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Introduction

MFG with Congestion

The dynamics of a representative agent is

dXt =
√

2νdWt + γtdt

where
(Wt) is a d-dimensional Brownian motion
(γt) is the control of the agent.

1 Individual optimal control problem: the representative agent minimizes

Et,x
(∫ T

t
L(Xs, γs;ms)ds+G(XT ;mT )

)
,

where ms is the distribution of states (a single agent is assumed to have no
influence on ms).
Dynamic programming yields an optimal feedback γ∗t and an optimal
trajectory X∗t .

2 Nash equilibria:
mt = law of X∗t .
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Introduction

Congestion

The cost of motion at x depends on m(x) in an increasing manner.

A typical example was introduced by P-L. Lions (lectures at Collège de
France):

L(x, γ;m) ∼ (µ+m(x))σ |γ|q
′

+ F (x,m(x))

where µ ≥ 0, σ > 0 and q′ > 1.

The corresponding Hamiltonian is of the form

H(x, p;m) =
|p|q

(µ+m(x))α
− F (x,m(x)),

with α = σ(q − 1).

Remarks

Degeneracy of the Hamiltonian H as m→ +∞
This model is named “Soft Congestion” by Santambrogio and his coauthors.
Their “Hard Congestion” models include inequality contraints on m: m ≤ m̄
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Introduction

The system of PDEs and the main assumptions



−∂tu− ν∆u+ 1
q
|Du|q

(m+µ)α
= F (m) , (t, x) ∈ (0, T )× Ω

∂tm− ν∆m− div
(
m
|Du|q−2Du

(m+µ)α

)
= 0 , (t, x) ∈ (0, T )× Ω

m(0, x) = m0(x) , u(T, x) = G(x,m(T )) , x ∈ Ω.

(1)
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Introduction

The system of PDEs and the main assumptions



−∂tu− ν∆u+ 1
q
|Du|q

(m+µ)α
= F (m) , (t, x) ∈ (0, T )× Ω

∂tm− ν∆m− div
(
m
|Du|q−2Du

(m+µ)α

)
= 0 , (t, x) ∈ (0, T )× Ω

m(0, x) = m0(x) , u(T, x) = G(x,m(T )) , x ∈ Ω.

(1)

Main assumptions

For simplicity, Ω = Rd/Zd: no difficulty from boundary conditions
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Introduction

The system of PDEs and the main assumptions



−∂tu− ν∆u+ 1
q
|Du|q

(m+µ)α
= F (m) , (t, x) ∈ (0, T )× Ω

∂tm− ν∆m− div
(
m
|Du|q−2Du

(m+µ)α

)
= 0 , (t, x) ∈ (0, T )× Ω

m(0, x) = m0(x) , u(T, x) = G(x,m(T )) , x ∈ Ω.

(1)

Main assumptions

F and G are bounded from below.

∃λ > 0, κ ≥ 0, and a nondecreasing function f such that s 7→ f(s)s is convex s.t.

λ f(m)− κ ≤ F (t, x,m) ≤
1

λ
f(m) + κ, ∀m ≥ 0.

Remark: no restriction on the growth

Same kind of assumption for G.
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Introduction

The system of PDEs and the main assumptions



−∂tu− ν∆u+ 1
q
|Du|q

(m+µ)α
= F (m) , (t, x) ∈ (0, T )× Ω

∂tm− ν∆m− div
(
m
|Du|q−2Du

(m+µ)α

)
= 0 , (t, x) ∈ (0, T )× Ω

m(0, x) = m0(x) , u(T, x) = G(x,m(T )) , x ∈ Ω.

(1)

Main assumptions

m0 ∈ C(Ω) and m0 ≥ 0.
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Introduction

The system of PDEs and the main assumptions



−∂tu− ν∆u+ 1
q
|Du|q

(m+µ)α
= F (m) , (t, x) ∈ (0, T )× Ω

∂tm− ν∆m− div
(
m
|Du|q−2Du

(m+µ)α

)
= 0 , (t, x) ∈ (0, T )× Ω

m(0, x) = m0(x) , u(T, x) = G(x,m(T )) , x ∈ Ω.

