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Forward-backward parabolic equation

ut = ∆φ(u) (1)

where the function φ ∈ Liploc(R) is decreasing in some interval.

Example 1
Model of phase separation

φ′(u) > 0 if u ∈ (−∞, b) ∪ (a,∞), φ′(u) < 0 if u ∈ (b, a);
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Example 2
Model of image processing (1D), Perona–Malik equation
φ(u) = u

1+u2 .
In this case the instability region is unbounded.

Example 3
Model of population dynamic, Padron (Comm. Partial Differential
Equations 1998)
φ(u) = ue−u u ≥ 0.
Problems are ill–posed.
Hollig (Trans. Amer. Math. Soc. 83) φ piecewise linear, there are an
infinite number of solutions of the Neumann boundary problem.
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IDEA : Introducing a viscous regularization that gives a good
formulation in analogy with first order conservation laws

Problem is ill-posed since some relevant physical terms are neglected
Conservation law

ut + divf (u) = 0

is thought as limit, when ε goes to 0+, of the parabolic
approximation.

ut + divf (u) = ε∆u.
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Phase transition, Cahn–Hilliard equation

ut = ∆(φ(u)− δ∆u).

An analogous approximation for the Perona–Malik equation (1D)
Model of population dynamic, Padron

ut = (φ(u) + εut)xx .

Turbolent shear flow (1D), Barenblatt, Bertsch, Dal Passo, Ughi
(SIAM J. Math. Anal. 1993)

ut = (φ(u) + τψ(u)t)xx .
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based on micro-forces balance (Gurtin Physica D 96)

ut = ∆(φ(u)− δ∆u + εut)

In the following δ = 0, φ is of cubic type.
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Novick Cohen-Pego (Trans. Amer. Math. Soc. 1991) study the
viscosity problem

ut = ∆v in Ω× (0,T ] =: QT

∂v
∂ν = 0 in ∂Ω× (0,T ]

u = u0 in Ω× {0},

(2)

where
v := φ(u) + εut (ε > 0) , (3)

is the chemical potential, Ω ⊆ IRn is bounded , ∂Ω regular, T > 0.
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Equation (2) can be rewritten

ut = −1

ε
(I − (I − ε∆)−1)φ(u)

that corresponds to the Yosida approximation of the operator ∆.

Moreover v = (I − ε∆)−1φ(u).
Using the standard theory of ODE in the Banach spaces we have

Theorem
(Novick Cohen-Pego) Given u0 ∈ L∞(Ω), ε > 0 there exists a unique
solution (uε, vε) defined in (0,Tε), uε ∈ C 1([0,Tε), L

∞(Ω)).
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For every g ∈ C 1(R) such that g ′ ≥ 0

G (u) =

∫ u

0

g(φ(s)) ds + c .

Then
[G (uε)]t = div

[
g(vε)∇vε

]
− g ′(vε)|∇vε|2+

−1

ε

[
g(φ(uε))− g(vε)

]
(φ(uε)− vε) .

Integrating in Ω and using boundary condition

d

dt

∫
Ω

G (uε(x , t)) dx ≤ 0
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Existence of invariant regions for the problem (2).

Proposition
Let I = [u1, u2] such that

φ(u1) ≤ φ(u) ≤ φ(u2) for every u ∈ [u1, u2] ;

then I is invariant for the problem (2). More precisely u0(x) ∈ I =⇒
uε(x , t) ∈ I a.e. in QTε

.

A

 u u1 2 u

v

B

A priori estimates in L∞ that do not depend on ε. Global existence.
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Using again

d

dt

∫
Ω

[G (uε)] dx = −
∫

Ω

g ′(vε)|∇vε|2 dx

−
∫

Ω

1

ε

[
g(φ(uε))− g(vε)

]
(φ(uε)− vε) dx .

and choosing g(u) ≡ u we have∫∫
QT

{
|∇v ε|2 + ε|∂tuε|2

}
dxdt ≤ C2 .
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In analogy with conservation laws we characterize an entropy solution
of problem 

ut = ∆φ(u) in Ω× (0,T ] = QT

∂φ(u)
∂ν = 0 in ∂Ω× (0,T ]

u = u0 in Ω× {0},

(4)

as that obtained as limit of the solutions of problem (2) when
ε→ 0+.

