Mean Field Games: Numerical Methods for finite horizon problems

Y. Achdou

May 13, 2011

Introduction

Numerical methods for the MFG system in the finite horizon setting

- Numerical schemes
- Methods for solving the finite-dimensional system of nonlinear equations which arises in the discrete MFG

1. nonlinear strategies: here, Newton methods
2. strategies for solving the linearized MFG systems

Outline of the present talk

- A brief review of the schemes (joint work with F. Camilli and I. Capuzzo-Dolcetta)
- Focus on the strategies for solving the linearized MFG systems : A good understanding of the continuous MFG system will be helpful.
- No proofs.

I Finite difference schemes

Goal: use a (semi-)implicit finite difference scheme, robust when $\nu \rightarrow 0$, which guarantees existence, and possibly uniform bounds and uniqueness.

Take $d=2$:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\nu \Delta u+H(x, \nabla u)=\Phi[m], \quad \text { in }(0, T) \times \mathbb{T} \tag{**}\\
\frac{\partial m}{\partial t}+\nu \Delta m+\operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla u)\right)=0, \quad \text { in }(0, T) \times \mathbb{T} \\
\int_{\mathbb{T}} m d x=1, \quad m>0 \quad \text { in } \mathbb{T} \\
u(t=0)=\Phi_{0}[m(t=0)], \quad m(t=T)=m_{0}
\end{array}\right.
$$

- Let \mathbb{T}_{h} be a uniform grid on the torus with mesh step h, and $x_{i j}$ be a generic point in \mathbb{T}_{h}.
- Uniform time grid: $\Delta t=T / N_{T}, t_{n}=n \Delta t$.
- The values of u and m at $\left(x_{i, j}, t_{n}\right)$ are resp. approximated by $U_{i, j}^{n}$ and $M_{i, j}^{n}$.

Notation:

- The discrete Laplace operator:

$$
\left(\Delta_{h} W\right)_{i, j}=-\frac{1}{h^{2}}\left(4 W_{i, j}-W_{i+1, j}-W_{i-1, j}-W_{i, j+1}-W_{i, j-1}\right)
$$

- Right-sided finite difference formulas for $\frac{\partial w}{\partial x_{1}}\left(x_{i, j}\right)$ and $\frac{\partial w}{\partial x_{2}}\left(x_{i, j}\right)$:

$$
\left(D_{1}^{+} W\right)_{i, j}=\frac{W_{i+1, j}-W_{i, j}}{h}, \quad \text { and } \quad\left(D_{2}^{+} W\right)_{i, j}=\frac{W_{i, j+1}-W_{i, j}}{h}
$$

- The set of 4 finite difference formulas at $x_{i, j}$:

$$
\left[D_{h} W\right]_{i, j}=\left(\left(D_{1}^{+} W\right)_{i, j},\left(D_{1}^{+} W\right)_{i-1, j},\left(D_{2}^{+} W\right)_{i, j},\left(D_{2}^{+} W\right)_{i, j-1}\right)
$$

Discrete HJB equation

$$
\begin{aligned}
& \frac{\partial u}{\partial t}-\nu \Delta u+H(x, \nabla u)=\Phi[m] \\
& \downarrow \\
& \frac{U_{i, j}^{n+1}-U_{i, j}^{n}}{\Delta t}-\nu\left(\Delta_{h} U^{n+1}\right)_{i, j}+g\left(x_{i, j},\left[D_{h} U^{n+1}\right]_{i, j}\right)=\left(\Phi_{h}\left[M^{n}\right]\right)_{i, j} \\
& \begin{aligned}
& g\left(x_{i, j},\left[D_{h} U^{n+1}\right]_{i, j}\right) \\
= & g\left(x_{i, j},\left(D_{1}^{+} U^{n+1}\right)_{i, j},\left(D_{1}^{+} U^{n+1}\right)_{i-1, j},\left(D_{2}^{+} U^{n+1}\right)_{i, j},\left(D_{2}^{+} U^{n+1}\right)_{i, j-1}\right),
\end{aligned}
\end{aligned}
$$

- for instance,

$$
\left(\Phi_{h}[M]\right)_{i, j}=\Phi\left[m_{h}\right]\left(x_{i, j}\right)
$$

calling m_{h} the piecewise constant function on \mathbb{T} taking the value $M_{i, j}$ in the square $\left|x-x_{i, j}\right|_{\infty} \leq h / 2$.

