Explicit solutions of some Linear-Quadratic Mean Field Games

Martino Bardi

Department of Pure and Applied Mathematics University of Padua, Italy

Men Field Games and Related Topics Rome, May 12-13, 2011

Plan

- L-Q games with N players and ergodic cost
- Symmetric and almost identical players
- The limit as $N \rightarrow+\infty$
- Other limiting cases
- Vanishing viscosity
- Cheap control
- Discounted cost and small discount
- Models of population distribution

References

We look for L-Q analogues of the results for stationary periodic problems in

- J.-M. Lasry, P.-L. Lions: Jeux à champ moyen. I. Le cas stationnaire. C. R. A. S. 2006
- J.-M. Lasry, P.-L. Lions: Jpn. J. Math. 2007

Related discounted L-Q problems were studied by

- M. Huang, P.E. Caines, R.P. Malhamé: Proc. IEEE Conf. 2003.
- M. Huang, P.E. Caines, R.P. Malhamé: IEEE Trans. Automat. Control 2007

Related models of population distribution are in

- O. Guéant: J. Math. Pures Appl. 2009
- O. Guéant, J.-M. Lasry, P.-L. Lions: Mean field games and applications, to appear.

L-Q games with N players and ergodic payoff

Control systems

$$
d X_{t}^{i}=\left(A^{i} X_{t}^{i}-\alpha_{t}^{i}\right) d t+\sigma^{i} d t W_{t}^{i}, \quad X_{0}^{i}=x^{i} \in \mathbf{R}, \quad i=1, \ldots, N
$$

W_{t}^{i} independent Brownian motions, $\alpha_{t}^{i}=$ control of i-th player, long-time-average cost functional:

$$
J^{i}\left(X, \alpha^{1}, \ldots, \alpha^{N}\right):=\lim _{T \rightarrow+\infty} \frac{1}{T} E\left[\int_{0}^{T} \frac{R_{i}}{2}\left(\alpha_{t}^{i}\right)^{2}+F^{i}\left(X_{t}^{1}, \ldots, X_{t}^{N}\right) d t\right],
$$

with $R_{i}>0$, quadratic running cost, for some reference position \bar{X}_{i}

$$
\begin{aligned}
F^{i}\left(x^{1}, \ldots, x^{N}\right):=\left(X-\bar{X}_{i}\right)^{T} & Q^{i}\left(X-\bar{X}_{i}\right) \\
& =\sum_{j, k=1}^{N} q_{j k}^{i}\left(x^{j}-\bar{x}_{i}^{j}\right)\left(x^{k}-\bar{x}_{i}^{k}\right), \quad q_{i i}^{i}>0,
\end{aligned}
$$

An admissible strategy $\bar{\alpha}$ is a Nash equilibrium if

$$
J^{i}(X, \bar{\alpha})=\min _{\alpha^{i}} J^{i}\left(X, \bar{\alpha}^{1}, \ldots, \bar{\alpha}^{i-1}, \alpha^{i}, \bar{\alpha}^{i+1}, \ldots, \bar{\alpha}^{N}\right) \quad \forall i=1, \ldots, N .
$$

Admissible strategies are adapted controls such that $E\left[X_{t}^{i}\right], E\left[\left(X_{t}^{i}\right)^{2}\right] \leq C, \forall t>0$ and \exists prob. measure $m_{\alpha^{i}}$:

$$
\lim _{T \rightarrow+\infty} \frac{1}{T} E\left[\int_{0}^{T} g\left(X_{t}^{i}\right) d t\right]=\int_{\mathbf{R}} g(x) d m_{\alpha^{i}}(x)
$$

for any polynomial g, $\operatorname{deg}(g) \leq 2$, locally uniformly in $x^{i}=X_{0}^{i}$.
Example: affine feedbacks

$$
\alpha^{i}(x)=K^{i} x+c_{i}, \quad K^{i}>A^{i}
$$

whose corresponding diffusion process is ergodic

$$
d X_{t}^{i}=\left[\left(A^{i}-K^{i}\right) X_{t}^{i}-c_{i}\right] d t+\sigma^{i} d W_{t}^{i}
$$