For every ε > 0 and g ∈ C 1(R), g ′ ≥ 0 we have∫∫
QT

{
G (uε)ψt − g(v ε)∇v ε · ∇ψ − g ′(v ε)|∇v ε|2ψ

}
≥ 0 (5)

for every ψ ∈ C∞0 (QT ), ψ ≥ 0.
The idea is to pass in the limit in (5) to characterize an entropy
solution of (4).
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Study of the singular limit, Plotnikov (J. Math. Sci. 1993).

Using previous a priori estimate we deduce that there exist two
subsequence {uεn}, {v εn} and a couple (u, v) u ∈ L∞(QT ),
v ∈ L∞(QT ) ∩ L2((0,T ); H1(Ω)) such that for every T > 0:

uεn
∗
⇀ u in L∞(QT ) ,

v εn
∗
⇀ v in L∞(QT ) ,

v εn ⇀ v in L2((0,T ),H1(Ω)) .

Unfortunately this is not enough to pass to the limit in (5).
Let ν(x,t) a family of Young measures associate to {uεn}, then
f ∈ C (R):

f (uεn )
∗
⇀ f in L∞(QT ) ;

where

f (x , t) :=

∫
R

f (τ) dν(x,t)(τ) for a.e. (x , t) ∈ QT
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Plotnikov proves that ν(x , t) is superposition of Dirac measures,

more precisely

ν(x,t)(τ) =
2∑

i=0

λi (x , t)δ(τ − βi (v(x , t)))

a.e in QT , where βi (v), i = 0, 1, 2 are the three branches of the
graph v = φ(u)

u

v

φ(u)

B

A

c b a dβ₁(v) β₂(v)β₀(v)

Moreover, 0 ≤ λi ≤ 1 e
∑2

i=0 λi (x , t) = 1.
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f (λ) = λ, u(x , t) =

∫
IR

τdνx,t(τ) =
2∑

i=0

λi (x , t)βi (v(x , t)) ,

f (λ) = φ(λ), f (λ) = φ2(λ) =⇒ v εn → v in L2(QT ) ,

and ∫
QT

uψt −∇v∇ψ dxdt +

∫
Ω

u0(x)ψ(x , 0)dx = 0 (6)

but in general v 6= φ(u).
Superposition of phases, λi fraction of phase i .
Solution in the sense of measured valued solution.
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Letting εn → 0+ in the viscous entropy inequality∫∫
QT

{
G (uε)ψt − g(v ε)∇v ε · ∇ψ − g ′(v ε)|∇v ε|2ψ

}
dxdt+

∫
Ω

G (u0(x))ψ(x , 0)dx ≥ 0

we have∫∫
QT

{
G (u)ψt − g(v)∇v · ∇ψ − g ′(v)|∇v 2|ψ

}
dxdt+

∫
Ω

G (u0(x))ψ(x , 0) dx ≥ 0 (7)

where G (u) =
∑2

i=0 λiG (βi (v)).
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Entropy solution

Definition
Given u0 ∈ L∞(Ω) an entropy solution of problem forward–backward
(4) is given by the functions λi ∈ L∞(QT ), i = 0, 1, 2, u ∈ L∞(QT ),
v ∈ L∞(QT ) ∩ L2((0,T ),H1(Ω)). Such that

(i)
∑2

i=0 λi = 1, λi ≥ 0, u =
∑2

i=0 λiβi (v)
(ii) u and v satisfy (6) (weak solution)
(iii) u and v satisfy (7) for every g ∈ C 1(R), g ′ ≥ 0 (entropy
condition).

Perona–Malik, Smarrazzo (Discrete Contin. Dyn. Syst 2008)
Problems: Existence in a stronger sense? Uniqueness? Study of the
evolution of the different phases.
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Case n = 1. Let Ω = (−L, L), u0 ≤ b in (−L, 0), u0 ≥ a in (0, L),
initial data in the two stable phases.

