ(π̃(N))

≥ inf
π′

Jµ(π′)

= Jµ(π)

= lim
N→∞

J(N)
1 (π, π, . . . , π),

which completes the proof.
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Part II

Partially-observed mean-field games
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Partially-observed mean-field game model

For i ∈ {1, . . . ,N}, Agent i has the following state and observation

dynamics:

xN
i (t + 1) = F

(
xN

i (t), aN
i (t), e(N)

t , vN
i (t)

)
,

yN
i (t) = H

(
xN

i (t), e(N)
t ,wN

i (t)
)
,

where the noise processes {vN
i (t)} and {wN

i (t)} are i.i.d. sequences and

independent of each other.

yN
i (t) is the Y-valued observation variable.

Agent i selects its actions {aN
i (t)} based on its observations to minimize

discounted cost given in terms of the one-stage cost function

c : X× A× P(X)→ [0,∞).
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Control policies

History spaces Ht = (Y× A)t × Y, t = 0, 1, 2, . . ..

A policy for a generic agent is a sequence π = {πt} of stochastic kernels

on A given Ht.

The set of all policies for Agent i is denoted by Πi.

Let Π(N) =
∏N

i=1 Πi.
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The special class with noisy measurements

Dynamics of a generic agent i:

xN
i (t + 1) =

1
N

N∑
j=1

f
(
xN

i (t), aN
i (t), xN

j (t)
)

+ g
(
xN

i (t), aN
i (t)

)
vN

i (t)

=: F
(
xN

i (t), aN
i (t), e(N)

t , vN
i (t)

)
,

yN
i (t) =

1
N

N∑
j=1

h
(
xN

i (t), xN
j (t)

)
+ wN

i (t)

=: H
(
xN

i (t), e(N)
t ,wN

i (t)
)
,

where {vN
i (t)} and {wN

i (t)} are sequences of i.i.d. Gaussian random

variables.

One-stage cost function of a generic agent i is same as in fully-observed

case.
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Nash equilibria

Establishing the existence of Nash equilibria for PO-MFG is difficult due
to:

I Almost decentralized and noisy nature of the information structure of the

problem.
I Curse of dimensionality: the solution of the problem becomes intractable

when the numbers of states/actions/observations and/or agents are large.

Therefore, it is of interest to find an approximate decentralized

equilibrium with reduced complexity.

Note that if the number of players is small, it is all but impossible to

show even the existence of approximate Nash equilibria for this general

class (it is possible for the LQG case – TB (TAC’78)).
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Approximate Nash equilibria

Definition

A policy π(N∗) ∈ Π(N) is an ε-Nash equilibrium (for a given ε > 0) if

J(N)
i (π(N∗)) ≤ inf

πi∈Πi

J(N)
i (π

(N∗)
−i , πi) + ε

for each i = 1, . . . ,N.

Tamer Başar MFGs-Rome 2017 41 / 60



Relevant literature

In the literature relatively few results are available on PO-MFGs.

This one appears to be the first one that studies discrete-time PO-MFGs

with such generality.

Most earlier works (Huang et al.’06, Şen and Caines’14,15,16,16, Tang

and Meng’16, Huang and Wang’14) consider continuous time models.
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Partially-observed mean field game (MFG)

Similar to fully-observed case, mean field game is the infinite-population

limit N →∞ of the original partially-observed game.

We have a single agent and model the collective behavior of other agents

by an exogenous state-measure flow µ := (µt)t≥0 ∈ P(X)∞ with a given

initial condition µ0.

Given µ, a generic agent has the following state and observation

dynamics:

x(t + 1) = F
(
x(t), a(t), µt, v(t)

)
,

y(t) = H
(
x(t), µt,w(t)

)
.

A generic agent selects its actions {a(t)} based on its observations to

minimize discounted cost given in terms of the one-stage cost function c.
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Control policies for MFG

History spaces Gt = (Y× A)t × Y for t = 0, 1, . . ..

A policy is a sequence π = {πt} of stochastic kernels on A given Gt. The

set of all policies is denoted by Π.
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Mean field equilibria

A policy π∗ ∈ Π is optimal for µ if

Jµ(π∗) = inf
π∈Π

Jµ(π).

LetM :=
{
µ ∈ P(X)∞ : µ0 is fixed

}
.
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Mean field equilibria

Define the set-valued mapping Φ :M→ 2Π as

Φ(µ) = {π ∈ Π : π is optimal for µ}.

Conversely, define a mapping Λ : Π→M as follows: given π ∈ Π,

µ := Λ(π) is constructed recursively as

µt+1( · ) =

∫
X×A

p( · |x(t), a(t), µt)Pπ(da(t)|x(t))µt(dx(t)),

where Pπ(da(t)|x(t)) is the conditional distribution of a(t) given x(t),

under π.
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Mean field equilibria

Definition
A pair (π,µ) ∈ Π×M is a mean-field equilibrium if π ∈ Φ(µ) and

µ = Λ(π).
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Assumption 3

(a) The cost function c is bounded and continuous.

(b) A is compact and X is locally compact.

(c) The stochastic kernel p is weakly continuous.

(d) The observation kernel r is continuous in (x, µ) with respect to total

variation distance.

