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Presentation The Euler-Maxwell system

Plasma Physics

A plasma can be modeled by a superposition of several charged
compressible gases (one for each species), interacting through their
electromagnetic fields.
We will consider the case of two species:

a gas of ions of density n+ ∈ R+, velocity v+ ∈ R3, mass m+ = Mi ,
charge Ze and pressure law pi = T+n

2
+/2.

a gas of electrons of density n−, velocity v−, mass m− = me , charge
−e and pressure law pe = T−n

2
−/2.

We need to also consider the electromagnetic field (E ,B).

Remark: we could consider any a priori pressure law.

This is one of the three main models for plasma physics (with
Vlasov-Maxwell and MHD).
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The System

The Euler-Maxwell system is simply the law of conservation of each
species, the balances of momentum and the Maxwell equations, namely

∂tn± +∇ · (n±v ±) = 0

n±m±(∂tv± + v± · ∇v±) + T±∇n± = ±en± (E + v± × B)

∂tB + c∇× E = 0

∂tE − c∇× B = −4πe(n+u+ − n−u−)

div(E ) = 4πe(n+ − n−)

div(B) = 0

when Z = 1. These are 14 dynamical equations and 2 elliptic constraints.
It corresponds to 12 scalar equations.
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Non-dimensionalization

After rescaling, we are reduced to the following system

∂tn + div((n + 1)v) = 0,

ε (∂tv + v · ∇v) + T∇n + Ẽ + v × B̃ = 0,

∂tρ+ div((ρ+ 1)u) = 0,

(∂tu + u · ∇u) +∇ρ− Ẽ − u × B̃ = 0,

∂tB̃ +∇× Ẽ = 0,

∂t Ẽ −
Cb

ε
∇× B̃ = [(n + 1)v − (ρ+ 1)u] ,

div(B̃) = 0, div(Ẽ ) = ρ− n,

où ε = me/mi < 1/2000� 1, T = Te/Ti ≥ 1 et Cb = c2/(VeVi )� 1.
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Different dynamics

The parameters involved have very different sizes and lead to several
natural limits:

ε = me/Mi → 0, this is the 1 fluid model, where we follow only one
dynamics (Mi = 1, ion dynamics; me = 1, electron dynamics).

Cb → +∞, this is the electrostatic model (the Maxwell system then
reduces to the Poisson equation).

This gives different intermediate models (EP/e), (EP/i), (EM/e), (EP)
which are important to understand each partial dynamics. Letting
T → +∞ in (EP/i) gives the cold ion model.

Some of these limits have been studied (Grenier-Cordier,
Gérard-Varet-Han-Kwan-Rousset)
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Yet other dynamics

But beyond these examples, one can also look at particular regimes (e.g.
“long-wave” regimes, “high frequency”. . . ) and derives many important
equations.

One can derive the Zakharov equation (Texier)

One can derive the KdV, KP and ZK equations (Guo-Pu,
Lannes-Linares-Saut).

See also studies by Peng-Wang
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Instability for a compressible neutral gas

One of the main motivation from this program comes from a results of
Sideris:

Shocks for Compressible Euler [Sideris, 85]

Many nice (small, smooth, localized, irrotational) initial perturbations of a
flat equilibrium (n, v) = (1, 0) lead to solutions which do not remain C 2

for all time.

The formation of shocks has been studied in details by Alinhac and
recently by Christodoulou-Miao.
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Stability for a compressible charged gas

However, Y. Guo realized that the introduction of a self-consistent
electromagnetic field could stabilize the system

Stability of a neutral equilibrium for the Euler-Poisson/e [Guo 98]

Any small smooth irrotational perturbation of a constant background leads
to solutions which remain smooth for all time and decay.

This was extended to 2D by Ionescu-P. (see also Jang-Li-Zhang, Li-Wu).
The neutrality condition was recently removed in 3D by
Germain-Masmoudi-P.

After this, the challenge was to understand the following:
Question: how and how much does an electromagnetic field stabilize a
compressible gas.
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Compressible Euler and Euler-Poisson

The compressible Euler equations read

∂tρ+ div((1 + ρ)u) = 0

∂tu + u · ∇u +∇ρ+ ρ∇ρ = 0

and the Euler-Poisson equation reads

∂tρ+ div((1 + ρ)u) = 0

∂tu + u · ∇u +∇ρ+ ρ∇ρ = ∇φ
∆φ = ρ.
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Wave and Klein-Gordon

The difference in the results for CE and EP can be understood by looking
at the linearization of these equations: For CE, we have

(∂tt −∆) ρ = O((∂ρ)2 + |∂v |2),

This is a quasilinear wave equation without null forms. In 3D, this is
expected to blow-up in finite time.
For EP, we have instead

(∂tt −∆ + 1) ρ = O((∂ρ)2 + |∂v |2)

And for Klein-Gordon equations in 3D, one can use the normal form
technique of Shatah to get global existence.
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The EP/i and EM/e

Recently two other intermediate models were also settled, the ion case

Stability for EP/i [Guo-P. 10]

Small smooth, irrotational initial perturbations of a flat background lead
to global solutions for EP/i.