φ(u0) ∈ BC ([−L, L]), φ(u0) ∈ C 1([−L, 0]), φ(u0) ∈ C 1([0, L])
We search a solution in which the two stable phases are separated by
an interface ξ, ξ(0) = 0,
V1 := {(x , t) ∈ QT | − L ≤ x < ξ(t), t ∈ (0,T )}, V2 := QT \ V 1
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An entropy solution is a triple of functions (ξ, u, v) such that :

(a) ξ ∈ C
3
2 ([0,T ]), ξ(0) = 0, γ(t) = {(ξ(t), t) : t ∈ (0,T ))};

(b) u, v satisfy

u = βi (v) in Vi (i = 1, 2) (v = φ(u));

(c) v(·, t) continuous in [−L, L], v((ξ(·), ·)) continuous in [0,T ];
(d) for every t ∈ [0,T ] there exists

lim
s→0±

vx(ξ(t)± s, t);

(e) ut = vxx in the weak sense, entropy condition, boundary and
initial condition.
ut = φ(u)xx in Vi ,
u, v : QT → IR regular in QT \ γ.
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Determinate conditions for the interface.

Theorem
(Evans–Portilheiro Math. Models Methods Appl. Sci. (2004))
Let u, v , ξ a two phase entropy solution for the problem (2)
then
(i) Rankine-Hugoniot condition:

ξ′ = − [vx ]

[u]
a.e on γ.

(ii) entropy condition:

ξ′ [G (u)] ≥ −g(v)[vx ] a.e. su γ .

where [h] := h(ξ(t)+, t)− h−(ξ(t)−, t).
Analogy with the conditions for piecewise regular solution of scalar
conservation laws.
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parabolic
equations Admissibility condition for the

interface

Choosing properly the function g we can select admissibility
conditions for the interface γ = (ξ(t), t)

Theorem {
(a) ξ′(t) > 0 =⇒ φ(u(ξ(t), t)) = A ;
(b) ξ′(t) < 0 =⇒ φ(u(ξ(t), t)) = B.

Condition for the phase change. We can pass from phase 1 to phase
2 only if v = B
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If v ∈ (A,B) phase does not change
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φ(u) =


φ−(u) if u ≤ b

φ0(u) if b < u < a

φ+(u) if u ≥ a ,

where

φ±(u) := α± u + β± , φ0(u) :=
A(u − b)− B(u − a)

a− b
.

a

!

u

v

B

A

b d

!
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Theorem
(Mascia, T., Tesei, Arch. Rat. Mech 2009) There exists at most a
unique two phase entropy solution

Idea of the proof (stability) Let (ξ1, u1, v1), (ξ2, u2, v2) two
different solution. Let F : QT \ {γ1 ∪ γ2} → IR2 :

F :=
(
|u1 − u2|, sgn(u1 − u2)(−v1x + v2x)

)
Formally we obtain:

divF := |u1 − u2|t +
[
sgn(u1 − u2)(−v1x + v2x)

]
x

= δ{u1=u2}(u1 − u2)x(−v1x + v2x) .

Integrating in QT we have :∫∫
Qτ

{
|u1 − u2|t +

[
sgn(u1 − u2)(−v1x + v2x)

]
x

}
dxdt ≤ 0 (8)
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x

t

T

-L L

Στ
l

c

!"
r

ξ₁(t)
ξ₂(t)

0

!"

we have ∫ L

−L

|u1(x , τ)− u2(x , τ)| dx (9)

≤
∫ τ

0

{−[|u1 − u2|]1 ξ
′
1 + [sgn(u1 − u2)(−v1x + v2x)]1} dt

+

∫ τ

0

{−[|u1 − u2|]2 ξ
′
2 + [sgn(u1 − u2)(−v1x + v2x)]2} dt .

where [h]i ≡ [h]i (t) := hi,+(t)− hi,−(t) is the jump along the
interface γi of a function h
(hi,±(t) := lim

η→0
h(ξi (t)± η, t) (i = 1, 2; t ∈ [0,T ])).
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Auxiliary problems:
Moving boundary problem
for every C ∈ [A,B] let κ− ∈ (−∞, b], κ+ ∈ [a,∞) defined by

α−κ− + β− = α+κ+ + β+ = C . (10)

Definition
Let C ∈ [A,B]. A couple of functions ξ = ξ(t), u = u(x , t) is
solution of the moving boundary problem if it satisfies the following
conditions
(i) ξ ∈ C

