Mean field games with congestion: weak solutions

Yves Achdou

Laboratoire J-L. Lions, Université Paris Diderot

(joint work with A. Porretta, U. Roma II)

Outline

2 Weak solutions in the non singular case: $\mu > 0$

Weak solutions in the singular case: $\mu = 0$

Iean field type control with congestion

MFG with Congestion

The dynamics of a representative agent is

 $dX_t = \sqrt{2\nu} dW_t + \gamma_t dt$

where

 (W_t) is a *d*-dimensional Brownian motion (γ_t) is the control of the agent.

1 Individual optimal control problem: the representative agent minimizes

$$\mathbb{E}_{t,x}\left(\int_t^T \mathcal{L}(X_s,\gamma_s;m_s)ds + G(X_T;m_T)\right),\,$$

where m_s is the distribution of states (a single agent is assumed to have no influence on m_s).

Dynamic programming yields an optimal feedback γ_t^* and an optimal trajectory X_t^* .

2 Nash equilibria:

$$m_t = \text{law of } X_t^*.$$

Congestion

- The cost of motion at x depends on m(x) in an increasing manner.
- A typical example was introduced by P-L. Lions (lectures at Collège de France):

$$\mathcal{L}(x,\gamma;m) \sim (\mu + m(x))^{\sigma} |\gamma|^{q'} + F(x,m(x))$$

where $\mu \ge 0, \, \sigma > 0$ and q' > 1.

The corresponding Hamiltonian is of the form

$$\mathcal{H}(x,p;m) = \frac{|p|^q}{(\mu+m(x))^{\alpha}} - F(x,m(x)),$$

with $\alpha = \sigma(q-1)$.

Remarks

- Degeneracy of the Hamiltonian H as $m \to +\infty$
- This model is named "Soft Congestion" by Santambrogio and his coauthors. Their "Hard Congestion" models include inequality contraints on $m: m \leq \bar{m}$

The system of PDEs and the main assumptions

$$\left\{ -\partial_t u - \nu \Delta u + \frac{1}{q} \frac{|Du|^q}{(m+\mu)^{\alpha}} = F(m), \qquad (t,x) \in (0,T) \times \Omega \right.$$

$$\partial_t m - \nu \Delta m - \operatorname{div}\left(m \frac{|Du|^{q-2} Du}{(m+\mu)^{\alpha}}\right) = 0, \qquad (t,x) \in (0,T) \times \Omega \tag{1}$$

$$m(0,x) = m_0(x), \ u(T,x) = G(x,m(T)), \qquad x \in \Omega.$$

The system of PDEs and the main assumptions

$$\begin{cases} -\partial_t u - \nu \Delta u + \frac{1}{q} \frac{|Du|^q}{(m+\mu)^{\alpha}} = F(m), & (t,x) \in (0,T) \times \Omega\\ \\ \partial_t m - \nu \Delta m - \operatorname{div} \left(m \frac{|Du|^{q-2} Du}{(m+\mu)^{\alpha}} \right) = 0, & (t,x) \in (0,T) \times \Omega \\ \\ m(0,x) = m_0(x), \ u(T,x) = G(x,m(T)), & x \in \Omega. \end{cases}$$
(1)

Main assumptions

For simplicity, $\Omega = \mathbb{R}^d / \mathbb{Z}^d$: no difficulty from boundary conditions

The system of PDEs and the main assumptions

$$\begin{cases} -\partial_t u - \nu \Delta u + \frac{1}{q} \frac{|Du|^q}{(m+\mu)^{\alpha}} = F(m), & (t,x) \in (0,T) \times \Omega\\ \\ \partial_t m - \nu \Delta m - \operatorname{div} \left(m \frac{|Du|^{q-2} Du}{(m+\mu)^{\alpha}} \right) = 0, & (t,x) \in (0,T) \times \Omega \\ \\ m(0,x) = m_0(x), \ u(T,x) = G(x,m(T)), & x \in \Omega. \end{cases}$$
(1)

Main assumptions

 ${\cal F}$ and ${\cal G}$ are bounded from below.

 $\exists \lambda > 0, \kappa \ge 0$, and a nondecreasing function f such that $s \mapsto f(s)s$ is convex s.t.

$$\lambda f(m) - \kappa \le F(t, x, m) \le \frac{1}{\lambda} f(m) + \kappa, \quad \forall m \ge 0.$$

Remark: no restriction on the growth

Same kind of assumption for G.

The system of PDEs and the main assumptions

$$\begin{cases} -\partial_t u - \nu \Delta u + \frac{1}{q} \frac{|Du|^q}{(m+\mu)^{\alpha}} = F(m), & (t,x) \in (0,T) \times \Omega\\ \\ \partial_t m - \nu \Delta m - \operatorname{div} \left(m \frac{|Du|^{q-2} Du}{(m+\mu)^{\alpha}} \right) = 0, & (t,x) \in (0,T) \times \Omega \\ \\ m(0,x) = m_0(x), \ u(T,x) = G(x,m(T)), & x \in \Omega. \end{cases}$$
(1)

Main assumptions

$$m_0 \in C(\Omega)$$
 and $m_0 \ge 0$.