The HJB-K PDEs

As in Lasry-Lions we set

$$
\begin{gathered}
H^{i}(x, p)=\frac{p^{2}}{2 R_{i}}-A^{i} x p, \quad \nu^{i}:=\frac{\left(\sigma^{i}\right)^{2}}{2}, \\
f^{i}\left(x ; m_{1}, \ldots, m_{N}\right):=\int_{\mathbf{R}^{N-1}} F^{i}\left(x^{1}, \ldots, x^{i-1}, x, x^{i+1}, \ldots, x^{N}\right) \prod_{j \neq i} d m_{j}\left(x^{j}\right), \\
\left\{\begin{array}{l}
-\nu^{i} v_{x x}^{i}+\frac{\left(v_{x}^{i}\right)^{2}}{2 R_{i}}-A^{i} x v_{x}^{i}+\lambda_{i}=f^{i}\left(x ; m_{1}, \ldots, m_{N}\right), \quad i=1, \ldots, N \\
-\nu^{i}\left(m_{i}\right)_{x x}-\left(\frac{v_{x}^{i}}{R_{i}} m_{i}-A^{i} x m_{i}\right)_{x}=0, \quad i=1, \ldots, N \\
\int_{\mathbf{R}} m_{i}(x) d x=1, \quad m_{i}>0 \text { in } \mathbf{R}
\end{array}\right.
\end{gathered}
$$

Cannot normalize v^{i} by $\int_{\mathbf{R}} v^{i}(x) d x=0$ as in the periodic case!

Quadratic-Gaussian solutions

Look for solutions with each v^{i} quadratic

$$
v^{i}(x)=\frac{\left(x-\mu_{i}\right)^{2}}{2 s_{i}}+\frac{R_{i} A^{i} x^{2}}{2}
$$

and measures m_{i} Gaussian

$$
m_{i}(x)=c_{i} \exp \left(-\frac{v^{i}(x)}{\nu^{i} R_{i}}+\frac{R_{i} A^{i} x^{2}}{2}\right)=\frac{1}{\sqrt{2 \pi s_{i} \nu^{i} R_{i}}} \exp \left(-\frac{\left(x-\mu_{i}\right)^{2}}{2 s_{i} \nu^{i} R_{i}}\right)
$$

Now the unknowns are the $3 N$ constants $\mu_{i}, s_{i}, \lambda_{i}$.
A useful auxiliary matrix B is

$$
B_{i i}:=2 q_{i i}^{i}+R_{i}\left(A^{i}\right)^{2}, \quad B_{i j}:=2 q_{i j}^{i} \quad i \neq j
$$

Theorem: Q-G solution of the 2 N HJB-K system

If $\operatorname{det} B \neq 0$ then
i) there exists unique $\mu_{i}, s_{i}, \lambda_{i}$ such that the Q-G solution v^{i}, m_{i} solves the $2 N$ HJB-K system and

$$
\begin{gathered}
s_{i}=\left(2 q_{i i}^{i} R_{i}+\left(R_{i} A^{i}\right)^{2}\right)^{-1 / 2}, \\
\mu=B^{-1} p, \quad p_{i}:=2 q_{i i}^{i} \bar{x}_{i}^{i}+2 \sum_{j \neq i} q_{i j}^{i} \bar{x}_{i}^{j}
\end{gathered}
$$

ii) the affine feedback

$$
\bar{\alpha}^{i}(x)=\frac{x-\mu_{i}}{s_{i} R_{i}}+A^{i} x, \quad i=1, \ldots, N
$$

is a Nash equilibrium point for all initial positions $X \in \mathbf{R}^{N}$ among the admissible strategies and $J^{i}(X, \bar{\alpha})=\lambda_{i}$ for all X and i.

Proof

i) Plug the candidate solutions in the equation, find 2 nd degree polynomial and equate the coefficients, solve $3 N$ algebraic equations for the $3 N$ unknown parameters.
ii) It's a verification theorem, the idea of proof is classical, here must be careful with the unbounded terms...

Remark:
the Nash єquilibrium feedback does NOT depend on the noise

Proof

i) Plug the candidate solutions in the equation, find 2 nd degree polynomial and equate the coefficients, solve $3 N$ algebraic equations for the $3 N$ unknown parameters.
ii) It's a verification theorem, the idea of proof is classical, here must be careful with the unbounded terms...