Classical assumptions on the discrete Hamiltonian g

$$
\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \rightarrow g\left(x, q_{1}, q_{2}, q_{3}, q_{4}\right)
$$

- Monotonicity: g is nonincreasing with respect to q_{1} and q_{3} and nondecreasing with respect to to q_{2} and q_{4}.
- Consistency:

$$
g\left(x, q_{1}, q_{1}, q_{3}, q_{3}\right)=H(x, q), \quad \forall x \in \mathbb{T}, \forall q=\left(q_{1}, q_{3}\right) \in \mathbb{R}^{2}
$$

- Differentiability: g is of class \mathcal{C}^{1}, and

$$
\left|\frac{\partial g}{\partial x}\left(x,\left(q_{1}, q_{2}, q_{3}, q_{4}\right)\right)\right| \leq C\left(1+\left|q_{1}\right|+\left|q_{2}\right|+\left|q_{3}\right|+\left|q_{4}\right|\right)
$$

- Convexity: $\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \rightarrow g\left(x, q_{1}, q_{2}, q_{3}, q_{4}\right)$ is convex.

The discrete version of

$$
\frac{\partial m}{\partial t}+\nu \Delta m+\operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla v)\right)=0
$$

It is chosen so that

- each time step leads to a linear system with a matrix
- whose diagonal coefficients are negative,
- whose off-diagonal coefficients are nonnegative,
in order to hopefully use some discrete maximum principle.
- The argument for uniqueness should hold in the discrete case, so the discrete Hamiltonian g should be used for (\dagger) as well.

Principle

Discretize

$$
-\int_{\mathbb{T}} \operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla u)\right) w=\int_{\mathbb{T}} m \frac{\partial H}{\partial p}(x, \nabla u) \cdot \nabla w
$$

by

$$
-h^{2} \sum_{i, j} \mathcal{B}_{i, j}(U, M) W_{i, j}:=h^{2} \sum_{i, j} M_{i, j} \nabla_{q} g\left(x_{i, j},\left[D_{h} U\right]_{i, j}\right) \cdot\left[D_{h} W\right]_{i, j}
$$

which leads to

$$
\mathcal{B}_{i, j}(U, M)=\frac{1}{h}\binom{\binom{M_{i, j} \frac{\partial g}{\partial q_{1}}\left(x_{i, j},\left[D_{h} U\right]_{i, j}\right)-M_{i-1, j} \frac{\partial g}{\partial q_{1}}\left(x_{i-1, j},\left[D_{h} U\right]_{i-1, j}\right)}{+M_{i+1, j} \frac{\partial g}{\partial q_{2}}\left(x_{i+1, j},\left[D_{h} U\right]_{i+1, j}\right)-M_{i, j} \frac{\partial g}{\partial q_{2}}\left(x_{i, j},\left[D_{h} U\right]_{i, j}\right)}}{+\binom{M_{i, j} \frac{\partial g}{\partial q_{3}}\left(x_{i, j},\left[D_{h} U\right]_{i, j}\right)-M_{i, j-1} \frac{\partial g}{\partial q_{3}}\left(x_{i, j-1},\left[D_{h} U\right]_{i, j-1}\right)}{+M_{i, j+1} \frac{\partial g}{\partial q_{4}}\left(x_{i, j+1},\left[D_{h} U\right]_{i, j+1}\right)-M_{i, j} \frac{\partial g}{\partial q_{4}}\left(x_{i, j},\left[D_{h} U\right]_{i, j}\right)}}
$$

