Two phase entropy solutions for forward-backward parabolic problems

Introduction

Forward-backward parabolic equation

$$
\begin{equation*}
u_{t}=\Delta \phi(u) \tag{1}
\end{equation*}
$$

where the function $\phi \in \operatorname{Lip}_{\text {loc }}(\mathbb{R})$ is decreasing in some interval.

Introduction

Forward-backward parabolic equation

$$
\begin{equation*}
u_{t}=\Delta \phi(u) \tag{1}
\end{equation*}
$$

where the function $\phi \in \operatorname{Lip}_{\text {loc }}(\mathbb{R})$ is decreasing in some interval. Example 1
Model of phase separation

$$
\phi^{\prime}(u)>0 \text { if } u \in(-\infty, b) \cup(a, \infty), \phi^{\prime}(u)<0 \text { if } u \in(b, a) \text {; }
$$

Example 2
Model of image processing (1D), Perona-Malik equation $\phi(u)=\frac{u}{1+u^{2}}$.
In this case the instability region is unbounded.

Example 2
Model of image processing (1D), Perona-Malik equation $\phi(u)=\frac{u}{1+u^{2}}$.
In this case the instability region is unbounded.

Example 3

Model of population dynamic, Padron (Comm. Partial Differential Equations 1998)
$\phi(u)=u e^{-u} u \geq 0$.

Example 2
Model of image processing (1D), Perona-Malik equation $\phi(u)=\frac{u}{1+u^{2}}$.
In this case the instability region is unbounded.

Example 3

Model of population dynamic, Padron (Comm. Partial Differential Equations 1998)
$\phi(u)=u e^{-u} u \geq 0$.
Problems are ill-posed.

Example 2
Model of image processing (1D), Perona-Malik equation
$\phi(u)=\frac{u}{1+u^{2}}$.
In this case the instability region is unbounded.

Example 3

Model of population dynamic, Padron (Comm. Partial Differential
Equations 1998)
$\phi(u)=u e^{-u} u \geq 0$.
Problems are ill-posed.
Hollig (Trans. Amer. Math. Soc. 83) ϕ piecewise linear, there are an infinite number of solutions of the Neumann boundary problem.

IDEA : Introducing a viscous regularization that gives a good formulation in analogy with first order conservation laws

IDEA : Introducing a viscous regularization that gives a good formulation in analogy with first order conservation laws Problem is ill-posed since some relevant physical terms are neglected

IDEA : Introducing a viscous regularization that gives a good formulation in analogy with first order conservation laws Problem is ill-posed since some relevant physical terms are neglected Conservation law

$$
u_{t}+\operatorname{div} f(u)=0
$$

is thought as limit, when ϵ goes to 0^{+}, of the parabolic approximation.

$$
u_{t}+\operatorname{div} f(u)=\epsilon \Delta u
$$

Phase transition, Cahn-Hilliard equation

$$
u_{t}=\Delta(\phi(u)-\delta \Delta u) .
$$

Phase transition, Cahn-Hilliard equation

$$
u_{t}=\Delta(\phi(u)-\delta \Delta u) .
$$

An analogous approximation for the Perona-Malik equation (1D)

Phase transition, Cahn-Hilliard equation

$$
u_{t}=\Delta(\phi(u)-\delta \Delta u) .
$$

An analogous approximation for the Perona-Malik equation (1D) Model of population dynamic, Padron

$$
u_{t}=\left(\phi(u)+\epsilon u_{t}\right)_{x x} .
$$

Phase transition, Cahn-Hilliard equation

$$
u_{t}=\Delta(\phi(u)-\delta \Delta u) .
$$

An analogous approximation for the Perona-Malik equation (1D) Model of population dynamic, Padron

$$
u_{t}=\left(\phi(u)+\epsilon u_{t}\right)_{x x} .
$$

Turbolent shear flow (1D), Barenblatt, Bertsch, Dal Passo, Ughi (SIAM J. Math. Anal. 1993)

$$
u_{t}=\left(\phi(u)+\tau \psi(u)_{t}\right)_{x x}
$$

Phase transition

Cahn-Hilliard-Gurtin eq.

Phase transition

Cahn-Hilliard-Gurtin eq. based on micro-forces balance (Gurtin Physica D 96)

$$
u_{t}=\Delta\left(\phi(u)-\delta \Delta u+\epsilon u_{t}\right)
$$

Phase transition

Cahn-Hilliard-Gurtin eq. based on micro-forces balance (Gurtin Physica D 96)

$$
u_{t}=\Delta\left(\phi(u)-\delta \Delta u+\epsilon u_{t}\right)
$$

In the following $\delta=0, \phi$ is of cubic type.

Novick Cohen-Pego (Trans. Amer. Math. Soc. 1991) study the viscosity problem

$$
\begin{cases}u_{t}=\Delta v & \text { in } \quad \Omega \times(0, T]=: Q_{T} \tag{2}\\ \frac{\partial v}{\partial \nu}=0 \quad \text { in } \quad \partial \Omega \times(0, T] \\ u=u_{0} \quad \text { in } \Omega \times\{0\},\end{cases}
$$

where

$$
\begin{equation*}
v:=\phi(u)+\epsilon u_{t} \quad(\epsilon>0) \tag{3}
\end{equation*}
$$

is the chemical potential, $\Omega \subseteq \boldsymbol{R}^{n}$ is bounded, $\partial \Omega$ regular, $T>0$.