Remark:
the Nash equilibrium feedback does NOT depend on the noise intensities σ^{\prime}

Proof

i) Plug the candidate solutions in the equation, find 2 nd degree polynomial and equate the coefficients, solve $3 N$ algebraic equations for the $3 N$ unknown parameters.
ii) It's a verification theorem, the idea of proof is classical, here must be careful with the unbounded terms...

Remark: the Nash equilibrium feedback does NOT depend on the noise intensities σ^{i}.

A symmetry condition on the running cost

F^{i} symmetric with respect to the position of any two other players:
$F^{i}\left(x^{1}, \ldots, x^{j}, \ldots, x^{k}, \ldots, x^{N}\right)=F^{i}\left(x^{1}, \ldots, x^{k}, \ldots, x^{j}, \ldots, x^{N}\right) \quad \forall j, k \neq i$.
This is equivalent, $\forall j, k, I, m \neq i, I \neq j, k \neq I, k \neq m$,
$q_{i j}^{i}=q_{i k}^{i}=: \frac{\beta_{i}}{2}=$ primary cost of cross-displacement
$\bar{x}_{i}^{j}=\bar{x}_{i}^{k}=: r_{i} \quad=$ reference position of the other players
$q_{j j}^{i}=q_{k k}^{i}=: \eta_{i}=$ secondary cost of self-displacement
$q_{l j}^{i}=q_{k l}^{i}=q_{k m}^{i}=: \gamma_{i} \quad=$ secondary cost of cross-displacement.
We also set
$q_{i}:=q_{i j}^{i} \quad=$ primary cost of self-displacement
$h_{i}:=\bar{x}_{i}^{i} \quad=$ preferred own position (happy state)

Now each F^{i} involves only 6 parameters and can be written as

$$
\begin{equation*}
F^{i}\left(x^{1}, \ldots, x^{N}\right)=V_{i}\left[\frac{1}{N-1} \sum_{j \neq i} \delta_{x_{j}}\right]\left(x^{i}\right) \tag{i}
\end{equation*}
$$

for $\quad V_{i}:\{$ prob. measures $\} \rightarrow$ \{quadratic polynomials $\}$

$$
\begin{aligned}
& V_{i}[m](x):=q_{i}\left(x-h_{i}\right)^{2} \\
& +\beta_{i}\left(x-h_{i}\right)(N-1) \int_{\mathbf{R}}\left(y-r_{i}\right) d m(y) \\
& +\gamma_{i}\left((N-1) \int_{\mathbf{R}}\left(y-r_{i}\right) d m(y)\right)^{2} \\
& +\left(\eta_{i}-\gamma_{i}\right)(N-1) \int_{\mathbf{R}}\left(y-r_{i}\right)^{2} d m(y) .
\end{aligned}
$$

Viceversa, F^{i} of the form $\left(V_{i}\right)$ implies F^{i} symmetric.

Almost Identical players

We say the players are A. I. if F^{i} are symmetric and the players have the same

- control system, i.e., $A^{i}=A$ and $\sigma^{i}=\sigma$ (so $\left.\nu^{i}=\nu>0\right)$ for all i,
- cost of the control, i.e., $R_{i}=R>0$ for all i,
- reference positions, i.e., $h_{i}=h$ and $r_{i}=r$ for all i,
- primary costs of displacement, i.e., $q_{i}=q>0$ and $\beta_{i}=\beta$ for all i.

Secondary costs of displacement γ_{i}, η_{i} may still depend on i.

Theorem: identically distributed Q-G solutions

Almost Identical players and $\quad 2 q+R A^{2} \neq \beta(1-N) \quad \Longrightarrow$ the unique $\mu, s>0, \lambda_{i}, i=1, \ldots, N$ such that

$$
\begin{gathered}
v^{i}(x)=v(x):=\frac{(x-\mu)^{2}}{2 s}+\frac{R A x^{2}}{2} \\
m_{i}(x)=m(x):=\frac{1}{\sqrt{2 \pi s \nu R}} \exp \left(-\frac{(x-\mu)^{2}}{2 s \nu R}\right)
\end{gathered}
$$

solve the $2 N \mathrm{HJB}-\mathrm{K}$ equations are

$$
\begin{aligned}
s= & \left(2 q R+R^{2} A^{2}\right)^{-1 / 2}, \quad \mu=\frac{2 q h+r \beta(N-1)}{2 q+\beta(N-1)+R A^{2}}, \\
\lambda_{i}=\frac{\nu}{s}+ & \nu R A-\frac{\mu^{2}}{2 R s^{2}}+q h^{2}-h \beta(N-1)(\mu-r) \\
& +\gamma_{i}(N-1)(N-2)(\mu-r)^{2}+\eta_{i}(N-1)\left(s \nu R+(\mu-r)^{2}\right) .
\end{aligned}
$$

