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THE SCHRÖDINGER EQUATION

The solution to the free Schrödinger equation,

∂tu(x , t) = i∆xu(x , t) (x , t) ∈ Rn × R
u(x , 0) = u0(x) x ∈ Rn,

is given by

e it∆u0 = u(x , t) =

∫
Rd

e2πi(xξ−2πt|ξ|2)û0(ξ) dξ.



POINTWISE CONVERGENCE TO THE
INITIAL DATA

Question (Carleson) u(x , t) −→t→0 u0(x) a.e.?

L. Carleson 1980: True for u0 ∈ H1/4(R) where

Hs(Rn) = { u0 ;

∫
Rn
|û0(ξ)|2(1 + |ξ|)2s dξ < +∞}.

B. Dahlberg and C. Kenig, 1982: False for s < 1/4 in all dimensions
P. Sjölin, L. Vega, 1985: True for s > 1/2 as a in any dimension.
J. Bourgain, 90’s Improved to u0 ∈ H1/2−ε(R2) in dimension n = 2.
Later improved by Moyua–V–Vega, Tao–V–Vega, Tao–V.
Best result known for n = 2 is s > 3/8 (Sanghyuk Lee 2006).
Bourgain 2012: For n ≥ 3 a sufficient condition is s > 1

2 −
1
4n . For

n ≥ 4, a necessary condition is s ≥ 1
2 −

1
2n .



Carleson’s result

We want to prove

‖ sup
t
|e it∆f (x)|‖L4(R) ≤ C‖f ‖Ḣ1/4(R).

By duality, it will suffice to show that∣∣∣∣∫
R
e it(x)∆f (x)w(x)dx

∣∣∣∣2 ≤ ‖f ‖2Ḣ1/4(R)
‖w‖2L4/3(R)

for all measurable functions t : R→ R and w ∈ L4/3(R).

∣∣∣∣∫
R
e it(x)∆f (x)w(x)dx

∣∣∣∣2 =

∣∣∣∣∫ ∫ f̂ (ξ)e2πi(xξ+t(x)ξ2) dξw(x)dx
∣∣∣∣2 .



By Fubini’s theorem

=

∣∣∣∣∫ f̂ (ξ)

∫
e2πi(xξ+t(x)ξ2)w(x)dx dξ

∣∣∣∣2
and by the Cauchy–Schwarz inequality,∫

R
|f̂ (ξ)|2|ξ|1/2dξ

∫
R

∣∣∣∣∫
R
e2πi(xξ+t(x)ξ2)w(x)dx

∣∣∣∣2 dξ
|ξ|1/2

Since ∫
R2
|f̂ (ξ)|2|ξ|1/2dξ = ‖f ‖2Ḣ1/4(R)

,

writing the squared integral in as a double integral, it will suffice to
show that∫

R

∫
R

∫
R
e2πi((x−y)ξ+(t(x)−t(y))ξ2)w(x)w(y)dxdy

dξ
|ξ|1/2

≤ ‖w‖2L4/3(R2)
.



We need the following lemma.

Lemma
Let a, b ∈ R and α ∈ (0, 1). Then there is a constant Cα such that∣∣∣∣∫

R
e2πi(aξ+bξ2) dξ

|ξ|α

∣∣∣∣ ≤ Cα
(
|b|α−1/2|a|−α + |a|α−1

)
.

We take α = 1/2. Then,∫
R

∫
R

∫
R
e2πi((x−y)ξ+(t(x)−t(y))ξ2)w(x)w(y)dxdy

dξ
|ξ|1/2

=

∫
R

∫
R

w(x)w(y)

|x − y |1/2
dxdy .



By Hölder’s inequality, this is bounded by

‖w‖L4/3(R)‖I1/2w)‖L4(R),

where
I1/2f (y) =

∫
R

f (y − x)

|x |1/2
dx1

is a fractionnary integral. Then, the Hardy–Littlewood–Sobolev
inequality,

‖I1/2w‖L4(R) ≤ ‖w‖L4/3(R).



