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Università di Roma, La Sapienza

Roma, Gen 9, 2013

Mario Pulvirenti From particle systems to the Landau equation: a consistency result



General strategy of the Kinetic Theory

Consider a mechanical particle system. N (large) identical particles
of unitary mass. Positions and velocities: q1 . . . qN , qi ∈ R3,
v1 . . . vN , vi ∈ R3.

d

dτ
qi = vi ,

d

dτ
vi =

∑
j=1...N:

j 6=i

F (qi − qj).

Here F = −∇φ, φ the smooth, two-body, spherically symmetric
interaction potential and τ the time.
Statistical description: WN(ZN) symmetric probability measure
ZN = (q1 . . . qN ; v1 . . . vN).
Time evolution: WN(ZN ; t) = WN(Φ−τ (ZN)), Φτ (ZN) is the flow
with initial datum ZN .
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General strategy of the Kinetic Theory

Instead of looking at ZN , construct the random measure

µN(dz ; τ) =
1

N

∑
j

δ(z − zj(τ))dz

empirical distribution. {zi (τ)}Ni=1 = Φτ (ZN).

Look for an evolution equation for µN or E(µN) = f1(z ; τ) to have
a one-particle description. Dynamics creates correlations. Closure
problem. Suitable scaling limits could recover the statistical
independence, provided it is assured at time zero: WN = f ⊗N

0
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General strategy of the Kinetic Theory

Boltzmann eq.n (1870). Low-density limit (rerefied gases)

Landau eq.n (1936). Grazing collision limit of the B eq.n. (dense
weakly interacting gases)
In both cases transition from reversible to irreversible behavior.
Entropy production.
In this talk I want to discuss how to derive the Landau eq.n from
particle systems under the so called weak-coupling limit.
A full derivation proof is a challenging open problem, even for
short times.
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The Landau equations

f (x , v ; t) is the probability distribution of a particle.

(∂t + v · ∇x)f = QL(f , f )

QL(f , f ) =

∫
dv1∇v a(v − v1)(∇v −∇v1)f (v)f (v1),

a = a(v − v1) is the matrix

ai ,j(V ) =
B

|V |
(δi ,j − V̂i V̂j), a(V ) =

B

|V |
P⊥V .

V̂ =
V

|V |
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The Landau equations

From the mathematical side very little is known about the Landau
equation even for the homogeneous case.

The main difficulty is
due to the presence of the diverging factor 1

|V | .
Same properties as for the Boltzmann equation.

(vα,QL(f , f )) = 0

for α = 0, 1, 2 and the Entropy production is given by the following
expression (f = f (v), f1 = f (v1))

−(log f ,QL(f , f )) =
1

2

∫
dv

∫
dv1

1

ff1

1

|v − v1|
|P⊥v−v1

(∇v−∇v1)ff1|2.
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The weak coupling limit

N identical particles of unitary mass. Positions and velocities:
q1 . . . qN , v1 . . . vN .

d

dτ
qi = vi ,

d

dτ
vi =

∑
j=1...N:

j 6=i

F (qi − qj).

Here F = −∇φ, φ the smooth, two-body, spherically symmetric
interaction potential and τ the time. In this regime N is very large
and the interaction strength quite moderate. ε > 0 a small
parameter = the ratio between the macro and microscales.
N = O(ε−3), the density is O(1).
Rescale x = εq, t = ετ, φ→

√
εφ.

d

dt
xi = vi

d

dt
vi =

1√
ε

∑
j=1...N:

j 6=i

F (
xi − xj

ε
).
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The weak coupling limit

Why a diffusion in velocity? Heuristics

The force is O( 1√
ε
) but acts on the time interval O(ε).

The momentum variation due to a single scattering =O(
√
ε).

The number of particles met by a test particles is O( 1
ε ).

The total momentum variation for unit time is O( 1√
ε
).

But zero in the average.
The variance = 1

εO(
√
ε)2 = O(1).
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The weak coupling limit

XN = x1 . . . xN VN = v1 . . . vN .

