A.E. POINTWISE CONVERGENCE OF THE SOLUTION OF THE SCHRÖDINGER EQUATION

Ana Vargas
Universidad Autónoma de Madrid

Roma, gennaio 2013

THE SCHRÖDINGER EQUATION

The solution to the free Schrödinger equation,

$$
\begin{aligned}
\partial_{t} u(x, t) & =i \Delta_{x} u(x, t) \quad(x, t) \in \mathbb{R}^{n} \times \mathbb{R} \\
u(x, 0) & =u_{0}(x) \quad x \in \mathbb{R}^{n},
\end{aligned}
$$

is given by

$$
e^{i t \Delta} u_{0}=u(x, t)=\int_{\mathbb{R}^{d}} e^{2 \pi i\left(x \xi-2 \pi t|\xi|^{2}\right)} \widehat{u_{0}}(\xi) d \xi
$$

POINTWISE CONVERGENCE TO THE INITIAL DATA

Question (Carleson) $u(x, t) \longrightarrow_{t \rightarrow 0} u_{0}(x)$ a.e.?

L. Carleson 1980: True for $u_{0} \in H^{1 / 4}(\mathbb{R})$ where

$$
H^{s}\left(\mathbb{R}^{n}\right)=\left\{u_{0} ; \int_{\mathbb{R}^{n}}\left|\widehat{u_{0}}(\xi)\right|^{2}(1+|\xi|)^{2 s} d \xi<+\infty\right\}
$$

B. Dahlberg and C. Kenig, 1982: False for $s<1 / 4$ in all dimensions P. Sjölin, L. Vega, 1985: True for $s>1 / 2$ as a in any dimension.
J. Bourgain, 90's Improved to $u_{0} \in H^{1 / 2-\epsilon}\left(\mathbb{R}^{2}\right)$ in dimension $n=2$.

Later improved by Moyua-V-Vega, Tao-V-Vega, Tao-V. Best result known for $n=2$ is $s>3 / 8$ (Sanghyuk Lee 2006). Bourgain 2012: For $n \geq 3$ a sufficient condition is $s>\frac{1}{2}-\frac{1}{4 n}$. For $n \geq 4$, a necessary condition is $s \geq \frac{1}{2}-\frac{1}{2 n}$.

Carleson's result

We want to prove

$$
\left\|\sup _{t}\left|e^{i t \Delta} f(x)\right|\right\|_{L^{4}(\mathbb{R})} \leq C\|f\|_{\dot{H}^{1 / 4}(\mathbb{R})} .
$$

By duality, it will suffice to show that

$$
\left|\int_{\mathbb{R}} e^{i t(x) \Delta} f(x) w(x) d x\right|^{2} \leq\|f\|_{\dot{H}^{1 / 4}(\mathbb{R})}^{2}\|w\|_{L^{4 / 3}(\mathbb{R})}^{2}
$$

for all measurable functions $t: \mathbb{R} \rightarrow \mathbb{R}$ and $w \in L^{4 / 3}(\mathbb{R})$.

$$
\left|\int_{\mathbb{R}} e^{i t(x) \Delta} f(x) w(x) d x\right|^{2}=\left|\iint \widehat{f}(\xi) e^{2 \pi i\left(x \xi+t(x) \xi^{2}\right)} d \xi w(x) d x\right|^{2}
$$

By Fubini's theorem

$$
=\left|\int \widehat{f}(\xi) \int e^{2 \pi i\left(x \xi+t(x) \xi^{2}\right)} w(x) d x d \xi\right|^{2}
$$

and by the Cauchy-Schwarz inequality,

$$
\int_{\mathbb{R}}|\widehat{f}(\xi)|^{2}|\xi|^{1 / 2} d \xi \int_{\mathbb{R}}\left|\int_{\mathbb{R}} e^{2 \pi i\left(x \xi+t(x) \xi^{2}\right)} w(x) d x\right|^{2} \frac{d \xi}{|\xi|^{1 / 2}}
$$

Since

$$
\int_{\mathbb{R}^{2}}|\widehat{f}(\xi)|^{2}|\xi|^{1 / 2} d \xi=\|f\|_{\dot{H}^{1 / 4}(\mathbb{R})}^{2}
$$

writing the squared integral in as a double integral, it will suffice to show that

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} e^{2 \pi i\left((x-y) \xi+(t(x)-t(y)) \xi^{2}\right)} w(x) w(y) d x d y \frac{d \xi}{|\xi|^{1 / 2}} \leq\|w\|_{L^{4 / 3}\left(\mathbb{R}^{2}\right)}^{2}
$$

We need the following lemma.
Lemma
Let $a, b \in \mathbb{R}$ and $\alpha \in(0,1)$. Then there is a constant C_{α} such that

$$
\left|\int_{\mathbb{R}} e^{2 \pi i\left(a \xi+b \xi^{2}\right)} \frac{d \xi}{|\xi|^{\alpha}}\right| \leq C_{\alpha}\left(|b|^{\alpha-1 / 2}|a|^{-\alpha}+|a|^{\alpha-1}\right) .
$$

We take $\alpha=1 / 2$. Then,

$$
\begin{gathered}
\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} e^{2 \pi i\left((x-y) \xi+(t(x)-t(y)) \xi^{2}\right)} w(x) w(y) d x d y \frac{d \xi}{|\xi|^{1 / 2}} \\
=\int_{\mathbb{R}} \int_{\mathbb{R}} \frac{w(x) w(y)}{|x-y|^{1 / 2}} d x d y
\end{gathered}
$$

By Hölder's inequality, this is bounded by

$$
\left.\|w\|_{L^{4 / 3}(\mathbb{R})} \| I_{1 / 2} w\right) \|_{L^{4}(\mathbb{R})}
$$

where

$$
I_{1 / 2} f(y)=\int_{\mathbb{R}} \frac{f(y-x)}{|x|^{1 / 2}} d x_{1}
$$

is a fractionnary integral. Then, the Hardy-Littlewood-Sobolev inequality,

$$
\left\|I_{1 / 2} w\right\|_{L^{4}(\mathbb{R})} \leq\|w\|_{L^{4 / 3}(\mathbb{R})}
$$

$H^{1 / 4}$ counterexample (Dahlberg and Kenig's)

For $j \in \mathbb{Z}$, define the functions f_{j} by

$$
\widehat{f}_{j}(\xi)=\chi_{\left[2^{j}, 2^{j}+\frac{1}{100} 2^{j / 2}\right]}(\xi) .
$$

Then,

$$
\|f\|_{H^{s}} \sim 2^{j / 4} 2^{j s}
$$

We have

$$
e^{i t \Delta} f_{j}(x)=\int_{2^{j}}^{2^{j}+\frac{1}{100^{j}}{ }^{j / 2}} e^{2 \pi i\left(x \cdot \xi-2 \pi t \xi^{2}\right)} d \xi
$$

and by the change of variables $\xi \rightarrow \xi+2^{j}$, we have

$$
\left|e^{i t \Delta} f_{j}(x)\right|=\left|\int_{0}^{\frac{1}{100} 2^{j / 2}} e^{2 \pi i\left(\xi\left(x-2^{j} 2 \pi t\right)-2 \pi t \xi^{2}\right)} d \xi\right|
$$

We consider the sequence of times t_{j} defined by

$$
t_{j}=2^{-j}(2 \pi)^{-1} x
$$

Then for all $\xi \in\left[0, \frac{1}{100} 2^{j / 2}\right]$ and all $x \in[0,1]$,

$$
\left|\xi\left(x-2^{j} 2 \pi t_{j}\right)-2 \pi t_{j} \xi^{2}\right| \leq 0+2 / 50 .
$$

Thus there is a constant C such that,

$$
\left|e^{i t_{j} \Delta} f_{j}(x)\right| \geq 2^{j / 2}
$$

for all $x \in[0,1]$. Hence,

$$
\left\|\sup _{t}\left|e^{i t \Delta} f_{j}\right|\right\|_{L^{p}} \geq C 2^{j / 2}
$$

Hence,

$$
\left\|\sup _{t} \mid e^{i t \Delta} f_{j}\right\|_{L^{p}} \gg\|f\|_{H^{s}}
$$

for all $s<1 / 4$.

