Remarks on the construction of invariant measures for KdV

Nicola Visciglia
(Joint work with N. Tzvetkov)
University of Pisa

Itinerant meeting on PDEs Roma, January $10^{\text {th }}, 2013$

Basic facts on Gaussian measures

We denote by $d \mu_{s}$ a probability (Gaussian) measure on the spaces $H^{s-1 / 2-\epsilon}$ for $\epsilon>0$
In fact the measure $d \mu_{s}=e^{-|u|_{H^{s}}^{2}} d u$ can be constructed in a rigorous way by a finite dimensional approximation via a general Kolmogorov result, and
it is in principle a measure on \mathbf{C}^{∞}
However it becomes a measure on functional spaces by the identification of a function with its Fourier serie.

Basic facts on Gaussian measures

We denote by $d \mu_{s}$ a probability (Gaussian) measure on the spaces $H^{s-1 / 2-\epsilon}$ for $\epsilon>0$
In fact the measure $d \mu_{s}=e^{-\|u\|_{H^{s}}^{2}} d u$ can be constructed in a rigorous way by a finite dimensional approximation via a general Kolmogorov result, and it is in principle a measure on \mathbf{C}^{∞}.
However it becomes a measure on functional spaces by the identification of a function with its Fourier serie.

Basic facts on Gaussian measures

We denote by $d \mu_{s}$ a probability (Gaussian) measure on the spaces $H^{s-1 / 2-\epsilon}$ for $\epsilon>0$
In fact the measure $d \mu_{s}=e^{-\|u\|_{H^{s}}^{2}} d u$ can be constructed in a rigorous way by a finite dimensional approximation via a general Kolmogorov result, and it is in principle a measure on \mathbf{C}^{∞}. However it becomes a measure on functional spaces by the identification of a function with its Fourier serie.

A more concrete representation of the probability space is given by the randomized vector

$$
\varphi_{s}(x, \omega)=\sum_{n \in \mathbf{Z} \backslash\{0\}} \frac{\varphi_{n}(\omega)}{|n|^{s}} e^{\mathrm{i} n x}
$$

where $\left(\varphi_{n}(\omega)\right)$ is a sequence of centered complex gaussian variables defined on a probability space (Ω, \mathcal{A}, p)
Then for every function $F(u)$ defined on the support of the measure $d \mu_{s}=e^{-\|u\|_{s}^{2}} d u$ we have

A more concrete representation of the probability space is given by the randomized vector

$$
\varphi_{s}(x, \omega)=\sum_{n \in \mathbf{Z} \backslash\{0\}} \frac{\varphi_{n}(\omega)}{|n|^{s}} e^{\mathrm{i} n x}
$$

where $\left(\varphi_{n}(\omega)\right)$ is a sequence of centered complex gaussian variables defined on a probability space (Ω, \mathcal{A}, p)
Then for every function $F(u)$ defined on the support of the measure $d \mu_{s}=e^{-\|u\|_{s}^{2}} d u$ we have

$$
\int F(u) d \mu_{s}=\int_{\Omega} F\left(\varphi_{s}(\omega)\right) d p
$$

As a consequence one can deduce that $d \mu_{s}\left(H^{s-1 / 2}\right)=0$ and the space $H^{s-1 / 2-\epsilon}$ is support for $d \mu_{s}$
We also have $d \mu_{1}\left(H^{1 / 2}\right)=0$ and $d \mu_{1}\left(\mathcal{F} L^{r, 1 / 2}\right)=1$ for $r>2$ where

As a consequence one can deduce that $d \mu_{s}\left(H^{s-1 / 2}\right)=0$ and the space $H^{s-1 / 2-\epsilon}$ is support for $d \mu_{s}$ We also have $d \mu_{1}\left(H^{1 / 2}\right)=0$ and $d \mu_{1}\left(\mathcal{F} L^{r, 1 / 2}\right)=1$ for $r>2$ where

$$
\|u\|_{\mathcal{F} L^{r, 1 / 2}}=\left\|\left\{\hat{u}(n) n^{1 / 2}\right\}\right\|_{l^{r}}
$$