The system of PDEs and the main assumptions

$$\begin{cases} -\partial_t u - \nu \Delta u + \frac{1}{q} \frac{|Du|^q}{(m+\mu)^{\alpha}} = F(m), & (t,x) \in (0,T) \times \Omega\\ \partial_t m - \nu \Delta m - \operatorname{div}\left(m \frac{|Du|^{q-2} Du}{(m+\mu)^{\alpha}}\right) = 0, & (t,x) \in (0,T) \times \Omega \end{cases}$$
(1)

$$\left(m(0,x)=m_0(x)\,,\,\,u(T,x)=G(x,m(T))\,,\qquad x\in\Omega. \right.$$

Main assumptions

۲

 $1 < q \leq 2$

• Either $\mu > 0$ (non singular case) or $\mu = 0$ (singular case)

$$0 < \alpha \le 4\frac{q-1}{q} = \frac{4}{q'}$$

The condition $\alpha \leq 4(q-1)/q$

General MFG with local coupling: for systems of the form

$$\begin{cases} -\partial_t u - \nu \Delta u + H(x, p, m) = F(m) & (t, x) \in (0, T) \times \Omega, \\\\ \partial_t m - \nu \Delta m - \operatorname{div}(mH_p(x, p, m)) = 0, & (t, x) \in (0, T) \times \Omega, \\\\ m(0, x) = m_0(x), \ u(T, x) = G(m(T, x)), & x \in \Omega, \end{cases}$$

P-L. Lions proved that a sufficient condition for the uniqueness of classical solutions is that F and G be non decreasing and that

$$\begin{pmatrix} -H_m(x, p, m) & \frac{1}{2}mH_{m,p}^T(x, p, m) \\ \frac{1}{2}mH_{m,p}(x, p, m) & mH_{p,p}(x, p, m) \end{pmatrix} > 0,$$

for all $x \in \Omega$, m > 0 and $p \in \mathbb{R}^d$.

In the present congestion model, this condition is equivalent to $\alpha \leq 4 \frac{q-1}{q}$.

Some references

- $\odot\,$ P-L. Lions [$\sim\,2011$]: lectures at Collège de France. In particular, the condition for uniqueness of classical solutions.
- Gomes-Mitake [2015]: existence of classical solutions in a specific stationary case: purely quadratic Hamiltonian, i.e. $H(x, p, m) = \frac{|p|^2}{m^{\alpha}}$, with a very special trick
- Gomes-Voskanyan[2015] and Graber[2015]: short-time existence results of classical solutions for evolutive MFG with congestion

In general, for the existence of classical solutions, restrictive assumptions (e.g. on the growth of F and G) are needed.

In particular, if $H(x, p, m) = \frac{|p|^q}{m^{\alpha}}$, one needs to prove that m does not vanish.

It seems more feasible to work with weak solutions.

Weak solutions

- ${\ensuremath{\, \bullet }}$ Weak solutions of the MFG systems were introduced by Lasry and Lions in 2007
- For Hamiltonians with separate dependencies: $\mathcal{H}(x, p, m) = H(x, p) F(m)$, Porretta, [ARMA 2015], showed that weak solutions allow to build a very general well-posed setting
- Allow to prove general convergence results for numerical schemes [A.-Porretta 2016]
- If the MFG system of PDEs can be rephrased as the optimality conditions of an optimal control problem driven by some PDE, then
 - weak solutions are the minima of a relaxed functional
 - variational methods can be used

This occurs often when the Hamiltonian depends separately on p and m.

- Can be used for degenerate diffusion [Cardaliaguet-Graber-Porretta-Tonon 2015]
- The variational approach leads to robust (but often slow) numerical methods [Benamou-Carlier], [A.-Laurière]
- Difficulty with the present congestion model: it is not possible to use a variational approach.

Outline

2) Weak solutions in the non singular case: $\mu > 0$

Weak solutions in the singular case: $\mu = 0$

Iean field type control with congestion

The main result

Consider the model problem:

$$\begin{cases} -\partial_t u - \nu \Delta u + \frac{1}{q} \frac{|Du|^q}{(m+\mu)^{\alpha}} = F(m), & (t,x) \in (0,T) \times \Omega \\\\ \partial_t m - \nu \Delta m - \operatorname{div} \left(m \frac{|Du|^{q-2} Du}{(m+\mu)^{\alpha}} \right) = 0, & (t,x) \in (0,T) \times \Omega \\\\ m(0,x) = m_0(x), \ u(T,x) = G(x,m(T,x)), & x \in \Omega. \end{cases}$$

Definition

A weak solution (u, m) is a distributional solution of the system such that

$$\begin{split} mF(m) &\in L^1, \qquad m_T G(m_T) \in L^1(\Omega), \\ m \frac{|Du|^q}{(\mu+m)^{\alpha}} &\in L^1, \qquad \frac{|Du|^q}{(\mu+m)^{\alpha}} \in L^1. \end{split}$$

Theorem

Under the previous assumptions and if F and G are non decreasing, then there exists a unique weak solution.