To prove divergence for $s<1 / 4$, we define, for $s+1 / 4<\alpha<1 / 2$,

$$
f(x)=\sum_{\ell \geq 2} 2^{-\ell \alpha} f_{\ell}(x)
$$

We note first that $f \in H^{s}$.

We will show that for $x \in[1 / 2,1]$, and $t_{j}=\frac{x}{2^{j}} \sim 2^{-j}$,

$$
\left|e^{i t_{j} \Delta} f_{\ell}(x)\right| \leq C 2^{-\frac{1}{2}|j-\ell|_{2} / 2} .
$$

With this,

$$
\left|e^{i t_{j} \Delta} f(x)\right| \geq C 2^{-j \alpha+j / 2} \longrightarrow \infty
$$

as $t_{j} \rightarrow 0$.
It remains to show that $\left|e^{i t_{j} \Delta} f_{\ell}(x)\right|$ is small.

As before,

$$
\left|e^{i t_{j} \Delta} f_{\ell}(x)\right|=\left|\int_{0}^{2^{\ell / 2}} e^{2 \pi i\left(\xi\left(x-2^{\ell} 2 \pi t_{j}\right)-2 \pi t_{j} \xi^{2}\right)} d \xi\right|
$$

For $\ell \ll j,\left|e^{i t_{j} \Delta} f_{\ell}(x)\right| \leq 2^{\ell / 2}=2^{(\ell-j) / 2} 2^{j / 2} \leq C 2^{-\frac{1}{2}|j-\ell|} 2^{j / 2}$.
For $\ell \gg j$, use integration by parts, noting that the phase $\phi(\xi)=\xi\left(x-2^{\ell} 2 \pi t_{j}\right)-2 \pi t_{j} \xi^{2}$, satisfies

$$
\left|\phi^{\prime}(\xi)\right|=\left|x-2 \pi t_{j}\left(2^{\ell}+2 \xi\right)\right| \geq 2^{\ell-j}
$$

Sjölin and Vega's result

We are going to present a proof of Sjölin and Vega's result:
$e^{i t \Delta} u_{0}=u(x, t)=\int_{\mathbb{R}^{n}} e^{2 \pi i\left(x \xi-2 \pi t|\xi|^{2}\right)} \widehat{u_{0}}(\xi) d \xi \rightarrow_{t \rightarrow 0} u_{0}(x) \quad$ a.e. for $u_{0} \in H^{s}\left(\mathbb{R}^{n}\right), s>1 / 2$.

- It is enough to prove, for all $s>1 / 2$,

$$
\left\|\sup _{t \in[0,1]}\left|e^{i t \Delta} f\right|\right\|_{L^{2}\left(B_{1}\right)} \leq C_{s}\|f\|_{H^{s}}
$$

- By Littlewood-Paley decomposition, it is enough to prove, for all $s>1 / 2$ and all f such that supp $\widehat{f} \subset\{|\xi| \sim R\}$,

$$
\left\|\sup _{t \in[0,1]} \mid e^{i t \Delta} f\right\|_{L^{2}\left(B_{1}\right)} \leq R^{s}\|f\|_{L^{2}}
$$

- Due to the finite speed of propagation, it is enough to prove, for all f such that supp $\widehat{f} \subset\{|\xi| \sim R\}$,

$$
\left\|\sup _{t \in\left[0, \frac{1}{R}\right]}\left|e^{i t \Delta} f\right|\right\|_{L^{2}\left(B_{1}\right)} \leq R^{1 / 2}\|f\|_{L^{2}} .
$$

- By scaling, it is enough to prove, for f, supp $\widehat{f} \subset\{|\xi| \sim 1\}$,

$$
\left\|\sup _{t \in[0, R]}\left|e^{i t \Delta} f\right|\right\|_{L^{2}\left(B_{R}\right)} \leq R^{1 / 2}\|f\|_{L^{2}} .
$$

- By Bernstein's inequality,

$$
\begin{gathered}
\left\|\sup _{t \in[0, R]}\left|e^{i t \Delta} f\right|\right\|_{L^{2}\left(B_{R}\right)}=\| \| e^{i t \Delta} f\left\|_{L^{\infty}([0, R])}\right\|_{L^{2}\left(B_{R}[0, R]\right)} \\
\leq\left\|e^{i t \Delta} f\right\|_{L^{2}\left(B_{R} \times[0, R]\right)}
\end{gathered}
$$

Hence, the problem has been reduced to the Trace lemma:

$$
\left\|e^{i t \Delta} f\right\|_{L^{2}\left(\mathbb{R}^{n} \times[0, R]\right)} \leq C R^{1 / 2}\|f\|_{L^{2}}
$$

Bourgain's positive result

Theorem (Bourgain 2012)
For every $n \geq 3$, there is some $\theta_{n}<1 / 2$, such that the a.e. pointwise convergence property holds for all $s>\theta_{n}$. (Actually, one can take $\theta_{n}=\frac{1}{2}-\frac{1}{4 n}$).

Bourgain's positive result

Theorem (Bourgain 2012)
For every $n \geq 3$, there is some $\theta_{n}<1 / 2$, such that the a.e. pointwise convergence property holds for all $s>\theta_{n}$. (Actually, one can take $\theta_{n}=\frac{1}{2}-\frac{1}{4 n}$).

- It is enough to prove, $\left\|\sup _{t \in[0,1]} \mid e^{i t \Delta} f\right\|_{L^{2}\left(B_{1}\right)} \leq C_{s}\|f\|_{H^{s}}$.
- By Littlewood-Paley decomposition, it is enough to prove, for all $s>\theta_{n}$ and all f such that supp $f \subset\{|\xi| \sim R\}$,

Bourgain's positive result

Theorem (Bourgain 2012)
For every $n \geq 3$, there is some $\theta_{n}<1 / 2$, such that the a.e. pointwise convergence property holds for all $s>\theta_{n}$. (Actually, one can take $\theta_{n}=\frac{1}{2}-\frac{1}{4 n}$).

- It is enough to prove, $\left\|\sup _{t \in[0,1]} \mid e^{i t \Delta} f\right\|_{L^{2}\left(B_{1}\right)} \leq C_{s}\|f\|_{H^{s}}$.
- By Littlewood-Paley decomposition, it is enough to prove, for all $s>\theta_{n}$ and all f such that $\operatorname{supp} \widehat{f} \subset\{|\xi| \sim R\}$,

$$
\left\|\sup _{t \in[0,1]}\left|e^{i t \Delta} f\right|\right\|_{L^{2}\left(B_{1}\right)} \leq R^{s}\|f\|_{L^{2}} .
$$

- Due to the finite speed of propagation, it is enough to prove, for all f such that supp $f \subset\{|\xi| \sim R\}$

Bourgain's positive result

Theorem (Bourgain 2012)
For every $n \geq 3$, there is some $\theta_{n}<1 / 2$, such that the a.e. pointwise convergence property holds for all $s>\theta_{n}$. (Actually, one can take $\theta_{n}=\frac{1}{2}-\frac{1}{4 n}$).