The limit as $N \rightarrow+\infty$

Assume the parameters A, ν, R, h, r independent of N and the coefficients of $F^{i, N}$ scale, as $N \rightarrow+\infty$

$$
q^{N} \rightarrow \bar{q}, \quad \beta^{N} \sim \frac{\bar{\beta}}{N}, \quad \eta_{i}^{N} \sim \frac{\bar{\eta}}{N}, \quad \gamma_{i}^{N} \sim \frac{\bar{\gamma}}{N^{2}}
$$

Then for any prob. measure m on $\mathbf{R}, \forall i$,

$$
V_{i}^{N}[m](x) \rightarrow \bar{V}[m](x) \quad \text { locally uniformly in } x,
$$

$$
\begin{aligned}
\bar{V}[m](x):=\bar{q}(x-h)^{2} & +\bar{\beta}(x-h) \int_{\mathbf{R}}(y-r) d m(y) \\
& +\bar{\gamma}\left(\int_{\mathbf{R}}(y-r) d m(y)\right)^{2}+\bar{\eta} \int_{\mathbf{R}}(y-r)^{2} d m(y) .
\end{aligned}
$$

The Mean Field Equations

$(\mathrm{MFE})\left\{\begin{array}{l}-\nu v_{x x}+\frac{\left(v_{x}\right)^{2}}{2 R}-A x v_{x}+\lambda=\bar{V}[m](x) \quad \text { in } \mathbf{R}, \\ -\nu m_{x x}-\left(\frac{v_{x}}{R} m-A x m\right)_{x}=0 \quad \text { in } \mathbf{R}, \\ \min \left[v(x)-\frac{R A x^{2}}{2}\right]=0, \quad \int_{\mathbf{R}} m(x) d x=1, \quad m>0 \text { in } \mathbf{R} .\end{array}\right.$
Remark: the normalization of v is different from $\int v d x=0$ of the periodic case.

Uniqueness

\bar{V} is monotone increasing in $L^{2} \Longleftrightarrow \bar{\beta} \geq 0$ so in this case there is at most one solution of MFEs.

Meaning: $\bar{\beta}>0$ if imitation is costly, $\bar{\beta}<0$ if imitation is rewarding.

Q-G solution of the MFEs

$2 \bar{q}+R A^{2} \neq-\bar{\beta} \quad \Longrightarrow \quad$ the MFEs has exactly one solution v, m, λ of the Q-G form

$$
v(x):=\frac{(x-\bar{\mu})^{2}}{2 \bar{s}}+\frac{R A x^{2}}{2}, \quad m(x):=\frac{1}{\sqrt{2 \pi \bar{s} \nu R}} \exp \left(-\frac{(x-\bar{\mu})^{2}}{2 \bar{s} \nu R}\right)
$$

given by

$$
\begin{gathered}
\bar{s}=\left(2 \bar{q} R+R^{2} A^{2}\right)^{-1 / 2}, \quad \bar{\mu}=\frac{2 \bar{q} h+r \bar{\beta}}{\bar{\beta}+2 \bar{q}+R A^{2}}, \\
\lambda=\frac{\nu}{\bar{s}}+\nu R A-\frac{\bar{\mu}^{2}}{2 R \bar{s}^{2}}+\bar{q} h^{2}-h \bar{\beta}(\bar{\mu}-r)+(\bar{\gamma}+\bar{\eta})(\bar{\mu}-r)^{2}+\bar{\eta} \bar{s} \nu R
\end{gathered}
$$

Convergence Theorem

Call $v^{N}, m^{N}, \lambda_{i}^{N}$ the identically distributed Q-G solutions of the $2 N$ HJB-K equations for N players. Then $2 \bar{q}+R A^{2} \neq-\bar{\beta} \quad \Longrightarrow$ as $\quad N \rightarrow+\infty$,

- $v^{N} \rightarrow v$ in $C_{l o c}^{2}(\mathbf{R})$
- $m^{N} \rightarrow m$ in $C^{k}(\mathbf{R})$ for all k,
- $\lambda_{i}^{N} \rightarrow \lambda$ for all i,
where $\quad v, m, \lambda$ is the Q-G solution of the MFEs.
Remark: in the critical case
$2 \bar{q}+R A^{2}=-\bar{\beta}$
- a continuum of $Q-G$ solutions if $2 \bar{q} h=-\bar{\beta} r$.