3
2 ([0, τ ]), ξ(0) = 0;

(ii) ut = α±uxx in A±τ :=
{

(x , t) ∈ R× (0, τ)
∣∣ ± (x − ξ(t)

)
> 0
}

(iii) for every t ∈ (0, τ ] we have:

u(ξ(t)±, t) = κ± (φ(u(ξ(t), t) = C ) , (11)

ξ′(t) = −α+ ux(ξ(t)+, t)− α− ux(ξ(t)−, t)

κ+ − κ−
. (12)
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x

t

-L L

ξ(t)

0

u⁺(ξ(t),t))=d

u⁻(ξ(t),t))=b

Steady boundary problem (ξ′ ≡ 0)

Definition
u is a solution of the steady boundary problem if it satisfies
i) ut = α±uxx in R± × (0, τ);
ii)α−u(0−, t) + β− = α+u(0+, t) + β+;
iii) α−ux(0−, t) = α+ux(0+, t).

x

t

-L L

ξ(t)≡0

0

[v  ]≡0ˣ
[v]≡0
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Theorem
(Mascia, T., Tesei) Suppose that one of the following conditions is
satisfies
i) α−u0(0−) + β− = α+u0(0+) + β+ ∈ (A,B);
ii) α−u′0(0−) 6= α+u′0(0+).
Then there exists τ > 0 such that the two phase problem has solution
in R× (0, τ).

PROOF (idea)
Local existence for moving and steady boundary problems.
Use the auxiliary problems
The solution of the steady problems is also entropy solution of the
two phase problem if and only if u ≥ a in R+ × (0, τ) and u ≤ b in
R− × (0, τ) this is true if and only if α±u(0±, t) + β± ∈ [A,B].
The moving boundary problem gives an entropy solution if
φ(u(ξ(t), t) = B (κ− = b, κ+ = d) and ξ′ ≤ 0 or φ(u(ξ(t), t) = A
(κ− = c , κ+ = a) and ξ′ ≥ 0.
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equations Extension in time of the solution

We can extend in time the solution until a first time τ such that
ξ′(τ) = 0 and φ(u(ξ(τ), τ)) = A or B.

Is it possible to obtain the solution with a sequence of solutions of
moving boundary problems that alternate in time with solutions of
steady boundary problems?
Consider the case in which φ(u(ξ(τ), τ)) = A or B and ξ′(τ) = 0.

Proposition
(T. Siam J. Mat. Anal.) Let u0 such that φ(u0(0)) = A or B and
α−u′0(0−)− α+u′0(0+) = 0. If the function
h0(z) = α+u′0(2

√
α+z)− α−u′0(−2

√
α−z) has a given sign in a right

interval of 0 then there exists τ > 0 such that the two phase problem
has solution in R× (0, τ).
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Theorem
(T.) Let (ξ, u) be a solution of the two phase problem in Qτ . Let
t1 < τ such that in (t1, τ) the solution is given by the solution either
of the moving boundary problem or of the steady boundary problem.
Then there exists t2 > τ such that the solution of the two phase
problem can be extended in (0, t2).

Proof We have to analyze the function
h(z , τ) = α+ux(2

√
α+z + ξ(τ), τ)− α−ux(−2

√
α−z + ξ(τ), τ) in a

right interval of 0.
We prove that the solution is analytical in the space variable until the
interface then function h has a sign.
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Forward-
backward
parabolic
equations

The structure of the solution could be complex

It is possible to control the number convexity regions

Theorem
Let N(t) the number of disjoint intervals in which u(·, t) is convex.
Then N(t) ≤ N(s) + 1 for every s ≤ t.
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Forward-
backward
parabolic
equations Open Problems

• nonlinear φ

• Solutions of the approximation problems ut = (φ(u) + εut)xx

converge to the solution of the two phase problem ?
φ(u0) ∈ [A,B], Smarrazzo (Interfaces Free Bound.)

• Uniqueness for the entropy formulation of Plotnikov

• Solution with unstable phases
Riemann Problem, Gilding, Tesei (Phys. D 2010)

• Link with other singular limit
Cahn–Hilliard, Bellettini, Fusco, Guglielmi (Discrete Contin.
Dyn. Syst 2006)
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