Extension

Existence and uniqueness of weak solutions holds for

$$\begin{cases} -\partial_t u - \nu \Delta u + H(t, x, p, m) = F(m) & (t, x) \in (0, T) \times \Omega \\\\ \partial_t m - \nu \Delta m - \operatorname{div}(mH_p(t, x, p, m)) = 0, & (t, x) \in (0, T) \times \Omega \\\\ m(0, x) = m_0(x), \ u(T, x) = G(m(T, x)), & x \in \Omega, \end{cases}$$

under the structure conditions

$$\begin{split} H(t,x,0,m) &\leq 0\,,\\ H(t,x,p,m) &\geq c_0 \; \frac{|p|^q}{(m+\mu)^{\alpha}} - c_1 \left(1 + m^{\frac{\alpha}{q-1}}\right),\\ |H_p(t,x,p,m)| &\leq c_2 \left(1 + \frac{|p|^{q-1}}{(m+\mu)^{\alpha}}\right),\\ H_p(t,x,p,m) \cdot p &\geq (1+\sigma) \; H(t,x,p,m) - c_3 \left(1 + m^{\frac{\alpha}{q-1}}\right), \end{split}$$

for a.e. $(t,x) \in Q_T$ and every $p \in \mathbb{R}^N$, where σ, c_0, \ldots, c_3 are positive constants,

and the same assumptions on $F, G \alpha$ and q.

Main arguments in the proof

A regularized problem and energy estimates

$$\begin{split} &-\partial_t u^{\epsilon} - \nu \Delta u^{\epsilon} + H(t, x, T_{1/\epsilon} m^{\epsilon}, Du^{\epsilon}) = F^{\epsilon}(t, x, m^{\epsilon}), \qquad (t, x) \in (0, T) \times \Omega \\ &\partial_t m^{\epsilon} - \nu \Delta m^{\epsilon} - \operatorname{div}(m^{\epsilon} H_p(t, x, T_{1/\epsilon} m^{\epsilon}, Du^{\epsilon})) = 0, \qquad (t, x) \in (0, T) \times \Omega \\ &m^{\epsilon}(0, x) = m_0^{\epsilon}(x), \ u^{\epsilon}(T, x) = G^{\epsilon}(x, m^{\epsilon}(T)), \qquad x \in \Omega \end{split}$$

where

$$\begin{array}{rcl} T_{1/\epsilon}m & = & \min(m, 1/\epsilon), \\ F^{\epsilon}(t, x, m) & = & \rho^{\epsilon} \star F(t, \cdot, \rho^{\epsilon} \star m))(x), \\ G^{\epsilon}(x, m) & = & \rho^{\epsilon} \star G(\cdot, \rho^{\epsilon} \star m))(x), \\ & m_{0}^{\epsilon} & = & \rho^{\epsilon} \star m_{0}, \end{array}$$

and ρ^{ϵ} is a standard symmetric mollifier in \mathbb{R}^d .

A regularized problem and energy estimates

$$\begin{split} &-\partial_t u^{\epsilon} - \nu \Delta u^{\epsilon} + H(t, x, \mathbf{T_{1/\epsilon}} m^{\epsilon}, Du^{\epsilon}) = F^{\epsilon}(t, x, m^{\epsilon}), \qquad (t, x) \in (0, T) \times \Omega \\ &\partial_t m^{\epsilon} - \nu \Delta m^{\epsilon} - \operatorname{div}(m^{\epsilon} H_p(t, x, \mathbf{T_{1/\epsilon}} m^{\epsilon}, Du^{\epsilon})) = 0, \qquad (t, x) \in (0, T) \times \Omega \\ &m^{\epsilon}(0, x) = m^{\epsilon}_0(x), \ u^{\epsilon}(T, x) = G^{\epsilon}(x, m^{\epsilon}(T)), \qquad x \in \Omega \end{split}$$

where

$$\begin{array}{rcl} T_{1/\epsilon}m & = & \min(m, 1/\epsilon), \\ F^{\epsilon}(t, x, m) & = & \rho^{\epsilon} \star F(t, \cdot, \rho^{\epsilon} \star m))(x), \\ G^{\epsilon}(x, m) & = & \rho^{\epsilon} \star G(\cdot, \rho^{\epsilon} \star m))(x), \\ m_{0}^{\epsilon} & = & \rho^{\epsilon} \star m_{0}, \end{array}$$

and ρ^{ϵ} is a standard symmetric mollifier in \mathbb{R}^d .

Standard energy estimates:

$$\begin{split} u^{\epsilon}(t,x) \geq C, \qquad \|u^{\epsilon}\|_{L^{\infty}(0,T;L^{1}(\Omega))} \leq C, \\ \int_{\Omega} G^{\epsilon}(x,m^{\epsilon}(T))m^{\epsilon}(T)dx + \int_{0}^{T}\!\!\!\int_{\Omega} F^{\epsilon}(t,x,m^{\epsilon})m^{\epsilon}\,dxdt + \|(T_{1/\epsilon}m^{\epsilon})^{\frac{\alpha}{q-1}+1}\|_{\frac{N+2}{N}} \leq C, \\ \int_{0}^{T}\!\!\!\int_{\Omega} \frac{|Du^{\epsilon}|^{q}}{(T_{1/\epsilon}m^{\epsilon}+\mu)^{\alpha}}\,dxdt + \int_{0}^{T}\!\!\!\int_{\Omega} m^{\epsilon}\,\frac{|Du^{\epsilon}|^{q}}{(T_{1/\epsilon}m^{\epsilon}+\mu)^{\alpha}}\,dxdt \leq C. \end{split}$$

