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Basic facts on Gaussian measures

We denote by dus a probability (Gaussian) measure on the spaces
HsY2=¢ for ¢ > 0
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Basic facts on Gaussian measures

We denote by dus a probability (Gaussian) measure on the spaces
HsY2=¢ for ¢ > 0

2
In fact the measure dps = e "I du can be constructed in a rigorous way

by a finite dimensional approximation via a general Kolmogorov result, and
it is in principle a measure on C*°.

Visciglia (University of Pisa) Invariant measures January 10th 2013 2/15



Basic facts on Gaussian measures

We denote by dus a probability (Gaussian) measure on the spaces
Hs1/2=¢ for e > 0

In fact the measure dus = e~ ulis gy can be constructed in a rigorous way
by a finite dimensional approximation via a general Kolmogorov result, and
it is in principle a measure on C*°.

However it becomes a measure on functional spaces by the identification
of a function with its Fourier serie.
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A more concrete representation of the probability space is given by the
randomized vector

QDS(.'E,UJ) — (pn(UJ) ei'n:L‘

nez\{0} [nf?

where (¢, (w)) is a sequence of centered complex gaussian variables
defined on a probability space (2,4, p)
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A more concrete representation of the probability space is given by the
randomized vector

S08(:1:7('{)) — (p'ﬂ(w) ei'n:L‘

nez\{0} [nf?

where (¢, (w)) is a sequence of centered complex gaussian variables
defined on a probability space (2,4, p)

Then for every function F(u) defined on the support of the measure
dus = e~ 14l2 dy, we have

/F(u)dus ZAF(Ws(W))dP
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As a consequence one can deduce that dug(H*~1/2) = 0 and the space
H51/2¢ is support for dy,
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As a consequence one can deduce that dug(H*~1/2) = 0 and the space
H51/2¢ is support for dy,
We also have dui(HY?) =0 and dpy (FL™Y/?) =1 for r > 2 where

lullprare = [{a(n)n! 2}l
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Classical statements

Let us consider a general Hamiltonian PDE
u + Au = F(u)
u(0, ) = up(z)
u(0,t) = u(2m,t)
with an associate conservation law
Ey(u) = HUH%IS + Rs(u)

For example the KdV, BO, DNLS satisfy this assumption.

January 10th 2013
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Typical probabilistic statements that can be proved for the Cauchy
problems above are of the following type.

The Cauchy problem is G.W.P. for a.e. uy w.r.t. dus = e lullis gy
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Typical probabilistic statements that can be proved for the Cauchy
problems above are of the following type.

The Cauchy problem is G.W.P. for a.e. uy w.r.t. dus = e lullis gy

For instance you get G.W.P. for du, a.e. ug € H*~1/2=¢
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Rs(u)

The measure e~ Fs(®) g=llullZs gy — o=
of the PDE.

dus is invariant along the flow
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The measure e~ Bs(W) e=llulifis gy = ¢=Rs(w) dus is invariant along the flow
of the PDE.

Consequence: Poincaré Recurrence Theorem Let T} be a dynamical
system on a topological space X endowed with a finite invariant measure
du, then for a.e. dy initial data in the phase space there is a sequence
t, — 00 such that Ty, (ug) — uo
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FINITE DIMENSIONAL APPROXIMATION

CI>§\, is the flow associated with
Oruy + Auy = mn(Fuy)

un (0) = 7 (up)

where 7y is the projections on the modes with frequency < N and uy are
trigonometric polynomials of degree at most N.
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FINITE DIMENSIONAL APPROXIMATION

CI>§\, is the flow associated with
Oruy + Auy = mn(Fuy)

un (0) = 7 (up)

where 7y is the projections on the modes with frequency < N and uy are
trigonometric polynomials of degree at most N.

The problem above reduces to a system of ODEs, and in general is
G.W.P,, in fact typically the L? norm is preserved
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MAIN STEPS

© There is a suitable Banach space X which is a support of
2
dps = e 1"l duy where the Cauchy problem is L.W.P. (i.e. there is
an unique local solution in the space C(0, T'(||uo||x)); X)
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MAIN STEPS

© There is a suitable Banach space X which is a support of
2
dps = e 1"l duy where the Cauchy problem is L.W.P. (i.e. there is
an unique local solution in the space C(0, T'(||uo||x)); X)
@ Finite dimensional approximation:

H(I)fV(UO) - (I)t(UO)HLOO((o,T);X) —0as N —
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MAIN STEPS

© There is a suitable Banach space X which is a support of
2
dps = e 1"l duy where the Cauchy problem is L.W.P. (i.e. there is
an unique local solution in the space C(0, T'(||uo||x)); X)