Liouville equation

(∂t + VN · ∇N)W N(XN ,VN) =
1√
ε

(
T ε

NW N
)
(XN ,VN)

where VN · ∇N =
∑N

i=1 vi · ∇xi

(T ε
NW N

)
(XN ,VN) =

∑
0<k<`≤N

(T ε
k,`W

N
)
(XN ,VN),

T ε
k,`W

N = ∇φ(
xk − x`
ε

) · (∇vk
−∇v`

)W N .
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The weak coupling limit

BBKGY hierarchy of equations for the marginals f N
j (for 1 ≤ j ≤ N):

(∂t +

j∑
k=1

vk · ∇k)f N
j =

1√
ε

T ε
j f N

j +
N − j√

ε
C ε

j+1f N
j+1.

The operator C ε
j+1 is defined as:

C ε
j+1 =

j∑
k=1

C ε
k,j+1 ,

C ε
k,j+1fj+1(x1 . . . xj ; v1 . . . vj) =

−
∫

dxj+1

∫
dvj+1F (

xk − x`

ε
) · ∇vk

fj+1(x1, x2, . . . , xj+1; v1, . . . , vj+1).

The initial value {f 0
j }Nj=1 factorizes

f 0
j = f ⊗j

0 , for some f0.
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The weak coupling limit

Duhamel formula:

(S(t)fj)(Xj ,Vj) = fj(Xj − Vj t,Vj),

f N
j (t) =S(t)f 0

j +
N − j√

ε

∫ t

0

S(t − t1)C ε
j+1f N

j+1(t1)dt1+

1√
ε

∫ t

0

S(t − t1)T ε
j f N

j (t1)dt1.

Assuming that the time evolved j-particle distributions f N
j (t) are smooth

C ε
j+1f N

j+1(Xj ; Vj ; t1) =

− ε3
j∑

k=1

∫
dr

∫
dvj+1F (r) · ∇vk

fj+1(Xj , xk − εr ; Vj , vj+1, t1) = O(ε4)

because
∫

drF (r) = 0. Also the third term is vanishing.
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The weak coupling limit

Hence f N
j (t) cannot be smooth !

We conjecture
f N
j = gN

j + γN
j

where gN
j is the main part of f N

j and is smooth, while γN
j is small,

but strongly oscillating.

(∂t +

j∑
k=1

vk · ∇xk
)gN

j =
N − j√

ε
C ε

j+1gN
j+1 +

N − j√
ε

C ε
j+1γ

N
j+1

(∂t +

j∑
k=1

vk · ∇xk
)γN

j =
1√
ε

T ε
j γ

N
j +

1√
ε

T ε
j gN

j ,

Initial data

gN
j (Xj ,Vj) = f 0

j (Xj ,Vj), γN
j (Xj ,Vj) = 0.

Note that γN
1 = 0 since T ε

1 = 0.
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The weak coupling limit

The remarkable fact of this decomposition is that γ can be
eliminated. Let (Xj(t),Vj(t)) = ({x1(t) . . . xj(t), v1(t) . . . vj(t)})
be the solution of the j-particle flow (in macro variables)

d

dt
xi = vi

d

dt
vi = − 1√

ε

∑
k=1...j :

k 6=i

∇φ(
xi − xk

ε
).

Initial datum (Xj ,Vj) = ({x1 . . . xj , v1 . . . vj}). Uj(t) is the operator
solving the Liouville equation

(∂t + Vj · ∇j)h(Xj ,Vj ; t) =
1√
ε

(
T ε

j h
)
(XN ,VN ; t)

namely

h(Xj ,Vj , t) = Ujh(Xj ,Vj) = h(Xj(−t),Vj(−t)).
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The weak coupling limit

Then

γN
j (t) = − 1√

ε

∫ t

0

dsU(s)T ε
j gN

j (t − s).

γN
j (Xj ,Vj , t) = − 1√

ε

∫ t

0

ds
∑

1≤i<k≤j

∇φ(
xi (−s)− xk(−s)

ε
)·

(∇vi −∇vk
)gN

j (Xj(−s),Vj(−s); t − s).

Finally we arrive to a closed hierarchy for gN :

(∂t +

j∑
k=1

vk · ∇xk
)gN

j (Xj ,Vj ; t) =
N − j√

ε
C ε

j+1gN
j+1(Xj ,Vj ; t)+

N − j

ε

j∑
k=1

j+1∑
i,r=1

∫ t

0

ds

∫
dvj+1

∫
dxj+1divvk

F (
xk − xj+1

ε
)F (

xi (−s)− xr (−s)

ε
)

(∇vi −∇vr )gN
j+1(Xj+1(−s),Vj+1(−s); t − s).
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The weak coupling limit

We now present a formal derivation of the Landau eq.n (assuming
gN

2 smooth).

