Mean field games with congestion: weak solutions

Yves Achdou
Laboratoire J-L. Lions, Université Paris Diderot
(joint work with A. Porretta, U. Roma II)

Outline

(1) Introduction
(2) Weak solutions in the non singular case: $\mu>0$
(3) Weak solutions in the singular case: $\mu=0$
(4) Mean field type control with congestion

MFG with Congestion

The dynamics of a representative agent is

$$
d X_{t}=\sqrt{2 \nu} d W_{t}+\gamma_{t} d t
$$

where
$\left(W_{t}\right)$ is a d-dimensional Brownian motion
$\left(\gamma_{t}\right)$ is the control of the agent.
(1) Individual optimal control problem: the representative agent minimizes

$$
\mathbb{E}_{t, x}\left(\int_{t}^{T} \mathcal{L}\left(X_{s}, \gamma_{s} ; m_{s}\right) d s+G\left(X_{T} ; m_{T}\right)\right)
$$

where m_{s} is the distribution of states (a single agent is assumed to have no influence on m_{s}).
Dynamic programming yields an optimal feedback γ_{t}^{*} and an optimal trajectory X_{t}^{*}.
(2) Nash equilibria:

$$
m_{t}=\text { law of } X_{t}^{*}
$$

Congestion

- The cost of motion at x depends on $m(x)$ in an increasing manner.
- A typical example was introduced by P-L. Lions (lectures at Collège de France):

$$
\mathcal{L}(x, \gamma ; m) \sim(\mu+m(x))^{\sigma}|\gamma|^{q^{\prime}}+F(x, m(x))
$$

where $\mu \geq 0, \sigma>0$ and $q^{\prime}>1$.
The corresponding Hamiltonian is of the form

$$
\mathcal{H}(x, p ; m)=\frac{|p|^{q}}{(\mu+m(x))^{\alpha}}-F(x, m(x)),
$$

with $\alpha=\sigma(q-1)$.

Remarks

- Degeneracy of the Hamiltonian H as $m \rightarrow+\infty$
- This model is named "Soft Congestion" by Santambrogio and his coauthors. Their "Hard Congestion" models include inequality contraints on m : $m \leq \bar{m}$

The system of PDEs and the main assumptions

$$
\begin{cases}-\partial_{t} u-\nu \Delta u+\frac{1}{q} \frac{|D u|^{q}}{(m+\mu)^{\alpha}}=F(m), & (t, x) \in(0, T) \times \Omega \tag{1}\\ \partial_{t} m-\nu \Delta m-\operatorname{div}\left(m \frac{|D u|^{q-2} D u}{(m+\mu)^{\alpha}}\right)=0, & (t, x) \in(0, T) \times \Omega \\ m(0, x)=m_{0}(x), u(T, x)=G(x, m(T)), & x \in \Omega\end{cases}
$$

The system of PDEs and the main assumptions

$$
\begin{cases}-\partial_{t} u-\nu \Delta u+\frac{1}{q} \frac{|D u|^{q}}{(m+\mu)^{\alpha}}=F(m), & (t, x) \in(0, T) \times \Omega \tag{1}\\ \partial_{t} m-\nu \Delta m-\operatorname{div}\left(m \frac{|D u|^{q-2} D u}{(m+\mu)^{\alpha}}\right)=0, & (t, x) \in(0, T) \times \Omega \\ m(0, x)=m_{0}(x), u(T, x)=G(x, m(T)), & x \in \Omega .\end{cases}
$$

Main assumptions

For simplicity, $\Omega=\mathbb{R}^{d} / \mathbb{Z}^{d}$: no difficulty from boundary conditions

The system of PDEs and the main assumptions

$$
\begin{cases}-\partial_{t} u-\nu \Delta u+\frac{1}{q} \frac{|D u|^{q}}{(m+\mu)^{\alpha}}=F(m), & (t, x) \in(0, T) \times \Omega \tag{1}\\ \partial_{t} m-\nu \Delta m-\operatorname{div}\left(m \frac{|D u|^{q-2} D u}{(m+\mu)^{\alpha}}\right)=0, & (t, x) \in(0, T) \times \Omega \\ m(0, x)=m_{0}(x), u(T, x)=G(x, m(T)), & x \in \Omega .\end{cases}
$$

Main assumptions

F and G are bounded from below.
$\exists \lambda>0, \kappa \geq 0$, and a nondecreasing function f such that $s \mapsto f(s) s$ is convex s.t.

$$
\lambda f(m)-\kappa \leq F(t, x, m) \leq \frac{1}{\lambda} f(m)+\kappa, \quad \forall m \geq 0 .
$$

Remark: no restriction on the growth

Same kind of assumption for G.

The system of PDEs and the main assumptions

$$
\begin{cases}-\partial_{t} u-\nu \Delta u+\frac{1}{q} \frac{|D u|^{q}}{(m+\mu)^{\alpha}}=F(m), & (t, x) \in(0, T) \times \Omega \tag{1}\\ \partial_{t} m-\nu \Delta m-\operatorname{div}\left(m \frac{|D u|^{q-2} D u}{(m+\mu)^{\alpha}}\right)=0, & (t, x) \in(0, T) \times \Omega \\ m(0, x)=m_{0}(x), u(T, x)=G(x, m(T)), & x \in \Omega\end{cases}
$$

