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Overview

Overall Objective:

Develop a theory of decentralized decision-making in stochastic
dynamical systems with many competing or cooperating agents

Outline:

A motivating control problem from code division multiple
access (CDMA) uplink power control
Basic concepts of Mean Field (MF) control:

The Nash Certainty Equivalence - MF (NCE - MF)
methodology
Main NCE results for Linear-Quadratic-Gaussian (LQG)
systems

Adaptive NCE System Theory
Cucker-Smale Type Flocking: Stationary Solutions and
Perturbation Analysis
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Part 1 – CDMA Power Control

Base Station & Individual Agents
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Part 1 – CDMA Power Control

Lognormal channel attenuation: 1 ≤ i ≤ N

ith channel: dxi = −a(xi + b)dt+ σdwi, 1 ≤ i ≤ N

Transmitted power = channel attenuation × power
= exi(t)pi(t)
(Charalambous, Menemenlis; 1999)

Signal to interference ratio (Agent i) at the base station

= exipi/
[
(β/N)

∑N
j 6=i e

xjpj + η
]

How to optimize all the individual SIR’s since it is self
defeating for everyone to increase their power?

Idea: Use large population properties of the system together
with basic notions of game theory
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Part 2 – Large Popn. Models with Game Theory Features

Economic models: Cournot-Nash equilibria (Lambson)

Advertising competition: game models (Erickson)

Wireless network res. alloc.: (Alpcan et al., Altman, HCM)

Admission control in communication networks: (Ma, MC)

Public health: voluntary vaccination games (Bauch & Earn)

Biology: stochastic PDE swarming models (Bertozzi et al.)

Sociology: urban economics (Brock and Durlauf et al.)

Renewable Energy: charging control of PEVs (Ma et al.)
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Part 2 – Background & Current Related Work

Background:

40+ years of work on stochastic dynamic games and team problems:
Witsenhausen, Varaiya, Ho, Basar, et al.

Current Related Work:

Industry dynamics with many firms: Markov models and Oblivious
Equilibria (Weintraub, Benkard, Van Roy, 2005 -, Adlakha, Johari &
Goldsmith, 2008 -)

Mean Field Games: Stochastic control of many agent systems with
applications to finance (Lasry & Lions, 2006 -, Achdou,
Cardaliaguet, Capuzzo-Dolcetta, Buckdahn, 2006 -)

Mean Field Control of Oscillators: Controlled synchronization,
chaotic motion via MF game control of populations of oscillators.
Phase changes: NL-MF equation triple (The Illinois Four/Five:
Yin/Yang, Mehta, Meyn, Shanbhag, 2009 -)

Mean Field MDP Games on Networks: Exchangeability hypothesis;
propagation of chaos in the popn. limit; evolutionary games.
(Tembine et al., 2009 -)

8 / 48



Part 2 – Basic LQG Game Problem

Massive game theoretic control systems: Large ensembles of
partially regulated competing agents

Fundamental issue: The relation between the actions of each
individual agent and the resulting mass behavior

Individual Agent’s Dynamics:

dxi = (aixi + bui)dt+ σidwi, 1 ≤ i ≤ N.

(scalar case only for simplicity of notation)

xi: state of the ith agent

ui: control

wi: disturbance (standard Wiener process)

N : population size

9 / 48



Part 2 – Basic LQG Game Problem

Individual Agent’s Cost:

Ji(ui, ν) , E

∫ ∞
0

e−ρt[(xi − ν)2 + ru2i ]dt

ν , γ.( 1
N

∑N
k 6=i xk + η)

Main feature:

Agents are coupled via their costs

Tracked process ν:

(i) stochastic
(ii) depends on other agents’ control laws
(iii) not feasible for xi to track all xk trajectories for large N

10 / 48



Part 2 – Preliminary Optimal LQG Tracking

LQG Tracking: Take x∗ (bounded continuous) for scalar model:

dxi = aixidt+ buidt+ σidwi

Ji(ui, x
∗) = E

∫ ∞
0

e−ρt[(xi − x∗)2 + ru2i ]dt

Riccati Equation: ρΠi = 2aiΠi −
b2

r
Π2
i + 1, Πi > 0

Set β1 = −ai + b2

r Πi, β2 = −ai + b2

r Πi + ρ, and assume β1 > 0

Mass Offset Control: −dsi
dt

= −ρsi + aisi −
b2

r
Πisi − x∗

Optimal Tracking Control: ui = − b
r

(Πixi + si)