This yields the semi-implicit scheme:

$$
\frac{U_{i, j}^{n+1}-U_{i, j}^{n}}{\Delta t}-\nu\left(\Delta_{h} U^{n+1}\right)_{i, j}+g\left(x_{i, j},\left[D_{h} U^{n+1}\right]_{i, j}\right)=\left(V_{h}\left[M^{n}\right]\right)_{i, j}
$$

$$
\begin{aligned}
& 0= \\
& +\frac{M_{i, j}^{n+1}-M_{i, j}^{n}}{\Delta t}+\nu\left(\Delta_{h} M^{n}\right)_{i, j} \\
& \\
& +\left(\begin{array}{c}
\binom{M_{i, j}^{n} \frac{\partial g}{\partial q_{1}}\left(x_{i, j},\left[D_{h} U^{n+1}\right]_{i, j}\right)-M_{i-1, j}^{n} \frac{\partial g}{\partial q_{1}}\left(x_{i-1, j},\left[D_{h} U^{n+1}\right]_{i-1, j}\right)}{+M_{i+1, j}^{n} \frac{\partial g}{\partial q_{2}}\left(x_{i+1, j},\left[D_{h} U^{n+1}\right]_{i+1, j}\right)-M_{i, j}^{n} \frac{\partial g}{\partial q_{2}}\left(x_{i, j},\left[D_{h} U^{n+1}\right]_{i, j}\right)} \\
\\
+\binom{M_{i, j}^{n} \frac{\partial g}{\partial q_{3}}\left(x_{i, j},\left[D_{h} U^{n+1}\right]_{i, j}\right)-M_{i, j-1}^{n} \frac{\partial g}{\partial q_{3}}\left(x_{i, j-1},\left[D_{h} U^{n+1}\right]_{i, j-1}\right)}{+M_{i, j+1}^{n} \frac{\partial g}{\partial q_{4}}\left(x_{i, j+1},\left[D_{h} U^{n+1}\right]_{i, j+1}\right)-M_{i, j}^{n} \frac{\partial g}{\partial q_{4}}\left(x_{i, j},\left[D_{h} U^{n+1}\right]_{i, j}\right)}
\end{array}\right)
\end{aligned}
$$

- The linear operator in the discrete Fokker-Planck equation is the adjoint of the linearized discrete HJB operator.
- The discrete system has the same structure as the continuous MFG system

The discrete MFG system: known facts

- Existence for finite and infinite horizon under rather general assumptions: does not need monotonicity of Φ and Φ_{0} (Y.A. - I. Capuzzo Dolcetta)
- Uniqueness if Φ and Φ_{0} are strictly monotone operators
- Under suitable assumptions, uniform Lipschitz bounds on u_{h} w.r.t. h and Δt
- Optimization If Φ and Φ_{0} are local operators and furthermore increasing functions, the discrete MFG system can be seen as the optimality conditions of a saddle point problem.
- Discrete planning problems (Y.A. - F. Camilli - I. Capuzzo Dolcetta)

Other numerical works

- Lachapelle-Salomon-Turinici, Lachapelle-Wolfram (congestion)
- Guéant (2009) (2011)

Example of results for the planning problem

$$
T=1, \nu=1, \Phi(m)=m^{2}, H(p)=\sin \left(2 \pi x_{2}\right)+\sin \left(2 \pi x_{1}\right)+\cos \left(4 \pi x_{1}\right)+|p|^{2}
$$

Snapshots at $t=(0,4,8,100,180,190,196,200) / 200$

$$
T=0.01
$$

$$
\square\left[\frac{\boxed{(0)}}{\square}\right.
$$

Snapshots at $t=(0,4,8,100,180,190,196,200) / 20000$

$$
T=0.1, \nu=0.125, \Phi(m)=-\log (m)
$$

圆圆圆國比包巳

Snapshots at $t=(0,4,8,100,180,190,196,200) / 2000$
II. Strategies for solving the discrete problem