Main assumptions

$$
m_{0} \in C(\Omega) \quad \text { and } \quad m_{0} \geq 0
$$

The system of PDEs and the main assumptions

$$
\begin{cases}-\partial_{t} u-\nu \Delta u+\frac{1}{q} \frac{|D u|^{q}}{(m+\mu)^{\alpha}}=F(m), & (t, x) \in(0, T) \times \Omega \tag{1}\\ \partial_{t} m-\nu \Delta m-\operatorname{div}\left(m \frac{|D u|^{q-2} D u}{(m+\mu)^{\alpha}}\right)=0, & (t, x) \in(0, T) \times \Omega \\ m(0, x)=m_{0}(x), u(T, x)=G(x, m(T)), & x \in \Omega\end{cases}
$$

Main assumptions

-

$$
1<q \leq 2
$$

- Either $\mu>0$ (non singular case) or $\mu=0$ (singular case)
-

$$
0<\alpha \leq 4 \frac{q-1}{q}=\frac{4}{q^{\prime}}
$$

The condition $\alpha \leq 4(q-1) / q$

General MFG with local coupling: for systems of the form

$$
\begin{cases}-\partial_{t} u-\nu \Delta u+H(x, p, m)=F(m) & (t, x) \in(0, T) \times \Omega \\ \partial_{t} m-\nu \Delta m-\operatorname{div}\left(m H_{p}(x, p, m)\right)=0, & (t, x) \in(0, T) \times \Omega \\ m(0, x)=m_{0}(x), u(T, x)=G(m(T, x)), & x \in \Omega\end{cases}
$$

P-L. Lions proved that a sufficient condition for the uniqueness of classical solutions is that F and G be non decreasing and that

$$
\left(\begin{array}{cc}
-H_{m}(x, p, m) & \frac{1}{2} m H_{m, p}^{T}(x, p, m) \\
\frac{1}{2} m H_{m, p}(x, p, m) & m H_{p, p}(x, p, m)
\end{array}\right)>0
$$

for all $x \in \Omega, m>0$ and $p \in \mathbb{R}^{d}$.

In the present congestion model, this condition is equivalent to $\alpha \leq 4 \frac{q-1}{q}$.

Some references

- P-L. Lions [~ 2011]: lectures at Collège de France. In particular, the condition for uniqueness of classical solutions.
- Gomes-Mitake [2015]: existence of classical solutions in a specific stationary case: purely quadratic Hamiltonian, i.e. $H(x, p, m)=\frac{|p|^{2}}{m^{\alpha}}$, with a very special trick
- Gomes-Voskanyan[2015] and Graber[2015]: short-time existence results of classical solutions for evolutive MFG with congestion

In general, for the existence of classical solutions, restrictive assumptions (e.g. on the growth of F and G) are needed.

In particular, if $H(x, p, m)=\frac{|p|^{q}}{m^{\alpha}}$, one needs to prove that m does not vanish.
It seems more feasible to work with weak solutions.

Weak solutions

- Weak solutions of the MFG systems were introduced by Lasry and Lions in 2007
- For Hamiltonians with separate dependencies: $\mathcal{H}(x, p, m)=H(x, p)-F(m)$, Porretta, [ARMA 2015], showed that weak solutions allow to build a very general well-posed setting
- Allow to prove general convergence results for numerical schemes [A.-Porretta 2016]
- If the MFG system of PDEs can be rephrased as the optimality conditions of an optimal control problem driven by some PDE, then
- weak solutions are the minima of a relaxed functional
- variational methods can be used This occurs often when the Hamiltonian depends separately on p and m.
- Can be used for degenerate diffusion [Cardaliaguet-Graber-Porretta-Tonon 2015]
- The variational approach leads to robust (but often slow) numerical methods [Benamou-Carlier], [A.-Laurière]
- Difficulty with the present congestion model: it is not possible to use a variational approach.

Outline

(1) Introduction

(2) Weak solutions in the non singular case: $\mu>0$
(3) Weak solutions in the singular case: $\mu=0$
(4) Mean field type control with congestion

The main result

Consider the model problem:

$$
\begin{cases}-\partial_{t} u-\nu \Delta u+\frac{1}{q} \frac{|D u|^{q}}{(m+\mu)^{\alpha}}=F(m), & (t, x) \in(0, T) \times \Omega \\ \partial_{t} m-\nu \Delta m-\operatorname{div}\left(m \frac{|D u|^{q-2} D u}{(m+\mu)^{\alpha}}\right)=0, & (t, x) \in(0, T) \times \Omega \\ m(0, x)=m_{0}(x), u(T, x)=G(x, m(T, x)), & x \in \Omega\end{cases}
$$

Definition

A weak solution (u, m) is a distributional solution of the system such that

$$
\begin{array}{ll}
m F(m) \in L^{1}, & m_{T} G\left(m_{T}\right) \in L^{1}(\Omega), \\
m \frac{|D u|^{q}}{(\mu+m)^{\alpha}} \in L^{1}, & \frac{|D u|^{q}}{(\mu+m)^{\alpha}} \in L^{1} .
\end{array}
$$

Theorem

Under the previous assumptions and if F and G are non decreasing, then there exists a unique weak solution.