Y. Achdou Roma, 15-6-2017

Properties of Fokker-Planck equations with L^2 drifts. [Porretta, ARMA 2015]

Set $Q_T = (0,T) \times \Omega$. For any $b \in L^2(Q_T; \mathbb{R}^d)$, consider the Fokker-Planck equation

$$\begin{cases} \partial_t m - \nu \Delta m - \operatorname{div}(mb) &= 0 & \text{in } (0, T) \times \Omega, \\ m(t=0) &= m_0. \end{cases}$$
(2)

Properties of Fokker-Planck equations with L^2 drifts. [Porretta, ARMA 2015]

Set $Q_T = (0,T) \times \Omega$. For any $b \in L^2(Q_T; \mathbb{R}^d)$, consider the Fokker-Planck equation

$$\begin{cases} \partial_t m - \nu \Delta m - \operatorname{div}(mb) = 0 & \text{in } (0, T) \times \Omega, \\ m(t=0) = m_0. \end{cases}$$
(2)

• A weak solution is a nonnegative distributional sol. $m \in L^1(Q_T)$ of (2) s.t.

$$m|b|^2 \in L^1(Q_T). \tag{3}$$

- A renormalized solution of (2) is a nonnegative function $m \in L^1(Q_T)$ s.t.
 - for any $k > 0, T_k(m) \in L^2(0, T, H^1(\Omega)),$

where $(T_k(m)) = \max(-k, \min(k, m)))$

•
$$\lim_{n \to +\infty} \frac{1}{n} \int_{\{n < m(t,x) < 2n\}} |Dm|^2 dx dt = 0$$

• for all $S \in W^{2,\infty}(\mathbb{R})$ such that S' has compact support,

 $\begin{cases} \partial_t S(m) - \nu \Delta S(m) - \operatorname{div}(mbS'(m)) + \nu S''(m)|Dm|^2 + S''(m)mb \cdot Dm = 0, \\ S(m(t=0)) = S(m_0). \end{cases}$

Y. Achdou Roma, 15-6-2017

Properties of Fokker-Planck equations with L^2 drifts. [Porretta, ARMA 2015]

Set $Q_T = (0,T) \times \Omega$. For any $b \in L^2(Q_T; \mathbb{R}^d)$, consider the Fokker-Planck equation

$$\begin{cases} \partial_t m - \nu \Delta m - \operatorname{div}(mb) = 0 & \text{in } (0, T) \times \Omega, \\ m(t=0) = m_0. \end{cases}$$
(2)

1 Uniqueness: there exists at most one weak solution of (2)

- 2 Weak sol. \Leftrightarrow renormalized sol. and $m|b|^2 \in L^1(Q_T)$: any weak solution m belongs to $C([0,T]; L^1(\Omega))$ and is a renormalized solution
- **3** Compactness: if (b, m_0) lies in a bounded subset of $L^2(Q_T) \times L^1(\Omega)$, then m lies in a relatively compact subset of $L^1(Q_T)$

3 Stability: consider a sequence m^{ϵ} of weak solutions of the F.P equation associated to $b^{\epsilon} \in L^2(Q_T; \mathbb{R}^d)$. If $m^{\epsilon} \to m$ a.e. in Q_T and if $m^{\epsilon} |b^{\epsilon}|^2 \to m|b|^2$ in $L^1(Q_T)$, then $m^{\epsilon} \to m$ in $C([0, T]; L^1(\Omega))$ and m is a weak solution of the F.P. equation associated to b. Weak solutions in the non singular case: $\mu > 0$

Passage to the limit if 1 < q < 2: main steps

• Energy estimates $\Rightarrow -\partial_t u^{\epsilon} - \nu \Delta u^{\epsilon}$ is bounded in $L^1(Q_T)$: \Rightarrow for subsequences, $u^{\epsilon} \to u$ and $Du^{\epsilon} \to Du$ in $L^1(Q_T)$ and a.e.

Passage to the limit if 1 < q < 2: main steps

•
$$u^{\epsilon} \to u$$
 and $Du^{\epsilon} \to Du$ in $L^1(Q_T)$ and a.e.

•
$$\partial_t m^{\epsilon} - \nu \Delta m^{\epsilon} - \operatorname{div}(m^{\epsilon} b^{\epsilon}) = 0$$
, with $|b^{\epsilon}| \approx \frac{|Du^{\epsilon}|^{q-1}}{(\mu + T_{1/\epsilon} m^{\epsilon})^{\alpha}}$.

• Energy estimates: $|b^{\epsilon}|_{L^{q'}(Q_T)} \leq C$ with $q' \geq 2$ $\Rightarrow m^{\epsilon}$ is compact in $L^1(Q_T) \Rightarrow m^{\epsilon} \to m$ in $L^1(Q_T)$ and a.e.

•
$$b^{\epsilon} \to b = H_p(x, Du, m)$$
 a.e.