H1/4 counterexample (Dahlberg and Kenig’s)

For j ∈ Z, define the functions fj by

f̂j(ξ) = χ[2j ,2j+ 1
1002j/2](ξ).

Then,
‖f ‖Hs ∼ 2j/42js .

We have

e it∆fj(x) =

∫ 2j+ 1
1002j/2

2j
e2πi(x ·ξ−2πtξ2)dξ,

and by the change of variables ξ → ξ + 2j , we have

|e it∆fj(x)| =

∣∣∣∣∣
∫ 1

1002j/2

0
e2πi(ξ(x−2j2πt)−2πtξ2)dξ

∣∣∣∣∣ .



We consider the sequence of times tj defined by

tj = 2−j(2π)−1x .

Then for all ξ ∈ [0, 1
1002

j/2] and all x ∈ [0, 1],

|ξ(x − 2j2πtj)− 2πtjξ2| ≤ 0 + 2/50.

Thus there is a constant C such that,

|e itj∆fj(x)| ≥ 2j/2

for all x ∈ [0, 1]. Hence,

‖ sup
t
|e it∆fj |‖Lp ≥ C2j/2.

Hence,
‖ sup

t
|e it∆fj |‖Lp >> ‖f ‖Hs

for all s < 1/4.



To prove divergence for s < 1/4, we define, for s + 1/4 < α < 1/2,

f (x) =
∑
`≥2

2−`αf`(x),

We note first that f ∈ Hs .

We will show that for x ∈ [1/2, 1], and tj = x
2j ∼ 2−j ,

|e itj∆f`(x)| ≤ C2−
1
2 |j−`|2j/2.

With this,
|e itj∆f (x)| ≥ C2−jα+j/2 −→∞,

as tj → 0.

It remains to show that |e itj∆f`(x)| is small.



As before,

|e itj∆f`(x)| =

∣∣∣∣∣
∫ 2`/2

0
e2πi(ξ(x−2`2πtj )−2πtjξ2)dξ

∣∣∣∣∣ .
For ` << j , |e itj∆f`(x)| ≤ 2`/2 = 2(`−j)/22j/2 ≤ C2−

1
2 |j−`|2j/2.

For ` >> j , use integration by parts, noting that the phase
φ(ξ) = ξ(x − 2`2πtj)− 2πtjξ2, satisfies

|φ′(ξ)| = |x − 2πtj(2` + 2ξ)| ≥ 2`−j .



Sjölin and Vega’s result

We are going to present a proof of Sjölin and Vega’s result:

e it∆u0 = u(x , t) =

∫
Rn

e2πi(xξ−2πt|ξ|2)û0(ξ) dξ →t→0 u0(x) a.e.

for u0 ∈ Hs(Rn), s > 1/2.

• It is enough to prove, for all s > 1/2,

‖ sup
t∈[0,1]

|e it∆f |‖L2(B1) ≤ Cs‖f ‖Hs .

• By Littlewood–Paley decomposition, it is enough to prove, for all
s > 1/2 and all f such that supp f̂ ⊂ {|ξ| ∼ R},

‖ sup
t∈[0,1]

|e it∆f |‖L2(B1) ≤ Rs‖f ‖L2 .



• Due to the finite speed of propagation, it is enough to prove, for
all f such that supp f̂ ⊂ {|ξ| ∼ R},

‖ sup
t∈[0, 1

R ]

|e it∆f |‖L2(B1) ≤ R1/2‖f ‖L2 .

• By scaling, it is enough to prove, for f , supp f̂ ⊂ {|ξ| ∼ 1},

‖ sup
t∈[0,R]

|e it∆f |‖L2(BR) ≤ R1/2‖f ‖L2 .

