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May 2011

1 / 24



Outline

1 Crowd motion modeling
Overview on mathematical models

2 Mean field games

3 Numerical methods for mean field games
Numerical methods based on the optimal control formulation
PDE-based methods

4 A mean field game congestion model
Mathematical modeling
Numerics
Computational experiments

2 / 24



Crowd motion

(lane formation movie)

Motivations

• Today half of the human population lives in
urban areas, in 1950 ∼ 30%, prediction for
2050 ∼ 70%.

• Fatal accidents in the last decades increased,
e.g. Hadj in Mekka, Love Parade in Duisburg,
Water Festival in Phnom Penh . . ..

• Empirical studies of human crowd started
about 50 years ago, based on observations,
photographs and video data.

• Mathematical modeling and simulations have
been used successfully to secure dangerous
situations.
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Mathematical modeling of human crowds I

• Microscopic approaches: Individuals are treated as agents whose motion is
determined by the interaction with the surrounding agents and the goal to reach
a desired destination.

Behavioral force models - Helbing and Molnar (1995), Helbing et al. (2002), . . .

Cellular automata models - Burstedde et al. (2001), Kirchner and Schadschneider
(2002), Adler and Blue (2000), . . ..

Optimal control - Hoogendorn and Bovy (2003)

Stochastic dynamic games - Huang et al. (2006), . . .

• Mesoscopic approaches: Mainly kinetic models, ideas from gas kinetic theory are
used.

Henderson (1971), Hoogendorn and Bovy (2000)
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Mathematical modeling of human crowds II

• Macroscopic approaches: Here the crowd is treated like a density.

Fluid dynamics - Henderson (1974), Hughes (2002), Colombo and Rossini (2005),
Chalons (2007), Venuti et al. (2007), Bellomo and Dogbé (2008), . . ..

Optimal transportation - Maury et al. (2010)

Nonlinear convection diffusion equations - Burger et al. (submitted, 2010) , . . .

Mean field games - Guéant (2009), Guéant et al. (2009), Lachapelle (2010),
Dogbé (2010), . . .

• Multiscale approaches: Coupling of micro- and macroscopic modeling approaches.

Time evolving measures - Piccoli and Tosin (2009), Cristiani et al. (2010), . . .

This list is by no means complete !!!!!
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Mean field games I

Microscopic model

• N-player stochastic differential game

inf
α∈A

E
»Z T

0
f (t,Xα,xt , αt ,mt)dt + g [mT ](Xα,xT )

–
dXα,xt = αtdt + σdWt , X x

0 = x .

Macroscopic model

• Limiting equations as N →∞ one obtains a time dependent mean field game:

∂u

∂t
+ ν∆u − H(x ,∇u) = V [m]

∂m

∂t
− ν∆m − div(

∂H

∂p
(x ,∇u),m) = 0

with the initial and end conditions

u(x ,T ) = V [m(x ,T )], m(x , 0) = m0(x).
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Mean field games II

Here ν ∈ R+, H is the Legendre transform of the running cost f , i.e.

H(x , p) = sup
α∈Rd

(p · α− f (x , α)), with lim
|α|→∞

inf
x

f (x , α)

|α|
→ ∞.

• Stationary problem: Find (u,m, λ) such that

−ν∆u + H(x ,∇u) + λ = V [m]

−ν∆m − div(
∂H

∂p
(x ,∇u)m) = 0Z

u dx = 0,

Z
m dx = 1,m > 0
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Link to optimal control problems

If the running cost f has the form

f (x , t, α,m) = L(x , t, α)m + V [x ,m]

and V is a Gateaux derivative of the potential Φ, then the MFG can be written as the
following optimal control problem:

inf
α

»Z Z
L(α, )dxdt + Φ(m) + Ψ(m(T ))

–
under the constraint that

∂m

∂t
− ν∆m − div(αm) = 0.

m(x , 0) = m0(x).