- It is enough to prove, $\left\|\sup _{t \in[0,1]} \mid e^{i t \Delta} f\right\|_{L^{2}\left(B_{1}\right)} \leq C_{s}\|f\|_{H^{s}}$.
- By Littlewood-Paley decomposition, it is enough to prove, for all $s>\theta_{n}$ and all f such that $\operatorname{supp} \widehat{f} \subset\{|\xi| \sim R\}$,

$$
\left\|\sup _{t \in[0,1]}\left|e^{i t \Delta} f\right|\right\|_{L^{2}\left(B_{1}\right)} \leq R^{s}\|f\|_{L^{2}} .
$$

- Due to the finite speed of propagation, it is enough to prove, for all f such that supp $\widehat{f} \subset\{|\xi| \sim R\}$,

$$
\left\|\left.\sup _{t \in\left[0, \frac{1}{R}\right]} \right\rvert\, e^{i t \Delta} f\right\|_{L^{2}\left(B_{1}\right)} \leq R^{\theta_{n}}\|f\|_{L^{2} .}
$$

- By scaling, it is enough to prove

Theorem (Bourgain 2012)
For every $n \geq 3$, there is some $\theta_{n}<1 / 2$, such that for all f such that supp $\widehat{f} \subset\{|\xi| \sim 1\}$,

$$
\left\|\sup _{t \in[0, R]}\left|e^{i t \Delta} f\right|\right\|_{L^{2}\left(B_{R}\right)} \leq R^{\theta_{n}}\|f\|_{L^{2}} .
$$

We will use an argument of induction on the dimension. For $n=2$, Sanghyuk Lee's theorem gives us the starting point.

- By scaling, it is enough to prove

Theorem (Bourgain 2012)
For every $n \geq 3$, there is some $\theta_{n}<1 / 2$, such that for all f such that supp $\widehat{f} \subset\{|\xi| \sim 1\}$,

$$
\left\|\sup _{t \in[0, R]}\left|e^{i t \Delta} f\right|\right\|_{L^{2}\left(B_{R}\right)} \leq R^{\theta_{n}}\|f\|_{L^{2}} .
$$

We will use an argument of induction on the dimension. For $n=2$, Sanghyuk Lee's theorem gives us the starting point.

- By scaling, it is enough to prove

Theorem (Bourgain 2012)
For every $n \geq 3$, there is some $\theta_{n}<1 / 2$, such that for all f such that supp $\widehat{f} \subset\{|\xi| \sim 1\}$,

$$
\left\|\sup _{t \in[0, R]}\left|e^{i t \Delta} f\right|\right\|_{L^{2}\left(B_{R}\right)} \leq R^{\theta_{n}}\|f\|_{L^{2}}
$$

We will use an argument of induction on the dimension. For $n=2$, Sanghyuk Lee's theorem gives us the starting point.

- If $\widehat{f} \subset\{|\xi| \sim 1\}$,

$$
\left\|\sup _{t \in[0, R]}\left|e^{i t \Delta} f\right|\right\|_{L^{2}\left(B_{R}\right)}=\| \| e^{i t \Delta} f\left\|_{L^{\infty}([0, R])}\right\|_{L^{2}\left(B_{R}[0, R]\right)}
$$

can be treated as

$$
\leq\left\|e^{i t \Delta} f\right\|_{L^{2}\left(B_{R} \times[0, R]\right)}
$$

$$
\mathcal{R}^{*} f(x, t)=\int_{B_{1}} f(\xi) e^{-2 \pi i\left(\bar{x} \cdot \xi+t|\xi|^{2}\right)} d \xi=e^{i t \Delta} \widehat{f}(\bar{x})
$$

We consider $(x, t) \in[0, K]^{n+1}$ for some big $K \gg 1$. We decompose $B(0,1) \subset \mathbb{R}^{n}$ in "cubes" of sidelength $\frac{1}{K}, \Omega_{\alpha}$, centered at ξ_{α}. Define

$$
\begin{aligned}
& \mathcal{R}^{*} f(x, t)=\sum_{\alpha} \int_{\Omega_{\alpha}} f(\xi) e^{-2 \pi i\left(x \cdot \xi+t|\xi|^{2}\right)} d \xi:=\sum_{\alpha} \mathcal{R}^{*} f_{\alpha}(x, t) \\
& =\sum_{\alpha} e^{-2 \pi i\left(x \cdot \xi_{\alpha}+t\left|\xi_{\alpha}\right|^{2}\right)} \int_{\Omega_{\alpha}} f(\xi) e^{-2 \pi i\left(x \cdot\left(\xi-\xi_{\alpha}\right)+t\left(|\xi|^{2}-\left|\xi_{\alpha}\right|^{2}\right)\right)} d \xi
\end{aligned}
$$

Here, $f_{\alpha}=f_{\chi \Omega_{\alpha}}$.
Note that $\mathcal{R}^{*} f_{\alpha} \sim a_{\alpha} e^{-2 \pi i\left(x \cdot \xi_{\alpha}+t\left|\xi_{\alpha}\right|^{2}\right)}$ and $\left|\mathcal{R}^{*} f_{\alpha}\right|$ is "essentially constant" in $[0, K]^{n+1}$.

$$
\mathcal{R}^{*} f(x, t)=\int_{B_{1}} f(\xi) e^{-2 \pi i\left(\bar{x} \cdot \xi+t|\xi|^{2}\right)} d \xi=e^{i t \Delta} \widehat{f}(\bar{x})
$$

We consider $(x, t) \in[0, K]^{n+1}$ for some big $K \gg 1$. We decompose $B(0,1) \subset \mathbb{R}^{n}$ in "cubes" of sidelength $\frac{1}{K}, \Omega_{\alpha}$, centered at ξ_{α}. Define

$$
\begin{aligned}
& \mathcal{R}^{*} f(x, t)=\sum_{\alpha} \int_{\Omega_{\alpha}} f(\xi) e^{-2 \pi i\left(x \cdot \xi+t|\xi|^{2}\right)} d \xi:=\sum_{\alpha} \mathcal{R}^{*} f_{\alpha}(x, t) \\
& =\sum_{\alpha} e^{-2 \pi i\left(x \cdot \xi_{\alpha}+t\left|\xi_{\alpha}\right|^{2}\right)} \int_{\Omega_{\alpha}} f(\xi) e^{-2 \pi i\left(x \cdot\left(\xi-\xi_{\alpha}\right)+t\left(|\xi|^{2}-\left|\xi_{\alpha}\right|^{2}\right)\right)} d \xi
\end{aligned}
$$

Here, $f_{\alpha}=f \chi_{\Omega_{\alpha}}$.

$$
\mathcal{R}^{*} f(x, t)=\int_{B_{1}} f(\xi) e^{-2 \pi i\left(\bar{x} \cdot \xi+t|\xi|^{2}\right)} d \xi=e^{i t \Delta} \widehat{f}(\bar{x})
$$