• By Bernstein’s inequality,

‖ sup
t∈[0,R]

|e it∆f |‖L2(BR) = ‖ ‖e it∆f ‖L∞([0,R])‖L2(BR [0,R])

≤ ‖e it∆f ‖L2(BR×[0,R]).

Hence, the problem has been reduced to the Trace lemma:

‖e it∆f ‖L2(Rn×[0,R]) ≤ CR1/2‖f ‖L2 .



Bourgain’s positive result

Theorem (Bourgain 2012)
For every n ≥ 3, there is some θn < 1/2, such that the a.e.
pointwise convergence property holds for all s > θn.
(Actually, one can take θn = 1

2 −
1
4n ).

• It is enough to prove, ‖ supt∈[0,1] |e it∆f |‖L2(B1) ≤ Cs‖f ‖Hs .
• By Littlewood–Paley decomposition, it is enough to prove, for all
s > θn and all f such that supp f̂ ⊂ {|ξ| ∼ R},

‖ sup
t∈[0,1]

|e it∆f |‖L2(B1) ≤ Rs‖f ‖L2 .

• Due to the finite speed of propagation, it is enough to prove, for
all f such that supp f̂ ⊂ {|ξ| ∼ R},

‖ sup
t∈[0, 1

R ]

|e it∆f |‖L2(B1) ≤ Rθn‖f ‖L2 .
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• By scaling, it is enough to prove

Theorem (Bourgain 2012)
For every n ≥ 3, there is some θn < 1/2, such that for all f such
that supp f̂ ⊂ {|ξ| ∼ 1},

‖ sup
t∈[0,R]

|e it∆f |‖L2(BR) ≤ Rθn‖f ‖L2 .

We will use an argument of induction on the dimension. For n = 2,
Sanghyuk Lee’s theorem gives us the starting point.

• If f̂ ⊂ {|ξ| ∼ 1},

‖ sup
t∈[0,R]

|e it∆f |‖L2(BR) = ‖ ‖e it∆f ‖L∞([0,R])‖L2(BR [0,R])

can be treated as
≤ ‖e it∆f ‖L2(BR×[0,R]).
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R∗f (x , t) =

∫
B1

f (ξ)e−2πi(x̄ ·ξ+t|ξ|2) dξ = e it∆ f̂ (x̄).

We consider (x , t) ∈ [0,K ]n+1 for some big K >> 1. We
decompose B(0, 1) ⊂ Rn in “cubes” of sidelength 1

K , Ωα, centered
at ξα. Define

R∗f (x , t) =
∑
α

∫
Ωα

f (ξ)e−2πi(x ·ξ+t|ξ|2) dξ :=
∑
α

R∗fα(x , t)

=
∑
α

e−2πi(x ·ξα+t|ξα|2)

∫
Ωα

f (ξ)e−2πi(x ·(ξ−ξα)+t(|ξ|2−|ξα|2)) dξ

Here, fα = f χΩα .

Note that R∗fα ∼ aαe−2πi(x ·ξα+t|ξα|2) and |R∗fα| is “essentially
constant” in [0,K ]n+1.
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Denote ν(ξ) = (−2ξ, 1), the normal vector to the surface τ = |ξ|2,
at the point (ξ, |ξ|2).
Two situations may appear:

Multilinear situation.
There are n + 1 points ξα1 , ξα2 , . . . , ξαn+1 ∈ B(0, 1) such that
det(ν(ξα1), ν(ξα2), . . . , ν(ξαn+1)) ≥ K−1 and

|R∗fα1(x , t)|, |R∗fα2(x , t)|, |R∗fαn+1(x , t)| ≥ K−n max
α
|R∗fα(x , t)|

≥ K−2n|R∗f (x , t)|.

Then,

|R∗f | ≤ K 2n
( n+1∏

k=1

|R∗fαk |
) 1

n+1

≤ K 2n
( ∑

non colinear

n+1∏
k=1

|R∗fαk |
) 1

n+1

.