Optimality conditions:

α =
∂H

∂p
(x ,∇u), and V = Φ′.
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Numerical methods based on the optimal control
formulation

One can use different approaches from the theory of parabolic optimal control
problems. Simplest scheme is the steepest descent method:

1 Solve the Kolmogorov equation for mn: ∂m
∂t
− ν∆m + div(αnm) = 0.

2 Solve the adjoint equation for un: ∂u
∂t

+ ν∆u + αn∇u = Φ′(mn) + L(x , αn).

3 Update control parameter α: αn+1 = αn − τ dL
dα

, where τ denotes the damping
parameter and L the corresponding Lagrange functional, given by

L =

Z T

0

Z 1

0

»
L(x , α)m + u

„
∂m

∂t
− ν∆m + div (αm)

«–
dxdt + Φ(m) + Ψ(m(T )).

4 Go to 1) until convergence.

Depending on the problem (convexity, . . . ) different methods like Newton-type
methods or monotonic schemes can be used.

References: e.g. Lachapelle et al. (2010), . . .
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PDE-based methods

If the MFG is not equivalent to an optimal control problem things are not so nice ......

Stationary problems:

• Newton method in space

Time dependent problem:

• Newton scheme in space and time ⇒ high computational effort !

See work by Achdou and Capuzzo-Dolcetta (2010)
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A mean field games congestion model

We consider the following stochastic mean field game (for a single agent)

E
„Z T

t
(
|αt |q

q
(m(Xt , s))a + k(Xt , s)ds + µ0(Xt))e−rt

«
dXt = σdWt + αdt

The corresponding mean field game is given by

∂u

∂t
+ ν∆u −

1

p

|∇u|p

mb
− ru = k, u(x ,T ) = uT (x)

∂m

∂t
− ν∆m − div(m

(∇u)p−1

mb
) = 0, m(x , 0) = m0(x),

where b = a
q−1

and p = q
q−1

.
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Congestion model for two species I

The corresponding two species model looks slightly different. Here we assume that
each density would like to avoid congestion within its own group as well as with the
other. The corresponding stochastic model is given by

E
„Z T

t
(
|αi

t |q

q
(mi (Xt , s))a(mj (Xt , s))ã + k(Xt , s)ds + µ0(Xt))e−rt

«
dXt = σdWt + αidt

for i=1,2. The corresponding mean field game for both species reads as

−ν∆ui +
1

p

|∇ui |p

mb
i mb̃

j

− rui + λi = k

−ν∆mi − div(mi
(∇ui )

p−1

mb
i mb̃

j

) = 0

Z
uidx = 0,

Z
mi dx = 1.
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Congestion model for two species II

To avoid the diffusion by zero we consider a slightly different model, namely

−ν∆ui +
1

p

|∇ui |p

(c + mi )b(c + mj )b̃
− rui + λi = k

−ν∆mi − div(mi
(∇ui )

p−1

(c + mi )b(c + mj )b̃
) = 0Z

uidx = 0,

Z
mi dx = 1.

for a small positive constant c.
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Boundary conditions I

• Neumann boundary conditions:

In- and outflow or people mi , i.e.

∂mi

∂n
= j ini for all x ∈ Γin

i and
∂mi

∂n
= jout

i for all x ∈ Γout
i

with

Z
Γout
i

jout
i · n ds =

Z
Γin
i

j ini · n ds.

⇒ homogenous Neumann boundary conditions for ui , i.e. ∂ui
∂n

= 0, for all x ∈ Γ.

If k = const a trivial solution is ui = 0, λi = k and mi is the solution of

−ν∆mi = 0,

Z
midx = 1

subject to the boundary conditions stated above.
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Bonday conditions II

• Dirichlet boundary conditions:

Homogeneous Dirichlet conditions for mi at the exit (people leave the room,
hence the density has to be zero) and a homogenous Neumann boundary
conditions on the rest of the boundary, i.e.

mi = 0 for all x ∈ Γout
i and

∂mi

∂n
= 0 on the rest of the boundary.

⇒ same boundary conditions for ui , no additional variable λi and the integral
condition for ui necessary.

Integral condition for mi is replaced by a source term in the Kolmogorov
equation, i.e.