Difficulty: time dependent problem with conditions at both initial and final times.

$$
\left\{\begin{array}{lll}
\mathcal{F}_{U}(\mathcal{U}, \mathcal{M})=0, & (\text { discrete HJB) } \\
\mathcal{F}_{M}(\mathcal{U}, \mathcal{M})=0 & \text { (discrete Fokker-Planck) }
\end{array}\right.
$$

Strategy: Newton method
$\binom{\mathcal{U}}{\mathcal{M}} \longleftarrow\binom{\mathcal{U}}{\mathcal{M}}-\left(\begin{array}{ll}A_{U, U}(\mathcal{U}, \mathcal{M}) & A_{U, M}(\mathcal{U}, \mathcal{M}) \\ A_{M, U}(\mathcal{U}, \mathcal{M}) & A_{M, M}(\mathcal{U}, \mathcal{M})\end{array}\right)^{-1}\binom{\mathcal{F}_{U}(\mathcal{U}, \mathcal{M})}{\mathcal{F}_{M}(\mathcal{U}, \mathcal{M})}$
where

$$
\begin{array}{rlrl}
A_{U, U}(\mathcal{U}, \mathcal{M}) & =D_{\mathcal{U}} \mathcal{F}_{\mathcal{U}}(\mathcal{U}, \mathcal{M}), & A_{U, M}(\mathcal{U}, \mathcal{M}) & =D_{\mathcal{M}} \mathcal{F}_{\mathcal{U}}(\mathcal{U}, \mathcal{M}) \\
A_{M, U}(\mathcal{U}, \mathcal{M}) & =D_{\mathcal{U}} \mathcal{F}_{\mathcal{M}}(\mathcal{U}, \mathcal{M}), & A_{M, M}(\mathcal{U}, \mathcal{M})=D_{\mathcal{M}} \mathcal{F}_{\mathcal{M}}(\mathcal{U}, \mathcal{M})
\end{array}
$$

The linear systems

For simplicity, we assume that $\Phi_{0}(m)$ does not depend of m, so the initial condition is

$$
u_{\mid t=0}=u_{0} .
$$

We are led to study the linearized discrete MFG system

$$
\left(\begin{array}{ll}
A_{U, U} & A_{U, M} \\
A_{M, U} & A_{M, M}
\end{array}\right)\binom{\mathcal{U}}{\mathcal{M}}=\binom{G_{U}}{G_{M}}
$$

where $\mathcal{U}=\left(U^{1}, \ldots, U^{N_{T}}\right)^{T}$ and $\mathcal{M}=\left(M^{0}, \ldots, M^{N_{T}-1}\right)^{T}$.

The matrices $A_{U U}$ and $A_{U M}$ have the form:

- $A_{U U}$ corresponds to a linearized HJB equation and the block D_{n} correponds to the finite difference operator

$$
\left(Z_{i, j}\right) \mapsto\left(Z_{i, j} / \Delta t-\nu\left(\Delta_{h} Z\right)_{i, j}+\left[D_{h} Z\right]_{i, j} \cdot \nabla g\left(x_{i, j},\left[D_{h} U^{n}\right]_{i, j}\right)\right) .
$$

Monotonicity $\Rightarrow D_{n}$ is a M-matrix, thus $A_{U U}$ is invertible.

- The blocks E_{n} are diagonal matrices, with negative diagonal entries if $m \rightarrow \Phi(m)$ is strictly increasing. E_{n}^{-1} is available.

The matrices $A_{M M}$ and $A_{M U}$ have the form

- $A_{M M}$ corresponds to a linear transport equation.
- Note that

$$
\mathcal{V}^{T} \widetilde{E}_{n} \mathcal{W}=\sum_{i, j} M_{i, j}^{n-1}\left[D_{h} V\right]_{i, j} \cdot D_{q, q}^{2} g\left(x_{i, j},\left[D_{h} U^{n}\right]_{i, j}\right)\left[D_{h} W\right]_{i, j} .
$$

From the convexity of g, \widetilde{E}_{n} is positive if $M^{n-1} \geq 0$.