Denote ν(ξ) = (−2ξ, 1), the normal vector to the surface τ = |ξ|2,
at the point (ξ, |ξ|2).
Two situations may appear:

Multilinear situation.
There are n + 1 points ξα1 , ξα2 , . . . , ξαn+1 ∈ B(0, 1) such that
det(ν(ξα1), ν(ξα2), . . . , ν(ξαn+1)) ≥ K−1 and

|R∗fα1(x , t)|, |R∗fα2(x , t)|, |R∗fαn+1(x , t)| ≥ K−n max
α
|R∗fα(x , t)|

≥ K−2n|R∗f (x , t)|.

Then,

|R∗f | ≤ K 2n
( n+1∏

k=1

|R∗fαk |
) 1

n+1

≤ K 2n
( ∑

non colinear

n+1∏
k=1

|R∗fαk |
) 1

n+1

.



Denote ν(ξ) = (−2ξ, 1), the normal vector to the surface τ = |ξ|2,
at the point (ξ, |ξ|2).
Two situations may appear:

Multilinear situation.
There are n + 1 points ξα1 , ξα2 , . . . , ξαn+1 ∈ B(0, 1) such that
det(ν(ξα1), ν(ξα2), . . . , ν(ξαn+1)) ≥ K−1 and

|R∗fα1(x , t)|, |R∗fα2(x , t)|, |R∗fαn+1(x , t)| ≥ K−n max
α
|R∗fα(x , t)|

≥ K−2n|R∗f (x , t)|.

Then,

|R∗f | ≤ K 2n
( n+1∏

k=1

|R∗fαk |
) 1

n+1

≤ K 2n
( ∑

non colinear

n+1∏
k=1

|R∗fαk |
) 1

n+1

.



‖ sup
0≤t≤R

|R∗f |‖L2
x̄
≤ ‖|R∗f |‖L2

x̄Lq
t

≤ K 2n‖
( ∑

non colinear

n+1∏
k=1

|R∗fαk |
) 1

n+1 |‖L2
x̄Lq

t
.

By Hölder’s inequality

≤ K 2nRn( 1
2−

1
q )‖
( ∑

non colinear

n+1∏
k=1

|R∗fαk |
) 1

n+1 |‖Lq(BR×[0,R]).



‖ sup
0≤t≤R

|R∗f |‖L2
x̄
≤ ‖|R∗f |‖L2

x̄Lq
t
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( ∑
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Theorem (Multilinear Strichartz’s estimate.
Bennett-Carbery-Tao 2006)
Under the above assumption on the normal vectors

‖Πn+1
k=1R

∗fk‖L2/n ≤ CεRεKC Πn+1
k=1‖fk‖2,

for all ε > 0.

This gives, for q = 2n+1
n ,

K 2nRn( 1
2−

1
q )‖
( ∑

non colinear

n+1∏
k=1

|R∗fαk |
) 1

n+1 |‖Lq(BR×[0,R])

= K 2nR
1
2−

1
2(n+1) ‖

∑
non colinear

n+1∏
k=1

|R∗fαk ||‖
1

n+1
L2/n(BR×[0,R])

≤ K 2nR
1
2−

1
2(n+1)CεRεKC

( ∑
non colinear

n+1∏
k=1

‖fk‖L2

) 1
n+1

≤ K 2nR
1
2−

1
2(n+1)CεRεKC‖f ‖L2 .
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( ∑
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1
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Remark. We can compare the multilinear theorem with
Strichartz’s estimate,

‖R∗f ‖
L

2(n+2)
n
≤ C‖f ‖2.

Using Hölder’s inequality, we obtain, for any functions fk ,

‖Πn+1
k=1R

∗fk‖
L

2(n+2)
n(n+1)

≤ Πn+1
k=1‖R

∗fk‖
L

2(n+2)
n
≤ CΠn+1

k=1‖fk‖2.



Concentration near a hyperplane.
There is a n − 1–dimensional hyperplane, L, such that,
|R∗fβ| ≤ Kn maxα |R∗fα(x , t)| whenever dist(Ωβ,L) ≥ K−1.