(1)

Main assumptions

1 < q ≤ 2

Either µ > 0 (non singular case) or µ = 0 (singular case)

0 < α ≤ 4
q − 1

q
=

4

q′
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Introduction

The condition α ≤ 4(q − 1)/q

General MFG with local coupling: for systems of the form



−∂tu− ν∆u+H(x, p,m) = F (m) (t, x) ∈ (0, T )× Ω,

∂tm− ν∆m− div(mHp(x, p,m)) = 0 , (t, x) ∈ (0, T )× Ω,

m(0, x) = m0(x) , u(T, x) = G(m(T, x)) , x ∈ Ω ,

P-L. Lions proved that a sufficient condition for the uniqueness of classical
solutions is that F and G be non decreasing and that(

−Hm (x, p,m) 1
2
mHT

m,p(x, p,m)
1
2
mHm,p(x, p,m) mHp,p(x, p,m)

)
> 0,

for all x ∈ Ω, m > 0 and p ∈ Rd.

In the present congestion model, this condition is equivalent to α ≤ 4 q−1
q

.
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Introduction

Some references

P-L. Lions [∼ 2011]: lectures at Collège de France. In particular, the
condition for uniqueness of classical solutions.

Gomes-Mitake [2015]: existence of classical solutions in a specific stationary

case: purely quadratic Hamiltonian, i.e. H(x, p,m) =
|p|2
mα

, with a very
special trick

Gomes-Voskanyan[2015] and Graber[2015]: short-time existence results of
classical solutions for evolutive MFG with congestion

In general, for the existence of classical solutions, restrictive assumptions (e.g. on
the growth of F and G) are needed.

In particular, if H(x, p,m) =
|p|q
mα

, one needs to prove that m does not vanish.

It seems more feasible to work with weak solutions.
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Introduction

Weak solutions

Weak solutions of the MFG systems were introduced by Lasry and Lions in
2007

For Hamiltonians with separate dependencies: H(x, p,m) = H(x, p)− F (m),
Porretta, [ARMA 2015], showed that weak solutions allow to build a very
general well-posed setting

Allow to prove general convergence results for numerical schemes
[A.-Porretta 2016]

If the MFG system of PDEs can be rephrased as the optimality conditions of

an optimal control problem driven by some PDE, then

weak solutions are the minima of a relaxed functional
variational methods can be used

This occurs often when the Hamiltonian depends separately on p and m.

Can be used for degenerate diffusion [Cardaliaguet-Graber-Porretta-Tonon
2015]

The variational approach leads to robust (but often slow) numerical
methods [Benamou-Carlier], [A.-Laurière]

Difficulty with the present congestion model: it is not possible to use a
variational approach.
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Weak solutions in the non singular case: µ > 0

The main result

Consider the model problem:

−∂tu− ν∆u+ 1
q
|Du|q

(m+µ)α
= F (m) , (t, x) ∈ (0, T )× Ω

∂tm− ν∆m− div
(
m
|Du|q−2Du

(m+µ)α

)
= 0 , (t, x) ∈ (0, T )× Ω

m(0, x) = m0(x) , u(T, x) = G(x,m(T, x)) , x ∈ Ω.

Definition

A weak solution (u,m) is a distributional solution of the system such that

mF (m) ∈ L1, mTG(mT ) ∈ L1(Ω),

m
|Du|q

(µ+m)α
∈ L1,

|Du|q
(µ+m)α

∈ L1.

Theorem

Under the previous assumptions and if F and G are non decreasing, then there
exists a unique weak solution.
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Weak solutions in the non singular case: µ > 0

Extension

Existence and uniqueness of weak solutions holds for



−∂tu− ν∆u+H(t, x, p,m) = F (m) (t, x) ∈ (0, T )× Ω

∂tm− ν∆m− div(mHp(t, x, p,m)) = 0 , (t, x) ∈ (0, T )× Ω

m(0, x) = m0(x) , u(T, x) = G(m(T, x)) , x ∈ Ω ,

under the structure conditions

H(t, x, 0,m) ≤ 0 ,

H(t, x, p,m) ≥ c0
|p|q

(m+ µ)α
− c1 (1 +m

α
q−1 ) ,

|Hp(t, x, p,m)| ≤ c2 (1 +
|p|q−1

(m+ µ)α
) ,

Hp(t, x, p,m) · p ≥ (1 + σ)H(t, x, p,m)− c3 (1 +m
α
q−1 ) ,

for a.e. (t, x) ∈ QT and every p ∈ RN , where σ, c0, . . . , c3 are positive constants,

and the same assumptions on F , G α and q.
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Weak solutions in the non singular case: µ > 0