Boundedness condition on x∗ implies existence of unique solution si
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Part 2 – Key Intuition

When the tracked signal is replaced by the deterministic mean
state of the mass of agents:

Agent’s feedback = feedback of agent’s local
stochastic state

+

feedback of
deterministic mass offset

Think Globally, Act Locally
(Geddes, Alinsky, Rudie-Wonham)
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Part 2 – LQG-NCE Equation Scheme

The Fundamental NCE Equation System

Continuum of Systems: a ∈ A; common b for simplicity

− dsa
dt

= −ρsa + asa −
b2

r
Πasa − x∗

dxa
dt

= (a− b2

r
Πa)xa −

b2

r
sa,

x(t) =

∫
A
xa(t)dF (a),

x∗(t) = γ(x(t) + η) t ≥ 0

Riccati Equation : ρΠa = 2aΠa −
b2

r
Π2
a + 1, Πa > 0

Individual control action ua = − b
r (Πaxa + sa) is optimal w.r.t

tracked x∗

Does there exist a solution (xa, sa, x
∗; a ∈ A)?

Yes: Fixed Point Theorem holds for all sufficiently small γ.
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Part 2 – NCE Feedback Control

The MF (NCE) Control Law Specification

The Finite System of N Agents with Dynamics:

dxi = aixidt+ buidt+ σidwi, 1 ≤ i ≤ N, t ≥ 0

Let u−i , (u1, · · · , ui−1, ui+1, · · · , uN ); then

Ji(ui, u−i) , E

∫ ∞
0

e−ρt{[xi − γ(
1

N

N∑
k 6=i

xk + η)]2 + ru2i }dt

Control Law: For ith agent with parameter (ai, b) compute:
• x∗ using NCE Equation System

•


ρΠi = 2aiΠi − b2

r Π2
i + 1

−dsidt = −ρsi + aisi − b2

r Πisi − x∗
ui = − b

r (Πixi + si)
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Part 2 – Nash Equilibrium

Agent y is a maximizer

Agent x is a minimizer
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The Information Pattern:

Fi , σ(xi(τ); τ ≤ t) FN , σ(xj(τ); τ ≤ t, 1 ≤ j ≤ N)

Fi adapted control: Uloc,i FN adapted control: U

The Equilibria:

The set of controls U0 = {u0i ; u0i adapted to Uloc,i, 1 ≤ i ≤ N}
generates a (strong) Nash Equilibrium w.r.t. the costs
{Ji; 1 ≤ i ≤ N} and U if, for each i,

Ji(u
0
i , u

0
−i) = inf

ui∈U
Ji(ui, u

0
−i)
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Part 2 – ε-Nash Equilibrium

ε-Nash Equilibria:

Given ε > 0, the set of controls U0 = {u0i ; 1 ≤ i ≤ N} generates a
(strong) ε-Nash Equilibrium w.r.t. the costs {Ji; 1 ≤ i ≤ N} and
U if for each i,

Ji(u
0
i , u

0
−i)− ε ≤ inf

ui∈U
Ji(ui, u

0
−i) ≤ Ji(u0i , u0−i)
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Part 2 – NCE Control: First Main Result

Theorem: (MH, PEC, RPM, IEEE CDC 2003, IEEE TAC 2007)

Subject to technical conditions (s.t.t.c.), the NCE Equations have a
unique solution yielding the set of NCE Control Laws

UN0 = {u0i ; 1 ≤ i ≤ N}, 1 ≤ N <∞, where

u0i = − b
r

(Πixi + si)

which are s.t.

(i) All agent systems S(Ai), 1 ≤ i ≤ N, are second order stable.

(ii) {UN0 ; 1 ≤ N <∞} yields a (strong) ε-Nash equilibrium for all ε,
i.e. ∀ε > 0 ∃N(ε) s.t. ∀N ≥ N(ε)

Ji(u
0
i , u

0
−i)− ε ≤ inf

ui∈U
Ji(ui, u

0
−i) ≤ Ji(u0i , u0−i),

where ui ∈ U is adapted to FN .
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Part 2 – NCE Control: Key Observations

The information set for NCE Control is minimal and
completely local since Agent Ai’s control depends on:

(i) Agent Ai’s own state: xi(t)
(ii) Statistical information F (θ) on the dynamical parameters of

the mass of agents.

Hence NCE Control is truly decentralized.

It is a feature of this theory that the NCE control laws U0

result in statistically independent trajectories for all finite
population sizes N .