Classical statements

Let us consider a general Hamiltonian PDE

$$
\begin{gathered}
u_{t}+A u=F(u) \\
u(0, x)=u_{0}(x) \\
u(0, t)=u(2 \pi, t)
\end{gathered}
$$

with an associate conservation law

$$
E_{s}(u)=\|u\|_{H^{s}}^{2}+R_{s}(u)
$$

For example the $\mathrm{KdV}, \mathrm{BO}$, DNLS satisfy this assumption.

Typical probabilistic statements that can be proved for the Cauchy problems above are of the following type.

Theorem

The Cauchy problem is G.W.P. for a.e. u_{0} w.r.t. $d \mu_{s}=e^{-\|u\|_{H^{s}}^{2}} d u$

Typical probabilistic statements that can be proved for the Cauchy problems above are of the following type.

Theorem

The Cauchy problem is G.W.P. for a.e. u_{0} w.r.t. $d \mu_{s}=e^{-\|u\|_{H^{s}}^{2}} d u$
For instance you get G.W.P. for $d \mu_{s}$ a.e. $u_{0} \in H^{s-1 / 2-\epsilon}$

Theorem

The measure $e^{-R_{s}(u)} e^{-\|u\|_{H^{s}}^{2}} d u=e^{-R_{s}(u)} d \mu_{s}$ is invariant along the flow of the PDE.

Consequence: Poincaré Recurrence Theorem Let T_{t} be a dynamical system on a topological space X endowed with a finite invariant measure $d \mu$, then for a.e. $d \mu$ initial data in the phase space there is a sequence $t_{n} \rightarrow \infty$ such that $T_{t_{n}}\left(u_{0}\right) \rightarrow u_{0}$

Theorem

The measure $e^{-R_{s}(u)} e^{-\|u\|_{H^{s}}^{2}} d u=e^{-R_{s}(u)} d \mu_{s}$ is invariant along the flow of the PDE.

Consequence: Poincaré Recurrence Theorem Let T_{t} be a dynamical system on a topological space X endowed with a finite invariant measure $d \mu$, then for a.e. $d \mu$ initial data in the phase space there is a sequence $t_{n} \rightarrow \infty$ such that $T_{t_{n}}\left(u_{0}\right) \rightarrow u_{0}$

FINITE DIMENSIONAL APPROXIMATION

Φ_{N}^{t} is the flow associated with

$$
\begin{gathered}
\partial_{t} u_{N}+A u_{N}=\pi_{N}\left(F u_{N}\right) \\
u_{N}(0)=\pi_{N}\left(u_{0}\right)
\end{gathered}
$$

where π_{N} is the projections on the modes with frequency $\leq N$ and u_{N} are trigonometric polynomials of degree at most N.

FINITE DIMENSIONAL APPROXIMATION

Φ_{N}^{t} is the flow associated with

$$
\begin{gathered}
\partial_{t} u_{N}+A u_{N}=\pi_{N}\left(F u_{N}\right) \\
u_{N}(0)=\pi_{N}\left(u_{0}\right)
\end{gathered}
$$

where π_{N} is the projections on the modes with frequency $\leq N$ and u_{N} are trigonometric polynomials of degree at most N.
The problem above reduces to a system of ODEs, and in general is G.W.P., in fact typically the L^{2} norm is preserved

MAIN STEPS

(1) There is a suitable Banach space X which is a support of $d \mu_{s}=e^{-\|u\|_{H^{s}}^{2}} d u$ where the Cauchy problem is L.W.P. (i.e. there is an unique local solution in the space $\left.\mathcal{C}\left(0, T\left(\left\|u_{0}\right\|_{X}\right)\right) ; X\right)$
(2) Finite dimensional approximation:
(3) The energy $E_{s}\left(\Phi_{N}^{t} u_{0}\right)$ is (almost) preserved along the evolution as long as $N \rightarrow \infty$ for a.e. $u_{0} \in X$.

