
Qualitative properties of coagulation equations.

J. J. L. Velázquez

ICMAT (CSIC-UAM-UCM-UC3M). (Madrid).

Collaborators: M. Escobedo (UPV, Bilbao), J. B. McLeod
(Oxford), B. Niethammer (Oxford).

Rome, December 2010.





Model: Classical coagulation equation.
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(Discrete versions of the modelMeasure valued solutions).



Classical results.
Explicitly solvable kernels:

Kx,y  1 , Kx,y  x  y , Kx,y  x  y

Convolution kinetic equations with linear kernels. Laplace
transform reduces the equations to first order hyperbolic
models.

B. McLeod, M. H. Ernst-R. M. Ziff-E. M. Hendriks, M. Kreer-O.
Penrose, ....
G. Menon, R. L. Pego.



General kernels: Asymptotic behaviour of the solutions:

 Tendency of the average radius to increase.
 Self-similarity.
 Behaviour depends on the growth of the kernel for large particles.



Homogeneous kernels:
Kx,y  Kx,y

 ≤ 1 , Global existence
N. Fournier, P. Laurençot

1    2 , Singularity formation in finite time.
I. Jeon, M. Escobedo, B. Perthame, S. Mischler.

  2 , Instantaneous gelation.
J. R. Norris



Sublinear regime: Self-similar solutions.
Homogeneous kernels:

Kx,y  Kx,y , 0    1

Mass-preserving self-similar solutions exist:
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N. Fournier-P. Laurençot.
M. Escobedo-S. Mischler-M. Rodríguez Ricard.



Sublinear regime (0    1): Self-similar solutions.

Open questions:

 Uniqueness of solutions.
 Stability.
 Asymptotic properties of the self-similar solutions.



Optimal estimates for the self-similar solutions in the sublinear
regime (0    1).
Kernels:
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Formally balancing terms (P. G. J. van Dongen-M. H. Ernst):
  H−2 ,  → 0

Estimates (M. Escobedo-S. Mischler).
 ≤ c2−2 ,  → 0 , lim

→0
inf2−    ,   0



Optimal estimates (B. Niethammer-V):
c1−2 ≤  ≤ c2−2 ,  → 0 , c1  0, c2  0

Assumptions required on the kernel:
Homogeneity: Kx,y  2Kx,y , 0    1

2
Diagonal-dominated:

Kx,y ≤ K0xy  xy ,   0 ,   0
min
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Diagonal dominated kernels:

Coagulation is an event more likely for particles with
comparable sizes.

The shape of the self-similar solutions is due to the balance
between the coagulation process (increases particle size) and
the transport term that arises due to the change of variables
(reduces particle size).
The optimal estimates for the self-similar solutions mean that
the particle distribution for a given (self-similar) size is due to
particles with comparable sizes.



Precise formulation:
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Comparison with the case of Non-diagonal dominated kernels.

Example (N. Fournier-P. Laurençot, J. A. Cañizo-S. Mischler).
Kx,y  x2  y2 , 0    1
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Assuming fast decay of g as  →  we obtain that the leading
terms that determine the asymptotics as  → 0 are:

∂
∂ g  g 0

 K,
 gd

g ≈ −1 ,  → 0   
0

 K,
 gd  0

The asymptotics depends on global properties of g. The
distribution g is determined by interactions with much larger
particles.



Oscillatory behaviour of self-similar solutions in the sublinear
regime. (Diagonal dominated kernels not too far away from
nondiagonal dominated ones).

Coagulation equation. Self-similar solutions:

g  
0


gd 

−

 K,
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K,  

Oscillations of g as  → 0 numerically observed by M. H. Lee
and N. Filbet-P. Laurençot.
Asymptotics:

g  K1,−2  K2,−2a cosb log   ,  → 0



Construction of oscillatory self-similar solutions of the
coagulation equation. ( → 0).

Formal argument (J. B. McLeod, B. Niethammer, V).

Rigorous construction (B. Niethammer, V).
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Volterra-like integro-differential equation:
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Approximations of the solutions if  → 0.

(a) U, V−1


, H of order one:

HX ≈ UXVX , V  1    , X   

dU
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Conserved quantity:
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(Periodic solutions).



A more detailed asymptotics:
dU
d  U  UU − 1 , dV

d  1 − U   1 − U

"Adiabatic" increase of the energy.

(b) U, H, V − 1 of order one:

Coupled ODE Integro-Differential Equation behaviour.

(c) Shooting argument.



Remark: The limit  → 0 corresponds to the convergence of the
diagonal dominated kernel to the non-diagonal dominated
kernel.