Main arguments in the proof

Y. Achdou Roma, 15-6-2017



Weak solutions in the non singular case: µ > 0

A regularized problem and energy estimates

− ∂tuε − ν∆uε +H(t, x, T1/εm
ε, Duε) = F ε(t, x,mε) , (t, x) ∈ (0, T )× Ω

∂tm
ε − ν∆mε − div(mεHp(t, x, T1/εm

ε, Duε)) = 0 , (t, x) ∈ (0, T )× Ω

mε(0, x) = mε0(x) , uε(T, x) = Gε(x,mε(T )) , x ∈ Ω

where

T1/εm = min(m, 1/ε),

F ε(t, x,m) = ρε?F (t, ·, ρε?m))(x),

Gε(x,m) = ρε?G(·, ρε?m))(x),

mε0 = ρε?m0,

and ρε is a standard symmetric mollifier in Rd.

Standard energy estimates:

uε(t, x) ≥ C, ‖uε‖L∞(0,T ;L1(Ω)) ≤ C,∫
Ω
Gε(x,mε(T ))mε(T )dx+

∫ T

0

∫
Ω
F ε(t, x,mε)mε dxdt+ ‖(T1/εm

ε)
α
q−1

+1‖N+2
N
≤ C,∫ T

0

∫
Ω

|Duε|q

(T1/εm
ε + µ)α

dxdt+

∫ T

0

∫
Ω
mε

|Duε|q

(T1/εm
ε + µ)α

dxdt ≤ C
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Weak solutions in the non singular case: µ > 0

A regularized problem and energy estimates

− ∂tuε − ν∆uε +H(t, x, T1/εm
ε, Duε) = F ε(t, x,mε) , (t, x) ∈ (0, T )× Ω

∂tm
ε − ν∆mε − div(mεHp(t, x, T1/εm

ε, Duε)) = 0 , (t, x) ∈ (0, T )× Ω

mε(0, x) = mε0(x) , uε(T, x) = Gε(x,mε(T )) , x ∈ Ω

where

T1/εm = min(m, 1/ε),

F ε(t, x,m) = ρε?F (t, ·, ρε?m))(x),

Gε(x,m) = ρε?G(·, ρε?m))(x),

mε0 = ρε?m0,

and ρε is a standard symmetric mollifier in Rd.

Standard energy estimates:

uε(t, x) ≥ C, ‖uε‖L∞(0,T ;L1(Ω)) ≤ C,∫
Ω
Gε(x,mε(T ))mε(T )dx+

∫ T

0

∫
Ω
F ε(t, x,mε)mε dxdt+ ‖(T1/εm

ε)
α
q−1

+1‖N+2
N
≤ C,∫ T

0

∫
Ω

|Duε|q

(T1/εm
ε + µ)α

dxdt+

∫ T

0

∫
Ω
mε

|Duε|q

(T1/εm
ε + µ)α

dxdt ≤ C
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Weak solutions in the non singular case: µ > 0

Properties of Fokker-Planck equations with L2 drifts. [Porretta, ARMA 2015]

Set QT = (0, T )×Ω. For any b ∈ L2(QT ;Rd), consider the Fokker-Planck equation{
∂tm− ν∆m− div(mb) = 0 in (0, T )× Ω,

m(t = 0) = m0.
(2)
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Weak solutions in the non singular case: µ > 0

Properties of Fokker-Planck equations with L2 drifts. [Porretta, ARMA 2015]

Set QT = (0, T )×Ω. For any b ∈ L2(QT ;Rd), consider the Fokker-Planck equation{
∂tm− ν∆m− div(mb) = 0 in (0, T )× Ω,

m(t = 0) = m0.
(2)

A weak solution is a nonnegative distributional sol. m ∈ L1(QT ) of (2) s.t.

m|b|2 ∈ L1(QT ). (3)

A renormalized solution of (2) is a nonnegative function m ∈ L1(QT ) s.t.

