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Introduction
Numerical methods for the MFG system in the finite horizon setting

• Numerical schemes

• Methods for solving the finite-dimensional system of nonlinear
equations which arises in the discrete MFG

1. nonlinear strategies: here, Newton methods

2. strategies for solving the linearized MFG systems

Outline of the present talk

• A brief review of the schemes (joint work with F. Camilli and I.
Capuzzo-Dolcetta)

• Focus on the strategies for solving the linearized MFG systems : A
good understanding of the continuous MFG system will be helpful.

• No proofs.
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I Finite difference schemes

Goal: use a (semi-)implicit finite difference scheme, robust when ν → 0,
which guarantees existence, and possibly uniform bounds and
uniqueness.

Take d = 2:




∂u

∂t
− ν∆u + H(x,∇u) = Φ[m], in (0, T )× T,

∂m

∂t
+ ν∆m + div

(
m

∂H

∂p
(x,∇u)

)
= 0, in (0, T )× T,

∫

T

mdx = 1, m > 0 in T,

u(t = 0) = Φ0[m(t = 0)], m(t = T ) = m◦,

(∗∗)
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• Let Th be a uniform grid on the torus with mesh step h, and xij be a

generic point in Th.

• Uniform time grid: ∆t = T/NT , tn = n∆t.

• The values of u and m at (xi,j , tn) are resp. approximated by Un
i,j and

Mn
i,j .
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Notation:
• The discrete Laplace operator:

(∆hW )i,j = −
1

h2
(4Wi,j −Wi+1,j −Wi−1,j −Wi,j+1 −Wi,j−1).

• Right-sided finite difference formulas for ∂w
∂x1

(xi,j) and ∂w
∂x2

(xi,j):

(D+
1 W )i,j =

Wi+1,j −Wi,j

h
, and (D+

2 W )i,j =
Wi,j+1 −Wi,j

h
.

• The set of 4 finite difference formulas at xi,j :

[DhW ]i,j =
(
(D+

1 W )i,j, (D
+
1 W )i−1,j, (D

+
2 W )i,j, (D

+
2 W )i,j−1

)
.
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Discrete HJB equation

∂u

∂t
− ν∆u + H(x,∇u) = Φ[m]

↓

Un+1

i,j − Un
i,j

∆t
− ν(∆hUn+1)i,j + g(xi,j , [DhUn+1]i,j) = (Φh[Mn])i,j

•

g(xi,j , [DhU
n+1]i,j)

=g
“

xi,j , (D
+
1 U

n+1)i,j , (D
+
1 U

n+1)i−1,j , (D
+
2 U

n+1)i,j , (D
+
2 U

n+1)i,j−1

”

,

• for instance,

(Φh[M ])i,j = Φ[mh](xi,j),

calling mh the piecewise constant function on T taking the value Mi,j

in the square |x− xi,j |∞ ≤ h/2.
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Classical assumptions on the discrete Hamiltonian g

(q1, q2, q3, q4)→ g (x, q1, q2, q3, q4) .

• Monotonicity: g is nonincreasing with respect to q1 and q3 and
nondecreasing with respect to to q2 and q4.

• Consistency:

g (x, q1, q1, q3, q3) = H(x, q), ∀x ∈ T, ∀q = (q1, q3) ∈ R
2.

• Differentiability: g is of class C1, and
∣∣∣∣
∂g

∂x

(
x, (q1, q2, q3, q4)

)∣∣∣∣ ≤ C(1 + |q1|+ |q2|+ |q3|+ |q4|).

• Convexity: (q1, q2, q3, q4)→ g (x, q1, q2, q3, q4) is convex.
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The discrete version of

∂m

∂t
+ ν∆m + div

(
m

∂H

∂p
(x,∇v)

)
= 0. (†)

It is chosen so that

• each time step leads to a linear system with a matrix

– whose diagonal coefficients are negative,

– whose off-diagonal coefficients are nonnegative,

in order to hopefully use some discrete maximum principle.