Extension

Existence and uniqueness of weak solutions holds for

$$
\begin{cases}-\partial_{t} u-\nu \Delta u+H(t, x, p, m)=F(m) & (t, x) \in(0, T) \times \Omega \\ \partial_{t} m-\nu \Delta m-\operatorname{div}\left(m H_{p}(t, x, p, m)\right)=0, & (t, x) \in(0, T) \times \Omega \\ m(0, x)=m_{0}(x), u(T, x)=G(m(T, x)), & x \in \Omega\end{cases}
$$

under the structure conditions

$$
\begin{array}{r}
H(t, x, 0, m) \leq 0 \\
H(t, x, p, m) \geq c_{0} \frac{|p|^{q}}{(m+\mu)^{\alpha}}-c_{1}\left(1+m^{\frac{\alpha}{q-1}}\right), \\
\left|H_{p}(t, x, p, m)\right| \leq c_{2}\left(1+\frac{|p|^{q-1}}{(m+\mu)^{\alpha}}\right), \\
H_{p}(t, x, p, m) \cdot p \geq(1+\sigma) H(t, x, p, m)-c_{3}\left(1+m^{\frac{\alpha}{q-1}}\right),
\end{array}
$$

for a.e. $(t, x) \in Q_{T}$ and every $p \in \mathbb{R}^{N}$, where $\sigma, c_{0}, \ldots, c_{3}$ are positive constants, and the same assumptions on $F, G \alpha$ and q.

Main arguments in the proof

A regularized problem and energy estimates

$$
\begin{array}{rc}
-\partial_{t} u^{\epsilon}-\nu \Delta u^{\epsilon}+H\left(t, x, T_{1 / \epsilon} m^{\epsilon}, D u^{\epsilon}\right)=F^{\epsilon}\left(t, x, m^{\epsilon}\right), & (t, x) \in(0, T) \times \Omega \\
\partial_{t} m^{\epsilon}-\nu \Delta m^{\epsilon}-\operatorname{div}\left(m^{\epsilon} H_{p}\left(t, x, T_{1 / \epsilon} m^{\epsilon}, D u^{\epsilon}\right)\right)=0, & (t, x) \in(0, T) \times \Omega \\
m^{\epsilon}(0, x)=m_{0}^{\epsilon}(x), u^{\epsilon}(T, x)=G^{\epsilon}\left(x, m^{\epsilon}(T)\right), & x \in \Omega
\end{array}
$$

where

$$
\begin{aligned}
T_{1 / \epsilon} m & =\min (m, 1 / \epsilon), \\
F^{\epsilon}(t, x, m) & \left.=\rho^{\epsilon} \star F\left(t, \cdot, \rho^{\epsilon} \star m\right)\right)(x), \\
G^{\epsilon}(x, m) & \left.=\rho^{\epsilon} \star G\left(\cdot, \rho^{\epsilon} \star m\right)\right)(x), \\
m_{0}^{\epsilon} & =\rho^{\epsilon} \star m_{0},
\end{aligned}
$$

and ρ^{ϵ} is a standard symmetric mollifier in \mathbb{R}^{d}.

A regularized problem and energy estimates

$$
\begin{array}{rc}
-\partial_{t} u^{\epsilon}-\nu \Delta u^{\epsilon}+H\left(t, x, T_{1 / \epsilon} m^{\epsilon}, D u^{\epsilon}\right)=F^{\epsilon}\left(t, x, m^{\epsilon}\right), & (t, x) \in(0, T) \times \Omega \\
\partial_{t} m^{\epsilon}-\nu \Delta m^{\epsilon}-\operatorname{div}\left(m^{\epsilon} H_{p}\left(t, x, T_{1 / \epsilon} m^{\epsilon}, D u^{\epsilon}\right)\right)=0, & (t, x) \in(0, T) \times \Omega \\
m^{\epsilon}(0, x)=m_{0}^{\epsilon}(x), u^{\epsilon}(T, x)=G^{\epsilon}\left(x, m^{\epsilon}(T)\right), & x \in \Omega
\end{array}
$$

where

$$
\begin{aligned}
T_{1 / \epsilon} m & =\min (m, 1 / \epsilon), \\
F^{\epsilon}(t, x, m) & \left.=\rho^{\epsilon} \star F\left(t, \cdot, \rho^{\epsilon} \star m\right)\right)(x), \\
G^{\epsilon}(x, m) & \left.=\rho^{\epsilon} \star G\left(\cdot, \rho^{\epsilon} \star m\right)\right)(x), \\
m_{0}^{\epsilon} & =\rho^{\epsilon} \star m_{0},
\end{aligned}
$$

and ρ^{ϵ} is a standard symmetric mollifier in \mathbb{R}^{d}.
Standard energy estimates:

$$
\begin{aligned}
& u^{\epsilon}(t, x) \geq C,\left\|u^{\epsilon}\right\|_{L^{\infty}\left(0, T ; L^{1}(\Omega)\right)} \leq C \\
& \int_{\Omega} G^{\epsilon}\left(x, m^{\epsilon}(T)\right) m^{\epsilon}(T) d x+\int_{0}^{T} \int_{\Omega} F^{\epsilon}\left(t, x, m^{\epsilon}\right) m^{\epsilon} d x d t+\left\|\left(T_{1 / \epsilon} m^{\epsilon}\right)^{\frac{\alpha}{q-1}+1}\right\|_{\frac{N+2}{N}} \leq C \\
& \int_{0}^{T} \int_{\Omega} \frac{\left|D u^{\epsilon}\right|^{q}}{\left(T_{1 / \epsilon} m^{\epsilon}+\mu\right)^{\alpha}} d x d t+\int_{0}^{T} \int_{\Omega} m^{\epsilon} \frac{\left|D u^{\epsilon}\right|^{q}}{\left(T_{1 / \epsilon} m^{\epsilon}+\mu\right)^{\alpha}} d x d t \leq C
\end{aligned}
$$

Properties of Fokker-Planck equations with L^{2} drifts. [Porretta, ARMA 2015]

Set $Q_{T}=(0, T) \times \Omega$. For any $b \in L^{2}\left(Q_{T} ; \mathbb{R}^{d}\right)$, consider the Fokker-Planck equation

$$
\left\{\begin{array}{rll}
\partial_{t} m-\nu \Delta m-\operatorname{div}(m b) & = & 0 \tag{2}\\
m(t=0) & = & \text { in }(0, T) \times \Omega
\end{array}\right.
$$

