Mean field games equations with quadratic Hamiltonian: a specific approach

Olivier Guéant

Université Paris-Diderot - Laboratoire Jacques-Louis Lions
Rome - May 12th 2011

Mean field games equations with quadratic Hamiltonian

MFG equations with quadratic Hamiltonian on the domain $[0, T] \times \Omega, \Omega$ standing for $(0,1)^{d}$:
(HJB)

$$
\partial_{t} u+\frac{\sigma^{2}}{2} \Delta u+\frac{1}{2}|\nabla u|^{2}=-f(x, m)
$$

$$
\text { (K) } \quad \partial_{t} m+\nabla \cdot(m \nabla u)=\frac{\sigma^{2}}{2} \Delta m
$$

- Boundary conditions: $\frac{\partial u}{\partial n}=\frac{\partial m}{\partial n}=0$ on $(0, T) \times \partial \Omega$
- Terminal condition: $u(T, \cdot)=u_{T}(\cdot)$ a given payoff.
- Initial condition: $m(0, \cdot)=m_{0}(\cdot) \geq 0$ a positive function in $L^{1}(\Omega)$, typically a probability distribution function.

Change of variable

Mean field
games equations with quadratic Hamiltonian:
a specific
approach

$$
\begin{align*}
\partial_{t} \phi+\frac{\sigma^{2}}{2} \Delta \phi & =-\frac{1}{\sigma^{2}} f(x, \phi \psi) \phi \\
\partial_{t} \psi-\frac{\sigma^{2}}{2} \Delta \psi & =\frac{1}{\sigma^{2}} f(x, \phi \psi) \psi
\end{align*}
$$

with:

- Boundary conditions: $\frac{\partial \phi}{\partial n}=\frac{\partial \psi}{\partial n}=0$ on $(0, T) \times \partial \Omega$
- Terminal condition: $\phi(T, \cdot)=\exp \left(\frac{u_{T}(\cdot)}{\sigma^{2}}\right)$.
- Initial condition: $\psi(0, \cdot)=\frac{m_{0}(\cdot)}{\phi(0, \cdot)}$

Then $(u, m)=\left(\sigma^{2} \ln (\phi), \phi \psi\right)$ is a solution of (MFG).

Hypotheses

- $\forall x, \xi \mapsto f(x, \xi)$ is a continuous and decreasing function.

Similar to the hypothesis in the usual proof of uniqueness.

- $f \in L^{\infty}$
- $f \leq 0$

This is not a restriction since f is bounded...
$f \leftarrow f-\|f\|_{\infty} \Rightarrow u \leftarrow u-\|f\|_{\infty} t$.

- $u_{T} \in L^{\infty}(\Omega)$
- $m_{0} \in L^{2}(\Omega)$

Notations

We define $\mathcal{P} \subset C\left([0, T], L^{2}(\Omega)\right)$ with:

$$
g \in \mathcal{P}
$$

$$
g \in L^{2}\left(0, T, H^{1}(\Omega)\right) \quad \text { and } \quad \partial_{t} g \in L^{2}\left(0, T, H^{-1}(\Omega)\right)
$$

We also define:

$$
\mathcal{P}_{\epsilon}=\{g \in \mathcal{P}, g \geq \epsilon\}
$$

Equation (E_{ϕ})

Proposition (Well-posedness)

$\forall \psi \in \mathcal{P}_{0}$, there is a unique weak solution ϕ to the following equation $\left(E_{\phi}\right)$:

$$
\partial_{t} \phi+\frac{\sigma^{2}}{2} \Delta \phi=-\frac{1}{\sigma^{2}} f(x, \phi \psi) \phi
$$

with $\frac{\partial \phi}{\partial n}=0$ on $(0, T) \times \partial \Omega$ and $\phi(T, \cdot)=\exp \left(\frac{u_{T}(\cdot)}{\sigma^{2}}\right)$.
Hence $\Phi: \psi \in \mathcal{P}_{0} \mapsto \phi \in \mathcal{P}$ is well defined.