MAIN STEPS

(1) There is a suitable Banach space X which is a support of $d \mu_{s}=e^{-\|u\|_{H^{s}}^{2}} d u$ where the Cauchy problem is L.W.P. (i.e. there is an unique local solution in the space $\left.\mathcal{C}\left(0, T\left(\left\|u_{0}\right\|_{X}\right)\right) ; X\right)$
(2) Finite dimensional approximation:

$$
\left\|\Phi_{N}^{t}\left(u_{0}\right)-\Phi^{t}\left(u_{0}\right)\right\|_{L^{\infty}((0, T) ; X)} \rightarrow 0 \text { as } N \rightarrow \infty
$$

(3) The energy $E_{s}\left(\Phi_{N}^{t} u_{0}\right)$ is (almost) preserved along the evolution as
long as $N \rightarrow \infty$ for a.e. $u_{0} \in X$.

MAIN STEPS

(1) There is a suitable Banach space X which is a support of $d \mu_{s}=e^{-\|u\|_{H^{s}}^{2}} d u$ where the Cauchy problem is L.W.P. (i.e. there is an unique local solution in the space $\left.\mathcal{C}\left(0, T\left(\left\|u_{0}\right\|_{X}\right)\right) ; X\right)$
(2) Finite dimensional approximation:

$$
\left\|\Phi_{N}^{t}\left(u_{0}\right)-\Phi^{t}\left(u_{0}\right)\right\|_{L^{\infty}((0, T) ; X)} \rightarrow 0 \text { as } N \rightarrow \infty
$$

(3) The energy $E_{s}\left(\Phi_{N}^{t} u_{0}\right)$ is (almost) preserved along the evolution as long as $N \rightarrow \infty$ for a.e. $u_{0} \in X$.

Probabilistic approach to overcome the fourth difficulty above

Lemma

Assume that

$$
\lim _{N \rightarrow \infty}\left\|G_{N}\right\|_{\left.L^{q}\left(d \mu_{s}\right)\right)}=0
$$

where

$$
G_{N}\left(u_{0}\right)=\frac{d}{d t}\left(E_{s}\left(\Phi_{N}^{t}\left(u_{0}\right)\right)_{\mid t=0}\right.
$$

Then we have the following:

Probabilistic approach to overcome the fourth difficulty above

Lemma

Assume that

$$
\lim _{N \rightarrow \infty}\left\|G_{N}\right\|_{\left.L^{q}\left(d \mu_{s}\right)\right)}=0
$$

where

$$
G_{N}\left(u_{0}\right)=\frac{d}{d t}\left(E_{s}\left(\Phi_{N}^{t}\left(u_{0}\right)\right)_{\mid t=0}\right.
$$

Then we have the following:

$$
\lim _{N \rightarrow \infty} \sup _{\substack{t \in\left[0, t_{0}\right] \\ A \in \text { Borel } \subset \operatorname{supp}\left(d \mu_{s}\right)}}\left|\frac{d}{d t} \int_{\Phi_{N}^{t}(A)} e^{-R_{s}\left(\pi_{N} u\right)} d \mu_{s}(u)\right|=0
$$

Idea of the proof

Reduction of the analysis at time $t=0$
We have

$$
\begin{gathered}
\frac{d}{d t}\left(\int_{\phi_{N}^{t}(A)} e^{-R_{s}\left(\pi_{N} u\right)} d \mu\right)_{t=\bar{t}} \\
=\lim _{h \rightarrow 0} h^{-1}\left(\int_{\Phi_{N}^{\bar{t}+h}(A)} e^{-R_{s}\left(\pi_{N} u\right)} d \mu-\int_{\phi_{N}^{\bar{t}}(A)} e^{-R_{s}\left(\pi_{N} u\right)} d \mu\right) \\
=\lim _{h \rightarrow 0} h^{-1}\left(\int_{\Phi_{N}^{h} \circ \Phi_{N}^{\bar{t}}(A)} e^{-R_{s}\left(\pi_{N} u\right)} d \mu-\int_{\phi_{N}^{\bar{t}}(A)} e^{-R_{s}\left(\pi_{N} u\right)} d \mu\right)
\end{gathered}
$$

and hence

where $\tilde{A}=\phi_{N}^{\bar{t}}(A)$. Hence we are reduced to estimate the time derivative derivative at time $t=0$.