18 / 48



Part 3 – Localization of Influence

Consider the 2-D interaction:

Partition [−1, 1]× [−1, 1] into a 2-D lattice

Weight decays with distance by the rule ω
(N)
pipj = c|pi − pj |−λ

where c is the normalizing factor and λ ∈ (0, 2)

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
4

6

8

10

12

x 10
−4

XY

we
ig

ht

19 / 48



Part 3 – Separated and Linked Populations

2-D System
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Part 4 – Nonlinear MF Systems

NL Individual Dynamics (Uniform Finite Population Case):

dxi =
1

N

N∑
j=1

f(xi, ui, xj)dt+ σdwi, 1 ≤ i ≤ N

The Finite Population Cost Function for the ith agent:

Ji(ui, u−i) , E
∫ T

0

[ 1

N

N∑
j=1

L(xi, ui, xj)
]
dt

f(·, ·, ·) and L(·, ·, ·) are nonlinear functions
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Part 4 – Nonlinear MF Systems

S.t.t.c.:

Infinite population limit: controlled McKean-Vlasov Equation:

dxt = f [xt, ut, µt]dt+ σdwt, 0 ≤ t ≤ T

where f [x, u, µt] =
∫
R f(x, u, y)µt(dy), with x0, µ0 given

µt(·) = density of population states at t ∈ [0, T ].

Infinite population limit: individual Agents’ Costs:

J(u, µ) , E

∫ T

0

L[xt, ut, µt]dt,

where L[x, u, µt] =
∫
R L(x, u, y)µt(dy).
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Part 4 – Mean Field and McK-V-HJB Theory

Mean Field HJB equation (HMC, Communications in Inf. and
Systems 2006):

− ∂V

∂t
= inf
u∈U

{
f [x, u, µt]

∂V

∂x
+ L[x, u, µt]

}
+
σ2

2

∂2V

∂x2

V (T, x) = 0, (t, x) ∈ [0, T ]× R.

∂µ(t, x)

∂t
= −∂{f [x, u, µ]µ(t, x)}

∂x
+
σ2

2

∂2µ(t, x)

∂x2

⇒ Best Response: ut = ϕ(t, x|µt), (t, x) ∈ [0, T ]× R.

Closed-loop McK-V equation:

dxt = f [xt, ϕ(t, x|µ·), µt]dt+ σdwt, 0 ≤ t ≤ T.

Yielding Nash Certainty Equivalence Principle expressed in terms of

McKean-Vlasov (Fokker-Planck-Kolmogorov) Hamilton Jacobi Bellman

Equation, hence achieving a Great Name Frequency optimum.
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Part 4 – Mean Field and McK-V-HJB Theory
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Part 4 – Mean Field and McK-V-HJB Theory

Theorem: (HMC, CIS 2006)

S.t.t.c., the McK-V (FPK) HJB Equations have a unique solution
with the best response control given by

u0i = ϕ(t, x|µt), 1 ≤ i ≤ N .

Furthermore {UN0 ; 1 ≤ N <∞} yields a (strong) ε-Nash
equilibrium for all ε,
i.e. ∀ε > 0 ∃N(ε) s.t. ∀N ≥ N(ε)

Ji(u
0
i , u

0
−i)− ε ≤ inf

ui∈U
Ji(ui, u

0
−i) ≤ Ji(u0i , u0−i),

where ui ∈ U is adapted to FN .
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Part 5 – Adaptive NCE Theory

Certainty Equivalence Stochastic Adaptive Control (SAC) replaces
unknown parameters by their recursively generated estimates

Key Problem:

To show this results in asymptotically optimal system behaviour in
the ε-Nash sense
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Part 5 – Adaptive NCE: Self & Popn. Ident.

Known:

Q

R

Observed:

xi(t)

ui(t)

{xj , uj ; j ∈ Obsi(N)}
Estimated:

Âi, B̂i

Fζ̂(θ)

Ai observes a random subset Obsi(N) of all agents s.t.
|Obsi(N)| → ∞, |Obsi(N)|/N → 0 as N →∞

θTi = (Ai,Bi)

Fζ = Fζ(θ), θ ∈ Θ ⊂⊂ Rn(2n+m), ζ ∈ P ⊂⊂ Rp
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Part 5 – NCE-SAC Cost Function

Each agent’s Long Run Average (LRA) Cost Function:

Ji(ûi, û−i)

= lim sup
T→∞

1

T

∫ T

0

{
[xi(t)−mi(t)]