Equation $\left(E_{\phi}\right)$ (continued)

Mean field
games equations with
quadratic Hamiltonian:
a specific
approach
Olivier Guéant

Two results:

Proposition (Uniform lower bound)

$$
\forall \psi \in \mathcal{P}_{0}, \phi=\Phi(\psi) \in \mathcal{P}_{\epsilon} \text { for } \epsilon=\exp \left(-\frac{1}{\sigma^{2}}\left(\left\|u_{T}\right\|_{\infty}+\|f\|_{\infty} T\right)\right)
$$

This uniform bound will allow to define $\psi(0, \cdot)$.

Proposition (Monotonicity)

$$
\forall \psi_{1} \leq \psi_{2} \in \mathcal{P}_{0}, \Phi\left(\psi_{1}\right) \geq \Phi\left(\psi_{2}\right)
$$

This monotonicity result will be central in the constructive scheme.

Equation $\left(E_{\psi}\right)$

Proposition (Well-posedness)

Let's fix $\epsilon>0$ as above.

$\forall \phi \in \mathcal{P}_{\epsilon}$, there is a unique weak solution ψ to the following equation $\left(E_{\psi}\right)$:

$$
\partial_{t} \psi-\frac{\sigma^{2}}{2} \Delta \psi=\frac{1}{\sigma^{2}} f(x, \phi \psi) \psi
$$

with $\frac{\partial \psi}{\partial n}=0$ on $(0, T) \times \partial \Omega$ and $\psi(0, \cdot)=\frac{m_{0}(\cdot)}{\phi(0, \cdot)}$. Hence $\psi: \phi \in \mathcal{P}_{\epsilon} \mapsto \psi \in \mathcal{P}$ is well defined.

Equation $\left(E_{\psi}\right)$ (continued)

Mean field games equations with
quadratic Hamiltonian:
a specific
approach
Olivier Guéant

Two results:

Proposition (Positiveness)

$$
\forall \phi \in \mathcal{P}_{\epsilon}, \psi=\Psi(\phi) \in \mathcal{P}_{0}
$$

Proposition (Monotonicity)

$$
\forall \phi_{1} \leq \phi_{2} \in \mathcal{P}_{\epsilon}, \Psi\left(\phi_{1}\right) \geq \Psi\left(\phi_{2}\right)
$$

This monotonicity result will be central in the constructive scheme.

Constructive scheme - Definition

Mean field
games equations with
quadratic Hamiltonian:
a specific approach

$$
\begin{aligned}
\psi^{0} & =0 \\
\partial_{t} \phi^{n+\frac{1}{2}}+\frac{\sigma^{2}}{2} \Delta \phi^{n+\frac{1}{2}} & =-\frac{1}{\sigma^{2}} f\left(x, \phi^{n+\frac{1}{2}} \psi^{n}\right) \phi^{n+\frac{1}{2}} \\
\partial_{t} \psi^{n+1}-\frac{\sigma^{2}}{2} \Delta \psi^{n+1} & =\frac{1}{\sigma^{2}} f\left(x, \phi^{n+\frac{1}{2}} \psi^{n+1}\right) \psi^{n+1}
\end{aligned}
$$

with:

- Boundary conditions: $\frac{\partial \phi^{n+\frac{1}{2}}}{\partial \vec{n}}=\frac{\partial \psi^{n+1}}{\partial \vec{n}}=0$ on $(0, T) \times \partial \Omega$
- Terminal condition: $\phi^{n+\frac{1}{2}}(T, \cdot)=\exp \left(\frac{u_{T}(\cdot)}{\sigma^{2}}\right)$.
- Initial condition: $\psi^{n+1}(0, \cdot)=\frac{m_{0}(\cdot)}{\phi^{n+\frac{1}{2}}(0, \cdot)}$

Constructive scheme - Definition

In other words, the constructive scheme is defined as:

$$
\begin{gathered}
\psi^{0}=0 \\
\forall n \in \mathbb{N}, \phi^{n+\frac{1}{2}}=\Phi\left(\psi^{n}\right) \\
\forall n \in \mathbb{N}, \psi^{n+1}=\Psi\left(\phi^{n+\frac{1}{2}}\right)
\end{gathered}
$$