Passage to the limit if 1 < q < 2: main steps

•
$$u^{\epsilon} \to u$$
 and $Du^{\epsilon} \to Du$ in $L^1(Q_T)$ and a.e.

•
$$\partial_t m^{\epsilon} - \nu \Delta m^{\epsilon} - \operatorname{div}(m^{\epsilon} b^{\epsilon}) = 0$$
, with $|b^{\epsilon}| \approx \frac{|Du^{\epsilon}|^{q-1}}{(\mu + T_{1/\epsilon} m^{\epsilon})^{\alpha}}$.

- $m^{\epsilon} \to m$ in $L^1(Q_T)$ and a.e.
- $b^{\epsilon} \rightarrow b = H_p(x, Du, m)$ a.e.
- Energy estimates and $(1 \alpha)q' \ge -\alpha \Rightarrow \int_{Q_T} m^{\epsilon} |b^{\epsilon}|^{q'} \le C$, for a constant C independent of μ .
- Since q' > 2, $m^{\epsilon} |b^{\epsilon}|^2$ is compact in $L^1(Q_T)$.
- Stability result: $m^{\epsilon} \to m$ in $C([0, T], L^{1}(\Omega))$ and m is a weak sol. of the Fokker Planck eq. related to b.

Passage to the limit if 1 < q < 2: main steps

•
$$u^{\epsilon} \to u$$
 and $Du^{\epsilon} \to Du$ in $L^1(Q_T)$ and a.e.

•
$$\partial_t m^{\epsilon} - \nu \Delta m^{\epsilon} - \operatorname{div}(m^{\epsilon} b^{\epsilon}) = 0$$
, with $|b^{\epsilon}| \approx \frac{|Du^{\epsilon}|^{q-1}}{(\mu + T_{1/\epsilon} m^{\epsilon})^{\alpha}}$.

• $m^{\epsilon} \to m$ in $L^1(Q_T)$ and a.e.

•
$$b^{\epsilon} \to b = H_p(x, Du, m)$$
 a.e.

• $m^{\epsilon} \to m$ in $C([0,T], L^{1}(\Omega))$ and m is a weak sol. of the Fokker Planck eq. related to b.

•
$$F^{\epsilon}(m^{\epsilon}) \to F(m)$$
 and $G^{\epsilon}(x, m^{\epsilon}(T)) \to G(x, m(T))$ in L^{1}

- Passage to the limit in the Bellman equation: OK from the steps above and from stability results for HJB eq. ([Porretta 99]) because the Hamiltonian has natural growth and the good sign
- The proof is achieved for q < 2.

What remains from the steps above?

- $u_{\epsilon} \to u, Du^{\epsilon} \to Du, m_{\epsilon} \to m \text{ in } L^{1}(Q_{T}) \text{ and a.e.},$ $b^{\epsilon} = H_{p}(t, x, T_{1/\epsilon}m^{\epsilon}, Du^{\epsilon}) \to b = H_{p}(t, x, m, Du) \text{ a.e.}$
- u is a subsolution of the Bellman equation (no terminal condition yet) (from Fatou lemma and the equi-integrability of $F^{\epsilon}(t, x, m^{\epsilon})$)

$$\lim_{\epsilon \to 0} \int_{\Omega} u^{\epsilon}|_{t=0}(x) m_0(x) dx \le \langle u|_{t=0}, m_0 \rangle,$$

where both members of the inequality are well defined

What remains from the steps above?

- $u_{\epsilon} \rightarrow u, Du^{\epsilon} \rightarrow Du, m_{\epsilon} \rightarrow m \text{ in } L^{1}(Q_{T}) \text{ and a.e.},$ $b^{\epsilon} = H_{p}(t, x, T_{1/\epsilon}m^{\epsilon}, Du^{\epsilon}) \rightarrow b = H_{p}(t, x, m, Du) \text{ a.e.}$
- u is a subsolution of the Bellman equation (no terminal condition yet) and $\lim_{\epsilon \to 0} \int_{\Omega} u^{\epsilon}|_{t=0}(x)m_0(x)dx \leq \langle u|_{t=0}, m_0 \rangle$

0

$$m^{\epsilon}b^{\epsilon} = m^{\epsilon}H_p(t, x, T_{1/\epsilon}m^{\epsilon}, Du^{\epsilon}) \leq c_2m^{\epsilon} + w^{\epsilon} + \sqrt{m^{\epsilon}}z^{\epsilon}$$

where w^{ϵ} and z^{ϵ} are bounded in $L^2(Q_T)$. Therefore, $m^{\epsilon}b^{\epsilon}$ is equi-integrable $\Rightarrow m$ is a distribution sol. of the F.P. related to b

What remains from the steps above?