TQ[xi(t)−mi(t)] + ûTi (t)Rûi(t)
}
dt

1 ≤ i ≤ N, a.s.
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Part 5 – NCE-SAC Control Algorithm

NCE-SAC Control Law for agent Ai, t ≥ 0 :

(I) Self Parameter Identification:

Solve the RWLS Equations for the dynamical parameters
[Âi,t, B̂i,t]

(II) Popn. Parameter Identification:

(a) Solve the RWLS equations for the dynamical parameters

θ̂
[1:N0]
i,t = [Âj,t, B̂j,t], j ∈ Obsi(N)

(b) Solve the MLE equation to estimate ζ0 via

ζ̂Ni,t = arg minζ∈P L(θ̂
[1:N0]
i,t ; ζ), N0 = |Obsi(N)|

(c) Solve the set of NCE Equations for all θ ∈ Θ generating

x∗
(
τ, ζ̂Ni,t

)
, τ ≥ t

(III) The control law from Certainty Equivalence Adaptive Control:

û0(t) = −R−1B̂T
t

(
Π̂tx(t) + ŝ(t)

)
+ ξk [ε(t)− ε(k)]

Dither weighting: ξ2k = log k√
k
, k ≥ 1 ε(t) = Wiener Process
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Part 5 – NCE-SAC - Self & Popn. Ident.

Theorem: (AK & PEC, 2010)

S.t.t.c., as t→∞ and N →∞ :

(i) θ̂i,t → θ0i w.p.1, 1 ≤ i ≤ N

(ii) ζ̂Ni,t → ζ0 ∈ P w.p.1

and the set of controls {ÛN0 ; 1 ≤ N <∞} is s.t.

(iii) Each S(Ai), 1 ≤ i ≤ N, is an LRA− L2 stable system

(iv) {ÛN0 ; 1 ≤ N <∞} yields a (strong) ε-Nash equilibrium for
all ε, i.e. ∀ε > 0 ∃N(ε, ω) s.t.

Ji(ûi, û−i)− ε ≤ inf
ui∈U

Ji(ui, û−i) ≤ Ji(ûi, û−i), w.p.1

where ui ∈ U is adapted to FN .

(v) Moreover J∞i (ûi, û−i) = J∞i (u0i , u
0
−i) w.p.1, 1 ≤ i <∞
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Part 5 – NCE-SAC Simulation

400 Agents

System matrices {Ak}, {Bk}, 1 ≤ k ≤ 400

A ,

[
−0.2 + a11 −2 + a12

1 + a21 0 + a22

]
B ,

[
1 + b1
0 + b2

]
Population dynamical parameter distribution aij ’s and bi’s are
independent.

aij ∼ N(0, 0.5) bi ∼ N(0, 0.5)

Population distribution parameters:
ā11 = −0.2, σ2a11 = 0.5, b̄11 = 1, σ2b11 = 0.5 etc.

All agents performing individual parameter and population
distribution parameter estimation

Each of 400 agents observing its own 20 randomly chosen
agents’ outputs and control inputs

31 / 48



Part 5 – NCE-SAC Animation
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Part 6 – Mean Field Synthesis of Flocking Behaviour

Collective Motion: one of the most widespread phenomenon in nature.

Flocking of birds
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Part 6 – Mean Field Synthesis of Flocking Behaviour

Collective Motion:

Schooling of fish
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Part 6 – Mean Field Synthesis of Flocking Behaviour

Definition: A group of agents has a flocking behaviour if:

agents’ velocities converge to a common value (e.g., mean of initial
velocities), i.e., consensus in velocity,

the distance between agents remains bounded.

Flocking Models:

1 Microscopic:

Individual based (particle like) models (ODEs, SDEs);
Local communication with other agents;
Example: Cucker-Smale algorithm.

2 Macroscopic:

Infinite (continuum) population model;
Distribution functions in space-time (PDEs);
Example: C-S continuum and hydrodynamic models.
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Part 6 – Mean Field Synthesis of Flocking Behaviour

Uncontrolled Cucker-Smale (C-S) Flocking Algorithm (IEEE TAC 2007):

dxi(t)

dt
= vi(t), 1 ≤ i ≤ N,

dvi(t)

dt
=

1

N

N∑
j=1

a
(
‖xi(t)− xj(t)‖

)
(vj(t)− vi(t)) ,

a
(
‖xi(·)− xj(·)‖

)
,

1

(1 + ‖xi(·)− xj(·)‖2)β

A special time-varying consensus algorithm (with communication
rates aij(·)).