• for any k > 0, Tk(m) ∈ L2(0, T,H1(Ω)),
where (Tk(m)) = max(−k,min(k,m)))

• lim
n→+∞

1

n

∫
{n<m(t,x)<2n}

|Dm|2dxdt = 0

• for all S ∈W 2,∞(R) such that S′ has compact support,{
∂tS(m)− ν∆S(m)− div(mbS′(m)) + νS′′(m)|Dm|2 + S′′(m)mb ·Dm = 0,
S(m(t = 0)) = S(m0).

Y. Achdou Roma, 15-6-2017



Weak solutions in the non singular case: µ > 0

Properties of Fokker-Planck equations with L2 drifts. [Porretta, ARMA 2015]

Set QT = (0, T )×Ω. For any b ∈ L2(QT ;Rd), consider the Fokker-Planck equation{
∂tm− ν∆m− div(mb) = 0 in (0, T )× Ω,

m(t = 0) = m0.
(2)

1 Uniqueness: there exists at most one weak solution of (2)

2 Weak sol. ⇔ renormalized sol. and m|b|2 ∈ L1(QT ): any weak solution
m belongs to C([0, T ];L1(Ω)) and is a renormalized solution

3 Compactness: if (b,m0) lies in a bounded subset of L2(QT )× L1(Ω), then
m lies in a relatively compact subset of L1(QT )

4 Stability: consider a sequence mε of weak solutions of the F.P equation
associated to bε ∈ L2(QT ;Rd).
If mε → m a.e. in QT and if mε|bε|2 → m|b|2 in L1(QT ),
then mε → m in C([0, T ];L1(Ω)) and m is a weak solution of the F.P.
equation associated to b.

Y. Achdou Roma, 15-6-2017



Weak solutions in the non singular case: µ > 0

Passage to the limit if 1 < q < 2: main steps

Energy estimates ⇒ −∂tuε − ν∆uε is bounded in L1(QT ): ⇒ for
subsequences, uε → u and Duε → Du in L1(QT ) and a.e.

Y. Achdou Roma, 15-6-2017



Weak solutions in the non singular case: µ > 0

Passage to the limit if 1 < q < 2: main steps

uε → u and Duε → Du in L1(QT ) and a.e.

∂tmε − ν∆mε − div(mεbε) = 0, with |bε| ≈ |Duε|q−1

(µ+T1/εm
ε)α

.

Energy estimates: |bε|
Lq
′
(QT )

≤ C with q′ ≥ 2

⇒ mε is compact in L1(QT ) ⇒ mε → m in L1(QT ) and a.e.

bε → b = Hp(x,Du,m) a.e.
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Weak solutions in the non singular case: µ > 0

Passage to the limit if 1 < q < 2: main steps

uε → u and Duε → Du in L1(QT ) and a.e.

∂tmε − ν∆mε − div(mεbε) = 0, with |bε| ≈ |Duε|q−1

(µ+T1/εm
ε)α

.

mε → m in L1(QT ) and a.e.

bε → b = Hp(x,Du,m) a.e.

Energy estimates and (1− α)q′ ≥ −α ⇒
∫
QT

mε|bε|q′ ≤ C, for a

constant C independent of µ.

Since q′ > 2, mε|bε|2 is compact in L1(QT ).

Stability result: mε → m in C([0, T ], L1(Ω)) and m is a weak sol. of
the Fokker Planck eq. related to b.

Y. Achdou Roma, 15-6-2017



Weak solutions in the non singular case: µ > 0

Passage to the limit if 1 < q < 2: main steps

uε → u and Duε → Du in L1(QT ) and a.e.

∂tmε − ν∆mε − div(mεbε) = 0, with |bε| ≈ |Duε|q−1

(µ+T1/εm
ε)α

.

mε → m in L1(QT ) and a.e.

bε → b = Hp(x,Du,m) a.e.

mε → m in C([0, T ], L1(Ω)) and m is a weak sol. of the Fokker Planck
eq. related to b.