Th. If Φ is strictly increasing and if $\mathcal{M} \geq 0$, then the Jacobian matrix

$$
\left(\begin{array}{ll}
A_{U, U}(\mathcal{U}, \mathcal{M}) & A_{U, M}(\mathcal{U}, \mathcal{M}) \\
A_{M, U}(\mathcal{U}, \mathcal{M}) & A_{M, M}(\mathcal{U}, \mathcal{M})
\end{array}\right) \text { is invertible. }
$$

Proof: similar to the proof of uniqueness of the MFG system of PDE.

Two iterative strategies for solving the linearized discrete MFG system

$$
\left(\begin{array}{cc}
A_{U, U} & A_{U, M} \\
A_{M, U} & A_{M, M}
\end{array}\right)\binom{\mathcal{U}}{\mathcal{M}}=\binom{G_{U}}{G_{M}} .
$$

First strategy

1. Solve first $A_{U, U} \widetilde{\mathcal{U}}=G_{U}$. This is done by sequentially solving

$$
\begin{equation*}
D_{k} \widetilde{U}^{k}=-\Delta t^{-1} \widetilde{U}^{k-1}+G_{U}^{k} \tag{1}
\end{equation*}
$$

i.e. marching in time in the forward direction. Systems (1) are solved with efficient direct solvers.
2. Introducing $\overline{\mathcal{U}}=\mathcal{U}-\widetilde{\mathcal{U}}$,

$$
\begin{align*}
& \left(\begin{array}{ll}
A_{U, U} & A_{U, M} \\
A_{M, U} & A_{M, M}
\end{array}\right)\binom{\overline{\mathcal{U}}}{\mathcal{M}}=\binom{0}{G_{M}-A_{M, U} \tilde{\mathcal{U}}} \\
\Rightarrow \quad & \left(A_{M, M}-A_{M, U} A_{U, U}^{-1} A_{U, M}\right) \mathcal{M}=G_{M}-A_{M, U} \tilde{\mathcal{U}} . \tag{2}
\end{align*}
$$

(2) is solved by an iterative method which does not require assembling $A_{M, M}-A_{M, U} A_{U, U}^{-1} A_{U, M}$, e.g. BiCGStab.

Speeding the method

Instead of

$$
\left(A_{M, M}-A_{M, U} A_{U, U}^{-1} A_{U, M}\right) \mathcal{M}=G_{M}-A_{M, U} \widetilde{\mathcal{U}}
$$

we rather solve

$$
\begin{equation*}
\left(I-A_{M, M}^{-1} A_{M, U} A_{U, U}^{-1} A_{U, M}\right) \mathcal{M}=A_{M, M}^{-1}\left(G_{M}-A_{M, U} \tilde{\mathcal{U}}\right) \tag{3}
\end{equation*}
$$

Left multiplication by $A_{M, M}^{-1} \Leftrightarrow$ solving a backward in time discrete transport problem.
This is done by marching backward in time, and solving at each time step a system of the form

$$
\begin{equation*}
D_{k}^{T} M^{k}=\Delta t^{-1} M^{k+1}+F^{k} \tag{4}
\end{equation*}
$$

(note that D_{k}^{T} is invertible from the monotonicity of the scheme). Systems (4) are solved with efficient direct solvers.

Note that the matrix $I-A_{M, M}^{-1} A_{M, U} A_{U, U}^{-1} A_{U, M}$ is not assembled.