Properties of Fokker-Planck equations with L^{2} drifts. [Porretta, ARMA 2015]

Set $Q_{T}=(0, T) \times \Omega$. For any $b \in L^{2}\left(Q_{T} ; \mathbb{R}^{d}\right)$, consider the Fokker-Planck equation

$$
\left\{\begin{array}{rll}
\partial_{t} m-\nu \Delta m-\operatorname{div}(m b) & = & 0 \tag{2}\\
m(t=0) & = & m_{0} .
\end{array} \quad \text { in }(0, T) \times \Omega,\right.
$$

- A weak solution is a nonnegative distributional sol. $m \in L^{1}\left(Q_{T}\right)$ of (2) s.t.

$$
\begin{equation*}
m|b|^{2} \in L^{1}\left(Q_{T}\right) \tag{3}
\end{equation*}
$$

- A renormalized solution of (2) is a nonnegative function $m \in L^{1}\left(Q_{T}\right)$ s.t.
- for any $k>0, T_{k}(m) \in L^{2}\left(0, T, H^{1}(\Omega)\right)$, where $\left.\left(T_{k}(m)\right)=\max (-k, \min (k, m))\right)$
- $\lim _{n \rightarrow+\infty} \frac{1}{n} \int_{\{n<m(t, x)<2 n\}}|D m|^{2} d x d t=0$
- for all $S \in W^{2, \infty}(\mathbb{R})$ such that S^{\prime} has compact support,

$$
\left\{\begin{array}{l}
\partial_{t} S(m)-\nu \Delta S(m)-\operatorname{div}\left(m b S^{\prime}(m)\right)+\nu S^{\prime \prime}(m)|D m|^{2}+S^{\prime \prime}(m) m b \cdot D m=0, \\
S(m(t=0))=S\left(m_{0}\right) .
\end{array}\right.
$$

Properties of Fokker-Planck equations with L^{2} drifts. [Porretta, ARMA 2015]

Set $Q_{T}=(0, T) \times \Omega$. For any $b \in L^{2}\left(Q_{T} ; \mathbb{R}^{d}\right)$, consider the Fokker-Planck equation

$$
\left\{\begin{array}{rll}
\partial_{t} m-\nu \Delta m-\operatorname{div}(m b) & = & 0 \tag{2}\\
m(t=0) & = & m_{0} .
\end{array} \quad \text { in }(0, T) \times \Omega,\right.
$$

(1) Uniqueness: there exists at most one weak solution of (2)
(2) Weak sol. \Leftrightarrow renormalized sol. and $m|b|^{2} \in L^{1}\left(Q_{T}\right)$: any weak solution m belongs to $C\left([0, T] ; L^{1}(\Omega)\right)$ and is a renormalized solution
(3) Compactness: if $\left(b, m_{0}\right)$ lies in a bounded subset of $L^{2}\left(Q_{T}\right) \times L^{1}(\Omega)$, then m lies in a relatively compact subset of $L^{1}\left(Q_{T}\right)$
(4) Stability: consider a sequence m^{ϵ} of weak solutions of the F.P equation associated to $b^{\epsilon} \in L^{2}\left(Q_{T} ; \mathbb{R}^{d}\right)$.
If $m^{\epsilon} \rightarrow m$ a.e. in Q_{T} and if $m^{\epsilon}\left|b^{\epsilon}\right|^{2} \rightarrow m|b|^{2}$ in $L^{1}\left(Q_{T}\right)$, then $m^{\epsilon} \rightarrow m$ in $C\left([0, T] ; L^{1}(\Omega)\right)$ and m is a weak solution of the F.P. equation associated to b.

Passage to the limit if $1<q<2$: main steps

- Energy estimates $\Rightarrow-\partial_{t} u^{\epsilon}-\nu \Delta u^{\epsilon}$ is bounded in $L^{1}\left(Q_{T}\right): \Rightarrow$ for subsequences, $u^{\epsilon} \rightarrow u$ and $D u^{\epsilon} \rightarrow D u$ in $L^{1}\left(Q_{T}\right)$ and a.e.

Passage to the limit if $1<q<2$: main steps

- $u^{\epsilon} \rightarrow u$ and $D u^{\epsilon} \rightarrow D u$ in $L^{1}\left(Q_{T}\right)$ and a.e.
- $\partial_{t} m^{\epsilon}-\nu \Delta m^{\epsilon}-\operatorname{div}\left(m^{\epsilon} b^{\epsilon}\right)=0$, with $\left|b^{\epsilon}\right| \approx \frac{\left|D u^{\epsilon}\right|^{q-1}}{\left(\mu+T_{1 / \epsilon} m^{\epsilon}\right)^{\alpha}}$.
- Energy estimates: $\left|b^{\epsilon}\right|_{L^{q^{\prime}}\left(Q_{T}\right)} \leq C$ with $q^{\prime} \geq 2$
$\Rightarrow m^{\epsilon}$ is compact in $L^{1}\left(Q_{T}\right) \Rightarrow m^{\epsilon} \rightarrow m$ in $L^{1}\left(Q_{T}\right)$ and a.e.
- $b^{\epsilon} \rightarrow b=H_{p}(x, D u, m)$ a.e.