Constructive scheme

Theorem

The above scheme has the following properties:

- $\left(\phi^{n+\frac{1}{2}}\right)_{n}$ is a decreasing sequence of \mathcal{P}_{ϵ}.
- $\left(\psi^{n}\right)_{n}$ is an increasing sequence of \mathcal{P}_{0}, bounded from above in \mathcal{P} by $\Psi(\epsilon)$
- $\left(\phi^{n+\frac{1}{2}}, \psi^{n}\right)_{n}$ converges for almost every $(t, x) \in(0, T) \times \Omega$, and in $L^{2}\left(0, T, L^{2}(\Omega)\right)$ towards a couple (ϕ, ψ).
- $(\phi, \psi) \in \mathcal{P}_{\epsilon} \times \mathcal{P}_{0}$ is a weak solution of (\mathcal{S}).

It's noteworthy that there is nothing like mass conservation, except asymptotically.

Introduction

- Uniform subdivision $\left(t_{0}, \ldots, t_{l}\right)$ of $(0, T)$ where $t_{i}=i \Delta t$
- Uniform subdivision $\left(x_{0}, \ldots, x_{J}\right)$ of $(0,1)$ where $x_{j}=j \Delta x$
- Finite difference scheme: $\hat{\psi}_{i, j}^{n}$ and $\hat{\phi}_{i, j}^{n+\frac{1}{2}}$
- Neumann conditions: $\hat{\psi}_{i,-1}^{n}=\hat{\psi}_{i, 1}^{n}$ and $\hat{\psi}_{i, J+1}^{n}=\hat{\psi}_{i, J-1}^{n}$
- Neumann conditions: $\hat{\phi}_{i,-1}^{n+\frac{1}{2}}=\hat{\phi}_{i, 1}^{n+\frac{1}{2}}$ and $\hat{\phi}_{i, J+1}^{n+\frac{1}{2}}=\hat{\phi}_{i, J-1}^{n+\frac{1}{2}}$

$$
\begin{gathered}
\mathcal{M}=M_{I+1, J+1}(\mathbb{R}) \\
\mathcal{M}_{\epsilon}=\left\{\left(m_{i, j}\right)_{i, j} \in \mathcal{M}, \quad \forall i, j, m_{i, j} \geq \epsilon\right\}
\end{gathered}
$$

Numerical scheme

Completely implicit scheme for $\hat{\phi}^{n+\frac{1}{2}}$:

$$
\begin{gathered}
\frac{\hat{\phi}_{i+1, j}^{n+\frac{1}{2}}-\hat{\phi}_{i, j}^{n+\frac{1}{2}}}{\Delta t}+\frac{\sigma^{2}}{2} \frac{\hat{\phi}_{i, j+1}^{n+\frac{1}{2}}-2 \hat{\phi}_{i, j}^{n+\frac{1}{2}}+\hat{\phi}_{i, j-1}^{n+\frac{1}{2}}}{(\Delta x)^{2}}=-\frac{1}{\sigma^{2}} f\left(x_{j}, \hat{\phi}_{i, j}^{n+\frac{1}{2}} \hat{\psi}_{i, j}^{n}\right) \hat{\phi}_{i, j}^{n+\frac{1}{2}} \\
\hat{\phi}_{l, j}^{n+\frac{1}{2}}=\exp \left(\frac{u_{T}\left(x_{j}\right)}{\sigma^{2}}\right)
\end{gathered}
$$

Completely implicit scheme for $\hat{\psi}^{n+1}$:

$$
\begin{gathered}
\frac{\hat{\psi}_{i+1, j}^{n+1}-\hat{\psi}_{i, j}^{n+1}}{\Delta t}-\frac{\sigma^{2}}{2} \frac{\hat{\psi}_{i+1, j+1}^{n+1}-2 \hat{\psi}_{i+1, j}^{n+1}+\hat{\psi}_{i+1, j-1}^{n+1}}{(\Delta x)^{2}}=\frac{1}{\sigma^{2}} f\left(x_{j}, \hat{\phi}_{i+1, j}^{n+\frac{1}{2}} \hat{\psi}_{i+1, j}^{n+1}\right) \hat{\psi}_{i+1, j}^{n+1} \\
\hat{\psi}_{0, j}^{n+1}=\frac{m_{0}\left(x_{j}\right)}{\hat{\phi}_{0, j}^{n+\frac{1}{2}}}
\end{gathered}
$$