(e) For some α > 0 and a continuous moment function w : X→ [0,∞),

sup
(a,µ)∈A×P(X)

∫
X

w(y)p(dy|x, a, µ) ≤ αw(x).
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Assumption 3 vis à vis the special class

Assumption 3 holds for the special case with w(x) = 1 + x2 and

α = max{1 + ‖f‖2,L} under the following conditions:

A is compact.

d is continuous and bounded.

g is continuous, and f is bounded and continuous.

supa∈A g2(x, a) ≤ Lx2 for some L > 0.

h is continuous and bounded.
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Existence of MF equilibrium

Theorem 3
Under Assumption 3, the partially-observed mean-field game admits a

mean-field equilibrium (π,µ).

To establish the existence of mean-field equilibrium, we use fully

observed reduction of partially observed control problems and the

dynamic programming principle.
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Sketch of proof

Given any measure flow µ, the optimal control problem for the

mean-field game (X,A,Y, p, r, c) reduces to partially observed Markov

decision process (POMDP).

We know that this POMDP can be reduced to a fully observed MDP

(belief-state MDP) (Z,A, {ηµt }t≥0, {Cµ
t }t≥0), where Z = P(X).

Hence, we can use the technique developed for fully-observed case to

prove the existence of mean-field equilibrium.

However, there is a crucial difference between this problem and

fully-observed version: We do not have explicit analytical expression

describing the relation between µ and ηµt from which we can deduce the

continuity of ηµt with respect to µ.
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Sketch of proof

Define the mapping B : P(Z)→ P(X) as follows:

B(ν)( · ) =

∫
Z

z( · ) ν(dz).

Using this definition, for any ν ∈ P(Z× A)∞, we define the measure

flow µν ∈ P(X)∞ as follows:

µν =
(
B(νt,1)

)
t≥0.

For any ν ∈ P(Z× A)∞, let Jν∗,t denote the value function at time t of

the belief-state MDP that a generic agent is faced with for µν .
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Sketch of proof

Similar to fully-observed case, define the set-valued mapping

Γ : P(Z× A)∞ → 2P(Z×A)∞ by

Γ(ν) = C(ν) ∩ B(ν),

where

C(ν) :=

{
ν ′ : ν ′0,1 = δµ0 , ν ′t+1,1( · ) =

∫
Z×A

ηνt ( · |z, a)νt(dz, da)

}
and

B(ν) :=

{
ν ′ : ∀t ≥ 0, ν ′t

({
(z, a) : Cν

t (z, a)

+ β

∫
Z

Jν∗,t+1η
ν
t (dy|z, a) = Tν

t Jν∗,t+1(z)
})

= 1
}
.
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Sketch of proof

One can prove that ηνt is continuous with respect to ν.

This is a key element of the proof.

The rest of the proof is the same as the proof in fully-observed case.
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Existence of approximate Markov-Nash equilibrium

Let (π′,µ) be a mean-field equilibrium.

Define the following moduli of continuity:

ωp(r) := sup
(x,a)∈X×A

sup
µ,ν:

dBL(µ,ν)≤r

‖p( · |x, a, µ)− p( · |x, a, ν)‖w

ωc(r) := sup
(x,a)∈X×A

sup
µ,ν:

dBL(µ,ν)≤r

|c(x, a, µ)− c(x, a, ν)|.

Tamer Başar MFGs-Rome 2017 55 / 60



Assumption 4

(f) ωp(r)→ 0 and ωc(r)→ 0 as r → 0.

(g) For each t ≥ 0, π′t : Gt → P(A) is deterministic; that is,

π′t( · |g(t)) = δft(g(t))( · ) for some measurable function ft : Gt → A.

(h) The observation kernel r( · |x) does not depend on the mean-field term.
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Assumption 4 vis à vis the special class

Assumption 4 holds for the special case under the following conditions:

d(x, a, y) is (uniformly) Lipschitz in y with Lipschitz constant Kd.

f (x, a, y) is (uniformly) Lipschitz in y with Lipschitz constant Kf .

g is bounded and inf(x,a)∈X×A |g(x, a)| > 0.

h is only a function of x.
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Main result

Theorem 4
Suppose that Assumptions 3 and 4 hold. Then, for any ε > 0, there exists a

positive integer N(ε), such that, for each N ≥ N(ε), the policy

π(N) = {π, π, . . . , π} is an ε-Nash equilibrium for the game with N agents.
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Logic of the proof

Since π′ is deterministic, we can construct another deterministic policy

π, which only uses observations, such that (π,µ) is also a mean-field

equilibrium.

Note that π is not necessarily Markovian.

We construct an equivalent game model whose states are the state of the

original model plus the current and past observations.

In this new model, π automatically becomes Markov.

Then, we use the proof technique in fully-observed case to show the

existence of an approximate Nash equilibrium.
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Conclusion

Existence of approximate Nash equilibria for finite-population game
problems of the mean-field type for both fully-observed and
partially-observed MFGs

I First established the existence of a Nash equilibrium in the limiting

mean-field game problem.
I Then applied this policy to the finite population game and demonstrated

that it constitutes an ε-Nash equilibrium for games with a sufficiently large

number of agents.

Extensions
I Non-homogeneous MFGs
I Average cost MFGs
I Risk-sensitive MFGs
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