We consider $(x, t) \in[0, K]^{n+1}$ for some big $K \gg 1$. We decompose $B(0,1) \subset \mathbb{R}^{n}$ in "cubes" of sidelength $\frac{1}{K}, \Omega_{\alpha}$, centered at ξ_{α}. Define

$$
\begin{aligned}
& \mathcal{R}^{*} f(x, t)=\sum_{\alpha} \int_{\Omega_{\alpha}} f(\xi) e^{-2 \pi i\left(x \cdot \xi+t|\xi|^{2}\right)} d \xi:=\sum_{\alpha} \mathcal{R}^{*} f_{\alpha}(x, t) \\
& =\sum_{\alpha} e^{-2 \pi i\left(x \cdot \xi_{\alpha}+t\left|\xi_{\alpha}\right|^{2}\right)} \int_{\Omega_{\alpha}} f(\xi) e^{-2 \pi i\left(x \cdot\left(\xi-\xi_{\alpha}\right)+t\left(|\xi|^{2}-\left|\xi_{\alpha}\right|^{2}\right)\right)} d \xi
\end{aligned}
$$

Here, $f_{\alpha}=f \chi_{\Omega_{\alpha}}$.
Note that $\mathcal{R}^{*} f_{\alpha} \sim a_{\alpha} e^{-2 \pi i\left(x \cdot \xi_{\alpha}+t\left|\xi_{\alpha}\right|^{2}\right)}$ and $\left|\mathcal{R}^{*} f_{\alpha}\right|$ is "essentially constant" in $[0, K]^{n+1}$.

Denote $\nu(\xi)=(-2 \xi, 1)$, the normal vector to the surface $\tau=|\xi|^{2}$, at the point $\left(\xi,|\xi|^{2}\right)$.
Two situations may appear:

Denote $\nu(\xi)=(-2 \xi, 1)$, the normal vector to the surface $\tau=|\xi|^{2}$, at the point $\left(\xi,|\xi|^{2}\right)$.
Two situations may appear:

Multilinear situation.

There are $n+1$ points $\xi_{\alpha_{1}}, \xi_{\alpha_{2}}, \ldots, \xi_{\alpha_{n+1}} \in B(0,1)$ such that $\operatorname{det}\left(\nu\left(\xi_{\alpha_{1}}\right), \nu\left(\xi_{\alpha_{2}}\right), \ldots, \nu\left(\xi_{\alpha_{n+1}}\right)\right) \geq K^{-1}$ and

$$
\begin{gathered}
\left|\mathcal{R}^{*} f_{\alpha_{1}}(x, t)\right|,\left|\mathcal{R}^{*} f_{\alpha_{2}}(x, t)\right|,\left|\mathcal{R}^{*} f_{\alpha_{n+1}}(x, t)\right| \geq K^{-n} \max _{\alpha}\left|\mathcal{R}^{*} f_{\alpha}(x, t)\right| \\
\geq K^{-2 n}\left|\mathcal{R}^{*} f(x, t)\right| .
\end{gathered}
$$

Then,

Denote $\nu(\xi)=(-2 \xi, 1)$, the normal vector to the surface $\tau=|\xi|^{2}$, at the point $\left(\xi,|\xi|^{2}\right)$.
Two situations may appear:

Multilinear situation.

There are $n+1$ points $\xi_{\alpha_{1}}, \xi_{\alpha_{2}}, \ldots, \xi_{\alpha_{n+1}} \in B(0,1)$ such that $\operatorname{det}\left(\nu\left(\xi_{\alpha_{1}}\right), \nu\left(\xi_{\alpha_{2}}\right), \ldots, \nu\left(\xi_{\alpha_{n+1}}\right)\right) \geq K^{-1}$ and

$$
\begin{gathered}
\left|\mathcal{R}^{*} f_{\alpha_{1}}(x, t)\right|,\left|\mathcal{R}^{*} f_{\alpha_{2}}(x, t)\right|,\left|\mathcal{R}^{*} f_{\alpha_{n+1}}(x, t)\right| \geq K^{-n} \max _{\alpha}\left|\mathcal{R}^{*} f_{\alpha}(x, t)\right| \\
\geq K^{-2 n}\left|\mathcal{R}^{*} f(x, t)\right| .
\end{gathered}
$$

Then,

$$
\left|\mathcal{R}^{*} f\right| \leq K^{2 n}\left(\prod_{k=1}^{n+1}\left|\mathcal{R}^{*} f_{\alpha_{k}}\right|\right)^{\frac{1}{n+1}} \leq K^{2 n}\left(\sum_{\text {non colinear }} \prod_{k=1}^{n+1}\left|\mathcal{R}^{*} f_{\alpha_{k}}\right|\right)^{\frac{1}{n+1}}
$$

$$
\left\|\sup _{0 \leq t \leq R}\left|\mathcal{R}^{*} f\right|\right\|_{L_{\bar{x}}^{2}} \leq\left\|\left|\mathcal{R}^{*} f\right|\right\|_{L_{\bar{x}}^{2} L_{t}^{q}}
$$

By Hölder's inequality

$$
\begin{gathered}
\left\|\sup _{0 \leq t \leq R}\left|\mathcal{R}^{*} f\right|\right\|_{L_{\bar{x}}^{2}} \leq\left\|\left|\mathcal{R}^{*} f\right|\right\|_{L_{\bar{x}}^{2} L_{t}^{q}} \\
\leq K^{2 n}\left\|\left.\left(\sum_{\text {non colinear }} \prod_{k=1}^{n+1}\left|\mathcal{R}^{*} f_{\alpha_{k}}\right|\right)^{\frac{1}{n+1}} \right\rvert\,\right\|_{L_{\bar{x}}^{2} L_{t}^{q}} .
\end{gathered}
$$

By Hölder's inequality

$$
\begin{gathered}
\left\|\sup _{0 \leq t \leq R}\left|\mathcal{R}^{*} f\right|\right\|_{L_{\bar{x}}^{2}} \leq\left\|\left|\mathcal{R}^{*} f\right|\right\|_{L_{\bar{x}}^{2} L_{t}^{q}} \\
\leq K^{2 n}\left\|\left.\left(\sum_{\text {non colinear }} \prod_{k=1}^{n+1}\left|\mathcal{R}^{*} f_{\alpha_{k}}\right|\right)^{\frac{1}{n+1}} \right\rvert\,\right\|_{L_{\bar{x}}^{2} L_{t}^{q}} .
\end{gathered}
$$

By Hölder's inequality

$$
\leq K^{2 n} R^{n\left(\frac{1}{2}-\frac{1}{q}\right)}\left\|\left.\left(\sum_{\text {non colinear }} \prod_{k=1}^{n+1}\left|\mathcal{R}^{*} f_{\alpha_{k}}\right|\right)^{\frac{1}{n+1}} \right\rvert\,\right\|_{L^{q}\left(B_{R} \times[0, R]\right)}
$$