- $u_{\epsilon} \rightarrow u, Du^{\epsilon} \rightarrow Du, m_{\epsilon} \rightarrow m \text{ in } L^{1}(Q_{T}) \text{ and a.e.},$ $b^{\epsilon} = H_{p}(t, x, T_{1/\epsilon}m^{\epsilon}, Du^{\epsilon}) \rightarrow b = H_{p}(t, x, m, Du) \text{ a.e.}$
- u is a subsolution of the Bellman equation (no terminal condition yet) and $\lim_{\epsilon \to 0} \int_{\Omega} u^{\epsilon}|_{t=0}(x)m_0(x)dx \leq \langle u|_{t=0}, m_0 \rangle$
- ${\ensuremath{\, \bullet \,}} m$ is a distribution sol. of the F.P. related to b

۲

$$\int_0^T \int_\Omega F(t,x,m)m\,dxdt + \int_0^T \int_\Omega \frac{|Du|^2}{(m+\mu)^\alpha}\,dxdt + \int_0^T \int_\Omega m\,\frac{|Du|^2}{(m+\mu)^\alpha}\,dxdt \le C.$$

• m is a weak solution of the Fokker-Planck equation, so $m \in C([0, T], L^1(\Omega))$

What remains from the steps above?

- $u_{\epsilon} \to u, Du^{\epsilon} \to Du, m_{\epsilon} \to m \text{ in } L^{1}(Q_{T}) \text{ and a.e.}$
- u is a subsolution of the Bellman equation (no terminal condition yet) and $\lim_{\epsilon \to 0} \int_{\Omega} u^{\epsilon}|_{t=0}(x)m_0(x)dx \leq \langle u|_{t=0}, m_0 \rangle$
- *m* is a weak solution of the Fokker-Planck eq., and $m \in C([0,T], L^1(\Omega))$
- Finer arguments related to the F.P. equation imply that $m^{\epsilon}(t) \rightarrow m(t)$ in $L^{1}(\Omega)$ weak for all t, and

$$\int_{\Omega} G(m(T))m(T) \, dx \le C.$$

What remains from the steps above?

- $u_{\epsilon} \to u, Du^{\epsilon} \to Du, m_{\epsilon} \to m \text{ in } L^{1}(Q_{T}) \text{ and a.e.}$
- u is a subsolution of the Bellman equation (no terminal condition yet) and $\lim_{\epsilon \to 0} \int_{\Omega} u^{\epsilon}|_{t=0}(x)m_0(x)dx \leq \langle u|_{t=0}, m_0 \rangle$
- *m* is a weak solution of the Fokker-Planck eq., and $m \in C([0,T], L^1(\Omega))$
- $m^{\epsilon}(t) \rightharpoonup m(t)$ in $L^{1}(\Omega)$ weak for all t, and

$$\int_{\Omega} G(m(T))m(T) \, dx \le C.$$

One needs to work more, because $m^{\epsilon}|b^{\epsilon}|^2$ is no longer equi-integrable, so we do not obtain the convergence of m^{ϵ} to m in $C([0,T]; L^1(\Omega))$, and the convergence of $G^{\epsilon}(m^{\epsilon}(T))$ is more difficult to prove.

A crossed energy inequality

Theorem

Consider
$$(u, m)$$
 such that

$$\begin{array}{c}
\mathbf{m} F(m) \in L^{1}, & m_{|t=T}G(m_{|t=T}) \in L^{1}(\Omega), \\
m_{(\mu+m)^{\alpha}}^{|Du|^{q}} \in L^{1}, & \frac{|Du|^{q}}{(\mu+m)^{\alpha}} \in L^{1}
\end{array}$$
2 *m* is a weak sol. of $\left(\text{ F.P. equation } + m_{|t=0} = m_{0} \right)$
3 *u* is a distrib. subsol. of $\left(\text{ the Bellman equation } + u_{|t=T} \leq G(m_{t=T}) \right)$

For any pair (\tilde{u}, \tilde{m}) with the same properties as (u, m), we have the crossed-integrability:

$$\tilde{m} \frac{|Du|^q}{(\mu+m)^{\alpha}} \in L^1, \quad m \frac{|D\tilde{u}|^q}{(\mu+\tilde{m})^{\alpha}} \in L^1, \dots$$

and the energy inequality:

$$\begin{aligned} \langle \tilde{m}_0 \,, \, u(0) \rangle &\leq \int_{\Omega} G(x, m(T)) \, \tilde{m}(T) \, dx + \int_0^T \int_{\Omega} F(t, x, m) \tilde{m} \, dx dt \\ &+ \int_0^T \int_{\Omega} \left[\tilde{m} \, H_p(t, x, \tilde{m}, D\tilde{u}) \cdot Du - \tilde{m} \, H(t, x, m, Du) \right] dx dt \end{aligned}$$

Passage to the limit using the crossed energy inequality

We start from the energy identity for $(u^{\epsilon}, m^{\epsilon})$:

$$\begin{split} &\int_0^T \!\!\!\int_\Omega m^\epsilon \left(H_p(t,x,T_{1/\epsilon}m^\epsilon,Du^\epsilon) \cdot Du^\epsilon - H(t,x,T_{1/\epsilon}m^\epsilon,Du^\epsilon) \right) \, dxdt \\ &+ \int_\Omega m^\epsilon(T) G^\epsilon(x,m^\epsilon(T)) dx + \int_0^T \!\!\!\int_\Omega m^\epsilon F^\epsilon(t,x,m^\epsilon) \, dxdt \ = \int_\Omega u^\epsilon(0) m_0^\epsilon \, dx. \end{split}$$