For 0 ≤ β ≤ 1
2 we have unconditional (i.e., regardless of initial

configurations) flocking.
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Part 6 – Mean Field Synthesis of Flocking Behaviour

Simulation: the positions and velocities of a group of 100 agents in the
one dimensional C-S algorithm with β = 0.4.
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Part 6 – Mean Field Synthesis of Flocking Behaviour

Continuum Model of the Uncontrolled C-S Algorithm (Ha & Tadmor, 2008,

Carrillo et al., 2009):

Advection equation with velocity field ξ(f)

∂f

∂t
+ v.∇xf = −∇v. [ξ(f)f ] ,

ξ(f)(x, v, t) ,
∫
R2n

(v − w)

(1 + ‖x− y‖2)β
f(y, w)dydw,

where f(x, v, t) is the population density function of agents positioned at
(x, t) with velocity v

For 0 ≤ β ≤ 1
2 we have unconditional flocking.
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Part 6 – Mean Field Synthesis of Flocking Behaviour

The flocking problem will now be analyzed using the Mean Field Stochastic
Control approach:

Flocking behaviour synthesized from optimization;

Global (mass population) optimal control + local (individual) feedback
with respect to mass behaviour;

Nash equilibria between individuals.

For large population this theory reproduces the flocking behaviour of individuals
under the (ad hoc) global feedback of the standard formulations
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Part 6 – Mean Field Synthesis of Flocking Behaviour

Controlled Dynamic Mean Field Formulation of the C-S Algorithm:

Dynamics :

dxi(t) = vi(t)dt, 1 ≤ i ≤ N
dvi(t) = ui(t)dt+ Cdwi(t),

written as

dzi(t) =
(
Fzi(t) +Gui(t)

)
dt+Ddwi(t),

F ,

(
0 I
0 0

)
, G ,

(
0
I

)
, D ,

(
0
C

)
Cost functions (1 ≤ i ≤ N):

JNi , lim sup
T→∞

1

T

∫ T

0

(
φNi (xi, vi;x−i, v−i) + ‖ui‖2

)
dt,

with the normalized cost-coupling:

φ
(N)
i (xi, vi;x−i, v−i) ,

∥∥∥∥∥ 1∑N
j=1 a(‖xi − xj‖)

N∑
j=1

a(‖xi − xj‖)(vj − vi)

∥∥∥∥∥
2
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Part 6 – Mean Field Synthesis of Flocking Behaviour

MF Formulation: Individual vs Mass

It is assumed that the generic agent’s cost wrt mass converges (implied
by various conditions):

φ(N)(xi, vi;x−i, v−i)
N→∞−−−−→ φ∞(x, v, t)

where φ∞ only depends on x = xi and v = vi.

Replacing φ(N)(xi, vi;x−i, v−i) with φ∞(x, v, t) reduces the game model
to a set of N independent optimal control problems.

HJB (relative value function) equation: Agent (x, v)

∂h

∂t
+ min
u∈U

{
(Fz +Gu) · ∇zh+ uTu+ φ∞ +

1

2
Tr(DDT4h)

}
= ρo,

uo = arg min
u∈U

{
(Fz +Gu) · ∇zh+ uTu+ φ∞ +

1

2
Tr(DDT4h)

}
,

where ρo is the optimal cost.
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Part 6 – Mean Field Synthesis of Flocking Behaviour

The Nonlinear MF Triple of Equations (NCM, 2010 after Yin et. al., ACC 2010
and HMC, 2006):

MF-HJB : ∂th(z, t) +

(
Fz − 1

4
GGT∇zh(z, t)

)
· ∇zh(z, t)

+ φ∞(z, t) +
1

2
Tr
(
DDT4h(z, t)

)
= ρo,

MF-FPK : ∂tf(z, t) +∇z ·
((
Fz − 1

2
GGT∇zh(z, t)

)
f(z, t)

)
=

1

2
Tr
(
DDT4f(z, t)

)
,

MF-CC : φ∞(z, t) =

∥∥∥∥∥
∫
R2n a(‖x− x′‖)(v′ − v)f(x′, v′, t)dx′dv′∫

R2n a(‖x− x′‖)f(x′, v′, t)dx′dv′

∥∥∥∥∥
2

,

Best Response: uo(·) := − 1
2
GT∇zh(z, ·)
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Part 6 – Mean Field Synthesis of Flocking Behaviour

Theorem (Maxwellian Stationary Solution of the MF Triple of Equations)
(NCM, 2011)):
Assume that the weight function a(‖x‖) is integrable (i.e.,

∫
Rn a(‖x‖) <∞),

and Σ = CCT > 0, then the stationary of the MF Triple of equations is given
by

h∞(v) = φ∞(v) = ‖v − µ‖2, ρo = Tr(CCT ),

f∞(v) =
1

(2π)n/2|Σ|1/2
exp

(
− 1

2
(v − µ)TΣ−1(v − µ)

)
,

uo∞(v) = −(v − µ),

where µ :=
∫
R2n vf(x, v, 0)dvdx is the initial velocity population mean.

