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THE SCHRODINGER EQUATION

The solution to the free Schrodinger equation,

Oru(x, t) = iAyu(x,t) (x,t) e R" xR
u(x,0) = up(x) x € R",

is given by

eitAuO = u(x,t) = / e27ri(x§—27rt|§|2)[lb(€) d¢.
Rd
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POINTWISE CONVERGENCE TO THE

INITIAL DATA

EHCHHERA () —« o () 7

L. Carleson 1980: True for ug € H/*(R) where

HAERT) = (s [ IGEOR(+ 7 d < +oc ).

B. Dahlberg and C. Kenig, 1982: False for s < 1/4 in all dimensions
P. Sjolin, L. Vega, 1985: True for s > 1/2 as a in any dimension.

J. Bourgain, 90's Improved to ug € H/27¢(R?) in dimension n = 2.
Later improved by Moyua—\V-Vega, Tao—V-Vega, Tao-V.

Best result known for n =2 is s > 3/8 (Sanghyuk Lee 2006).
Bourgain 2012: For n > 3 a sufficieqt cor11dition is s> % - 4—1,7. For

n > 4, a necessary condition is s > 5~ 35
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Carleson’s result
We want to prove

||Sl:P €2 F () ey < ClIFll oy

By duality, it will suffice to show that

‘ /R et CIAF(x)w(x)dx

2
< gy W
for all measurable functions t : R — R and w € L*/3(R).

‘ /R e CIBF (x)w(x)dx

9 2
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By Fubini's theorem

= |[ 7@ [ e nmman i

2

and by the Cauchy-Schwarz inequality,

TV (2] e(1/2 2mi(xE+t(x)E2)
[ repieias [ | o w(x)ds

Since

2 d§
€[22

/]Rz F(©)PIE>de = 11/ zy:

writing the squared integral in as a double integral, it will suffice to
show that

mi((x— x)— 2 dg
[ L[ e Dy S < Il




We need the following lemma.

Lemma
Let a,b € R and o € (0,1). Then there is a constant C, such that

27rl(a§+b§2) d€ < C, ba—1/2 al = + ala—1)
L | < Co (b lal o)

We take a = 1/2. Then,

o B d¢
&2mi(x=y)e+(t(x)~t())€?) ,, dxdy ——=>—
JL. N i

:/R/Rmdxdy.



By Holder's inequality, this is bounded by

Wl ars @yl /2w) |l 2wy

where f )
_ y—Xx
hef) = | Lol
is a . Then, the Hardy—Littlewood—Sobolev
inequality,

[h2wller) < (W]l a/3)-



H/* counterexample (Dahlberg and Kenig’s)
For j € 7Z, define the functions f; by

h(e) =
Then,

X[QJ 2J_|- 2.1/2](5)

|| F| s ~ 207420
We have

21+m21/2
itA _
) = |
2J

27rl(x-§—27rt§2)d£
and by the change of variables £ — £ 4+ 2/, we have

1 5j/2
1oo

€2 6(x)] =

2771(.5(x—2]27rt)—27rt§2) df
0
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We consider the sequence of times t; defined by
ti=27(2m) 'x.
Then for all £ € [0, 1552/?] and all x € [0, 1],
€(x — 22rt;) — 27t;€%| < 0 + 2/50.
Thus there is a constant C such that,
|52 (x)| > 272
for all x € [0,1]. Hence,

| sup |2 £ |1r > €272
t

Hence, .
| sup &2 6[lle >> || Fl1s

forall s < 1/4.



To prove divergence for s < 1/4, we define, for s +1/4 < a < 1/2,

Flx) = 3 27 (),

>2

We note first that f € H*.

We will show that for x € [1/2,1], and t; = 5; ~ 2,

|2 ,(x)| < C2-2li—H2i/2,

With this, . o
’eltjAf‘(X)| > C2—Joc+j/2 — 0,

as t; — 0.

It remains to show that |2 f,(x)| is small.



As before,

2t/2
e f,(x)| = / e2mi(E(x=22mt)—2m€) e |
0

For £ << j, |ei®f,(x)| < 24/2 = 2(6=0)/20i/2 < Co~3li~119i/2,

For £ >> j, use integration by parts, noting that the phase
o(&) =&(x — 2122771.}-) — 27th§2, satisfies

1/(€)] = |x — 2mt(2° + 2€)| > 2.