A similar phenomenon of infinitely many Q-G solutions occurs in the MF log-model of population distribution studied, by, Guéąant.

Convergence Theorem

Call $v^{N}, m^{N}, \lambda_{i}^{N}$ the identically distributed Q-G solutions of the $2 N$ HJB-K equations for N players. Then $2 \bar{q}+R A^{2} \neq-\bar{\beta} \quad \Longrightarrow$ as $\quad N \rightarrow+\infty$,

- $v^{N} \rightarrow v$ in $C_{\text {loc }}^{2}(\mathbf{R})$
- $m^{N} \rightarrow m$ in $C^{k}(\mathbf{R})$ for all k,
- $\lambda_{i}^{N} \rightarrow \lambda$ for all i,
where $\quad v, m, \lambda$ is the Q-G solution of the MFEs.
Remark: in the critical case $2 \bar{q}+R A^{2}=-\bar{\beta}$
- no Q-G solution if $2 \bar{q} h \neq-\bar{\beta} r$,
- a continuum of $\mathrm{Q}-\mathrm{G}$ solutions if $2 \bar{q} h=-\bar{\beta} r$.

A similar phenomenon of infinitely many Q-G solutions occurs in the MF log-model of population distribution studied by Guéant.

The vanishing viscosity limit for N players

In the system of $2 N$ HJB-K equations let $\nu^{j}=\left(\sigma^{j}\right)^{2} / 2 \rightarrow 0$ for the j-th player. From the explicit formulas we see

$$
v^{j}, \bar{\alpha}^{j}, \mu_{j}, s_{j} \text { independent of } \nu^{j}, \quad m_{j} \rightarrow \delta_{\mu_{j}}
$$

and the j-th Kolmogorov equation $\quad-\left(\frac{v_{x}^{j}}{R_{j}} m_{j}-A^{j} x m_{j}\right)_{x}=0 \quad$ is satisfied in the sense of distributions.

If all $\nu^{i}=\left(\sigma^{i}\right)^{2} / 2 \rightarrow 0, i=1, \ldots, N$, the limit $2 N$ HJB-K equations are of first order and the Quadratic-Dirac solutions give the value of a deterministic game for the same feedback Nash equilibrium

$$
\bar{\alpha}^{i}(x)=\frac{x-\mu_{i}}{s_{i} R_{i}}+A^{i} x .
$$

The vanishing viscosity limit in the MFEs

Letting $\nu \rightarrow 0$ in the Mean Field equations we have $v, \bar{s}, \bar{\mu}$ independent of $\nu, m \rightarrow \delta_{\bar{\mu}}$ and get a Quadratic-Dirac solution of the first order MFEs

$$
\left\{\begin{array}{l}
\frac{\left(v_{x}\right)^{2}}{2 R}-A x v_{x}+\lambda=\bar{V}[m](x) \\
-\left(\frac{v_{x}}{R} m-A x m\right)_{x}=0 \\
\min \left[v(x)-\frac{R A x^{2}}{2}\right]=0, \quad \int_{\mathbf{R}} m(x) d x=1, \quad m>0
\end{array}\right.
$$

Rmk: the limits $\nu \rightarrow 0$ and $N \rightarrow \infty$ commute.

Other singular limits

- Cheap control : can take the limit as $R_{i} \rightarrow 0$ of solutions to $2 N$ HJB-K equations for N players. Again
- $m_{i} \rightarrow$ Dirac mass,
- limits $R \rightarrow 0$ and $N \rightarrow \infty$ commute.
- Large cost of cross-displacement : if
instead of $\bar{\beta}$, the term

is singular but the solutions have a Q-G limit with $\bar{\mu}=r$.