Idea of the proof

Reduction of the analysis at time $t=0$
We have

$$
\begin{gathered}
\frac{d}{d t}\left(\int_{\phi_{N}^{t}(A)} e^{-R_{s}\left(\pi_{N} u\right)} d \mu\right)_{t=\bar{t}} \\
=\lim _{h \rightarrow 0} h^{-1}\left(\int_{\Phi_{N}^{\bar{t}+h}(A)} e^{-R_{s}\left(\pi_{N} u\right)} d \mu-\int_{\phi_{N}^{\bar{t}}(A)} e^{-R_{s}\left(\pi_{N} u\right)} d \mu\right) \\
=\lim _{h \rightarrow 0} h^{-1}\left(\int_{\Phi_{N}^{h} \circ \Phi_{N}^{\bar{t}}(A)} e^{-R_{s}\left(\pi_{N} u\right)} d \mu-\int_{\phi_{N}^{\bar{t}}(A)} e^{-R_{s}\left(\pi_{N} u\right)} d \mu\right)
\end{gathered}
$$

and hence

$$
\frac{d}{d t}\left(\int_{\phi_{N}^{t}(A)} e^{-R_{s}\left(\pi_{N} u\right)} d \mu\right)_{t=\bar{t}}=\frac{d}{d t}\left(\int_{\phi_{N}^{t}(\tilde{A})} e^{-R_{s}\left(\pi_{N} u\right)} d \mu\right)_{t=0}
$$

where $\tilde{A}=\phi_{N}^{\bar{t}}(A)$. Hence we are reduced to estimate the time derivative derivative at time $t=0$.

Analysis for KdV We compute concretely $\frac{d}{d t} E_{m}\left(\Phi_{N}^{t}(u)\right)_{\mid t=0}$ where

$$
E_{m}(u)=\int\left(\partial_{x}^{m} u\right)^{2} d x+\int u\left(\partial_{x}^{m-1} u\right)^{2} d x+\ldots
$$

Roughly speaking, in general, it is sufficient to compute (by Leibnitz rule) the time derivative of the density of E and to replace u_{t} by $\pi_{>N}\left(F\left(u^{N}(t)\right)\right)$.
we get: $\frac{d}{d t} E_{m}(u$

$$
2\left(\partial_{x}^{m} u_{t}^{N}\right) \partial_{x}^{m} u^{N} .
$$

$+2 \int u^{N}\left(\partial_{x}^{m-1} u^{N}\right) \partial_{x}^{m-1} u_{t}^{N} d x+$.
$\int \pi_{>N}\left(u^{N} \partial_{x} u^{N}\right)\left(\partial_{x}^{m-1} u^{N}\right)^{2} d x+2 \int$

Analysis for KdV We compute concretely $\frac{d}{d t} E_{m}\left(\Phi_{N}^{t}(u)\right)_{\mid t=0}$ where

$$
E_{m}(u)=\int\left(\partial_{x}^{m} u\right)^{2} d x+\int u\left(\partial_{x}^{m-1} u\right)^{2} d x+\ldots
$$