Sjolin and Vega’s result

We are going to present a proof of Sjélin and Vega's result:
B o = u(x, t) =/ 2 IE2mtE) Gy (€) de g uo(x)  ace.
for up € H*(R"), s > 1/2.

e It is enough to prove, for all s > 1/2,

I sup |€"2F|ll2(8y) < Collflls-
te[0,1]

e By Littlewood—Paley decomposition, it is enough to prove, for all
s > 1/2 and all f such that supp f C {|{| ~ R},

| s €2 |l i2(8y) < REIIFll2-

)
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e Due to the finite speed of propagation, it is enough to prove, for
all f such that supp f C {|¢| ~ R},

| sup [l 2(8,) < RY?|Ifll 2.
te[0, %]

e By scaling, it is enough to prove, for f, supp fc {I1€] ~ 1},

I sup ™[l 2(ga) < RY?(IF]| 2
te[0,R]

e By Bernstein's inequality,

| sup [€"2F]ll2(8ry = Il 1€ | oo o,r7) I 2(Bri0.RY)
te[0,R]

< "™ 1l 2(Brx[o,R) -

Hence, the problem has been reduced to the

|2 || i2mnxpo.r) < CRY|IF] 2.



Bourgain’s positive result

Theorem (Bourgain 2012)

For every n > 3, there is some 6, < 1/2, such that the a.e

pointwise convergence property holds for all s > 6,,.
(Actually, one can take 6, = 1 — L),
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e By scaling, it is enough to prove

Theorem (Bourgain 2012)

For every n > 3, there is some 0, < 1/2, such that for all f such
that supp f C {|¢| ~ 1},

I sup |2 [[l 2(mp) < R™[IF |2
te[0,R]
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We will use an argument of induction on the dimension. For n = 2,
Sanghyuk Lee's theorem gives us the starting point.



e By scaling, it is enough to prove

Theorem (Bourgain 2012)
For every n > 3, there is some 0, < 1/2, such that for all f such
that supp f C {|¢| ~ 1},

I sup |2 [[l 2(mp) < R™[IF |2
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v

We will use an argument of induction on the dimension. For n = 2,
Sanghyuk Lee's theorem gives us the starting point.

o If f C {|¢] ~1},

I sup [ 2F[ll2gq) = Il €™ Fll oo (0,8) | L2(Br0,RY)
te[0,R]

can be treated as
itA
< €™l 2(Brx[0,R])-



itA/)E()—().
(xEHtEP) g¢ = e

—2mi(Xx

f(&)e

R*f(x,t) = .



R F(x,t) = | F(€)e 2mEEHt) ge = etAf(x).
By

We consider (x, t) € [0, K]™*1 for some big K >> 1. We
decompose B(0,1) C R" in “cubes” of sidelength %, Q., centered
at &,. Define

RF(x,t) =) /Q F()e 2D de = 3 R fu(x, 1)

=Y e 2nileattieal?) / F(£) e 2mit(E€a) H(IEP It ) gg
« Qa

Here, f, = fxa,-



R F(x,t) = | F(€)e 2mEEHt) ge = etAf(x).
By

We consider (x, t) € [0, K]™*1 for some big K >> 1. We
decompose B(0,1) C R" in “cubes” of sidelength %, Q., centered
at &,. Define

RF(x,t) =) /Q F()e 2D de = 3 R fu(x, 1)

=Y e 2nileattieal?) / F(£) e 2mit(E€a) H(IEP It ) gg
« Qa

Here, f, = fxa,-

Note that R*f,, ~ aye27i(xéattléal®) and |R*f,]| is “essentially
constant” in [0, K]"+1.



Denote (&) = (—2¢, 1), the normal vector to the surface 7 = |£]2,
at the point (&,]¢/?).
Two situations may appear:
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Denote (&) = (—2¢, 1), the normal vector to the surface 7 = |£]2,

at the point (&,]¢/?).
Two situations may appear:

There are n+ 1 points &u,, &ass - - -5 Eanyy € B(0, 1) such that
det(v(€ay), V(an)s - - s V(Eapiy)) > K1 and

R oy (%, )], Ry (%, )]s [R i (%, 1) 2 K7 max [R¥ o (x, 1))

> K2 R*f(x, t)).