The difficulty was to understand the ion dispersion and the difficulty
related to it.

and a breakthrough by Germain-Masmoudi

Stability for EM/e [Germain-Masmoudi 11]

Small smooth, irrotational, neutral and localized initial perturbations of a
flat background lead to global solutions for EM/e.

This was subject to a genericity condition that was later removed by
Ionescu-P.
The difficulty here was to deal with systems of quasilinear Klein-Gordon
equations.Benoit Pausader(joint work with Y. Guo and A. Ionescu) (Paris 13)EM 14 / 30
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The EP/i

The Euler-equation for ions reads as follows:

∂tρ+ div((1 + ρ)u) = 0

∂tu + u · ∇u +∇ρ+ ρ∇ρ = −∇φ
−∆φ = 1 + ρ− eφ.

And the linearization is(
∂tt −∆−∆(1−∆)−1

)
u = 0.

This supports only solutions which decay slowly t−4/3 at best. In addition,
the dispersion relation

ω(ξ) = |ξ|

√
2 + |ξ|2
1 + |ξ|2

'ξ→0

√
2|ξ|+ O(|ξ|3)

is close to the wave dispersion and introduces degenerate bilinear operator
upon using normal forms.
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Systems of Klein-Gordon equations

The small data theory for systems of Klein-Gordon equations(
∂tt −∆2 + m1

)
u = Q1(u, v ,∇u,∇v ,∇2u,∇2v)(

∂tt − C 2∆2 + m2

)
u = Q2(u, v ,∇u,∇v ,∇2u,∇2v)

is very challenging and is only understood in the non degenerate case.

Global existence for KG systems [Germain, Ionescu-P.]

Assume that

2mi 6= mj and (m1 −m2)(m1 −m2C
4) ≥ 0

Then, small smooth compactly supported data lead to global solutions
decaying like t−1−ε.
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Main result

Main result

We prove that the stability result of Guo remains true even in the whole
system

Stability for the Euler-Maxwell system

Small smooth neutral and irrotational initial perturbations of a constant
equilibrium lead to solutions which are global, remain smooth and behave
asymptotically as linear solutions in the case of the full 2-fluid
Euler-Maxwell system.
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Remarks

The irrotational assumptions

B = ε∇× v = −∇× u

are restrictive. They remove a mode which does not decay at the
linear level.

For smooth data, the neutral assumptions
∫

(n − ρ) = 0 =
∫
B are

forced by Maxwell’s compatibility conditions and the irrotational
assumption

div(E ) = ρ− n, B = −∇× u.

For large data, some solutions DO blow-up (Guo-Tahvildar-Zadeh).

The smoothness condition is a bit restrictive, but the only conserved
energy is at the L2-level.
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Main difficulties

The system is coupled even at the linear level. This introduces many
terms and produces multiple interactions and makes the dispersion
relations less explicit.

We need to face all the previous difficulties (slow decay, singular
bilinear multipliers, multiple resonances) at the same time and some
combine to create new difficulties (Cases B and D later).
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Main method

We use the framework of the “space-time resonances” introduced by
Germain-Masmoudi-Shatah and Gustafson-Nakanishi-Tsai. We want to
combine two type of estimates:

A) An energy estimate to get a rough control on very high-regularity
norms. This gives uniform bounds in HN . It depends on the delicate
nonlinear structure of the equation and demands an integrable decay of
the solutions. This gives the regularity we need to overcome the loss of
derivative from the nonlinearity.

B) A semi linear dispersive analysis of the system. This yields the wanted
integrable decay. It gives a very fine description of the solution in
low-regularity norms. It depends essentially on the linearized system, but
very little on the nonlinear structure (except for possible null forms).
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Cartoon

From now on, we only focus on B). We want to describe the solution as a
free evolution of a slowly-varying profile

U(t) = S(t)f (t)

where S(t) is the linearized flow and f (t) remains in a compact set.

To illustrate this, consider the quadratic Schrödinger equation

(i∂t + ∆) u = N(u) = |u|2.

Then, we want to describe the function under the form

u(t) = e it∆f (t)

Then we can use the Duhamel formula to get that

f̂ (ξ, t) = f̂ (ξ, 0) +

∫ t

0

∫
R3

e is[|ξ|
2+|ξ−η|2−|η|2]f̂ (ξ − η, s)f̂ (η, s)dηds
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Resonances

In general, we are lead to study operators

T [f , g ] = F
∫
R

∫
R3

m(ξ, η, s)e isΦ(ξ,η)f̂ (ξ − η, s)ĝ(η, s)dηds

and to find norms B so that T : B × B → B.