Well-posedness I

Proposition (Well-posedness)

$\forall \hat{\psi} \in \mathcal{M}_{0}$, there is a unique solution $\hat{\phi} \in \mathcal{M}$ to the following equation:

$$
\begin{gathered}
\frac{\hat{\phi}_{i+1, j}-\hat{\phi}_{i, j}}{\Delta t}+\frac{\sigma^{2}}{2} \frac{\hat{\phi}_{i, j+1}-2 \hat{\phi}_{i, j}+\hat{\phi}_{i, j-1}}{(\Delta x)^{2}} \\
=-\frac{1}{\sigma^{2}} f\left(x_{j}, \hat{\phi}_{i, j} \hat{\psi}_{i, j}\right) \hat{\phi}_{i, j}
\end{gathered}
$$

with $\hat{\phi}_{I, j}=\exp \left(\frac{u_{T}\left(x_{j}\right)}{\sigma^{2}}\right)$ and the conventions $\hat{\phi}_{i,-1}=\hat{\phi}_{i, 1}$, $\hat{\phi}_{i, J+1}=\hat{\phi}_{i, J-1}$.
Hence $\Phi_{d}: \hat{\psi} \in \mathcal{M}_{0} \mapsto \hat{\phi} \in \mathcal{M}$ is well defined.

Uniform lower bound and Monotonicity

Proposition (Uniform lower bound)

$\forall \hat{\psi} \in \mathcal{M}_{0}, \hat{\phi}=\Phi_{d}(\hat{\psi}) \in \mathcal{M}_{\epsilon}$ for the same ϵ as in the continuous case.

Proposition (Monotonicity)

$$
\forall \hat{\psi}_{1} \leq \hat{\psi}_{2} \in \mathcal{M}_{0}, \Phi_{d}\left(\hat{\psi}_{1}\right) \geq \Phi_{d}\left(\hat{\psi}_{2}\right)
$$

Well-posedness II

Mean field
games

equations with

quadratic Hamiltonian:
a specific
approach

Proposition (Well-posedness)

Let's fix $\epsilon>0$ as above.
$\forall \hat{\phi} \in \mathcal{M}_{\epsilon}$, there is a unique solution $\hat{\psi} \in \mathcal{M}$ to the following equation:

$$
\begin{gathered}
\frac{\hat{\psi}_{i+1, j}-\hat{\psi}_{i, j}}{\Delta t}-\frac{\sigma^{2}}{2} \frac{\hat{\psi}_{i+1, j+1}-2 \hat{\psi}_{i+1, j}+\hat{\psi}_{i+1, j-1}}{(\Delta x)^{2}} \\
\quad=\frac{1}{\sigma^{2}} f\left(x_{j}, \hat{\phi}_{i+1, j} \hat{\psi}_{i+1, j}\right) \hat{\psi}_{i+1, j}
\end{gathered}
$$

with $\hat{\psi}_{0, j}=\frac{m_{0}\left(x_{j}\right)}{\hat{\phi}_{0, j}}$ and the conventions $\hat{\psi}_{i,-1}=\hat{\psi}_{i, 1}$,
$\hat{\psi}_{i, J+1}=\hat{\psi}_{i, J-1}$.
Hence $\Psi_{d}: \hat{\phi} \in \mathcal{M}_{\epsilon} \mapsto \hat{\psi} \in \mathcal{M}$ is well defined.