Then,

1

n+1 = n+1
‘R*ﬂ < K2H<H ‘R*fak‘> +1 < K2n< Z H ‘R*fak’>

k=1 non colinear k=1



*
I sup 1R Flllig < IR Fllzug



I sup [R*Flllz < [[IR*llli219
0<t<R

n+1

1
<KNC > TTIR ) ™l zis-

non colinear k=1



I sup [R*Flllz < [[IR*llli219
0<t<R

n+1

1
<KNC > TTIR ) ™l zis-

non colinear k=1
By Hélder's inequality

n+1
n 11 % _1
< K*"R (2 q)H( Z H R fak|) [ La(Brx[0.R])-

non colinear k=1



Theorem (Multilinear Strichartz's estimate.
Bennett-Carbery-Tao 2006)

Under the above assumption on the normal vectors

MR il 2 < CREKMEEL N2,

for all € > 0.




Theorem (Multilinear Strichartz's estimate.
Bennett-Carbery-Tao 2006)

Under the above assumption on the normal vectors
IMEE R fill 2/m < CREK ML i,

for all € > 0.

- . _ 1
This gives, for g = 22

n+1
i1 . 1
K2"R (2 ‘7)H( Z H ‘R fak|)"+1‘HLq(BRX[OvR])

non colinear k=1

11 n+1 1
= K2"R2" 2D [ Z H ’R*fakH||Er/1n(BR><[07R])

non colinear k=1

1 1 ntl ﬁ
§K2”R2_2(n+1)C€REKC< > H”kaL2>

non colinear k=1

2n %*ﬁ e C
< K"R2 20 C.RK™ ||| 12



Remark. We can compare the multilinear theorem with
Strichartz’s estimate,

IRl 22 < ClIFl2.
Using Holder’s inequality, we obtain, for any functions fy,

||”ZiiR*fk||L ) < ”ZSHR*fkllemﬁ < CIEEL el

2(n+2
n(n+1)



There is a n — 1-dimensional hyperplane, £, such that,
|R*f3] < K" max, [R*fa(x, t)| whenever dist(Qg,£) > K~ 1.
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Qgcﬁ “
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R*fy ~ éae_%"(xl‘&'a“'&'a‘Z) on K-cubes in space-time.
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| ‘Wl‘gﬁj > R*llli2x<r)
C

1/2
[Zumax\ 3 R fgruLz(Bﬂ}

QgCﬂ



| ‘Wl‘gﬁj > R*llli2x<r)
C

1/2
[ZNMMEZRMM@J

QgC[/

Denote by Q/, a +£—neighborhood of &, in R""! and
~ 1211/2
(€)= 5519 xa, . Then gz ~ K5 (52 [3uf?) % an

ZR £, NZa ol (X e +tIEL) /g(g)ei(i’f’Hl&’F) d¢' = R*g(x'),

on (x',t) € By x I.



Hence
”ﬁ?i’ﬁ’ > Rl iz <)
- QgCL

< KY2|| max IR glll2(x<k)-
f<k



Hence
I max| > R fsllllizgui<r)
- QﬁCL

< KY2|| max IR glll2(x<k)-
f<k

By

n— 1 2
< KK g|| 2 < KV2KO1 K 2 (Z 2al”) /

On—1 1 R*f 2 1/2
<K X Z I aHLZ(BVXlz) '

. . ) 1/2
< K3 (2 Y IR Fallizsxtonn ) -



By Plancherel,

, R /2 , 1/2 , R\ /2
<k () (S0i) =k () e
B



By Plancherel,

, R /2 , 1/2 , R\ /2
<k () (S0i) =k () e
B

With this, and the calculation for the multilinear case, we estimate

1 1
| up (Rl < [R5 2RO
t_

We choose K = Ré", where ¢, = and obtain

1
2(n+1)[C+3—0n-1]"

< ReerG 00 ] o,



There is a n — 1-dimensional hyperplane, £, such that,
|R*f3] < K" max, [R*fa(x, t)| whenever dist(Qg,£) > K~ 1.