Oscillations seem to be due to the interaction of particles with
much bigger ones. (A clear particle interpretation still missing).



Kernels that dot yield interaction with particles having sizes
different from themselves:
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Self-similar solutions. (Mass conserving and not mass
conserving cases).
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Mass-preserving case (F. Levyraz) (  ∗). Exponential decay.

General case (B. Niethammer-V). Power law behaviour as
 → . Tail solutions. Previously known only for the explicit
kernels Kx,y  1 and Kx,y  x  y. (G. Menon, R. L. Pego).

Non-oscillatory asymptotics near the origin:
  K1,−12 − K2,−12a ,  → 0 , a  0

Oscillations are due to interaction with much larger particles.



Superlinear regime: Gelation.
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Formal mass conservation:
d
dt 0


xfx, tdx  0



However, explicit solutions for the kernel Kx,y  x  y show that
there are solutions of the corresponding equation satisfying:

d
dt 0


xfx, tdx  0 , t  T

(J. B. McLeod, M. H. Ernst-R. M. Ziff-E. M. Hendriks).
(Gelation).

Non-explicit kernels (I. Jeon, M. Escobedo.B. Perthame-S.
Mischler).



Goals: (M. Escobedo, V).
 Obtain classical solutions exhibiting ”loss of mass”.

 Derive detailed asymptotics on how the loss of mass takes place.

 Develop more robust tools allowing to describe gelling solutions
in cases where explicit solutions are not available.

 To understand equations exhibiting particle fluxes.



Construction of classical solutions of the coagulation equations
exhibiting loss of mass at infinity for the kernels
Kx,y  x  y


2 ,   1. (Asymptotics Jtx− 3

2 as x → ).
Three steps:
 Study of the solutions of the linearized problem near the solution
fsx  x−

3
2 .

 Well-posedness theory for the linearized problem near bounded
initial data f0x behaving as x− 3

2 as x → .
 Analysis of the nonlinear problem by means of a fixed point

argument.



Step 1:
(a) The function fsx  x−

3
2 is a stationary solution that

describes a constant flux of particles from x  0 to x  .
Conservative form of the equation (H. Tanaka, S. Inaba, K.
Nakaza). Weak formulation of the problem:
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Linearization near fs :
f  fs  g
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It is possible to find a representation formula for the solutions.
(Carleman, Balk-Zakharov).
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Delay equation in the complex plane:

V  −V    − 1
2 i     − 1

2 i

for Im ∈  3
2 , 2

  −
2  Γi  1  

2 

Γi  1
2  

2 

Solvable using Wiener-Hopf method.



Consequences: Detailed understanding of the fundamental
solution of the linearized problem.
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Asymptotics of g :
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Fundamental solution for short times near the Dirac mass.
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Step 2:
 Replace the singular solution x− 3

2 by a function f0x behaving in
the same way for x → , but bounded near infinity.

The resulting linearized problem is not easy to solve.
It does not have smoothing effects.
It is not easy to control the contribution of the integral terms at
infinity unless some control of the asymptotics of the solutions
as x →  is available.
It can be treated as a ”perturbation” of the explicitly solvable
problem mentioned above.



Linearization near f0x. Continuity method.
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A priori estimates in a weighted Sobolev norm in the x, t
variable.
Natural rescaling for the time variable as x ≈ R  1 :

t ≈ 1
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Analogies with Schauder method for parabolic equations.
Difference: The operator Lf0x does not have smoothing effects
for any x  , but it behaves like the 1

2 derivative as x → .



Step 3: Nonlinear terms.

General strategy:
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Linearization around the initial data (corrected by a function
t).
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Fixed point argument.
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Solvability of the linear problem works if the source is bounded
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Asymptotics of h as x →  :
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This determines    ; h̃ . Solving then the linearized
equation we obtain a mapping:

h̃ → h  T h̃
T is a contractive operator.
(Some technical difficulties: Hölder regularity of the function
G ; h̃, ). (It works like a parabolic equation).



CONCLUSIONS

 Classical theory for the coagulation equations was much restricted
to the study of explicitly solvable kernels.

 However, new results and methods, which have been obtained in
the last decades, are beginning to point towards a rigorous general
theory for these equations, even in nonexplicitly solvable cases.

 The results obtained so far exhibit several analogies with the
theory of nonlinear diffusion, although the nonlocal interactions
often make the rigorous analysis more involved.

 There are many points of contact between these equations and the
theory of stochastic processes. Often, particle interpretations, even
at the heuristic level provide interesting insight in the equations
and the type of estimates expected.