Theorem (Multilinear Strichartz's estimate.
Bennett-Carbery-Tao 2006)
Under the above assumption on the normal vectors

$$
\left\|\Pi_{k=1}^{n+1} \mathcal{R}^{*} f_{k}\right\|_{L^{2 / n}} \leq C_{\epsilon} R^{\epsilon} K^{C} \Pi_{k=1}^{n+1}\left\|f_{k}\right\|_{2}
$$

for all $\epsilon>0$.
This gives, for $q=2 \frac{n+1}{n}$,

Theorem (Multilinear Strichartz's estimate.
Bennett-Carbery-Tao 2006)
Under the above assumption on the normal vectors

$$
\left\|\Pi_{k=1}^{n+1} \mathcal{R}^{*} f_{k}\right\|_{L^{2 / n}} \leq C_{\epsilon} R^{\epsilon} K^{C} \Pi_{k=1}^{n+1}\left\|f_{k}\right\|_{2}
$$

for all $\epsilon>0$.
This gives, for $q=2 \frac{n+1}{n}$,

$$
\begin{gathered}
K^{2 n} R^{n\left(\frac{1}{2}-\frac{1}{q}\right)}\left\|\left.\left(\sum_{\text {non colinear }} \prod_{k=1}^{n+1}\left|\mathcal{R}^{*} f_{\alpha_{k}}\right|\right)^{\frac{1}{n+1}} \right\rvert\,\right\|_{L^{q}\left(B_{R} \times[0, R]\right)} \\
=K^{2 n} R^{\frac{1}{2}-\frac{1}{2(n+1)}}\left\|\sum_{\text {non colinear }} \prod_{k=1}^{n+1} \mid \mathcal{R}^{*} f_{\alpha_{k}}\right\| \|_{L^{2 / n}\left(B_{R} \times[0, R]\right)}^{\frac{1}{n+1}} \\
\leq K^{2 n} R^{\frac{1}{2}-\frac{1}{2(n+1)}} C_{\epsilon} R^{\epsilon} K^{C}\left(\sum_{n o n ~ c o l i n e a r ~} \prod_{k=1}^{n+1}\left\|f_{k}\right\|_{L^{2}}\right)^{\frac{1}{n+1}} \\
\leq K^{2 n} R^{\frac{1}{2}-\frac{1}{2(n+1)}} C_{\epsilon} R^{\epsilon} K^{C}\|f\|_{L^{2}}
\end{gathered}
$$

Remark. We can compare the multilinear theorem with Strichartz's estimate,

$$
\left\|\mathcal{R}^{*} f\right\|_{L \frac{2(n+2)}{n}} \leq C\|f\|_{2} .
$$

Using Hölder's inequality, we obtain, for any functions f_{k},

$$
\left\|\Pi_{k=1}^{n+1} \mathcal{R}^{*} f_{k}\right\|_{L^{\frac{2(n+2)}{n(n+1)}}} \leq \Pi_{k=1}^{n+1}\left\|\mathcal{R}^{*} f_{k}\right\|_{L^{\frac{2(n+2)}{n}}} \leq C \Pi_{k=1}^{n+1}\left\|f_{k}\right\|_{2}
$$

Concentration near a hyperplane.

There is a $n-1$-dimensional hyperplane, \mathcal{L}, such that, $\left|\mathcal{R}^{*} f_{\beta}\right| \leq K^{n} \max _{\alpha}\left|\mathcal{R}^{*} f_{\alpha}(x, t)\right|$ whenever $\operatorname{dist}\left(\Omega_{\beta}, \mathcal{L}\right) \geq K^{-1}$.

Denote $\widetilde{\mathcal{L}}$ a $\frac{1}{K}$-neighborhood of \mathcal{L}.

Concentration near a hyperplane.

There is a $n-1$-dimensional hyperplane, \mathcal{L}, such that, $\left|\mathcal{R}^{*} f_{\beta}\right| \leq K^{n} \max _{\alpha}\left|\mathcal{R}^{*} f_{\alpha}(x, t)\right|$ whenever $\operatorname{dist}\left(\Omega_{\beta}, \mathcal{L}\right) \geq K^{-1}$.

Denote $\widetilde{\mathcal{L}}$ a $\frac{1}{K}$-neighborhood of \mathcal{L}.

$$
\left|\mathcal{R}^{*} f\right| \leq\left|\sum_{\Omega_{\beta} \subset \mathcal{L}} \mathcal{R}^{*} f_{\beta}\right|+\max _{\alpha}\left|\mathcal{R}^{*} f_{\alpha}\right|
$$

To deal with the first term, remember that $\mathcal{R}^{*} f_{\alpha} \sim a_{\alpha} e^{-2 \pi i\left(x \cdot \xi_{\alpha}+t\left|\xi_{\alpha}\right|^{2}\right)}$, on K-cubes in space-time. Assume that $\mathcal{L}=\left\{\xi_{n}=c\right\}$, and denote $x^{\prime}=\left(x_{1}, x_{2}\right.$, .

Concentration near a hyperplane.

There is a $n-1$-dimensional hyperplane, \mathcal{L}, such that, $\left|\mathcal{R}^{*} f_{\beta}\right| \leq K^{n} \max _{\alpha}\left|\mathcal{R}^{*} f_{\alpha}(x, t)\right|$ whenever $\operatorname{dist}\left(\Omega_{\beta}, \mathcal{L}\right) \geq K^{-1}$.

Denote $\widetilde{\mathcal{L}}$ a $\frac{1}{K}$-neighborhood of \mathcal{L}.

$$
\left|\mathcal{R}^{*} f\right| \leq\left|\sum_{\Omega_{\beta} \subset \mathcal{L}} \mathcal{R}^{*} f_{\beta}\right|+\max _{\alpha}\left|\mathcal{R}^{*} f_{\alpha}\right|
$$

To deal with the first term, remember that $\mathcal{R}^{*} f_{\alpha} \sim a_{\alpha} e^{-2 \pi i\left(x \cdot \xi_{\alpha}+t\left|\xi_{\alpha}\right|^{2}\right)}$, on K-cubes in space-time.

Concentration near a hyperplane.

There is a $n-1$-dimensional hyperplane, \mathcal{L}, such that, $\left|\mathcal{R}^{*} f_{\beta}\right| \leq K^{n} \max _{\alpha}\left|\mathcal{R}^{*} f_{\alpha}(x, t)\right|$ whenever $\operatorname{dist}\left(\Omega_{\beta}, \mathcal{L}\right) \geq K^{-1}$.

Denote $\widetilde{\mathcal{L}}$ a $\frac{1}{K}$-neighborhood of \mathcal{L}.

$$
\left|\mathcal{R}^{*} f\right| \leq\left|\sum_{\Omega_{\beta} \subset \mathcal{L}} \mathcal{R}^{*} f_{\beta}\right|+\max _{\alpha}\left|\mathcal{R}^{*} f_{\alpha}\right| .
$$

To deal with the first term, remember that $\mathcal{R}^{*} f_{\alpha} \sim a_{\alpha} e^{-2 \pi i\left(x \cdot \xi_{\alpha}+t\left|\xi_{\alpha}\right|^{2}\right)}$, on K-cubes in space-time.
Assume that $\mathcal{L}=\left\{\xi_{n}=c\right\}$, and denote $x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$.

Concentration near a hyperplane.

There is a $n-1$-dimensional hyperplane, \mathcal{L}, such that, $\left|\mathcal{R}^{*} f_{\beta}\right| \leq K^{n} \max _{\alpha}\left|\mathcal{R}^{*} f_{\alpha}(x, t)\right|$ whenever $\operatorname{dist}\left(\Omega_{\beta}, \mathcal{L}\right) \geq K^{-1}$.

Denote $\widetilde{\mathcal{L}}$ a $\frac{1}{K}$-neighborhood of \mathcal{L}.

$$
\left|\mathcal{R}^{*} f\right| \leq\left|\sum_{\Omega_{\beta} \subset \mathcal{L}} \mathcal{R}^{*} f_{\beta}\right|+\max _{\alpha}\left|\mathcal{R}^{*} f_{\alpha}\right| .
$$

To deal with the first term, remember that $\mathcal{R}^{*} f_{\alpha} \sim a_{\alpha} e^{-2 \pi i\left(x \cdot \xi_{\alpha}+t\left|\xi_{\alpha}\right|^{2}\right)}$, on K-cubes in space-time.
Assume that $\mathcal{L}=\left\{\xi_{n}=c\right\}$, and denote $x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$. Then, we can choose ξ_{α} so that $\xi_{\alpha, n}=c$, so that $\mathcal{R}^{*} f_{\alpha} \sim \tilde{a}_{\alpha} e^{-2 \pi i\left(x^{\prime} \cdot \xi_{\alpha}^{\prime}+t\left|\xi_{\alpha}^{\prime}\right|^{2}\right)}$ on K-cubes in space-time.