Passage to the limit if $1<q<2$: main steps

- $u^{\epsilon} \rightarrow u$ and $D u^{\epsilon} \rightarrow D u$ in $L^{1}\left(Q_{T}\right)$ and a.e.
- $\partial_{t} m^{\epsilon}-\nu \Delta m^{\epsilon}-\operatorname{div}\left(m^{\epsilon} b^{\epsilon}\right)=0$, with $\left|b^{\epsilon}\right| \approx \frac{\left|D u^{\epsilon}\right|^{q-1}}{\left(\mu+T_{1 / \epsilon} m^{\epsilon}\right)^{\alpha}}$.
- $m^{\epsilon} \rightarrow m$ in $L^{1}\left(Q_{T}\right)$ and a.e.
- $b^{\epsilon} \rightarrow b=H_{p}(x, D u, m)$ a.e.
- Energy estimates and $(1-\alpha) q^{\prime} \geq-\alpha \Rightarrow \int_{Q_{T}} m^{\epsilon}\left|b^{\epsilon}\right|^{q^{\prime}} \leq C$, for a constant C independent of μ.
- Since $q^{\prime}>2, m^{\epsilon}\left|b^{\epsilon}\right|^{2}$ is compact in $L^{1}\left(Q_{T}\right)$.
- Stability result: $m^{\epsilon} \rightarrow m$ in $C\left([0, T], L^{1}(\Omega)\right)$ and m is a weak sol. of the Fokker Planck eq. related to b.

Passage to the limit if $1<q<2$: main steps

- $u^{\epsilon} \rightarrow u$ and $D u^{\epsilon} \rightarrow D u$ in $L^{1}\left(Q_{T}\right)$ and a.e.
- $\partial_{t} m^{\epsilon}-\nu \Delta m^{\epsilon}-\operatorname{div}\left(m^{\epsilon} b^{\epsilon}\right)=0$, with $\left|b^{\epsilon}\right| \approx \frac{\left|D u^{\epsilon}\right|^{q-1}}{\left(\mu+T_{1 / \epsilon} m^{\epsilon}\right)^{\alpha}}$.
- $m^{\epsilon} \rightarrow m$ in $L^{1}\left(Q_{T}\right)$ and a.e.
- $b^{\epsilon} \rightarrow b=H_{p}(x, D u, m)$ a.e.
- $m^{\epsilon} \rightarrow m$ in $C\left([0, T], L^{1}(\Omega)\right)$ and m is a weak sol. of the Fokker Planck eq. related to b.
- $F^{\epsilon}\left(m^{\epsilon}\right) \rightarrow F(m)$ and $G^{\epsilon}\left(x, m^{\epsilon}(T)\right) \rightarrow G(x, m(T))$ in L^{1}
- Passage to the limit in the Bellman equation: OK from the steps above and from stability results for HJB eq. ([Porretta 99]) because the Hamiltonian has natural growth and the good sign
- The proof is achieved for $q<2$.

The case $q=2$

What remains from the steps above?

- $u_{\epsilon} \rightarrow u, D u^{\epsilon} \rightarrow D u, m_{\epsilon} \rightarrow m$ in $L^{1}\left(Q_{T}\right)$ and a.e., $b^{\epsilon}=H_{p}\left(t, x, T_{1 / \epsilon} m^{\epsilon}, D u^{\epsilon}\right) \rightarrow b=H_{p}(t, x, m, D u)$ a.e.
- u is a subsolution of the Bellman equation (no terminal condition yet) (from Fatou lemma and the equi-integrability of $\left.F^{\epsilon}\left(t, x, m^{\epsilon}\right)\right)$
-

$$
\left.\lim _{\epsilon \rightarrow 0} \int_{\Omega} u^{\epsilon}\right|_{t=0}(x) m_{0}(x) d x \leq\left\langle\left. u\right|_{t=0}, m_{0}\right\rangle
$$

where both members of the inequality are well defined

The case $q=2$

What remains from the steps above?

- $u_{\epsilon} \rightarrow u, D u^{\epsilon} \rightarrow D u, m_{\epsilon} \rightarrow m$ in $L^{1}\left(Q_{T}\right)$ and a.e.,

$$
b^{\epsilon}=H_{p}\left(t, x, T_{1 / \epsilon} m^{\epsilon}, D u^{\epsilon}\right) \rightarrow b=H_{p}(t, x, m, D u) \text { a.e. }
$$

- u is a subsolution of the Bellman equation (no terminal condition yet) and

$$
\left.\lim _{\epsilon \rightarrow 0} \int_{\Omega} u^{\epsilon}\right|_{t=0}(x) m_{0}(x) d x \leq\left\langle\left. u\right|_{t=0}, m_{0}\right\rangle
$$

$$
m^{\epsilon} b^{\epsilon}=m^{\epsilon} H_{p}\left(t, x, T_{1 / \epsilon} m^{\epsilon}, D u^{\epsilon}\right) \leq c_{2} m^{\epsilon}+w^{\epsilon}+\sqrt{m^{\epsilon}} z^{\epsilon}
$$

where w^{ϵ} and z^{ϵ} are bounded in $L^{2}\left(Q_{T}\right)$. Therefore, $m^{\epsilon} b^{\epsilon}$ is equi-integrable $\Rightarrow m$ is a distribution sol. of the F.P. related to b

The case $q=2$

What remains from the steps above?