• The argument for uniqueness should hold in the discrete case, so the
discrete Hamiltonian g should be used for (†) as well.
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Principle
Discretize

−

∫

T

div

(
m

∂H

∂p
(x,∇u)

)
w =

∫

T

m
∂H

∂p
(x,∇u) · ∇w

by

−h2
∑

i,j

Bi,j(U, M)Wi,j := h2
∑

i,j

Mi,j∇qg(xi,j , [DhU ]i,j) · [DhW ]i,j,

which leads to

Bi,j(U, M) =
1

h

0

B

B

B

B

B

B

B

B

@

0

B

@

Mi,j

∂g

∂q1

(xi,j , [DhU ]i,j) − Mi−1,j

∂g

∂q1

(xi−1,j , [DhU ]i−1,j)

+Mi+1,j

∂g

∂q2

(xi+1,j , [DhU ]i+1,j) − Mi,j

∂g

∂q2

(xi,j , [DhU ]i,j)

1

C

A

+

0

B

@

Mi,j

∂g

∂q3

(xi,j , [DhU ]i,j) − Mi,j−1

∂g

∂q3

(xi,j−1, [DhU ]i,j−1)

+Mi,j+1

∂g

∂q4

(xi,j+1, [DhU ]i,j+1) − Mi,j

∂g

∂q4

(xi,j , [DhU ]i,j)

1

C

A

1

C

C

C

C

C

C

C

C

A

,
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This yields the semi-implicit scheme:

Un+1
i,j − Un

i,j

∆t
− ν(∆hU

n+1)i,j + g(xi,j , [DhU
n+1]i,j) = (Vh[Mn])

i,j

0 =
Mn+1

i,j − Mn
i,j

∆t
+ ν(∆hM

n)i,j

+
1

h

0

B

B

B

B

B

B

B

B

B

B

B

@

0

B

@

M
n
i,j

∂g

∂q1

(xi,j , [DhU
n+1]i,j) − M

n
i−1,j

∂g

∂q1

(xi−1,j , [DhU
n+1]i−1,j)

+M
n
i+1,j

∂g

∂q2

(xi+1,j , [DhU
n+1]i+1,j) − M

n
i,j

∂g

∂q2

(xi,j , [DhU
n+1]i,j)

1

C

A

+

0

B

@

M
n
i,j

∂g

∂q3

(xi,j , [DhU
n+1]i,j) − M

n
i,j−1

∂g

∂q3

(xi,j−1, [DhU
n+1]i,j−1)

+M
n
i,j+1

∂g

∂q4

(xi,j+1, [DhU
n+1]i,j+1) − M

n
i,j

∂g

∂q4

(xi,j , [DhU
n+1]i,j)

1

C

A

1

C

C

C

C

C

C

C

C

C

C

C

A

9



• The linear operator in the discrete Fokker-Planck equation is the
adjoint of the linearized discrete HJB operator.

• The discrete system has the same structure as the continuous MFG
system
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The discrete MFG system: known facts

• Existence for finite and infinite horizon under rather general

assumptions: does not need monotonicity of Φ and Φ0 (Y.A. - I.

Capuzzo Dolcetta)

• Uniqueness if Φ and Φ0 are strictly monotone operators

• Under suitable assumptions, uniform Lipschitz bounds on uh w.r.t.
h and ∆t

• Optimization If Φ and Φ0 are local operators and furthermore

increasing functions, the discrete MFG system can be seen as the

optimality conditions of a saddle point problem.

• Discrete planning problems (Y.A. - F. Camilli - I. Capuzzo Dolcetta)

11



Other numerical works
• Lachapelle-Salomon-Turinici, Lachapelle-Wolfram (congestion)

• Guéant (2009) (2011)
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Example of results for the planning problem
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T = 1, ν = 1, Φ(m) = m2, H(p) = sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|2

Snapshots at t = (0, 4, 8, 100, 180, 190, 196, 200)/200
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T = 0.01

Snapshots at t = (0, 4, 8, 100, 180, 190, 196, 200)/20000
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T = 0.1, ν = 0.125, Φ(m) = − log(m)

Snapshots at t = (0, 4, 8, 100, 180, 190, 196, 200)/2000
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II. Strategies for solving the discrete problem
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Difficulty: time dependent problem with conditions at both initial and final

times.



FU (U ,M) = 0, (discrete HJB)

FM (U ,M) = 0 (discrete Fokker-Planck),

Strategy: Newton method


 U

M


←−


 U

M


−


 AU,U (U ,M) AU,M (U ,M)

AM,U (U ,M) AM,M (U ,M)




−1
 FU (U ,M)

FM (U ,M)




where

AU,U (U ,M) = DUFU (U ,M), AU,M (U ,M) = DMFU (U ,M),

AM,U (U ,M) = DUFM(U ,M), AM,M (U ,M) = DMFM(U ,M).
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The linear systems
For simplicity, we assume that Φ0(m) does not depend of m, so the
initial condition is

u|t=0 = u0.