Other singular limits

- Cheap control : can take the limit as $R_{i} \rightarrow 0$ of solutions to $2 N$ HJB-K equations for N players. Again
- $m_{i} \rightarrow$ Dirac mass,
- limits $R \rightarrow 0$ and $N \rightarrow \infty$ commute.
- Large cost of cross-displacement : if

$$
\lim _{N \rightarrow \infty} N\left|\beta^{N}\right|=+\infty
$$

instead of $\bar{\beta}$, the term

$$
\beta^{N}(N-1)(x-h) \int_{\mathbf{R}}(y-r) d m(y)
$$

is singular but the solutions have a Q-G limit with $\bar{\mu}=r$.

Discounted cost functional and vanishing discount

For $\rho>0$, infinite horizon and discounted running cost:

$$
J^{i}=E\left[\int_{0}^{+\infty}\left(\frac{R_{i}}{2}\left(\alpha_{t}^{i}\right)^{2}+F^{i}\left(X_{t}^{1}, \ldots, X_{t}^{N}\right)\right) e^{-\rho t} d t\right]
$$

For quadratic F^{i} find again Q-G solutions of $2 N$ HJB-K equations where λ_{j} is replaced by ρv^{i}. Can show that

- as $\rho \rightarrow 0 \quad \rho v_{\rho}^{i} \rightarrow \lambda_{i}, \quad m_{i}^{\rho} \rightarrow m_{i}$,
$v_{\rho}^{i}(x)-v_{\rho}^{i}(0)+\left(\mu_{i}^{\rho}\right)^{2} / 2 s_{i}^{\rho} \rightarrow v^{i}(x)$ and the limit solves the $2 N$ HJB-K equations of the ergodic games,
- as $N \rightarrow+\infty$ and $\rho>0$ fixed the Q-G solutions converge to the MFEs with 1st equation

$$
-\nu v_{x x}+\left(v_{x}\right)^{2} / 2 R-A x v_{x}+\rho v=\bar{V}[m](x)
$$

- limits $\rho \rightarrow 0$ and $N \rightarrow \infty$ commute.

Models of population distribution

Guéant studied a model with discounted cost functional

$$
E\left[\int_{0}^{+\infty}\left(\frac{\left|\alpha_{t}^{i}\right|^{2}}{2}+\bar{q}\left|X_{t}^{i}-h\right|^{2}-\log m\left(X_{t}^{i}\right)\right) e^{-\rho t} d t\right], \quad \bar{q} \geq 0
$$

and therefore the first MF equation is $(A=0, R=1)$

$$
-\nu v_{x x}+\left(v_{x}\right)^{2} / 2+\rho v=\bar{q}|x-h|^{2}-\log m(x)
$$

- V is NOT integral operator, not deriving from limit of N players;
- V decreasing in m models a population whose agents wish to resemble their peers, imitation is rewarding;
- MFEs have one Q-G solution of mean $h \forall \bar{q}>0$,
- a continuum of Q-G solutions with any mean μ if $\bar{q}=0$.

L-Q model with $A=0, R=1, r=h$ has first MF equation

$$
\begin{aligned}
-\nu v_{x x}+\left(v_{x}\right)^{2} / 2+\lambda & =\bar{q}(x-h)^{2}+\bar{\beta}(x-h) \int_{\mathbf{R}}(y-r) d m(y) \\
& +\bar{\gamma}\left(\int_{\mathbf{R}}(y-r) d m(y)\right)^{2}+\bar{\eta} \int_{\mathbf{R}}(y-r)^{2} d m(y)
\end{aligned}
$$

- if $\beta>0$ imitation is costly, uniqueness of solution,
- if $\beta<0$ imitation is rewarding as in the LOG model,
- MFEs have one Q-G solution of mean $h \quad \forall \bar{q}>0$ and $\bar{q} \neq-\beta / 2$,
- a continuum of $\mathrm{Q}-\mathrm{G}$ solutions with any mean μ if $\bar{q}=-\beta / 2$: same bifurcation phenomenon at different critical value,
- $\operatorname{Var}(m) \rightarrow+\infty$ as $\bar{q} \rightarrow 0, m$ tends to uniform distribution.

Developments

- d-dimensional control system for each player, $d \geq 1$: need o solve matrix Riccati equations; the MFEs are PDEs instead of ODEs.
- Interacting populations with L-Q costs, to be compared with the log-model of Guéant.

Thanks for your attention!
Thanks Fabio, Italo and Maurizio for the very nice meeting !