- $u_{\epsilon} \rightarrow u, D u^{\epsilon} \rightarrow D u, m_{\epsilon} \rightarrow m$ in $L^{1}\left(Q_{T}\right)$ and a.e.,

$$
b^{\epsilon}=H_{p}\left(t, x, T_{1 / \epsilon} m^{\epsilon}, D u^{\epsilon}\right) \rightarrow b=H_{p}(t, x, m, D u) \text { a.e. }
$$

- u is a subsolution of the Bellman equation (no terminal condition yet) and

$$
\left.\lim _{\epsilon \rightarrow 0} \int_{\Omega} u^{\epsilon}\right|_{t=0}(x) m_{0}(x) d x \leq\left\langle\left. u\right|_{t=0}, m_{0}\right\rangle
$$

- m is a distribution sol. of the F.P. related to b
-

$$
\int_{0}^{T} \int_{\Omega} F(t, x, m) m d x d t+\int_{0}^{T} \int_{\Omega} \frac{|D u|^{2}}{(m+\mu)^{\alpha}} d x d t+\int_{0}^{T} \int_{\Omega} m \frac{|D u|^{2}}{(m+\mu)^{\alpha}} d x d t \leq C
$$

- m is a weak solution of the Fokker-Planck equation, so $m \in C\left([0, T], L^{1}(\Omega)\right)$

The case $q=2$

What remains from the steps above?

- $u_{\epsilon} \rightarrow u, D u^{\epsilon} \rightarrow D u, m_{\epsilon} \rightarrow m$ in $L^{1}\left(Q_{T}\right)$ and a.e.
- u is a subsolution of the Bellman equation (no terminal condition yet) and $\left.\lim _{\epsilon \rightarrow 0} \int_{\Omega} u^{\epsilon}\right|_{t=0}(x) m_{0}(x) d x \leq\left\langle\left. u\right|_{t=0}, m_{0}\right\rangle$
- m is a weak solution of the Fokker-Planck eq., and $m \in C\left([0, T], L^{1}(\Omega)\right)$
- Finer arguments related to the F.P. equation imply that $m^{\epsilon}(t) \rightharpoonup m(t)$ in $L^{1}(\Omega)$ weak for all t, and

$$
\int_{\Omega} G(m(T)) m(T) d x \leq C
$$

The case $q=2$

What remains from the steps above?

- $u_{\epsilon} \rightarrow u, D u^{\epsilon} \rightarrow D u, m_{\epsilon} \rightarrow m$ in $L^{1}\left(Q_{T}\right)$ and a.e.
- u is a subsolution of the Bellman equation (no terminal condition yet) and $\left.\lim _{\epsilon \rightarrow 0} \int_{\Omega} u^{\epsilon}\right|_{t=0}(x) m_{0}(x) d x \leq\left\langle\left. u\right|_{t=0}, m_{0}\right\rangle$
- m is a weak solution of the Fokker-Planck eq., and $m \in C\left([0, T], L^{1}(\Omega)\right)$
- $m^{\epsilon}(t) \rightharpoonup m(t)$ in $L^{1}(\Omega)$ weak for all t, and

$$
\int_{\Omega} G(m(T)) m(T) d x \leq C
$$

One needs to work more, because $m^{\epsilon}\left|b^{\epsilon}\right|^{2}$ is no longer equi-integrable, so we do not obtain the convergence of m^{ϵ} to m in $C\left([0, T] ; L^{1}(\Omega)\right)$, and the convergence of $G^{\epsilon}\left(m^{\epsilon}(T)\right)$ is more difficult to prove.

A crossed energy inequality

Theorem

Consider (u, m) such that
(1)

$$
\begin{array}{ll}
m F(m) \in L^{1}, & m_{\mid t=T} G\left(m_{\mid t=T}\right) \in L^{1}(\Omega), \\
m \frac{|D u|^{q}}{(\mu+m)^{\alpha}} \in L^{1}, & \frac{|D u|^{q}}{(\mu+m)^{\alpha}} \in L^{1}
\end{array}
$$

(2) m is a weak sol. of (F.P. equation $+\left.m\right|_{t=0}=m_{0}$)
(3) u is a distrib. subsol. of (the Bellman equation $\left.+\left.u\right|_{t=T} \leq G\left(m_{t=T}\right)\right)$

For any pair (\tilde{u}, \tilde{m}) with the same properties as (u, m), we have the crossed-integrability:

$$
\tilde{m} \frac{|D u|^{q}}{(\mu+m)^{\alpha}} \in L^{1}, \quad m \frac{|D \tilde{u}|^{q}}{(\mu+\tilde{m})^{\alpha}} \in L^{1}, \ldots
$$

and the energy inequality:

$$
\begin{aligned}
\left\langle\tilde{m}_{0}, u(0)\right\rangle & \leq \int_{\Omega} G(x, m(T)) \tilde{m}(T) d x+\int_{0}^{T} \int_{\Omega} F(t, x, m) \tilde{m} d x d t \\
& +\int_{0}^{T} \int_{\Omega}\left[\tilde{m} H_{p}(t, x, \tilde{m}, D \tilde{u}) \cdot D u-\tilde{m} H(t, x, m, D u)\right] d x d t
\end{aligned}
$$

Passage to the limit using the crossed energy inequality

We start from the energy identity for $\left(u^{\epsilon}, m^{\epsilon}\right)$:

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega} m^{\epsilon}\left(H_{p}\left(t, x, T_{1 / \epsilon} m^{\epsilon}, D u^{\epsilon}\right) \cdot D u^{\epsilon}-H\left(t, x, T_{1 / \epsilon} m^{\epsilon}, D u^{\epsilon}\right)\right) d x d t \\
& +\int_{\Omega} m^{\epsilon}(T) G^{\epsilon}\left(x, m^{\epsilon}(T)\right) d x+\int_{0}^{T} \int_{\Omega} m^{\epsilon} F^{\epsilon}\left(t, x, m^{\epsilon}\right) d x d t=\int_{\Omega} u^{\epsilon}(0) m_{0}^{\epsilon} d x
\end{aligned}
$$