Concentration near a hyperplane.

There is a n-1-dimensional hyperplane, \mathcal{L}, such that, $\left|\mathcal{R}^{*} f_{\beta}\right| \leq K^{n} \max _{\alpha}\left|\mathcal{R}^{*} f_{\alpha}(x, t)\right|$ whenever $\operatorname{dist}\left(\Omega_{\beta}, \mathcal{L}\right) \geq K^{-1}$.

Denote $\widetilde{\mathcal{L}}$ a $\frac{1}{K}$-neighborhood of \mathcal{L}.

$$
\left|\mathcal{R}^{*} f\right| \leq\left|\sum_{\Omega_{\beta} \subset \mathcal{L}} \mathcal{R}^{*} f_{\beta}\right|+\max _{\alpha}\left|\mathcal{R}^{*} f_{\alpha}\right| .
$$

To deal with the first term, remember that $\mathcal{R}^{*} f_{\alpha} \sim a_{\alpha} e^{-2 \pi i\left(x \cdot \xi_{\alpha}+t\left|\xi_{\alpha}\right|^{2}\right)}$, on K-cubes in space-time.
Assume that $\mathcal{L}=\left\{\xi_{n}=c\right\}$, and denote $x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$.
Then, we can choose ξ_{α} so that $\xi_{\alpha, n}=c$, so that
$\mathcal{R}^{*} f_{\alpha} \sim \tilde{a}_{\alpha} e^{-2 \pi i\left(x^{\prime} \cdot \xi_{\alpha}^{\prime}+t\left|\xi_{\alpha}^{\prime}\right|^{2}\right)}$ on K-cubes in space-time.
Decompose $[-R, R]^{n+1}=\cup B_{\gamma, \ell}$, where $B_{\gamma, \ell}=B_{\gamma} \times I_{\ell}$, are K-cubes.

$$
\begin{gathered}
\left\|\max _{|t| \leq R}\left|\sum_{\Omega_{\beta} \subset \mathcal{L}} \mathcal{R}^{*} f_{\beta}\right|\right\|_{L^{2}(|x| \leq R)} \\
\leq\left[\sum_{\gamma, \ell}\left\|\max _{t \in l_{\ell}}\left|\sum_{\Omega_{\beta} \subset \mathcal{L}} \mathcal{R}^{*} f_{\beta}\right|\right\|_{L^{2}\left(B_{\gamma}\right)}\right]^{1 / 2}
\end{gathered}
$$

Denote by Ω_{α}^{\prime} a $\frac{1}{K}$-neighborhood of ξ_{α}^{\prime} in \mathbb{R}^{n-1} and

 $g\left(\xi^{\prime}\right)=\sum \tilde{a}_{N}\left|\Omega_{\alpha}^{\prime}\right|^{-1} \chi \Omega^{\prime}$. Then $\|g\|_{\Omega_{2}} \sim K^{\frac{n-1}{2}}\left(\sum\left|\tilde{a}_{N}\right|^{2}\right)^{1 / 2}$ and $\sum \mathcal{R}^{*} f_{\alpha} \sim \sum \tilde{a}_{\alpha} e^{i\left(x^{\prime} \cdot \xi_{\alpha}^{\prime}+t\left|\xi_{\alpha}^{\prime}\right|^{2}\right)} \sim \int g\left(\xi^{\prime}\right) e^{i\left(\bar{x}^{\prime} \cdot \xi^{\prime}+t\left|\xi^{\prime}\right|^{2}\right)} d \xi^{\prime}=R^{*} g\left(x^{\prime}\right)$, on $\left(x^{\prime}, t\right) \in B_{\gamma} \times I_{\ell}$.$$
\begin{gathered}
\left\|\max _{|t| \leq R}\left|\sum_{\Omega_{\beta} \subset \mathcal{L}} \mathcal{R}^{*} f_{\beta}\right|\right\|_{L^{2}(|x| \leq R)} \\
\leq\left[\sum_{\gamma, \ell}\left\|\max _{t \in l_{\ell}}\left|\sum_{\Omega_{\beta} \subset \mathcal{L}} \mathcal{R}^{*} f_{\beta}\right|\right\|_{L^{2}\left(B_{\gamma}\right)}\right]^{1 / 2}
\end{gathered}
$$

Denote by Ω_{α}^{\prime} a $\frac{1}{K}$-neighborhood of ξ_{α}^{\prime} in \mathbb{R}^{n-1} and $g\left(\xi^{\prime}\right)=\sum \tilde{a}_{\alpha}\left|\Omega_{\alpha}^{\prime}\right|^{-1} \chi_{\Omega_{\alpha}^{\prime}}$. Then $\|g\|_{L^{2}} \sim K^{\frac{n-1}{2}}\left(\sum\left|\tilde{a}_{\alpha}\right|^{2}\right)^{1 / 2}$ and $\sum \mathcal{R}^{*} f_{\alpha} \sim \sum \tilde{a}_{\alpha} e^{i\left(x^{\prime} \cdot \xi_{\alpha}^{\prime}+t\left|\xi_{\alpha}^{\prime}\right|^{2}\right)} \sim \int g\left(\xi^{\prime}\right) e^{i\left(\bar{x}^{\prime} \cdot \xi^{\prime}+t\left|\xi^{\prime}\right|^{2}\right)} d \xi^{\prime}=R^{*} g\left(x^{\prime}\right)$, on $\left(x^{\prime}, t\right) \in B_{\gamma} \times I_{\ell}$.

Hence

$$
\begin{aligned}
& \left\|\max _{|t| \leq K}\left|\sum_{\Omega_{\beta} \subset \mathcal{L}} \mathcal{R}^{*} f_{\beta}\right| \mid\right\|_{L^{2}(|x| \leq K)} \\
& \leq K^{1 / 2}\left\|\max _{|t| \leq K}\left|\mathcal{R}^{*} g\right|\right\|_{L^{2}\left(\left|x^{\prime}\right| \leq K\right)}
\end{aligned}
$$

By induction on the dimension $\leq K^{1 / 2} K^{\theta_{n-1}}\|g\|_{L^{2}} \leq K^{1 / 2} K^{\theta_{n-1}} K^{\frac{n-1}{2}}\left(\sum\left|a_{\alpha}\right|^{2}\right)^{1 / 2}$ $\leq K^{\theta_{n-1}}\left(\frac{1}{K} \sum\left\|R^{*} f_{\alpha}\right\|_{L^{2}\left(B_{\gamma} \times I_{\ell}\right)}^{2}\right)$

Hence

$$
\begin{aligned}
& \left\|\max _{|t| \leq K}\left|\sum_{\Omega_{\beta} \subset \mathcal{L}} \mathcal{R}^{*} f_{\beta}\right|\right\| \|_{L^{2}(|x| \leq K)} \\
& \leq K^{1 / 2}\left\|\max _{|t| \leq K}\left|\mathcal{R}^{*} g\right|\right\|_{L^{2}\left(\left|x^{\prime}\right| \leq K\right)}
\end{aligned}
$$