Roughly speaking, in general, it is sufficient to compute (by Leibnitz rule) the time derivative of the density of E and to replace u_{t} by $\pi_{>N}\left(F\left(u^{N}(t)\right)\right)$. More precisely to compute $\left.\frac{d}{d t} E_{m}\left(u^{N}(t)\right)\right)_{\mid t=0}$ (for KdV) we get:

$$
\begin{gathered}
\frac{d}{d t} E_{m}\left(u^{N}(t)\right)= \\
\int 2\left(\partial_{x}^{m} u_{t}^{N}\right) \partial_{x}^{m} u^{N}+u_{t}^{N}\left(\partial_{x}^{m-1} u^{N}(t)\right)^{2} \\
+2 \int u^{N}\left(\partial_{x}^{m-1} u^{N}\right) \partial_{x}^{m-1} u_{t}^{N} d x+\ldots \cdots \mid u_{t}^{N}=u_{x x}^{N}+u^{N} \partial_{x} u^{N}-\pi_{>N}\left(u^{N} \partial_{x} u^{N}\right)=
\end{gathered}
$$

Analysis for KdV We compute concretely $\frac{d}{d t} E_{m}\left(\Phi_{N}^{t}(u)\right)_{\mid t=0}$ where

$$
E_{m}(u)=\int\left(\partial_{x}^{m} u\right)^{2} d x+\int u\left(\partial_{x}^{m-1} u\right)^{2} d x+\ldots
$$

Roughly speaking, in general, it is sufficient to compute (by Leibnitz rule) the time derivative of the density of E and to replace u_{t} by $\pi_{>N}\left(F\left(u^{N}(t)\right)\right)$. More precisely to compute $\left.\frac{d}{d t} E_{m}\left(u^{N}(t)\right)\right)_{\mid t=0}$ (for KdV)

$$
\begin{aligned}
& \text { we get: } \\
& \qquad \begin{array}{l}
\frac{d}{d t} E_{m}\left(u^{N}(t)\right)= \\
\qquad 2\left(\partial_{x}^{m} u_{t}^{N}\right) \partial_{x}^{m} u^{N}+u_{t}^{N}\left(\partial_{x}^{m-1} u^{N}(t)\right)^{2} \\
+2 \int u^{N}\left(\partial_{x}^{m-1} u^{N}\right) \partial_{x}^{m-1} u_{t}^{N} d x+\ldots \cdot \mid u_{t}^{N}=u_{x x}^{N}+u^{N} \partial_{x} u^{N}-\pi_{>N}\left(u^{N} \partial_{x} u^{N}\right)= \\
\int \pi_{>N}\left(u^{N} \partial_{x} u^{N}\right)\left(\partial_{x}^{m-1} u^{N}\right)^{2} d x+2 \int u^{N}\left(\partial_{x}^{m-1} u^{N}\right) \pi_{>N} \partial_{x}^{m-1}\left(u^{N} \partial_{x} u^{N}\right) d x
\end{array}
\end{aligned}
$$

Analysis for KdV We compute concretely $\frac{d}{d t} E_{m}\left(\Phi_{N}^{t}(u)\right)_{\mid t=0}$ where

$$
E_{m}(u)=\int\left(\partial_{x}^{m} u\right)^{2} d x+\int u\left(\partial_{x}^{m-1} u\right)^{2} d x+\ldots
$$

Roughly speaking, in general, it is sufficient to compute (by Leibnitz rule) the time derivative of the density of E and to replace u_{t} by $\pi_{>N}\left(F\left(u^{N}(t)\right)\right)$. More precisely to compute $\left.\frac{d}{d t} E_{m}\left(u^{N}(t)\right)\right)_{\mid t=0}$ (for KdV) we get:

$$
\begin{gathered}
\frac{d}{d t} E_{m}\left(u^{N}(t)\right)= \\
\int 2\left(\partial_{x}^{m} u_{t}^{N}\right) \partial_{x}^{m} u^{N}+u_{t}^{N}\left(\partial_{x}^{m-1} u^{N}(t)\right)^{2} \\
+2 \int u^{N}\left(\partial_{x}^{m-1} u^{N}\right) \partial_{x}^{m-1} u_{t}^{N} d x+\ldots \cdots \mid u_{t}^{N}=u_{x x}^{N}+u^{N} \partial_{x} u^{N}-\pi_{>N}\left(u^{N} \partial_{x} u^{N}\right)=
\end{gathered}
$$