F ε(mε)→ F (m) and Gε(x,mε(T ))→ G(x,m(T )) in L1

Passage to the limit in the Bellman equation: OK from the steps above and
from stability results for HJB eq. ([Porretta 99]) because the Hamiltonian
has natural growth and the good sign

The proof is achieved for q < 2.
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Weak solutions in the non singular case: µ > 0

The case q = 2

What remains from the steps above?

uε → u, Duε → Du, mε → m in L1(QT ) and a.e.,
bε = Hp(t, x, T1/εm

ε, Duε)→ b = Hp(t, x,m,Du) a.e.

u is a subsolution of the Bellman equation (no terminal condition yet) (from
Fatou lemma and the equi-integrability of F ε(t, x,mε))

lim
ε→0

∫
Ω
uε|t=0(x)m0(x)dx ≤ 〈u|t=0,m0〉,

where both members of the inequality are well defined
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Weak solutions in the non singular case: µ > 0

The case q = 2

What remains from the steps above?

uε → u, Duε → Du, mε → m in L1(QT ) and a.e.,
bε = Hp(t, x, T1/εm

ε, Duε)→ b = Hp(t, x,m,Du) a.e.

u is a subsolution of the Bellman equation (no terminal condition yet) and

lim
ε→0

∫
Ω
uε|t=0(x)m0(x)dx ≤ 〈u|t=0,m0〉

mεbε = mεHp(t, x, T1/εm
ε, Duε) ≤ c2mε + wε +

√
mεzε

where wε and zε are bounded in L2(QT ). Therefore, mεbε is equi-integrable
⇒ m is a distribution sol. of the F.P. related to b

Y. Achdou Roma, 15-6-2017



Weak solutions in the non singular case: µ > 0

The case q = 2

What remains from the steps above?

uε → u, Duε → Du, mε → m in L1(QT ) and a.e.,
bε = Hp(t, x, T1/εm

ε, Duε)→ b = Hp(t, x,m,Du) a.e.

u is a subsolution of the Bellman equation (no terminal condition yet) and

lim
ε→0

∫
Ω
uε|t=0(x)m0(x)dx ≤ 〈u|t=0,m0〉

m is a distribution sol. of the F.P. related to b

∫ T

0

∫
Ω
F (t, x,m)mdxdt+

∫ T

0

∫
Ω

|Du|2

(m+ µ)α
dxdt+

∫ T

0

∫
Ω
m

|Du|2

(m+ µ)α
dxdt ≤ C.

m is a weak solution of the Fokker-Planck equation, so m ∈ C([0, T ], L1(Ω))
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Weak solutions in the non singular case: µ > 0

The case q = 2

What remains from the steps above?

uε → u, Duε → Du, mε → m in L1(QT ) and a.e.

u is a subsolution of the Bellman equation (no terminal condition yet) and

lim
ε→0

∫
Ω
uε|t=0(x)m0(x)dx ≤ 〈u|t=0,m0〉

m is a weak solution of the Fokker-Planck eq., and m ∈ C([0, T ], L1(Ω))

Finer arguments related to the F.P. equation imply that mε(t) ⇀m(t) in
L1(Ω) weak for all t, and∫

Ω
G(m(T ))m(T ) dx ≤ C.
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Weak solutions in the non singular case: µ > 0

The case q = 2

What remains from the steps above?

uε → u, Duε → Du, mε → m in L1(QT ) and a.e.

u is a subsolution of the Bellman equation (no terminal condition yet) and

lim
ε→0

∫
Ω
uε|t=0(x)m0(x)dx ≤ 〈u|t=0,m0〉

m is a weak solution of the Fokker-Planck eq., and m ∈ C([0, T ], L1(Ω))

mε(t) ⇀m(t) in L1(Ω) weak for all t, and∫
Ω
G(m(T ))m(T ) dx ≤ C.

One needs to work more, because mε|bε|2 is no longer equi-integrable, so we do
not obtain the convergence of mε to m in C([0, T ];L1(Ω)), and the convergence of
Gε(mε(T )) is more difficult to prove.
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Weak solutions in the non singular case: µ > 0

A crossed energy inequality

Theorem

Consider (u,m) such that
1

mF (m) ∈ L1, m|t=TG(m|t=T ) ∈ L1(Ω),

m
|Du|q

(µ+m)α
∈ L1,

|Du|q
(µ+m)α

∈ L1

2 m is a weak sol. of
(

F.P. equation + m|t=0 = m0

)
3 u is a distrib. subsol. of

(
the Bellman equation + u|t=T ≤ G(mt=T )

)
For any pair (ũ, m̃) with the same properties as (u,m), we have the
crossed-integrability:

m̃
|Du|q

(µ+m)α
∈ L1, m

|Dũ|q

(µ+ m̃)α
∈ L1, . . .