- PDE interpretation $A_{M, M}^{-1} A_{M, U} A_{U, U}^{-1} A_{U, M}$ is the discrete version of (linear-FP) $)^{-1} \circ \operatorname{div}\left(m H_{p p}(D u) D \cdot\right) \circ(\text { linear-HJB })^{-1} \circ\left(\Phi^{\prime}(m) \cdot\right)$.
If $\nu>0$ and if m and u are smooth, this is a compact operator in L^{2}.
Thus, the matrix $I-A_{M, M}^{-1} A_{M, U} A_{U, U}^{-1} A_{U, M}$ is expected to have a nice condition number, which should not depend on h and Δt. As we shall see, the iterative method has a fast convergence.
- Complexity The complexity of the method is mainly that of solving the systems

$$
D_{k} \widetilde{U}^{k}=-\Delta t^{-1} \widetilde{U}^{k-1}+G_{U}^{k},
$$

and

$$
D_{k}^{T} M^{k}=\Delta t^{-1} M^{k+1}+F^{k}
$$

for $k=1, \ldots, N_{T}$.

Table 1: First iterative strategy for solving the linearized MFG system: average number of iterations to decrease the residual by a factor 10^{-7}

ν	$32 \times 32 \times 32$	$64 \times 64 \times 64$	$128 \times 128 \times 64$
0.6	2	2	2
0.36	2	2	2
0.2	3.5	3.5	4
0.12	6	6	6.1

Second strategy for solving the linear systems when Φ is strictly monotone.

- This strategy is inspired by the proof of uniqueness for the MFG system.
- The idea is to eliminate m from the linearized HJB equation: this is possible since Φ is strictly monotone.

The system reads

$$
\left(\begin{array}{ll}
A_{U, U} & A_{U, M} \\
A_{M, U} & A_{M, M}
\end{array}\right)\binom{\mathcal{U}}{\mathcal{M}}=\binom{G_{U}}{G_{M}}
$$

Eliminating \mathcal{M} from the first block of equations, we get a system of the form

$$
\left(A_{M, U}-A_{M, M}\left(A_{U, M}\right)^{-1} A_{U, U}\right) \overline{\mathcal{U}}=\mathcal{F}
$$

Note that $A_{U, M}$ is diagonal, with negative diagonal entries, so the above matrix can be assembled.

PDE interpretation The partial differential operator in the continuous version of $\left(A_{M, U}-A_{M, M}\left(A_{U, M}\right)^{-1} A_{U, U}\right)$ is

$$
\operatorname{div}\left(m \frac{\partial^{2} H(D u)}{\partial p^{2}} D \cdot\right)-(\text { linear- FP }) \circ\left(\left(\Phi^{\prime}(m)\right)^{-1} \cdot\right) \circ(\text { linear- HJB }) .
$$

This is a fourth order differential operator w.r.t. x and second order w.r.t. t. Its principal part is

$$
\left(\Phi^{\prime}(m)\right)^{-1}\left(-\frac{\partial^{2}}{\partial t^{2}}+\nu^{2} \Delta^{2}\right)
$$

for which a weak elliptic theory may be used (quasi-elliptic). The boundary conditions at $t=T$ is of the type

$$
\text { (linear- HJB) } u=g
$$

Consequences

- Bad news : The matrix $A_{M, U}-A_{M, M}\left(A_{U, M}\right)^{-1} A_{U, U}$ is very ill-conditioned: the condition number grows like $\nu^{2} h^{-4}$. Indeed, we can observe that standard iterative methods like BICGstab do not yield convergence even for $h \sim 1 / 10$. (BICGstab cannot even reduce the residual by a factor 0.1 for $h=1 / 64$)
- Good news : degenerate elliptic operator, so we can try solving

$$
\left(A_{M, U}-A_{M, M}\left(A_{U, M}\right)^{-1} A_{U, U}\right) \overline{\mathcal{U}}=\mathcal{F}
$$

with an iterative method using a multigrid preconditioner.