By Fatou lemma:

$$
\begin{array}{r}
\limsup _{\epsilon \rightarrow 0} \int_{\Omega} m^{\epsilon}(T) G^{\epsilon}\left(x, m^{\epsilon}(T)\right) d x \leq\left\langle u(0), m_{0}\right\rangle-\int_{0}^{T} \int_{\Omega} m F(t, x, m) d x d t \\
-\int_{0}^{T} \int_{\Omega} m\left(H_{p}(t, x, m, D u) \cdot D u-H(t, x, m, D u)\right) d x d t
\end{array}
$$

But thanks to the crossed energy inequality applied to $(\tilde{u}, \tilde{m})=(u, m)$,

$$
\begin{gathered}
\left\langle u(0), m_{0}\right\rangle-\int_{0}^{T} \int_{\Omega} m F(t, x, m) d x d t \\
-\int_{0}^{T} \int_{\Omega} m\left(H_{p}(t, x, m, D u) \cdot D u-H(t, x, m, D u)\right) d x d t \leq \int_{\Omega} m(T) G(x, m(T)) d x
\end{gathered}
$$

Using the monotonicity of G, we then get $G^{\epsilon}\left(x, m^{\epsilon}(T)\right) \rightarrow G(x, m(T))$ in $L^{1}(\Omega)$.
Conclusion as in the case $q<2$.

To be more correct ...

I cheated a bit in the previous slides, because I did not prove that u is a subsolution of the boundary value problem with the terminal condition $u(T) \leq G(x, m(T))$.

The rigorous argument goes through the parametrized Young measure generated by the sequence $\rho^{\epsilon} \star m^{\epsilon}(T)$:

$$
f\left(x, \rho^{\epsilon} \star m^{\epsilon}(T)\right) \rightharpoonup \int_{\mathbb{R}} f(x, \lambda) d \nu_{x}(\lambda) \quad \text { weakly in } L^{1}(\Omega)
$$

for every Carathéodory function $f(x, s)$ such that $f\left(x, \rho^{\epsilon} \star m^{\epsilon}(T)\right)$ is equi-integrable.

We get, with the previous argument,

$$
\lim _{\epsilon \rightarrow 0} \int_{\Omega} m^{\epsilon}(T) G^{\epsilon}\left(x, m^{\epsilon}(T)\right) d x=\int_{\Omega} \int_{\mathbb{R}} m(T) G(x, \lambda) d \nu_{x}(\lambda) d x
$$

which allows to conclude that $G^{\epsilon}\left(x, m^{\epsilon}(T)\right) \rightarrow G(x, m(T))$.

Uniqueness

Needs the following lemma:

Lemma

A weak solution (u, m) satisfies the energy identity:

$$
\begin{aligned}
\left\langle m_{0}, u(0)\right\rangle & =\int_{\Omega} G(x, m(T)) m(T) d x+\int_{0}^{T} \int_{\Omega} F(t, x, m) m d x d t \\
& +\int_{0}^{T} \int_{\Omega}\left[m H_{p}(t, x, m, D u) \cdot D u-m H(t, x, m, D u)\right] d x d t
\end{aligned}
$$

Then, take two weak solutions (u, m) and (\tilde{u}, \tilde{m}). Use
(1) the 2 energy identities for (u, m) and (\tilde{u}, \tilde{m})
(2) the 2 crossed energy inequalities for
(1) (\tilde{u}, \tilde{m}) and (u, m)
(2) (u, m) and (\tilde{u}, \tilde{m})

Adding all the identities/inequalities, we conclude as P-L. Lions for classical solutions, using the monotonicity of F and G and $\alpha \leq 4 / q^{\prime}$.

Outline

(1) Introduction

(2) Weak solutions in the non singular case: $\mu>0$
(3) Weak solutions in the singular case: $\mu=0$
(4) Mean field type control with congestion

The case $\mu=0$: weak solutions (1)

$$
\begin{cases}-\partial_{t} u-\nu \Delta u+\frac{1}{q} \frac{|D u|^{q}}{m^{\alpha}}=F(m), & (t, x) \in(0, T) \times \Omega \\ \partial_{t} m-\nu \Delta m-\operatorname{div}\left(m \frac{|D u|^{q-2} D u}{m^{\alpha}}\right)=0, & (t, x) \in(0, T) \times \Omega \\ m(0, x)=m_{0}(x), u(T, x)=G(x, m(T)), & x \in \Omega .\end{cases}
$$

The case $\mu=0$: weak solutions (2)
Definition The pair (u, m) is a weak solution if
(1)

$$
\begin{array}{ll}
m F(m) \in L^{1}, & m_{T} G\left(m_{T}\right) \in L^{1}(\Omega) \\
m \mathbb{1}_{\{m>0\}} \frac{|D u|^{q}}{m^{\alpha}} \in L^{1}, & \mathbb{1}_{\{m>0\}} \frac{|D u|^{q}}{m^{\alpha}} \in L^{1}
\end{array}
$$

(2) u is a subsolution of the Bellman equation: for any $0 \leq \varphi \in C_{c}^{\infty}((0, T] \times \Omega)$,

$$
\begin{aligned}
\int_{0}^{T} \int_{\Omega} u \varphi_{t} d x d t & -\nu \int_{0}^{T} \int_{\Omega} u \Delta \varphi d x d t+\int_{0}^{T} \int_{\Omega} H(t, x, m, D u) \mathbb{1}_{\{m>0\}} \varphi d x d t \\
& \leq \int_{0}^{T} \int_{\Omega} F(t, x, m) \varphi d x d t+\int_{\Omega} G(x, m(T)) \varphi(T) d x
\end{aligned}
$$