Remark: The following weights satisfy the integrability condition:

The C-S weights a(‖x‖) = 1
(1+‖x‖2)β for β ≥ 1,

The Gaussian weights a(‖x‖) = exp
(
− α‖x‖2

)
for α > 0.

43 / 48



Part 6 – Mean Field Synthesis of Flocking Behaviour

Consensus in Velocity Property of the MF Control Laws:

Theorem (NCM, 2010): By applying the MF control laws,

uoi (·) = −1

2
∇vh∞(v)

∣∣
v=vi

= −(vi(·)− µ),

the agents in a finite N population system reach mean-consensus in velocity
asymptotically as time goes to infinity, that is to say,

lim
t→∞

‖Evi(t)− Evj(t)‖ = 0, 1 ≤ i 6= j ≤ N

Simulation (Gaussian Initial Density): the continuum (left) and individual
(right) models of a scalar MF consensus model (µ = 0 and the noise intensity
σ is 0.05)
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Part 6 – Mean Field Synthesis of Flocking Behaviour

Stability Analysis of the Stationary Solution for the Scalar Uniform Weights
Case (β = 0):

Perturbation Analysis (based on the Guéant 2009, approach):

hε(v, t) = h∞(v) + ε h̃(v, t),

fε(v, t) = f∞(v)
(
1 + ε f̃(v, t)

)
,

φ∞ε (v, t) = φ∞(v) + ε φ̃(v, t).

Theorem (NCM, 2010 after Guéant, 2009): The linearized MF equation system
in the uniform weights case β = 0:

∂th̃(v, t) = Lvh̃(v, t)− φ̃(v, t),

∂tf̃(v, t) = − 1

σ2
Lvh̃(v, t)− Lv f̃(v, t),

φ̃(v, t) = −2(v − µ)
(∫

R
vf̃(v, t)f∞(v)dv

)
,

where the operator Lv := (v − µ)∂v − σ2

2
∂2
vv has the countable family of

Hermite polynomials {Hn : n ∈ N0} as eigenfunctions.
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Part 6 – Mean Field Synthesis of Flocking Behaviour

Stability Analysis of the Stationary Solution for the Scalar Uniform Weights
Case (β = 0): Non-Gaussian Initial Densities

Theorem (NCM, 2010): In case f̃(v, 0) ∈ span
(
Hn(v) : n ≥ 2

)
which gives rise

to the non-Gaussian initial conditions:

fε(v, 0) = f∞(v)
(
1 + ε

∞∑
n=2

kn(0)Hn(v)
)
∈ L2(R, f∞(v)dv),

we have hε(v, t), fε(v, t) ∈ L2(R, f∞(v)dv), ∀t > 0,

and the stationary Gaussian solution is linearly asymptotically stable, that is to
say,

lim
t→∞

‖hε(v, t)‖L2 = lim
t→∞

‖fε(v, t)‖L2 = 0
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Summary

NCE Theory solves a class of decentralized decision-making
problems with many competing agents.

Asymptotic Nash Equilibria are generated by
the NCE Equations.

Key intuition:

Single agent’s control = feedback of stochastic local (rough)
state + feedback of deterministic global (smooth) system
behaviour

NCE Theory extends to (i) localized problems, (ii) stochastic
adaptive control, (iii) egoist-altruist, major agent-minor agent
systems, (iv) leader-follower systems, (v) consensus and
flocking behaviour.
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Future Directions

Further development of Minyi Huang’s large and small players
extension of NCE Theory

Further development of egoists and altruists version of NCE
Theory

Mean Field stochastic control of non-linear (McKean-Vlasov,
YMMS) systems

Extension of NCE (MF) SAC Theory to richer game theory
contexts

Development of MF Theory towards economic, renewable
energy, biological applications

Development of large scale cybernetics: Systems and control
theory for competitive and cooperative systems
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