Denote L̃ a 1
K –neighborhood of L.

|R∗f | ≤
∣∣ ∑

Ωβ⊂L
R∗fβ|+ max

α
|R∗fα|.

To deal with the first term, remember that
R∗fα ∼ aαe−2πi(x ·ξα+t|ξα|2), on K -cubes in space-time.
Assume that L = {ξn = c}, and denote x ′ = (x1, x2, . . . , xn−1).
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Concentration near a hyperplane.
There is a n − 1–dimensional hyperplane, L, such that,
|R∗fβ| ≤ Kn maxα |R∗fα(x , t)| whenever dist(Ωβ,L) ≥ K−1.

Denote L̃ a 1
K –neighborhood of L.

|R∗f | ≤
∣∣ ∑

Ωβ⊂L
R∗fβ|+ max

α
|R∗fα|.

To deal with the first term, remember that
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Then, we can choose ξα so that ξα,n = c , so that
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‖ max
|t|≤R

|
∑

Ωβ⊂L
R∗fβ|‖L2(|x |≤R)

≤
[∑
γ,`

‖max
t∈I`
|
∑

Ωβ⊂L
R∗fβ|‖L2(Bγ)

]1/2

Denote by Ω′α a 1
K –neighborhood of ξ′α in Rn−1 and

g(ξ′) =
∑

ãα|Ω′α|−1χΩ′α . Then ‖g‖L2 ∼ K
n−1

2
(∑
|ãα|2

)1/2 and∑
R∗fα ∼

∑
ãαe i(x ′·ξ′α+t|ξ′α|2) ∼

∫
g(ξ′)e i(x̄ ′·ξ′+t|ξ′|2) dξ′ = R∗g(x ′),

on (x ′, t) ∈ Bγ × I`.



‖ max
|t|≤R

|
∑

Ωβ⊂L
R∗fβ|‖L2(|x |≤R)

≤
[∑
γ,`

‖max
t∈I`
|
∑

Ωβ⊂L
R∗fβ|‖L2(Bγ)

]1/2

Denote by Ω′α a 1
K –neighborhood of ξ′α in Rn−1 and

g(ξ′) =
∑

ãα|Ω′α|−1χΩ′α . Then ‖g‖L2 ∼ K
n−1

2
(∑
|ãα|2

)1/2 and∑
R∗fα ∼

∑
ãαe i(x ′·ξ′α+t|ξ′α|2) ∼

∫
g(ξ′)e i(x̄ ′·ξ′+t|ξ′|2) dξ′ = R∗g(x ′),

on (x ′, t) ∈ Bγ × I`.



Hence
‖ max
|t|≤K

|
∑

Ωβ⊂L
R∗fβ||‖L2(|x |≤K)

≤ K 1/2‖ max
|t|≤K

|R∗g |‖L2(|x ′|≤K).

By induction on the dimension

≤ K 1/2K θn−1‖g‖L2 ≤ K 1/2K θn−1K
n−1

2
(∑

|aα|2
)1/2

≤ K θn−1

(
1
K

∑
‖R∗fα‖2L2(Bγ×I`)

)1/2

.

≤ K θn−1

(
1
K

∑
‖R∗fα‖L2(BR×[0,R])

)1/2

.



Hence
‖ max
|t|≤K

|
∑

Ωβ⊂L
R∗fβ||‖L2(|x |≤K)

≤ K 1/2‖ max
|t|≤K

|R∗g |‖L2(|x ′|≤K).

By induction on the dimension

≤ K 1/2K θn−1‖g‖L2 ≤ K 1/2K θn−1K
n−1

2
(∑

|aα|2
)1/2

≤ K θn−1

(
1
K

∑
‖R∗fα‖2L2(Bγ×I`)

)1/2

.

≤ K θn−1

(
1
K

∑
‖R∗fα‖L2(BR×[0,R])

)1/2

.