We are led to study the linearized discrete MFG system

 AU,U AU,M

AM,U AM,M





 U

M


 =


 GU

GM


 ,

where U = (U1, . . . , UNT )T andM = (M0, . . . , MNT −1)T .
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The matrices AUU and AUM have the form:

AUU =




D1

− 1

∆t
I D2

. . .
. . .

− 1

∆t
I DNT




and AUM = Block-Diag(E1, . . . , ENT
).

• AUU corresponds to a linearized HJB equation and the block Dn

correponds to the finite difference operator

(Zi,j) 7→ (Zi,j/∆t− ν(∆hZ)i,j + [DhZ]i,j · ∇g(xi,j , [DhUn]i,j)) .

Monotonicity⇒ Dn is a M-matrix, thus AUU is invertible.

• The blocks En are diagonal matrices, with negative diagonal
entries if m→ Φ(m) is strictly increasing. E−1

n is available.
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The matrices AMM and AMU have the form

AMM = AT
UU , and AMU = Block-Diag(Ẽ1, . . . , ẼNT

).

• AMM corresponds to a linear transport equation.

• Note that

VT ẼnW =
∑

i,j

Mn−1

i,j [DhV ]i,j ·D
2
q,qg(xi,j , [DhUn]i,j)[DhW ]i,j.

From the convexity of g, Ẽn is positive if Mn−1 ≥ 0.

21



Th. If Φ is strictly increasing and ifM≥ 0, then the Jacobian matrix

 AU,U (U ,M) AU,M (U ,M)

AM,U (U ,M) AM,M (U ,M)


 is invertible.

Proof: similar to the proof of uniqueness of the MFG system of PDE.
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Two iterative strategies for solving the linearized discrete MFG system

 AU,U AU,M

AM,U AM,M





 U

M


 =


 GU

GM


 .
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First strategy

1. Solve first AU,U Ũ = GU . This is done by sequentially solving

DkŨk = −∆t−1Ũk−1 + Gk
U , (1)

i.e. marching in time in the forward direction. Systems (1) are solved
with efficient direct solvers.

2. Introducing U = U − Ũ ,

 AU,U AU,M

AM,U AM,M





 U

M


 =


 0

GM −AM,U Ũ




⇒
(
AM,M − AM,UA−1

U,UAU,M

)
M = GM −AM,U Ũ . (2)

(2) is solved by an iterative method which does not require
assembling AM,M −AM,UA−1

U,UAU,M , e.g. BiCGStab.
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Speeding the method
Instead of

(
AM,M −AM,UA−1

U,UAU,M

)
M = GM −AM,U Ũ ,

we rather solve
(
I − A−1

M,MAM,UA−1

U,UAU,M

)
M = A−1

M,M (GM −AM,U Ũ). (3)

Left multiplication by A−1

M,M ⇔ solving a backward in time discrete
transport problem.
This is done by marching backward in time, and solving at each time step a
system of the form

DT
k Mk = ∆t−1Mk+1 + F k, (4)

(note that DT
k is invertible from the monotonicity of the scheme). Systems

(4) are solved with efficient direct solvers.
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Note that the matrix I − A−1

M,MAM,UA−1

U,UAU,M is not assembled.
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• PDE interpretation A−1

M,MAM,UA−1

U,UAU,M is the discrete version of

(linear-FP)−1 ◦ div (mHpp(Du)D·) ◦ (linear-HJB)−1 ◦ (Φ′(m)·).

If ν > 0 and if m and u are smooth, this is a compact operator in L2.

Thus, the matrix I −A−1

M,MAM,UA−1

U,UAU,M is expected to have a
nice condition number, which should not depend on h and ∆t. As we
shall see, the iterative method has a fast convergence.

• Complexity The complexity of the method is mainly that of solving the
systems

DkŨk = −∆t−1Ũk−1 + Gk
U ,

and
DT

k Mk = ∆t−1Mk+1 + F k,

for k = 1, . . . , NT .
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Table 1: First iterative strategy for solving the linearized MFG system: aver-

age number of iterations to decrease the residual by a factor 10−7

ν 32 × 32 × 32 64 × 64 × 64 128 × 128 × 64

0.6 2 2 2

0.36 2 2 2

0.2 3.5 3.5 4

0.12 6 6 6.1
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Second strategy for solving the linear systems when Φ is strictly
monotone.

• This strategy is inspired by the proof of uniqueness for the MFG

system.

• The idea is to eliminate m from the linearized HJB equation: this is

possible since Φ is strictly monotone.