By induction on the dimension

$$
\begin{aligned}
& \leq K^{1 / 2} K^{\theta_{n-1}}\|g\|_{L^{2}} \leq K^{1 / 2} K^{\theta_{n-1}} K^{\frac{n-1}{2}}\left(\sum\left|a_{\alpha}\right|^{2}\right)^{1 / 2} \\
& \leq K^{\theta_{n-1}}\left(\frac{1}{K} \sum\left\|R^{*} f_{\alpha}\right\|_{L^{2}\left(B_{\gamma} \times I_{\ell}\right)}^{2}\right)^{1 / 2} . \\
& \leq K^{\theta_{n-1}}\left(\frac{1}{K} \sum\left\|R^{*} f_{\alpha}\right\|_{L^{2}\left(B_{R} \times[0, R]\right)}\right)^{1 / 2} .
\end{aligned}
$$

By Plancherel,

$$
\leq K^{\theta_{n-1}}\left(\frac{R}{K}\right)^{1 / 2}\left(\sum_{\beta}\left\|f_{\beta}\right\|_{L^{2}}^{2}\right)^{1 / 2}=K^{\theta_{n-1}}\left(\frac{R}{K}\right)^{1 / 2}\|f\|_{L^{2}} .
$$

With this, and the calculation for the multilinear case, we estimate

We choose $K=R^{\varepsilon_{n}}$, where $\varepsilon_{n}=\frac{1}{2(n+1)\left[C+\frac{1}{2}-\theta_{n-1}\right]}$, and obtain

By Plancherel,

$$
\leq K^{\theta_{n-1}}\left(\frac{R}{K}\right)^{1 / 2}\left(\sum_{\beta}\left\|f_{\beta}\right\|_{L^{2}}^{2}\right)^{1 / 2}=K^{\theta_{n-1}}\left(\frac{R}{K}\right)^{1 / 2}\|f\|_{L^{2}}
$$

With this, and the calculation for the multilinear case, we estimate

$$
\left\|\sup _{|t| \leq R}\left|\mathcal{R}^{*} f\right|\right\|_{L_{\bar{x}}^{2}} \leq\left[R^{\frac{1}{2}-\frac{1}{2(n+1)}} K^{C}+R^{1 / 2} K^{\theta_{n-1}-\frac{1}{2}}\right]\|f\|_{L^{2}} .
$$

We choose $K=R^{\varepsilon_{n}}$, where $\varepsilon_{n}=\frac{1}{2(n+1)\left[C+\frac{1}{2}-\theta_{n-1}\right]}$, and obtain

$$
\leq R^{\frac{1}{2}-\varepsilon_{n}\left(\frac{1}{2}-\theta_{n-1}\right)}\|f\|_{L^{2}}
$$

Concentration near a hyperplane.

There is a $n-1$-dimensional hyperplane, \mathcal{L}, such that, $\left|\mathcal{R}^{*} f_{\beta}\right| \leq K^{n} \max _{\alpha}\left|\mathcal{R}^{*} f_{\alpha}(x, t)\right|$ whenever $\operatorname{dist}\left(\Omega_{\beta}, \mathcal{L}\right) \geq K^{-1}$.

Denote $\widetilde{\mathcal{L}}$ a $\frac{2}{K}$-neighborhood of \mathcal{L}.

$$
\left|\mathcal{R}^{*} f\right| \leq\left|\sum_{\Omega_{\beta} \subset \mathcal{L}} \mathcal{R}^{*} f_{\beta}\right|+\max _{\alpha}\left|\mathcal{R}^{*} f_{\alpha}\right| .
$$

To deal with the first term, define a function ϕ by

$$
\left|\sum_{\Omega_{\beta} \subset \mathcal{L}} \mathcal{R}^{*} f_{\beta}\right|=: \phi\left(\sum_{\Omega_{\beta} \subset \mathcal{L}}\left|\mathcal{R}^{*} f_{\beta}\right|^{2}\right)^{1 / 2} .
$$

Decompose $[-R, R]^{n+1}=\cup B_{\gamma, \ell}$, where $B_{\gamma, \ell}=B_{\gamma} \times I_{\ell}$, are K-cubes.

$$
\begin{gathered}
\left\|\max _{|t| \leq R} \phi\left(\sum\left|\mathcal{R}^{*} f_{\beta}\right|^{2}\right)^{1 / 2}\right\|_{L^{2}(|\bar{x}| \leq R)} \\
\leq\left[\sum_{\gamma, \ell} \sum_{\Omega_{\beta} \subset \mathcal{L}}\left|\mathcal{R}^{*} f_{\beta}\right|_{\mid B_{\gamma, \ell}}^{2} \int_{B_{\gamma}} \max _{t \in l_{\ell}}\left|\phi_{B_{\gamma, \ell}}\right|^{2} d x\right]^{1 / 2}
\end{gathered}
$$

Claim:

$$
\int_{B_{\gamma}} \max _{t \in l_{\ell}}\left|\phi_{B_{\gamma, \ell}}\right|^{2} d x \leq K^{2 \theta_{n-1}} K^{n}
$$

$$
\begin{gathered}
\leq K^{\theta_{n-1}}\left[\frac{1}{K} \sum_{\gamma, \ell} \int_{B_{\gamma, \ell}} \sum_{\Omega_{\beta} \subset \mathcal{L}}\left|\mathcal{R}^{*} f_{\beta}\right|_{\mid B_{\gamma, \ell}}^{2} d x\right]^{1 / 2} \\
=K^{\theta_{n-1}}\left[\frac{1}{K} \int_{B_{R}} \sum_{\Omega_{\beta} \subset \mathcal{L}}\left|\mathcal{R}^{*} f_{\beta}\right|^{2} d x\right]^{1 / 2} .
\end{gathered}
$$

By the trace lemma,

$$
\leq K^{\theta_{n-1}}\left(\frac{R}{K}\right)^{1 / 2}\left(\sum_{\beta}\left\|f_{\beta}\right\|_{L^{2}}^{2}\right)^{1 / 2}=K^{\theta_{n-1}}\left(\frac{R}{K}\right)^{1 / 2}\|f\|_{L^{2}} .
$$

With this, and the calculation for the multilinear case, we estimate

$$
\left\|\sup _{|t| \leq R} \mid \mathcal{R}^{*} f\right\|_{L_{\bar{x}}^{2}} \leq\left[R^{\frac{1}{2}-\frac{1}{2(n+1)}} K^{C}+R^{1 / 2} K^{\theta_{n-1}-\frac{1}{2}}\right]\|f\|_{L^{2}} .
$$

We choose $K=R^{\varepsilon_{n}}$, where $\varepsilon_{n}=\frac{1}{2(n+1)\left[C+\frac{1}{2}-\theta_{n-1}\right]}$, and obtain

$$
\leq R^{\frac{1}{2}-\varepsilon_{n}\left(\frac{1}{2}-\theta_{n-1}\right)}\|f\|_{L^{2}}
$$

About the claim:

Since $R^{*} f_{\beta} \sim a_{\beta} e^{-2 \pi i\left(x \cdot \xi_{\alpha}+t\left|\xi_{\alpha}\right|^{2}\right)}$ in B_{K}, we seek for an estimate
$\left\|\max _{|t| \leq K}\left|\sum_{\xi_{\alpha} \in \widetilde{\mathcal{L}}} a_{\alpha} e^{-2 \pi i\left(x \cdot \xi_{\alpha}+t\left|\xi_{\alpha}\right|^{2}\right)}\right|\right\|_{L^{2}(|\bar{x}| \leq K)} \leq K^{\theta_{n-1}} K^{n / 2}\left(\sum\left|a_{k}\right|^{2}\right)^{1 / 2}$.
Assume that $\mathcal{L}=\left\{\xi_{n}=c\right\}$.

$$
\begin{gathered}
\left\|\max _{|t| \leq K}\left|\sum_{\xi_{\alpha} \in \widetilde{\mathcal{L}}} a_{\alpha} e^{-2 \pi i\left(x \cdot \xi_{\alpha}+t\left|\xi_{\alpha}\right|^{2}\right)}\right|\right\|_{L^{2}(|\bar{x}| \leq K)} \\
\leq K^{1 / 2}\left\|\max _{|t| \leq K}\left|\sum_{\xi_{\alpha} \in \widetilde{\mathcal{L}}} a_{\alpha} e^{-2 \pi i\left(x^{\prime} \cdot \xi_{\alpha}^{\prime}+t\left|\xi_{\alpha}^{\prime}\right|^{2}\right)}\right|\right\|_{L^{2}\left(\left|\bar{x}^{\prime}\right| \leq K\right)}
\end{gathered}
$$

Notation: $x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$.

Denote by Ω_{α}^{\prime} a $\frac{1}{K}$-neighborhood of ξ_{α}^{\prime} in \mathbb{R}^{n-1} and $g\left(\xi^{\prime}\right)=\sum a_{\alpha}\left|\Omega_{\alpha}^{\prime}\right|^{-1} \chi_{\Omega_{\alpha}^{\prime}}$. Then $\|g\|_{L^{2}} \sim K^{\frac{n-1}{2}}\left(\sum\left|a_{\alpha}\right|^{2}\right)^{1 / 2}$ and

$$
\sum a_{\alpha} e^{i\left(x^{\prime} \cdot \xi_{\alpha}^{\prime}+t\left|\xi_{\alpha}^{\prime}\right|^{2}\right)} \sim \int g\left(\xi^{\prime}\right) e^{i\left(\bar{x}^{\prime} \cdot \xi^{\prime}+t\left|\xi^{\prime}\right|^{2}\right)} d \xi^{\prime}
$$

on $\left|\bar{x}^{\prime}\right| \leq K$. Hence

$$
\begin{aligned}
& K^{1 / 2}\left\|\max _{|t| \leq K}\left|\sum_{\xi_{\alpha} \in \widetilde{\mathcal{L}}} a_{\alpha} e^{i\left(x^{\prime} \cdot \xi_{\alpha}^{\prime}+t\left|\xi_{\alpha}^{\prime}\right|^{2}\right)}\right|\right\|_{L^{2}\left(\left|x^{\prime}\right| \leq K\right)} \\
\leq & K^{1 / 2}\left\|\max _{|t| \leq K}\left|\int g\left(\xi^{\prime}\right) e^{i\left(x^{\prime} \cdot \xi^{\prime}+t\left|\xi^{\prime}\right|^{2}\right)} d \xi^{\prime}\right|\right\|_{L^{2}\left(\left|x^{\prime}\right| \leq K\right)}
\end{aligned}
$$

By induction on the dimension

$$
\leq K^{1 / 2} K^{\theta_{n-1}}\|g\|_{L^{2}} \leq K^{1 / 2} K^{\theta_{n-1}} K^{\frac{n-1}{2}}\left(\sum\left|a_{\alpha}\right|^{2}\right)^{1 / 2}
$$

The counterexample (Bourgain's)

Theorem (Bourgain 2012)
The estimate fails for $\theta_{n}<\frac{1}{2}-\frac{1}{n}$).

We need two results from number theory
Lemma
Given $\delta>0$, there is $\theta \in \mathcal{S}^{n-1}$ and $C=C(\delta, n)$ such that $\mathbb{R}^{n} \subset R^{1 / n} \mathbb{Z}^{n}+0(\delta)+\theta[-C R, C R]$.

Remark: the proof in \mathbb{R}^{2} is very easy.
Lemma
We can find R as big as we want so that $\sharp\left(\mathbb{Z}^{n} \cap R \mathcal{S}^{n-1}\right) \geq R^{n-2}$.

Denote

$$
\begin{gathered}
E=\left[R^{-1 / n} \mathbb{Z}^{n} \cap \mathcal{S}^{n-1}\right]+\theta+B\left(0, \epsilon R^{-1}\right) . \\
H=\{(\xi, \tau):(\xi, \tau) \cdot(2 \theta, 1)=0\} .
\end{gathered}
$$

Note that,

$$
\begin{aligned}
H \cap\left\{\left(\xi,-|\xi|^{2}\right)\right. & \left.: \xi \in \mathbb{R}^{n}\right\}=\left\{\left(\xi,-|\xi|^{2}\right):-2 \theta \xi+|\xi|^{2}=0\right\} \\
& =\left\{\left(\xi,-|\xi|^{2}\right):|\xi-\theta|=1\right\} .
\end{aligned}
$$

Hence,
$E \subset \mathcal{S}^{n-1}+\theta+0\left(\epsilon R^{-1}\right) \subset \Pi\left(H \cap\left\{\left(\xi,|\xi|^{2}\right): \xi \in \mathbb{R}^{n}\right\}\right)+0\left(R^{-1}\right)$,
where Π denotes the orthogonal projection onto the \mathbb{R}^{n}.

Take $\widehat{f}=\chi_{E}$.

$$
u(t, x)=\int_{E} e^{2 \pi i\left(x \cdot \xi-t|\xi|^{2}\right)} d \xi
$$

For any $x \in B_{R} \cap\left[R^{1 / n} \mathbb{Z}^{n}+0(\delta)\right]$, and any $\xi \in E \cap B_{4}$, $x \cdot \xi \in \mathbb{Z}+0(\epsilon+\delta)+x \cdot \theta$.
We estimate,

$$
|u(0, x)|=\left|\int_{E} e^{2 \pi i x \cdot \xi} d \xi\right| \sim|E|
$$

Moreover, for $|t| \leq C R$,

$$
\begin{gathered}
|u(t, x+2 t \theta)|=\left|\int_{E} e^{2 \pi i\left(x \cdot \xi+2 t \theta \xi-t|\xi|^{2}\right)} d \xi\right| \\
=\left|\int_{E} e^{2 \pi i(x \cdot \xi+0+0(C \epsilon))} d \xi\right| \sim|E|
\end{gathered}
$$

Hence,

$$
\sup _{|t| \leq C R}|u(t, y)| \geq c|E|
$$

for all $y \in B_{R}$.
Assume that

$$
\left\|\sup _{t \in[0, R]}\left|e^{i t \Delta} f\right|\right\|_{L^{2}\left(B_{R}\right)} \leq C R^{\theta}\|f\|_{L^{2}} .
$$

Then, $|E| R^{n / 2} \leq|E|^{1 / 2} R^{\theta}$ and thus, $|E| \leq R^{2 \theta-n}$. On the other hand, we can find R as big as we want such that $\sharp \mathbb{Z} \cap R^{\frac{1}{n}} \mathcal{S}^{n-1} \geq R^{\frac{n-2}{n}}$. This gives $|E| \geq R^{\frac{n-2}{n}} \epsilon^{n} R^{-n}$. Hence, $\theta \geq \frac{n-2}{2 n}$.