Positiveness and monotonicity

Proposition (Positiveness)

$$
\forall \hat{\phi} \in \mathcal{M}_{\epsilon}, \hat{\psi}=\Psi_{d}(\hat{\phi}) \in \mathcal{M}_{0}
$$

Proposition (Monotonicity)

$$
\forall \hat{\phi}_{1} \leq \hat{\phi}_{2} \in \mathcal{M}_{\epsilon}, \Psi_{d}\left(\hat{\phi}_{1}\right) \geq \Psi_{d}\left(\hat{\phi}_{2}\right)
$$

Monotonicity of the scheme and limit behavior

Theorem

Assume that m_{0} is bounded. The numerical scheme verifies the following properties:

- $\left(\hat{\phi}^{n+\frac{1}{2}}\right)_{n}$ is a decreasing sequence of \mathcal{M}_{ϵ}.
- $\left(\hat{\psi}^{n}\right)_{n}$ is an increasing sequence of \mathcal{M}_{0}, bounded from above, independently of the subdivision.
- $\left(\hat{\phi}^{n+\frac{1}{2}}, \hat{\psi}^{n}\right)_{n}$ converges towards a couple $(\hat{\phi}, \hat{\psi}) \in \mathcal{M}_{\epsilon} \times \mathcal{M}_{0}$.

Convergence of the scheme I

Mean field

games

equations with

quadratic Hamiltonian:
a specific
approach
Olivier Guéant

Definition of the norm ||| •|||

$$
\forall m=\left(m_{i, j}\right)_{i, j} \in \mathcal{M},\| \| m \|^{2}=\sup _{0 \leq i \leq I} \frac{1}{J+1} \sum_{j=0}^{J} m_{i, j}^{2}
$$

Hypothesis

- We suppose that f, u_{T} and m_{0} are bounded.
- We also suppose that f is Lipschitz with respect to ξ (Lipschitz constant: K)

Convergence of the scheme II

Mean field
games equations with
quadratic
Hamiltonian:
a specific
approach

$$
\begin{aligned}
& \phi_{i, j}^{n+\frac{1}{2}}=\phi^{n+\frac{1}{2}}\left(t_{i}, x_{j}\right) \\
& \psi_{i, j}^{n+1}=\psi^{n+1}\left(t_{i}, x_{j}\right)
\end{aligned}
$$

Consistency errors

$$
\begin{gathered}
\eta_{i, j}^{n+\frac{1}{2}}=\frac{\phi_{i+1, j}^{n+\frac{1}{2}}-\phi_{i, j}^{n+\frac{1}{2}}}{\Delta t}+\frac{\sigma^{2}}{2} \frac{\phi_{i, j+1}^{n+\frac{1}{2}}-2 \phi_{i, j}^{n+\frac{1}{2}}+\phi_{i, j-1}^{n+\frac{1}{2}}}{(\Delta x)^{2}}+\frac{1}{\sigma^{2}} f\left(x_{j}, \phi_{i, j}^{n+\frac{1}{2}} \psi_{i, j}^{n}\right) \phi_{i, j}^{n+\frac{1}{2}} \\
\eta_{i, j}^{n+1}=\frac{\psi_{i+1, j}^{n+1}-\psi_{i, j}^{n+1}}{\Delta t}-\frac{\sigma^{2}}{2} \frac{\psi_{i+1, j+1}^{n+1}-2 \psi_{i+1, j}^{n+1}+\psi_{i+1, j-1}^{n+1}}{(\Delta x)^{2}}-\frac{1}{\sigma^{2}} f\left(x_{j}, \phi_{i+1, j}^{n+\frac{1}{2}} \psi_{i+1, j}^{n+1}\right) \psi_{i+1, j}^{n+1}
\end{gathered}
$$

Convergence of the scheme III

Mean field
games

equations with

quadratic Hamiltonian:
a specific
approach
Olivier Guéant

Theorem (Stability bounds)