(3) m is a weak solution of

$$
\begin{aligned}
\partial_{t} m-\nu \Delta m-\operatorname{div}\left(m \mathbb{1}_{\{m>0\}} \frac{|D u|}{m^{\alpha}}\right) & =0 \\
m(t=0) & =m_{0}
\end{aligned}
$$

(4) The energy identity holds:

$$
\begin{aligned}
\int_{\Omega} m_{0} u(0) d x & =\int_{\Omega} G(x, m(T)) m(T) d x+\int_{0}^{T} \int_{\Omega} F(t, x, m) m d x d t \\
& +\int_{0}^{T} \int_{\Omega} m\left[H_{p}(t, x, m, D u) \cdot D u-H(t, x, m, D u)\right] \mathbb{1}_{\{m>0\}} d x d t
\end{aligned}
$$

where the first term is understood as the trace of $\int_{\Omega} u(t) m_{0} d x$ in $B V(0, T)$.

Existence and uniqueness

Theorem

If either $\left(q<2\right.$ and $\left.\alpha \leq \frac{4}{q^{\prime}}\right)$ or $\left(q=2\right.$ and $\left.\alpha<4 / q^{\prime}=2\right)$, and if F and G are nondecreasing, then there exists a unique weak solution.

Remark We miss the limit case $q=2$ and $\alpha=2$.

Proof

- Consists of passing to the limit as $\mu \rightarrow 0^{+}$in the non singular case discussed previously.
- It goes through a careful adaption of the previous arguments with a special attention to the regions where $m=0$.

Outline

(2) Weak solutions in the non singular case: $\mu>0$
(3) Weak solutions in the singular case: $\mu=0$
(4) Mean field type control with congestion

MFG vs. Mean field type control (MFTC) (1)

- MFG: look for Nash equilibria with N identical agents, then let $N \rightarrow \infty$
- Carmona and Delarue / Bensoussan et al have studied the control of McKean-Vlasov dynamics:
- Assume that the all N agents use the same feedback law γ
- The perturbations of γ impact the empirical distribution
- Pass to the limit as $N \rightarrow \infty$ first, then minimize the asymptotic cost

MFG vs. Mean field type control (MFTC) (1)

- MFG: look for Nash equilibria with N identical agents, then let $N \rightarrow \infty$
- Carmona and Delarue / Bensoussan et al have studied the control of McKean-Vlasov dynamics:
- Assume that the all N agents use the same feedback law γ
- The perturbations of γ impact the empirical distribution
- Pass to the limit as $N \rightarrow \infty$ first, then minimize the asymptotic cost
- MFTC models consists of an optimal control problem driven by a Fokker-Planck equation:

Find a feedback $\gamma_{s}=\gamma\left(s, X_{s} ; m_{s}\right)$ which minimizes

$$
J(t)=\mathbb{E}\left\{\int_{t}^{T} \mathcal{L}\left(X_{s}, \gamma_{s} ; m_{s}\right) d s+\mathcal{G}\left(X_{T} ; m_{T}\right)\right\}
$$

subject to

$$
\begin{aligned}
& d X_{t}=\sqrt{2 \nu} d W_{t}+\gamma_{t} d t \\
& m_{t} \text { is the law of } X_{t}
\end{aligned}
$$

therefore

$$
\begin{aligned}
& \frac{\partial m}{\partial t}-\nu \Delta m+\operatorname{div}(m \gamma)=0 \\
& \left.m\right|_{t=0}=m_{0}
\end{aligned}
$$

MFG vs. MFTC (2)

Assume local dependency: $\mathcal{L}(x, \gamma ; m)=L(x, \gamma, m(x))$ and $\mathcal{G}(x ; m)=G(x, m(x))$: the cost can be expressed as

$$
\left.J(t)=\int_{t}^{T} \int_{\Omega} L\left(x, \gamma\left(s, x, m_{s}\right) m(s, x)\right) m(s, x) d s d x+\int_{\Omega} G(x ; m(T, x))\right) m(T, x) d x
$$

and the optimality conditions read

$$
\begin{aligned}
\frac{\partial u}{\partial t}+\nu \Delta u-H(x, \nabla u, m(t, x))-m(t, x) \frac{\partial H}{\partial m}(x, \nabla u(x, t), m(t, x)) & =0 \\
\frac{\partial m}{\partial t}-\nu \Delta m-\operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla u ; m)\right) & =0
\end{aligned}
$$

with the terminal and initial conditions

$$
\begin{aligned}
u(t=T, x) & =G(x, m(T, x))+m(T, x) \frac{\partial G}{\partial m}(x, m(T, x)) \\
m(0, x) & =m_{0}(x)
\end{aligned}
$$

MFG vs. MFTC (3)

- The latter PDE system enjoys uniqueness if

$$
\left(\begin{array}{cc}
-(m H)_{m, m} & 0 \\
0 & m H_{p, p}
\end{array}\right)>0
$$

for all $x \in \Omega, m>0$ and $p \in \mathbb{R}^{d}$.
If $H(x, p, m)=\frac{|p|^{q}}{(\mu+m)^{\alpha}}$, then the latter condition holds if $\alpha \leq 1$, (while the condition is $\alpha \leq \frac{4 q}{q-1}$ for the MFG system with the same Hamiltonian)

- Existence and uniqueness for weak solutions of the mean field type control problem with congestion and possibly degenerate diffusion were proved in [A., Laurière 2015], using a variational approach.
- Numerical methods using the variational approach were studied in [A., Laurière 2016].