By Fatou lemma:

$$\limsup_{\epsilon \to 0} \int_{\Omega} m^{\epsilon}(T) G^{\epsilon}(x, m^{\epsilon}(T)) dx \leq \langle u(0), m_{0} \rangle - \int_{0}^{T} \int_{\Omega} mF(t, x, m) dx dt$$
$$- \int_{0}^{T} \int_{\Omega} m \left(H_{p}(t, x, m, Du) \cdot Du - H(t, x, m, Du) \right) dx dt$$

But thanks to the crossed energy inequality applied to $(\tilde{u}, \tilde{m}) = (u, m)$,

$$\langle u(0),m_0
angle - \int_0^T\!\!\int_\Omega mF(t,x,m)\,dxdt$$

 $-\int_0^T\!\!\int_\Omega m\left(H_p(t,x,m,Du)\cdot Du-H(t,x,m,Du)\right)\,dxdt\leq \int_\Omega m(T)G(x,m(T))dx$

Using the monotonicity of G, we then get $G^{\epsilon}(x, m^{\epsilon}(T)) \to G(x, m(T))$ in $L^{1}(\Omega)$. Conclusion as in the case q < 2.

To be more correct ...

I cheated a bit in the previous slides, because I did not prove that u is a subsolution of the boundary value problem with the terminal condition $u(T) \leq G(x, m(T))$.

The rigorous argument goes through the parametrized Young measure generated by the sequence $\rho^{\epsilon} \star m^{\epsilon}(T)$:

$$f(x, \rho^{\epsilon} \star m^{\epsilon}(T)) \rightharpoonup \int_{\mathbb{R}} f(x, \lambda) d\nu_x(\lambda)$$
 weakly in $L^1(\Omega)$

for every Carathéodory function f(x,s) such that $f(x, \rho^{\epsilon} \star m^{\epsilon}(T))$ is equi-integrable.

We get, with the previous argument,

$$\lim_{\epsilon \to 0} \int_{\Omega} m^{\epsilon}(T) G^{\epsilon}(x, m^{\epsilon}(T)) dx = \int_{\Omega} \int_{\mathbb{R}} m(T) G(x, \lambda) d\nu_x(\lambda) dx,$$

which allows to conclude that $G^{\epsilon}(x, m^{\epsilon}(T)) \to G(x, m(T)).$

Uniqueness

Needs the following lemma:

Lemma

A weak solution (u, m) satisfies the energy identity:

$$\langle m_0 , u(0) \rangle = \int_{\Omega} G(x, m(T)) m(T) dx + \int_0^T \int_{\Omega} F(t, x, m) m dx dt$$
$$+ \int_0^T \int_{\Omega} \left[m H_p(t, x, m, Du) \cdot Du - m H(t, x, m, Du) \right] dx dt$$

Then, take two weak solutions (u, m) and (\tilde{u}, \tilde{m}) . Use

- **1** the 2 energy identities for (u, m) and (\tilde{u}, \tilde{m})
- 2 the 2 crossed energy inequalities for
 - $\textcircled{1} \quad (\tilde{u},\tilde{m}) \text{ and } (u,m)$
 - 2 (u,m) and (\tilde{u},\tilde{m})

Adding all the identities/inequalities, we conclude as P-L. Lions for classical solutions, using the monotonicity of F and G and $\alpha \leq 4/q'$.

Outline

Weak solutions in the non singular case: $\mu > 0$

Weak solutions in the singular case: $\mu = 0$

lean field type control with congestion

The case $\mu = 0$: weak solutions (1)

$$\begin{cases} -\partial_t u - \nu \Delta u + \frac{1}{q} \frac{|Du|^q}{m^\alpha} = F(m), & (t,x) \in (0,T) \times \Omega\\ \\ \partial_t m - \nu \Delta m - \operatorname{div}(m \frac{|Du|^{q-2} Du}{m^\alpha}) = 0, & (t,x) \in (0,T) \times \Omega\\ \\ m(0,x) = m_0(x), \ u(T,x) = G(x,m(T)), & x \in \Omega. \end{cases}$$

The case $\mu = 0$: weak solutions (2)

Definition The pair
$$(u, m)$$
 is a weak solution if

$$\begin{array}{c} mF(m) \in L^{1}, & m_{T}G(m_{T}) \in L^{1}(\Omega), \\ m\mathbb{1}_{\{m>0\}} \frac{|Du|^{q}}{m^{\alpha}} \in L^{1}, & \mathbb{1}_{\{m>0\}} \frac{|Du|^{q}}{m^{\alpha}} \in L^{1}. \end{array}$$

$$\begin{array}{c} u \text{ is a subsolution of the Bellman equation: for any } 0 \leq \varphi \in C_{c}^{\infty}((0,T] \times \Omega), \\ \int_{0}^{T} \int_{\Omega} u \varphi_{t} \, dx dt - \nu \int_{0}^{T} \int_{\Omega} u \, \Delta \varphi \, dx dt + \int_{0}^{T} \int_{\Omega} H(t,x,m,Du) \mathbb{1}_{\{m>0\}} \varphi \, dx dt \\ \leq \int_{0}^{T} \int_{\Omega} F(t,x,m) \varphi \, dx dt + \int_{\Omega} G(x,m(T)) \varphi(T) \, dx \end{aligned}$$

$$\begin{array}{c} m \text{ is a weak solution of} \\ \partial_{t}m - \nu \Delta m - \operatorname{div} \left(m\mathbb{1}_{\{m>0\}} \frac{|Du|}{m^{\alpha}} \right) &= 0 \\ m(t=0) &= m_{0} \end{array}$$

$$\begin{array}{c} m \text{ the energy identity holds:} \\ \int_{\Omega} m_{0} u(0) \, dx = \int_{\Omega} G(x,m(T)) \, m(T) \, dx + \int_{0}^{T} \int_{\Omega} F(t,x,m) m \, dx dt \end{aligned}$$