(∂t + v1 · ∇x1)gN
1 (t) =

N − 1√
ε

C ε
2 gN

2 (t)

+
N − 1

ε
C ε

2

∫ t

0
dsU2(s)T2gN

2 (t − s).

Let u ∈ D be a test function.

N − 1√
ε

(u,C ε
2 gN

2 (t)) = O(
√
ε).
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The weak coupling limit

Last term:

−N − 1

ε

∫
dx1

∫
dx2

∫
dv1

∫
dv2

∫ t

0
ds ∇v1u(x1, v1)

F (
x1 − x2

ε
)F (

x1(−s)− x2(−s)

ε
)·(∇v1−∇v2)gN

2 (X2(−s),V2(−s); t−s) ≈

−
∫

dx1

∫
dr

∫
dv1

∫
dv2

∫ ∞
0

ds ∇v1u(x1, v1)

F (r)F (
x1(−εs)− x2(−εs)

ε
) · (∇v1 −∇v2)gN

2 (x1, x2, v1, v2; t).

(r = x1−x2
ε ) and s → s

ε .
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The weak coupling limit

w = v1 − v2 the relative velocity:

x1(−εs)− x2(−εs)

ε
= r +ws+

1

ε

∫ −εs
0

dτ(v1(τ)−v1)−(v2(τ)−v2).

But

v1(τ)− v1 =
1√
ε

∫ τ

0
dsF (

x1(s)− x2(s)

ε
) = O(

√
ε).

The time spent when the two particles are at distance less that ε is
O(ε), (if the relative velocity w not too small). Thus:

≈−
∫

dx1

∫
dr

∫
dv1

∫
dv2

∫ ∞
0

ds ∇v1u(x1, v1)F (r)F (r + ws)

(∇v1 −∇v2)gN
2 (x1, x1, v1, v2; t)

≈(u,QL(gN
1 , g

N
1 )).

Invoking propagation of chaos.
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The weak coupling limit

Actually it can be proven that

∫
dr

∫ ∞
0

dsF (r)F (r−ws) =
1

2

∫
dr

∫ ∞
−∞

dsF (r)F (r−ws) = a(w)

a(w)α,β =
B

|w |
(δα,β −

wαwβ
|w |2

)

and

B = C

∫ ∞
0

dρρ3φ̂2(ρ).
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The weak coupling limit
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∫ ∞
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The weak coupling limit

Consider the first order (in time) approximation g̃Nof gN :

(∂t +

j∑
k=1

vk · ∇xk
)g̃N

j (Xj ,Vj ; t) =
N − j√

ε
C ε

j+1S(t)f 0
j+1(Xj ,Vj)+

N − j

ε

j∑
k=1

j+1∑
i,r=1

∫ t

0

ds

∫
dvj+1

∫
dxj+1divvk

F (
xk − xj+1

ε
)F (

xi (−s)− xr (−s)

ε
)

(∇vi −∇vr )S(t − s)f 0
j+1(Xj+1(−s),Vj+1(−s)).
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The weak coupling limit

Bobylev, P. and Saffirio 2012: derivation...... at time zero

Theorem

Suppose f0 ∈ C 3
0 (R3 × R3) be the initial probability density

satisfying:

|Dr f0(x , v)| ≤ Ce−b|v |2 for r = 0, 1, 2 (1)

where Dr is any derivative of order r and b > 0. φ ∈ C 2(R3),
φ ≥ 0 and φ(x) = 0 if |x | > 1. Assume factorization at time zero,
then

lim
ε→0

g̃N
1 (t) = S(t)f0 +

∫ t

0
dτS(t − τ)QL(S(τ)f0,S(τ)f0)

where Nε3 = 1 and the above limit is considered in D′.
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The weak coupling limit

Propagation of chaos

Theorem

Under the same hypotheses

lim
ε→0

g̃N
j (t, x1, v1, . . . , xj , vj) =

j∏
i=1

S(t)f0(xi , vi )

+

j∑
i=1

j∏
k=1
k 6=i

S(t)f0(xk , vk)

∫ t

0
dτS(t − τ)QL(S(τ)f0, S(τ)f0)(xi , vi )

in D′.
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