By Plancherel,

≤ K θn−1

(
R
K

)1/2(∑
β

‖fβ‖2L2

)1/2

= K θn−1

(
R
K

)1/2

‖f ‖L2 .

With this, and the calculation for the multilinear case, we estimate

‖ sup
|t|≤R

|R∗f |‖L2
x̄
≤
[
R

1
2−

1
2(n+1)KC + R1/2K θn−1− 1

2

]
‖f ‖L2 .

We choose K = Rεn , where εn = 1
2(n+1)[C+ 1

2−θn−1]
, and obtain

≤ R
1
2−εn( 1

2−θn−1)‖f ‖L2 .



By Plancherel,

≤ K θn−1

(
R
K

)1/2(∑
β

‖fβ‖2L2

)1/2

= K θn−1

(
R
K

)1/2

‖f ‖L2 .

With this, and the calculation for the multilinear case, we estimate

‖ sup
|t|≤R

|R∗f |‖L2
x̄
≤
[
R

1
2−

1
2(n+1)KC + R1/2K θn−1− 1

2

]
‖f ‖L2 .

We choose K = Rεn , where εn = 1
2(n+1)[C+ 1

2−θn−1]
, and obtain

≤ R
1
2−εn( 1

2−θn−1)‖f ‖L2 .



Concentration near a hyperplane.
There is a n − 1–dimensional hyperplane, L, such that,
|R∗fβ| ≤ Kn maxα |R∗fα(x , t)| whenever dist(Ωβ,L) ≥ K−1.

Denote L̃ a 2
K –neighborhood of L.

|R∗f | ≤
∣∣ ∑

Ωβ⊂L
R∗fβ|+ max

α
|R∗fα|.

To deal with the first term, define a function φ by

|
∑

Ωβ⊂L
R∗fβ| =: φ

( ∑
Ωβ⊂L

|R∗fβ|2
)1/2

.

Decompose [−R,R]n+1 = ∪Bγ,`, where Bγ,` = Bγ × I`, are
K -cubes.



‖ max
|t|≤R

φ

(∑
|R∗fβ|2

)1/2

‖L2(|x̄ |≤R)

≤
[∑
γ,`

∑
Ωβ⊂L

|R∗fβ|2|Bγ,`

∫
Bγ

max
t∈I`
|φBγ,` |

2 dx
]1/2

Claim: ∫
Bγ

max
t∈I`
|φBγ,` |

2 dx ≤ K 2θn−1Kn.

≤ K θn−1

[
1
K

∑
γ,`

∫
Bγ,`

∑
Ωβ⊂L

|R∗fβ|2|Bγ,` dx
]1/2

= K θn−1

[
1
K

∫
BR

∑
Ωβ⊂L

|R∗fβ|2 dx
]1/2

.



By the trace lemma,

≤ K θn−1

(
R
K

)1/2(∑
β

‖fβ‖2L2

)1/2

= K θn−1

(
R
K

)1/2

‖f ‖L2 .

With this, and the calculation for the multilinear case, we estimate

‖ sup
|t|≤R

|R∗f |‖L2
x̄
≤
[
R

1
2−

1
2(n+1)KC + R1/2K θn−1− 1

2

]
‖f ‖L2 .

We choose K = Rεn , where εn = 1
2(n+1)[C+ 1

2−θn−1]
, and obtain

≤ R
1
2−εn( 1

2−θn−1)‖f ‖L2 .



About the claim:
Since R∗fβ ∼ aβe−2πi(x ·ξα+t|ξα|2) in BK , we seek for an estimate

‖ max
|t|≤K

|
∑
ξα∈L̃

aαe−2πi(x ·ξα+t|ξα|2)|‖L2(|x̄ |≤K) ≤ K θn−1Kn/2(∑ |ak |2
)1/2

.

Assume that L = {ξn = c}.