If $\frac{1}{\Delta t}>1+\frac{K}{\sigma^{2}} \max \left(e^{2 \frac{\|u\|_{\infty} \sigma^{2}}{\sigma^{2}}},\|\psi\|_{\infty}^{2}\right)$, then $\forall n \in \mathbb{N}$,
$\exists C_{n+\frac{1}{2}}, C_{n+1}, D_{n+\frac{1}{2}}, D_{n+1}$ such that:

$$
\begin{gathered}
\left\|\left|\hat{\phi}^{n+\frac{1}{2}}-\phi^{n+\frac{1}{2}}\left\|\left|\leq C_{n+\frac{1}{2}}\left\|\hat{\psi}^{n}-\psi^{n}\left|\left\|+D_{n+\frac{1}{2}}\right\|\right| \eta^{n+\frac{1}{2}}\right\|\right|\right.\right.\right. \\
\left\|\left|\hat{\psi}^{n+1}-\psi^{n+1}\right|\right\| \leq C_{n+1}\left\|| | \hat{\phi}^{n+\frac{1}{2}}-\phi^{n+\frac{1}{2}}\right\|\left|+D_{n+1}\left\|\mid \eta^{n+1}\right\|\right.
\end{gathered}
$$

Convergence of the scheme IV

Mean field

games equations with quadratic Hamiltonian:
a specific
approach

$$
\begin{aligned}
\lim _{\Delta t, \Delta x \rightarrow 0} \lim _{n \rightarrow \infty}\left\|\left\lvert\, \hat{\phi}^{n+\frac{1}{2}}-\phi\right.\right\| \| & =0 \\
\lim _{\Delta t, \Delta x \rightarrow 0} \lim _{n \rightarrow \infty}\left\|\mid \hat{\psi}^{n+1}-\psi\right\| \| & =0
\end{aligned}
$$

A first framework

People willing to live at the center, but not together.

$$
\begin{gathered}
\Omega=(0,1), \quad T=2, \quad \sigma=1 \\
f(x, \xi)=-16(x-1 / 2)^{2}-0.1 \min (5, \max (0, \xi)) \\
m_{0}(x)=1+0.2 \cos \left(\pi\left(2 x-\frac{3}{2}\right)\right)^{2} \quad u_{T}(x)=0
\end{gathered}
$$

51 points in time and 51 points in space.

Convergence after 7 iterations for n.

Solution ϕ

Mean field games equations with quadratic Hamiltonian:
a specific approach

Solution ψ

Mean field games equations with quadratic Hamiltonian:
a specific approach

Olivier Guéant

Introduction
Properties of
(S)

A constructive scheme

Numerical scheme

Numerical examples

Solution u

Mean field
games equations with quadratic Hamiltonian:
a specific approach

Solution m

Mean field games equations with quadratic Hamiltonian:
a specific
approach
Olivier Guéant

Introduction
Properties of
(S)

A constructive scheme

Numerical scheme

Numerical examples

Solution optimal control $\alpha=\nabla u$

Mean field games equations with quadratic Hamiltonian:
a specific approach Olivier Gueant: Introduction

Pronertics of (S)

A constructive scheme

Numerical scheme

Numerical examples

A first framework

People willing to live at $x=\frac{1}{4}$ or $x=\frac{3}{4}$ during the game and at the center at the end, but never together.

$$
\begin{gathered}
\Omega=(0,1), \quad T=2, \quad \sigma=1 \\
f(x, \xi)=2 \cos \left(\pi\left(2 x-\frac{3}{2}\right)\right)^{2}-2-\min (5, \max (0, \xi)) \\
m_{0}(x)=1, \quad u_{T}=\frac{1}{2} x(1-x)
\end{gathered}
$$

51 points in time and 51 points in space.

Convergence after 28 iterations for n.

Solution ϕ

Mean field
games
equations with quadratic Hamiltonian:
a specific approach

Solution ψ

Mean field games equations with quadratic Hamiltonian:
a specific approach

Olivier Guéant. Introduction
Properties of
(S)

A constructive scheme

Numerical scheme

Numerical examples

Solution u

Mean field games equations with quadratic Hamiltonian:
a specific approach Olivier Guéant Introduction Properties of (S)

A cohstructive scheme

Numertcal scheme

Numerical examples

Solution m

Mean field games equations with quadratic Hamiltonian:
a specific approach Olivier Guéant

Introduction
Properties of
(S)

A constructive scheme

Numerical scheme

Numerical examples

Solution optimal control $\alpha=\nabla u$

Mean field games equations with quadratic Hamiltonian:
a specific approach