The system reads

 AU,U AU,M

AM,U AM,M





 U

M


 =


 GU

GM


 .
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EliminatingM from the first block of equations, we get a system of the

form (
AM,U −AM,M (AU,M )−1AU,U

)
U = F

Note that AU,M is diagonal, with negative diagonal entries, so the above

matrix can be assembled.
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PDE interpretation The partial differential operator in the continuous

version of
(
AM,U −AM,M (AU,M )−1AU,U

)
is

div

(
m

∂2H(Du)

∂p2
D·

)
− (linear- FP) ◦ ((Φ′(m))−1·) ◦ (linear- HJB).

This is a fourth order differential operator w.r.t. x and second order
w.r.t. t. Its principal part is

(Φ′(m))−1

(
−

∂2

∂t2
+ ν2∆2

)

for which a weak elliptic theory may be used (quasi-elliptic).
The boundary conditions at t = T is of the type

(linear- HJB)u = g.
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Consequences

• Bad news : The matrix AM,U −AM,M (AU,M )−1AU,U is very
ill-conditioned: the condition number grows like ν2h−4. Indeed, we

can observe that standard iterative methods like BICGstab do not yield

convergence even for h ∼ 1/10. (BICGstab cannot even reduce the

residual by a factor 0.1 for h = 1/64)

• Good news : degenerate elliptic operator, so we can try solving
(
AM,U −AM,M (AU,M )−1AU,U

)
U = F

with an iterative method using a multigrid preconditioner.
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Multigrid methods: main ingredients

• A family of nested grids : (G`)`=0,...,L of step sizes ∼ 2−`: the system

to be solved is

BLuL = fL.

• Intergrid communications:

– Prolongation operators, in order to represent a grid function on the

next finer grid: I`+1

` : G` → G`+1.

– Restriction operators, in order to interpolate a grid function on the

next coarser grid: I`−1

` : G` → G`−1.

• With each grid, we associate a matrix for an approximate system, e.g.

B` = I`
`+1

B`+1I
`+1

` .

• Elementary stationary iterative methods in order to solve

B`u` = f`, for example Gauss-Seidel method.
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Principle of multigrid methods The basic principle of multigrid method is

as follows:

• For an elliptic operator, one can find simple iterative methods

(Gauss-Seidel or close to it) such that a few iterations of these methods

are enough to damp the higher frequency components of the error, i.e.

to make the error smooth.

• These iterative methods have bad convergence properties, but they have

good smoothing properties: they are called smoothers.

• For such methods, the produced residual is well represented on the next

coarser grid. So the residual is transfered to the next coarser grid.

• This is the basis for a recursive algorithm.
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The algorithm (V-cycle)

function MGS (`, u`, f`)

if ` = 0 then
u0←B−1

0 f0 // level 0 : solve exactly
else

u` ← S`(u`, f`, ν1) // presmoothing
u`−1 ← 0

MGS
(
`− 1, u`−1, I

`−1

` (f` −B`u`)
)

// coarse gr. correct.
u` ← S`(u` + I`

`−1
u`−1, f`, ν2) // postsmoothing

endif
endfunction

The multigrid operator can also be used as a preconditioner for the matrix

BL in an iterative solver like BICGstab.
Complexity of a multigrid step: linear
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In our case, standard multigrid methods do not behave well !

Table 2: Full coarsening multigrid with 4 levels: average number of iterations

to decrease the residual by a factor 0.01

ν 32 × 32 × 32 64 × 64 × 64 128 × 128 × 64

0.6 40 92 -

0.36 24 61 -

0.2 21 45 -
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Why? Because the usual smoothers actually make the error smooth in
the planes t = cst, but not w.r.t. the variable t.

Reason: The unknowns are strongly coupled in the planes t = cst,
(4-th order operator), stronglier than on the lines x = cst, (2nd order
operator).

Fix :The hierarchy of nested grids should be obtained by coarsening the
grids in the x directions only, but not on the t direction.

37



Results with the semi-coarsening multigrid methods

Table 3: Semi-coarsening multigrid with 5 levels: average number of itera-

tions to decrease the residual by a factor 0.001

ν 32 × 32 × 32 64 × 64 × 64 128 × 128 × 64

0.6 4 5 7

0.36 4 5 7

0.2 4 5.5 7

0.12 6 9 12
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Conclusion

• Two iterative strategies that work well in a rather broad setting.

• The first one looks more robust if Φ has the bad monotonicity.

• Also the nonlinear part of the solver needs improvements.
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