−ν∆mi − div(mi
(∇ui )

p−1

(c + mj )b
) = f (x).

This source term can be interpreted as an exit of an underground or supermarket.
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Hybrid discontinuous Galerkin methods for elliptic
problems

Let’s consider the “mother problem” on the domain Ω

−∆u = 0.

Notation: Th denote the triangulation of Ω into triangles T , Fh the set of facets F .

Basic idea: Choose discontinuous Ansatzfunctions on the triangle and enforce
continuity via Lagrange functions that life on the element interface (representing the
trace of the continuous function u). We choose the following spaces

Vh := {(u, uF ) : u ∈ Pk (T ) ∀T ∈ Th, uh ∈ L2(F ) ∀F ∈ Fh}

where Pk denotes the space of polynomials of degree less or equal to k.
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HDG for elliptic problems

Then the hybrid discontinuous Galerkin (HDG) method reads as:

X
T∈Th

[

Z
T
∇u∇vdx −

Z
∂T

∂u

∂n
(v − vF )ds −

symmetryz }| {Z
∂T

(u − uF )
∂v

∂n
ds

+
α

h

Z
∂T

(u − uF )(v − vF )ds| {z }
stability

] = 0

where α denotes the stability parameter and h the maximum mesh size.
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HDG methods for hyperbolic problems

We consider

div(bu) = 0

where the normal component of the vector field b is continuous across element
interfaces.
The HDG formulation of the problem reads asX

T∈Th

Z
T

div(bu)vdx =
X

T∈Th

[−
Z

T
ub · ∇vdx +

Z
∂T

uupbnvds]

where bn denotes the normal component of the vector field b and uup is the upwind
value define by

uup =

(
u ifbn > 0

uF if bn < 0.

Problem: element only couple on the downwind element, to obtain a coupling with the
upwind element we add the termZ

T out
bn(uF − u)vF ds where T out = {x ∈ ∂T : bn > 0}.
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HDG for the stationary congestion model

• Stationary problem is a coupled system of four nonlinear partial differential
equations ⇒ Newton’s method.

• Two nonlinear convection-diffusion equations for mi

−ν∆mi − div(
mi

(c + mi )b(c + mj )b̃
∇ui ) = fi (x)

⇒ HDG for diffusion and convection part (with upwind).

• Two nonlinear Hamilton Jacobi equations for ui :

−ν∆ui +
1

2

|∇ui |2

(c + mi )b(c + mj )b̃
− rui = 0

⇒ HDG for diffusion and Hamiltonian (no stabilization).
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Example I - validation of the model

• Computational domain Ω = [−1, 1]× [−0.2, 0.2]

• Single source of people for every species, i.e. f (x) = 50× exp(− (x±0.8)2+y2

10−3 )

• The parameters are

a = 0.5, ã = 0.5, q = 2, , ν = 0.05, k = 1, r = 1.

• The maximum mesh size is h = 0.03 and we choose c = 0.01.

(a) Population m1 (top view) (b) Population m2 (top view)

Figure: Formation of predefined lanes
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Example II - avoidance behavior

Same parameters as in the previous examples but the exits are different

(a) Population m1 (b) Population m2
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Example III - lane formation

• Computational domain Ω = [−1.5, 1.5]× [−0.2, 0.2]

• Single source of people for every species, i.e. f (x) = 50× exp(− (x±0.75)2+y2

10−3 )

• The parameters are

a = 0.25, ã = 0.75, q = 2, , ν = 0.05, k = 1, r = 1.

(c) Population m1 (d) Population m2
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Example IV - corridors

• Rectangular domain with two corridors and a small door (bottleneck).

• Two sources placed in the lower left and lower right corner

• The parameters are

a = 0.25, ã = 2, q = 2, , ν = 0.1, k = 1, r = 1.

(e) Population m1 (f) Population m2
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Open problems

• Time dependent congestion simulations - efficient numerical methods.

• Stable HDG method for Hamilton Jacobi equations.

• Boundary conditions for the congestion model ........

• Analytical results for 2 species model - existence, uniqueness .......

Thank you very much for your attention !
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