 $+\int_0 \int_\Omega m \left[H_p(t,x,m,Du) \cdot Du - H(t,x,m,Du)\right] \mathbb{1}_{\{m>0\}} dx dt$

where the first term is understood as the trace of $\int_{\Omega} u(t) m_0 dx$ in BV(0,T).

Y. Achdou Roma, 15-6-2017

Existence and uniqueness

Theorem

If either $\left(q < 2 \text{ and } \alpha \leq \frac{4}{q'} \right)$ or $\left(q = 2 \text{ and } \alpha < 4/q' = 2 \right)$, and if F and G are nondecreasing, then there exists a unique weak solution.

Remark We miss the limit case q = 2 and $\alpha = 2$.

Proof

- Consists of passing to the limit as $\mu \to 0^+$ in the non singular case discussed previously.
- It goes through a careful adaption of the previous arguments with a special attention to the regions where m = 0.

Outline

2 Weak solutions in the non singular case: $\mu > 0$

Weak solutions in the singular case: $\mu = 0$

Mean field type control with congestion

MFG vs. Mean field type control (MFTC) (1)

- ${\ }$ MFG: look for Nash equilibria with N identical agents, then let $N \rightarrow \infty$
- Carmona and Delarue / Bensoussan et al have studied the control of McKean-Vlasov dynamics:
 - $\, \circ \,$ Assume that the all N agents use the same feedback law γ
 - The perturbations of γ impact the empirical distribution
 - Pass to the limit as $N \to \infty$ first, then minimize the asymptotic cost

MFG vs. Mean field type control (MFTC) (1)

- MFG: look for Nash equilibria with N identical agents, then let $N \to \infty$
- Carmona and Delarue / Bensoussan et al have studied the control of McKean-Vlasov dynamics:
 - $\bullet~$ Assume that the all N agents use the same feedback law γ
 - The perturbations of γ impact the empirical distribution
 - Pass to the limit as $N \to \infty$ first, then minimize the asymptotic cost
- MFTC models consists of an optimal control problem driven by a Fokker-Planck equation:

Find a feedback $\gamma_s = \gamma(s, X_s; m_s)$ which minimizes

$$J(t) = \mathbb{E}\left\{\int_{t}^{T} \mathcal{L}\left(X_{s}, \gamma_{s}; m_{s}\right) ds + \mathcal{G}\left(X_{T}; m_{T}\right)\right\}$$

subject to

$$dX_t = \sqrt{2\nu} dW_t + \gamma_t dt$$

m_t is the law of X_t,

therefore

$$\frac{\partial m}{\partial t} - \nu \Delta m + \operatorname{div}(m\gamma) = 0$$
$$m|_{t=0} = m_0.$$

MFG vs. MFTC (2)

Assume local dependency: $\mathcal{L}(x,\gamma;m) = L(x,\gamma,m(x))$ and $\mathcal{G}(x;m) = G(x,m(x))$: the cost can be expressed as

$$J(t) = \int_t^T \int_{\Omega} L\left(x, \gamma(s, x, m_s)m(s, x)\right) m(s, x) ds dx + \int_{\Omega} G\left(x; m(T, x)\right) m(T, x) dx$$

and the optimality conditions read

$$\frac{\partial u}{\partial t} + \nu \Delta u - H(x, \nabla u, m(t, x)) - m(t, x) \frac{\partial H}{\partial m}(x, \nabla u(x, t), m(t, x)) = 0 \frac{\partial m}{\partial t} - \nu \Delta m - \operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla u; m)\right) = 0$$

with the terminal and initial conditions

$$\begin{array}{lcl} u(t=T,x) & = & G(x,m(T,x)) + m(T,x) \frac{\partial G}{\partial m}(x,m(T,x)) \\ m(0,x) & = & m_0(x) \end{array}$$

MFG vs. MFTC (3)

• The latter PDE system enjoys uniqueness if

$$\begin{pmatrix} -(mH)_{m,m} & 0 \\ 0 & mH_{p,p} \end{pmatrix} > 0$$

for all $x \in \Omega$, m > 0 and $p \in \mathbb{R}^d$.

If $H(x, p, m) = \frac{|p|^q}{(\mu+m)^{\alpha}}$, then the latter condition holds if $\alpha \leq 1$, (while the condition is $\alpha \leq \frac{4q}{q-1}$ for the MFG system with the same Hamiltonian)

- Existence and uniqueness for weak solutions of the mean field type control problem with congestion and possibly degenerate diffusion were proved in [A., Laurière 2015], using a variational approach.
- Numerical methods using the variational approach were studied in [A., Laurière 2016].