In general the key information about the interaction µ× ν → σ is
contained into the nonlinear phase

Φ(ξ, η) = Λσ(ξ)− Λµ(ξ − η)− Λν(η).

and particularly in its critical points (resonances) ∇(s,η)sΦ(ξ, η) = 0.
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The linearized system is

∂tn + div(v) = 0, ∂tv +
T

ε
∇n + E = 0,

∂tρ+ div(u) = 0, ∂tu +∇ρ− E = 0,

∂tB +∇× E = 0, ∂tE −
Cb

ε
∇× B = v − u,

It can be diagonalized into

∂tU + M · U = 0

where U = (Ui ,Ue ,Ub) and M = diag(Λi ,Λe ,Λb) with eigenvalues

Λi = ε−1/2

√√√√(1 + ε)− (T + ε)∆−
√

((1− ε)− (T − ε)∆)2 + 4ε

2
,

Λe = ε−1/2

√√√√(1 + ε)− (T + ε)∆ +
√

((1− ε)− (T − ε)∆)2 + 4ε

2
,

Λb = ε−1/2
√

1 + ε− Cb∆.
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Norms

We now need to find appropriate norms such that

The relevant bilinear operators are bounded T : B × B → B

Boundedness of the linear profile in B yields decay of the free
solutions:

‖e itΛf ‖L∞ . (1 + t)−1−ε‖f ‖B .

We want to control two aspects: position and momentum. We localize the
inputs

f =
∑

N·X≥1

QXPN f =
∑

N·X≥1

fX ,N ,

QX f (x) = 1{x∼X}f (x), FPN f (ξ) = 1{ξ∼N}F f (ξ)

and we define the norm on these atoms

‖f ‖B = sup
N·X≥1

‖fX ,N‖B̃
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The simplest norm that provides the decay is

‖fX ,N‖B1 = X 1+ε‖fX ,N‖L2 .

Unfortunately, the presence of strong resonances does not allow us to get
boundedness of the corresponding operator and we need to allow another
kind of “weak” inputs:

‖fX ,N‖B2 = X 1−ε‖fX ,N‖L2 + sup
ξ,R

R−2X
3
2
−ε‖f̂ ‖L1(B(ξ,R)).

Our space is then B = B1 + B2. In this discussion, we have neglected the
dependence in N which is less important.
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Analysis of the operators

We now need to estimate the relevant bilinear operators

f αX ,N(t) =
∑

N1·X1≥1,N2·X2≥1,T≤t,βγ
T[T ,2T ][f

β
X1,N1

, f γX2,N2
].

This is a huge sum, but now all the relevant information is quantified.

Using Energy estimates, we may assume that N,N1,N2 . 1.

Using the finite speed of propagation, we may assume that X ,X1,X2 ≤ T .

This way, we get rid of most terms in the sum above and can treat them
one by one.
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Nonstationary phase analysis

This is the natural framework of the space-time resonance method. Using
integration by parts, we can reduce to the study of the following operators

RαT [f , g ] =

∫ 2T

T

∫
R3

e isΦαβγ(ξ,η)m(ξ, η)ϕ(δ−1
X ∇ηΦ)ϕ(δ−1

t Φ)

f̂ βX1,N1
(ξ − η)f̂ γX2,N2

(η)dηds

where δt � 1 and

δX =

{
T−1/2 if X1 + X2 ≤ T

1
2

(X1 + X2)T−1 if X1 + X2 ≥ T
1
2 .

In some cases, the integration domain is then empty.
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The Stationary phase analysis

It remains to consider the sets

Sαβγ = {(ξ, η) : Φαβγ = 0, ∇ηΦαβγ = 0}.

Out of the 63 possible interactions, only about 15 have non empty
space-time resonant sets. These cases can be classified into 4 different sets
(A,B,C,D).

Case A: S = {(Rω, rω), ω ∈ S2} for some R, r > 0. These sets
appear for systems of Klein-Gordon equations (see Germain) and have
already been studied in (Germain, Ionescu-P.). These interactions
create the second kind of input.

Case B: S = {(Rω, 0), ω ∈ S2}.
Case C: S = {(0, 0), ω ∈ S2}. This is the case that appear for the
ion equation.

Case D: S = {(0, rω), ω ∈ S2} .
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Zakharov

Note that from the fact that the original system was rotationally
symmetric, S is always invariant under (ξ, η)→ (Oξ,Oη) for any rotation
O.

The Zakharov system seems to be made of interactions from Cases B and
D. Indeed, it corresponds to a “blow-up” of the closed interactions
i ±×e → e; (0, ξ2)→ ξ2 and e +×e− → i ; (ξ1,−ξ1)→ 0.
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Stationary phase analysis

We need to distinguish two situations:

X1 + X2 ≤ T
1
2 . In this case, we can obtain no information from the

precise nature of the norms. We are on our own. On the other hand,
we may assume that the inputs obey symbol bounds and therefore
perform an efficient stationary phase analysis. This allows to describe
very precisely the output and thus gives the nature of the “weak
norm”.

X1 + X2 ≥ T
1
2 . As X1 → T , the input become less and less smooth

and the stationary analysis becomes less and less efficient, so we have
a poorer and poorer description of the output. But this is
compensated for by the gains from the norms (e.g. the way it
penalizes X ). Here a precise choice of the norms is crucial so that the
two phenomenon balance each other.

Benoit Pausader(joint work with Y. Guo and A. Ionescu) (Paris 13)EM 31 / 30


	Presentation
	The Euler-Maxwell system
	Stability of a constant background

	Main result