Multigrid methods: main ingredients

- A family of nested grids : $\left(\mathcal{G}_{\ell}\right)_{\ell=0, \ldots, L}$ of step sizes $\sim 2^{-\ell}$: the system to be solved is

$$
B_{L} u_{L}=f_{L}
$$

- Intergrid communications:
- Prolongation operators, in order to represent a grid function on the next finer grid: $I_{\ell}^{\ell+1}: \mathcal{G}_{\ell} \rightarrow \mathcal{G}_{\ell+1}$.
- Restriction operators, in order to interpolate a grid function on the next coarser grid: $I_{\ell}^{\ell-1}: \mathcal{G}_{\ell} \rightarrow \mathcal{G}_{\ell-1}$.
- With each grid, we associate a matrix for an approximate system, e.g. $B_{\ell}=I_{\ell+1}^{\ell} B_{\ell+1} I_{\ell}^{\ell+1}$.
- Elementary stationary iterative methods in order to solve $B_{\ell} u_{\ell}=f_{\ell}$, for example Gauss-Seidel method.

Principle of multigrid methods The basic principle of multigrid method is as follows:

- For an elliptic operator, one can find simple iterative methods (Gauss-Seidel or close to it) such that a few iterations of these methods are enough to damp the higher frequency components of the error, i.e. to make the error smooth.
- These iterative methods have bad convergence properties, but they have good smoothing properties: they are called smoothers.
- For such methods, the produced residual is well represented on the next coarser grid. So the residual is transfered to the next coarser grid.
- This is the basis for a recursive algorithm.

The algorithm (V-cycle)

function $\operatorname{MGS}\left(\ell, u_{\ell}, f_{\ell}\right)$
if $\ell=0$ then

$$
u_{0} \leftarrow B_{0}^{-1} f_{0} \quad / / \text { level } 0: \text { solve exactly }
$$

else

$$
\begin{aligned}
& u_{\ell} \leftarrow S_{\ell}\left(u_{\ell}, f_{\ell}, \nu_{1}\right) \quad / / \text { presmoothing } \\
& u_{\ell-1} \leftarrow 0 \\
& \operatorname{MGS}\left(\ell-1, u_{\ell-1}, I_{\ell}^{\ell-1}\left(f_{\ell}-B_{\ell} u_{\ell}\right)\right) \quad / / \text { coarse gr. correct. } \\
& u_{\ell} \leftarrow S_{\ell}\left(u_{\ell}+I_{\ell-1}^{\ell} u_{\ell-1}, f_{\ell}, \nu_{2}\right) \quad / / \text { postsmoothing }
\end{aligned}
$$

endif
endfunction

The multigrid operator can also be used as a preconditioner for the matrix B_{L} in an iterative solver like BICGstab.
Complexity of a multigrid step: linear

In our case, standard multigrid methods do not behave well !

Table 2: Full coarsening multigrid with 4 levels: average number of iterations to decrease the residual by a factor 0.01

ν	$32 \times 32 \times 32$	$64 \times 64 \times 64$	$128 \times 128 \times 64$
0.6	40	92	-
0.36	24	61	-
0.2	21	45	-

Why? Because the usual smoothers actually make the error smooth in the planes $t=c s t$, but not w.r.t. the variable t.

Reason: The unknowns are strongly coupled in the planes $t=c s t$, (4-th order operator), stronglier than on the lines $x=c s t$, (2nd order operator).

Fix :The hierarchy of nested grids should be obtained by coarsening the grids in the x directions only, but not on the t direction.

Results with the semi-coarsening multigrid methods

Table 3: Semi-coarsening multigrid with 5 levels: average number of iterations to decrease the residual by a factor 0.001

ν	$32 \times 32 \times 32$	$64 \times 64 \times 64$	$128 \times 128 \times 64$
0.6	4	5	7
0.36	4	5	7
0.2	4	5.5	7
0.12	6	9	12

CPU times for a Newton iterate vs. number of grid points for the two strategies

Conclusion

- Two iterative strategies that work well in a rather broad setting.
- The first one looks more robust if Φ has the bad monotonicity.
- Also the nonlinear part of the solver needs improvements.