$$
\int \pi_{>N}\left(u^{N} \partial_{x} u^{N}\right)\left(\partial_{x}^{m-1} u^{N}\right)^{2} d x+2 \int u^{N}\left(\partial_{x}^{m-1} u^{N}\right) \pi_{>N} \partial_{x}^{m-1}\left(u^{N} \partial_{x} u^{N}\right) d x
$$

To compute $\frac{d}{d t} E_{m}\left(u^{N}(t)\right)_{\mid t=0}$ it is sufficient to replace above u^{N} by $u^{N}(0)=\pi_{N} \varphi_{s}(\omega)$.

By the computation above the worst term to be estimated is

$$
\int u^{N}\left(\partial_{x}^{m-1} u^{N}\right) \partial_{x}^{m-1} \pi_{>N}\left(u^{N} \partial_{x} u^{N}\right) d x_{\left\lvert\, u^{N}=\sum_{n \in \mathbf{Z} \backslash\{0\},|n|<N} \frac{\varphi_{n}(\omega)}{|n|^{m}} e^{\mathbf{i} n x}\right.}
$$

then we get

By the computation above the worst term to be estimated is

$$
\int u^{N}\left(\partial_{x}^{m-1} u^{N}\right) \partial_{x}^{m-1} \pi_{>N}\left(u^{N} \partial_{x} u^{N}\right) d x_{\left\lvert\, u^{N}=\sum_{n \in \mathbf{Z} \backslash\{0\},|n|<N} \frac{\varphi_{n}(\omega)}{|n|^{m}} e^{\mathbf{i} n x}\right.}
$$

then we get

$$
\int \sum_{\substack{\left|j_{1}\right|,\left|j_{2}\right|,\left|j_{3}\right|,\left|j_{4}\right|<N \\\left|j_{3}+j_{4}\right|>N}} \frac{\varphi_{j_{1}}(\omega)}{\left|j_{1}\right|^{m}} \frac{\varphi_{j_{2}}(\omega)}{\left|j_{2}\right|} \frac{\varphi_{j_{3}}(\omega)}{\left|j_{3}\right|^{m}} \varphi_{j_{4}}(\omega) e^{i\left(j_{1}+j_{2}+j_{3}+j_{4}\right) x} d x
$$

and hence

by integration $d x$ we get

$$
\ldots=\sum_{\substack{\left|j_{1}\right|,\left|j_{2}\right|,\left|j_{3}\right|,\left|j_{4}\right|<N \\\left|j_{3}+j_{4}\right|>N, j_{1}+j_{2}+j_{3}+j_{4}=0}} \frac{\varphi_{j_{1}}(\omega)}{\left|j_{1}\right|^{m}} \frac{\varphi_{j_{2}}(\omega)}{\left|j_{2}\right|} \frac{\varphi_{j_{3}}(\omega)}{\left|j_{3}\right|^{m}} \varphi_{j_{4}}(\omega)
$$

By Minkowski

$$
\begin{aligned}
& \left\|G_{N}(u)\right\|_{L^{q}\left(d \mu_{m}\right)}=\left\|G_{N}(\varphi(\omega))\right\|_{L^{q}\left(d p_{\omega}\right)} \\
\leq & \sum_{\substack{\left|j_{1}\right|,\left|j_{2}\right|,\left|j_{3}\right|,\left|j_{4}\right|<N \\
\left|j_{1}+j_{2}\right|>N}} \frac{1}{\left|j_{1}\right|^{m}} \frac{1}{\left|j_{2}\right|} \frac{1}{\left|j_{3}\right|^{m}} \rightarrow 0 \text { as } N \rightarrow \infty
\end{aligned}
$$

Thank you!