@ Finite dimensional approximation:
1@ (u0) — ®*(uo) || oo (0, 7);x) = 0 @5 N — 00
© The energy Es(Ph up) is (almost) preserved along the evolution as

long as N — oo for a.e. uy € X.
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Probabilistic approach to overcome the fourth difficulty above

Lemma

Assume that
Jim | Gyl za(d) =0

where
d

Gn(w) = %(Es(@}fv(w)))u:o
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Probabilistic approach to overcome the fourth difficulty above

Lemma

Assume that
Jim | Gyl za(d) =0

where :
Gn(uo) = @(Es@}fv(uo))u:o
Then we have the following:
d
lim sup —/ eiRS(”N“)d,us u)| =0
N—o0 1[0, to] ‘dt ot (A) ( )’
A€BorelC supp(dpus)
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Idea of the proof

Reduction of the analysis at time ¢t =0

We have d
_ _RS(WNU)d
dt </¢§V(A) ¢ M)tzf

1 -1 —Rs(myu) o —Ry(myu)
llzlg(l)h (/cpfjh(A) ¢ 1 /f (A) ‘ dﬂ)
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Idea of the proof

Reduction of the analysis at time ¢t =0

We have d
_ _RS(WNU)d
dt </¢§V(A) ¢ M)tzf

1 -1 —Rs(myu) o —Ry(myu)
llzlg%h (/cpfjh(A) ¢ 1 /f (A) ‘ dﬂ)

N
— lim h~! / o Rolmvn) gy _ / ~Rulmya) g
h—0 ( CD?VO(I%V(A) H ¢§V(A) :LL)
and hence
d —Rs(mnu) d / —Ry(ryu)
_ s(TNU d [ s(TNU d
dt(/%(A) ‘ M)tZE dt( L(A) ‘ M)t:O

where A = ¢k (A). Hence we are reduced to estimate the time derivative
derivative at time ¢t = 0.
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BN
Analysis for KdV We compute concretely %Em(éﬁv(u))“:() where

Epn(u) :/(G?U)de+/u(8;”_lu)2dx+...

Roughly speaking, in general, it is sufficient to compute (by Leibnitz rule)
the time derivative of the density of £ and to replace u; by
v (F(u (1))
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Analysis for KdV We compute concretely %Em(éﬁv(u))“:() where

Epn(u) :/(a;nu)QdH/u(a;n—lu)?dH...

Roughly speaking, in general, it is sufficient to compute (by Leibnitz rule)
the time derivative of the density of £ and to replace u; by

7 n(F(uN(t))). More precisely to compute %Em(uN(t)))“:O (for KdV)
we get:

B (¥ (1)) =

/2 @7 u)omuN 1 W (9N (1)?
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Analysis for KdV We compute concretely %Em(éﬁv(u))“:() where

Epn(u) :/(a;nu)QdH/u(a;n—lu)?dH...

Roughly speaking, in general, it is sufficient to compute (by Leibnitz rule)
the time derivative of the density of £ and to replace u; by

7 n(F(uN(t))). More precisely to compute %Em(uN(t)))“:O (for KdV)
we get:

B (¥ (1)) =

/2 @7 u)omuN 1 W (9N (1)?

/7T>N(uN3wuN)(8g“1uN)2dx+2/uN(aglfluN)TbNag%l(uN(?g;uN)dx
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Analysis for KdV We compute concretely %Em(éﬁv(u))“:() where

Epn(u) :/(a;nu)QdH/u(a;n—lu)?dH...

Roughly speaking, in general, it is sufficient to compute (by Leibnitz rule)
the time derivative of the density of £ and to replace u; by

7 n(F(uN(t))). More precisely to compute %Em(uN(t)))“:O (for KdV)
we get:

B (¥ (1)) =

/2 @7 u)omuN 1 W (9N (1)?

/7T>N(uN3wuN)(8g“1uN)2dx+2/uN(aglfluN)TbNag%l(uN(?g;uN)dx

To compute %Em(uN(t))‘tzo it is sufficient to replace above u"¥ by
uMN (0) = myps(w).
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By the computation above the worst term to be estimated is

x

N -1, N -1 N N
ne ,n|< n|™

then we get
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By the computation above the worst term to be estimated is

/ N (O LMo sy (uN OpulY) da

’ [WN=3 2\ {0}, 1< V;\Z\%) elne
then we get
Z P (W) pip (W) wjs (W) ] (w)ei(j1+j2+j3+j4)mdx

. . . J4a
el ey ™ il sl
lis4ja|>N

and hence
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by integration dx we get

_ Z P (w) P2 (w) Pia (w) . (w)
= . N - j
by AT el sl
|j3+7a|> N, j1+j2+j3+ja=0

By Minkowski
|GN (W)l La(dpm) = 1GN (@)l Lo(dp,)
1 1 1
< Z —+0as N — o©
[0 L] lja|™

[l |d2, 173, el <N
lj14i2|>N
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Thank you!
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