Denote £ a %—neighborhood of L.

IR < | ) R |+ max|R*fy|.
QgCﬁ “

To deal with the first term, define a function ¢ by

1/2
| ) R = ¢>< > |R*fﬁ|2> .
QBCl: Q@Cﬁ

Decompose [—R, R]™! = UB, 4, where B, , = B, X Iy, are
K-cubes.



1/2
Imoxo( S IRER) s

1/2
|25 mle, [, mplon. o]
Y

v,0 QgCL‘,

Claim:
/ max |, ,|* dx < K*n-1K".
B"f telg

o Tl ) 1/2
< KVn-t [K Ze/; Z IR fﬁ“zB%é C/X]
’Y’

v:£ QgCﬁ

On—1 1 * 2 1/2
=K [K/B > IR dx} :

R QBC£



By the trace lemma,
R\ 1/2 1/2 , R\ 1/2
< k(%) (Zﬁ:”fﬁﬂfz) k() e

With this, and the calculation for the multilinear case, we estimate

1 1
| sp Rl < |RATKC 4 RY2K i
t|<

1

2(n+1)[C+%,9n71]7 and Obtam

We choose K = R°", where ¢, =

< RaerG0 ) ] 2.



About the claim:
Since R*fg ~ aﬁe_27”(><'§a+t|§a‘2) in By, we seek for an estimate

—om . . o 1 2
”f:ﬂ?;ﬁ' Z 2, e 2Ti(xEattléal? \HL2(| <Ky < K° LK2( Z\ 2,
¢ncl

Assume that £ = {&, = c}.

2 (e o«
|‘ft‘|ﬁg>}§| D age 2t Ftlal® Nizz<k)

ta€l

1/2 _ - /12
< KV max | > aae 2t |20 <)
NI

Notation: x' = (x1,x2, ..., Xp—1).



Denote by Q, a %—neighborhood of &, in R”_l nd
g(¢') = X 2| | xq,- Then [lgiz ~ K*2 (X |aaf?)"* and

S anellEnten) | / g(¢) el €+ ) e,
on |X'| < K. Hence

He 712
K2 e | 37 301 iz
faEZ

< K2 / JeiC IR e/ o
| Ifglﬁgﬁ\ E'lll v i<k)

< K2R g2 < K2R K3 () Jaal?) 2.



The counterexample (Bourgain’s)

Theorem (Bourgain 2012) }

The estimate fails for 0, < % — % )

We need two results from number theory

Lemma

Given § > 0, there is § € 8"~ and C = C(8, n) such that
R" C RY"Z" +0(8) + 0[-CR, CR].

Remark: the proof in R? is very easy.

Lemma
We can find R as big as we want so that #(Z" N RS"~1) > R"2.
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Denote
E=[RY"Z"nS" ] + 0+ B(0,eR1).

H={(7): (§&7)-(20,1) =0}.
Note that,

HO{(&—1€P) - €€ R} ={(&,—[¢]?) - —26¢ + [¢]> = 0}
={(&,—I¢P) - [€— 0] =1},

Hence,
ECS" ' 4+0+0eRY)cNHN{EI|EP): € eR"})+0(R7Y),

where I denotes the orthogonal projection onto the R".



Take f = XE-
u(t, x) = / 2mileE—tlel) g,
E
For any x € Bg N [RY"Z" + 0(5)], and any & € E N By,

x-£€Z+0(e+0)+x-6.
We estimate,

a(0,x)| = | [ e de| ~ |E].
E
Moreover, for |t| < CR,

_ ’/Ee27ri(x-§+0+0(Ce)) d€| ~ ‘E‘



Hence,
sup |u(t,y)| > c|E]l,
t|<CR

for all y € Bg.

Assume that

I sup [€™4f]ll2(8r) < CR|IfI 2
te[0,R]

Then, |E|R"? < |E|*/?2R? and thus, |E| < R?~". On the other
hand, we can find R as big as we want such that
AR RaS"™1 > R"". This gives |E| > R"7* "R, Hence,

n—2
6> "2,
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