‖ max
|t|≤K

|
∑
ξα∈L̃

aαe−2πi(x ·ξα+t|ξα|2)|‖L2(|x̄ |≤K)

≤ K 1/2‖ max
|t|≤K

|
∑
ξα∈L̃

aαe−2πi(x ′·ξ′α+t|ξ′α|2)|‖L2(|x̄ ′|≤K).

Notation: x ′ = (x1, x2, . . . , xn−1).



Denote by Ω′α a 1
K –neighborhood of ξ′α in Rn−1 and

g(ξ′) =
∑

aα|Ω′α|−1χΩ′α . Then ‖g‖L2 ∼ K
n−1

2
(∑
|aα|2

)1/2 and∑
aαe i(x ′·ξ′α+t|ξ′α|2) ∼

∫
g(ξ′)e i(x̄ ′·ξ′+t|ξ′|2) dξ′,

on |x̄ ′| ≤ K . Hence

K 1/2‖ max
|t|≤K

|
∑
ξα∈L̃

aαe i(x ′·ξ′α+t|ξ′α|2)|‖L2(|x ′|≤K)

≤ K 1/2‖ max
|t|≤K

|
∫

g(ξ′)e i(x ′·ξ′+t|ξ′|2) dξ′|‖L2(|x ′|≤K).

By induction on the dimension

≤ K 1/2K θn−1‖g‖L2 ≤ K 1/2K θn−1K
n−1

2
(∑

|aα|2
)1/2

.



The counterexample (Bourgain’s)

Theorem (Bourgain 2012)
The estimate fails for θn < 1

2 −
1
n ).

We need two results from number theory

Lemma
Given δ > 0, there is θ ∈ Sn−1 and C = C (δ, n) such that
Rn ⊂ R1/nZn + 0(δ) + θ[−CR,CR].

Remark: the proof in R2 is very easy.

Lemma
We can find R as big as we want so that ](Zn ∩ RSn−1) ≥ Ŗn−2.



Denote
E =

[
R−1/nZn ∩ Sn−1]+ θ + B(0, εR−1).

H = {(ξ, τ) : (ξ, τ) · (2θ, 1) = 0}.

Note that,

H ∩ {(ξ,−|ξ|2) : ξ ∈ Rn} = {(ξ,−|ξ|2) : −2θξ + |ξ|2 = 0}

= {(ξ,−|ξ|2) : |ξ − θ| = 1}.

Hence,

E ⊂ Sn−1 + θ + 0(εR−1) ⊂ Π(H ∩ {(ξ, |ξ|2) : ξ ∈ Rn}) + 0(R−1),

where Π denotes the orthogonal projection onto the Rn.



Take f̂ = χE .

u(t, x) =

∫
E
e2πi(x ·ξ−t|ξ|2) dξ.

For any x ∈ BR ∩
[
R1/nZn + 0(δ)

]
, and any ξ ∈ E ∩ B4,

x · ξ ∈ Z + 0(ε+ δ) + x · θ.
We estimate,

|u(0, x)| = |
∫

E
e2πix ·ξ dξ| ∼ |E |.

Moreover, for |t| ≤ CR,

|u(t, x + 2tθ)| = |
∫

E
e2πi(x ·ξ+2tθξ−t|ξ|2) dξ|

= |
∫

E
e2πi(x ·ξ+0+0(Cε)) dξ| ∼ |E |.



Hence,
sup
|t|≤CR

|u(t, y)| ≥ c |E |,

for all y ∈ BR .

Assume that

‖ sup
t∈[0,R]

|e it∆f |‖L2(BR) ≤ CRθ‖f ‖L2 .

Then, |E |Rn/2 ≤ |E |1/2Rθ and thus, |E | ≤ R2θ−n. On the other
hand, we can find R as big as we want such that
]Z ∩ R

1
nSn−1 ≥ R

n−2
n . This gives |E | ≥ R

n−2
n εnR−n. Hence,

θ ≥ n−2
2n .
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