and the energy inequality:

〈m̃0 , u(0)〉 ≤
∫

Ω
G(x,m(T )) m̃(T ) dx+

∫ T

0

∫
Ω
F (t, x,m)m̃ dxdt

+

∫ T

0

∫
Ω

[m̃Hp(t, x, m̃,Dũ) ·Du− m̃H(t, x,m,Du)] dxdt
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Weak solutions in the non singular case: µ > 0

Passage to the limit using the crossed energy inequality

We start from the energy identity for (uε,mε):∫ T

0

∫
Ω
mε
(
Hp(t, x, T1/εm

ε, Duε) ·Duε −H(t, x, T1/εm
ε, Duε)

)
dxdt

+

∫
Ω
mε(T )Gε(x,mε(T ))dx+

∫ T

0

∫
Ω
mεF ε(t, x,mε) dxdt =

∫
Ω
uε(0)mε0 dx.

By Fatou lemma:

lim sup
ε→0

∫
Ω
mε(T )Gε(x,mε(T ))dx ≤ 〈u(0),m0〉 −

∫ T

0

∫
Ω
mF (t, x,m) dxdt

−
∫ T

0

∫
Ω
m (Hp(t, x,m,Du) ·Du−H(t, x,m,Du)) dxdt

But thanks to the crossed energy inequality applied to (ũ, m̃) = (u,m),

〈u(0),m0〉 −
∫ T

0

∫
Ω
mF (t, x,m) dxdt

−
∫ T

0

∫
Ω
m (Hp(t, x,m,Du) ·Du−H(t, x,m,Du)) dxdt ≤

∫
Ω
m(T )G(x,m(T ))dx

Using the monotonicity of G, we then get Gε(x,mε(T ))→ G(x,m(T )) in L1(Ω).

Conclusion as in the case q < 2.
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Weak solutions in the non singular case: µ > 0

To be more correct ...

I cheated a bit in the previous slides, because I did not prove that u is a
subsolution of the boundary value problem with the terminal condition
u(T ) ≤ G(x,m(T )).

The rigorous argument goes through the parametrized Young measure generated
by the sequence ρε ? mε(T ):

f(x, ρε ? mε(T )) ⇀

∫
R
f(x, λ)dνx(λ) weakly in L1(Ω)

for every Carathéodory function f(x, s) such that f(x, ρε ? mε(T )) is
equi-integrable.

We get, with the previous argument,

lim
ε→0

∫
Ω
mε(T )Gε(x,mε(T ))dx =

∫
Ω

∫
R
m(T )G(x, λ)dνx(λ)dx,

which allows to conclude that Gε(x,mε(T ))→ G(x,m(T )).
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Weak solutions in the non singular case: µ > 0

Uniqueness

Needs the following lemma:

Lemma

A weak solution (u,m) satisfies the energy identity:

〈m0 , u(0)〉 =

∫
Ω
G(x,m(T ))m(T ) dx+

∫ T

0

∫
Ω
F (t, x,m)mdxdt

+

∫ T

0

∫
Ω

[mHp(t, x,m,Du) ·Du−mH(t, x,m,Du)] dxdt

Then, take two weak solutions (u,m) and (ũ, m̃). Use

1 the 2 energy identities for (u,m) and (ũ, m̃)

2 the 2 crossed energy inequalities for

1 (ũ, m̃) and (u,m)
2 (u,m) and (ũ, m̃)

Adding all the identities/inequalities, we conclude as P-L. Lions for classical
solutions, using the monotonicity of F and G and α ≤ 4/q′.
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Weak solutions in the singular case: µ = 0
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Weak solutions in the singular case: µ = 0

The case µ = 0: weak solutions (1)



−∂tu− ν∆u+ 1
q
|Du|q
mα

= F (m) , (t, x) ∈ (0, T )× Ω

∂tm− ν∆m− div(m
|Du|q−2Du

mα
) = 0 , (t, x) ∈ (0, T )× Ω

m(0, x) = m0(x) , u(T, x) = G(x,m(T )) , x ∈ Ω.
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Weak solutions in the singular case: µ = 0

The case µ = 0: weak solutions (2)

Definition The pair (u,m) is a weak solution if
1

mF (m) ∈ L1, mTG(mT ) ∈ L1(Ω),

m1{m>0}
|Du|q
mα

∈ L1, 1{m>0}
|Du|q
mα

∈ L1.

2 u is a subsolution of the Bellman equation: for any 0 ≤ ϕ ∈ C∞c ((0, T ]× Ω),∫ T

0

∫
Ω
uϕt dxdt− ν

∫ T

0

∫
Ω
u∆ϕdxdt+

∫ T

0

∫
Ω
H(t, x,m,Du)1{m>0}ϕdxdt

≤
∫ T

0

∫
Ω
F (t, x,m)ϕdxdt+

∫
Ω
G(x,m(T ))ϕ(T ) dx

3 m is a weak solution of

∂tm− ν∆m− div
(
m1{m>0}

|Du|
mα

)
= 0

m(t = 0) = m0

4 The energy identity holds:∫
Ω
m0 u(0) dx =

∫
Ω
G(x,m(T ))m(T ) dx+

∫ T

0

∫
Ω
F (t, x,m)mdxdt

+

∫ T

0

∫
Ω
m [Hp(t, x,m,Du) ·Du−H(t, x,m,Du)]1{m>0}dxdt

where the first term is understood as the trace of
∫
Ω u(t)m0 dx in BV (0, T ).
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Weak solutions in the singular case: µ = 0

Existence and uniqueness

Theorem

If either
(
q < 2 and α ≤ 4

q′

)
or
(
q = 2 and α < 4/q′ = 2

)
, and if F and G

are nondecreasing, then there exists a unique weak solution.

Remark We miss the limit case q = 2 and α = 2.

Proof

Consists of passing to the limit as µ→ 0+ in the non singular case discussed
previously.

It goes through a careful adaption of the previous arguments with a special
attention to the regions where m = 0.
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Mean field type control with congestion

MFG vs. Mean field type control (MFTC) (1)

MFG: look for Nash equilibria with N identical agents, then let N →∞

Carmona and Delarue / Bensoussan et al have studied the control of

McKean-Vlasov dynamics:

Assume that the all N agents use the same feedback law γ
The perturbations of γ impact the empirical distribution
Pass to the limit as N →∞ first, then minimize the asymptotic cost

MFTC models consists of an optimal control problem driven by a
Fokker-Planck equation:

Find a feedback γs = γ(s,Xs;ms) which minimizes

J(t) = E
{∫ T

t
L (Xs, γs;ms) ds+ G (XT ;mT )

}
subject to

dXt =
√

2νdWt + γtdt
mt is the law of Xt,

therefore
∂m

∂t
− ν∆m+ div (mγ) = 0

m|t=0 = m0.
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Mean field type control with congestion

MFG vs. MFTC (2)

Assume local dependency: L (x, γ;m) = L(x, γ,m(x)) and G(x;m) = G(x,m(x)):
the cost can be expressed as

J(t) =

∫ T

t

∫
Ω
L (x, γ(s, x,ms)m(s, x))m(s, x)dsdx+

∫
Ω
G (x;m(T, x)))m(T, x)dx

and the optimality conditions read

∂u

∂t
+ ν∆u−H(x,∇u,m(t, x))−m(t, x)

∂H

∂m
(x,∇u(x, t),m(t, x)) = 0

∂m

∂t
− ν∆m− div

(
m
∂H

∂p
(x,∇u;m)

)
= 0

with the terminal and initial conditions

u(t = T, x) = G(x,m(T, x)) +m(T, x)
∂G

∂m
(x,m(T, x))

m(0, x) = m0(x)

Y. Achdou Roma, 15-6-2017



Mean field type control with congestion

MFG vs. MFTC (3)

The latter PDE system enjoys uniqueness if(
−(mH)m,m 0

0 mHp,p

)
> 0

for all x ∈ Ω, m > 0 and p ∈ Rd.

If H(x, p,m) =
|p|q

(µ+m)α
, then the latter condition holds if α ≤ 1, (while the

condition is α ≤ 4q
q−1

for the MFG system with the same Hamiltonian)

Existence and uniqueness for weak solutions of the mean field type control
problem with congestion and possibly degenerate diffusion were proved in
[A., Laurière 2015], using a variational approach.

Numerical methods using the variational approach were studied in [A.,
Laurière 2016].
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