Equation (2) can be rewritten

$$
u_{t}=-\frac{1}{\epsilon}\left(I-(I-\epsilon \Delta)^{-1}\right) \phi(u)
$$

that corresponds to the Yosida approximation of the operator Δ.

Equation (2) can be rewritten

$$
u_{t}=-\frac{1}{\epsilon}\left(I-(I-\epsilon \Delta)^{-1}\right) \phi(u)
$$

that corresponds to the Yosida approximation of the operator Δ. Moreover $v=(I-\epsilon \Delta)^{-1} \phi(u)$.

Equation (2) can be rewritten

$$
u_{t}=-\frac{1}{\epsilon}\left(I-(I-\epsilon \Delta)^{-1}\right) \phi(u)
$$

that corresponds to the Yosida approximation of the operator Δ. Moreover $v=(I-\epsilon \Delta)^{-1} \phi(u)$. Using the standard theory of ODE in the Banach spaces we have Theorem
(Novick Cohen-Pego) Given $u_{0} \in L^{\infty}(\Omega), \epsilon>0$ there exists a unique solution $\left(u_{\epsilon}, v_{\epsilon}\right)$ defined in $\left(0, T_{\epsilon}\right), u_{\epsilon} \in C^{1}\left(\left[0, T_{\epsilon}\right), L^{\infty}(\Omega)\right)$.

A priori estimates

For every $g \in C^{1}(\mathbb{R})$ such that $g^{\prime} \geq 0$

$$
G(u)=\int_{0}^{u} g(\phi(s)) d s+c
$$

A priori estimates

For every $g \in C^{1}(\mathbb{R})$ such that $g^{\prime} \geq 0$

$$
G(u)=\int_{0}^{u} g(\phi(s)) d s+c .
$$

Then

$$
\begin{aligned}
& {\left[G\left(u_{\epsilon}\right)\right]_{t}=\operatorname{div}\left[g\left(v_{\epsilon}\right) \nabla v_{\epsilon}\right]-g^{\prime}\left(v_{\epsilon}\right)\left|\nabla v_{\epsilon}\right|^{2}+} \\
& \quad-\frac{1}{\epsilon}\left[g\left(\phi\left(u_{\epsilon}\right)\right)-g\left(v_{\epsilon}\right)\right]\left(\phi\left(u_{\epsilon}\right)-v_{\epsilon}\right) .
\end{aligned}
$$

Integrating in Ω and using boundary condition

$$
\frac{d}{d t} \int_{\Omega} G\left(u_{\epsilon}(x, t)\right) d x \leq 0
$$

Existence of invariant regions for the problem (2).

Proposition

Let $I=\left[u_{1}, u_{2}\right]$ such that

$$
\phi\left(u_{1}\right) \leq \phi(u) \leq \phi\left(u_{2}\right) \quad \text { for every } u \in\left[u_{1}, u_{2}\right] ;
$$

then I is invariant for the problem (2). More precisely $u_{0}(x) \in I \Longrightarrow$ $u_{\epsilon}(x, t) \in I$ a.e. in $Q_{T_{\epsilon}}$.

Existence of invariant regions for the problem (2).

Proposition

Let $I=\left[u_{1}, u_{2}\right]$ such that

$$
\phi\left(u_{1}\right) \leq \phi(u) \leq \phi\left(u_{2}\right) \quad \text { for every } u \in\left[u_{1}, u_{2}\right] ;
$$

then I is invariant for the problem (2). More precisely $u_{0}(x) \in I \Longrightarrow$ $u_{\epsilon}(x, t) \in I$ a.e. in $Q_{T_{\epsilon}}$.

A priori estimates in L^{∞} that do not depend on ϵ. Global existence.

A priori estimate

Using again

$$
\begin{gathered}
\frac{d}{d t} \int_{\Omega}\left[G\left(u_{\epsilon}\right)\right] d x=-\int_{\Omega} g^{\prime}\left(v_{\epsilon}\right)\left|\nabla v_{\epsilon}\right|^{2} d x \\
-\int_{\Omega} \frac{1}{\epsilon}\left[g\left(\phi\left(u_{\epsilon}\right)\right)-g\left(v_{\epsilon}\right)\right]\left(\phi\left(u_{\epsilon}\right)-v_{\epsilon}\right) d x .
\end{gathered}
$$

A priori estimate

Using again

$$
\begin{gathered}
\frac{d}{d t} \int_{\Omega}\left[G\left(u_{\epsilon}\right)\right] d x=-\int_{\Omega} g^{\prime}\left(v_{\epsilon}\right)\left|\nabla v_{\epsilon}\right|^{2} d x \\
-\int_{\Omega} \frac{1}{\epsilon}\left[g\left(\phi\left(u_{\epsilon}\right)\right)-g\left(v_{\epsilon}\right)\right]\left(\phi\left(u_{\epsilon}\right)-v_{\epsilon}\right) d x .
\end{gathered}
$$

and choosing $g(u) \equiv u$ we have

$$
\iint_{Q_{T}}\left\{\left|\nabla v^{\epsilon}\right|^{2}+\epsilon\left|\partial_{t} u^{\epsilon}\right|^{2}\right\} d x d t \leq C_{2}
$$

Entropy formulation

In analogy with conservation laws we characterize an entropy solution of problem

$$
\begin{cases}u_{t}=\Delta \phi(u) & \text { in } \Omega \times(0, T]=Q_{T} \\ \frac{\partial \phi(u)}{\partial \nu}=0 & \text { in } \partial \Omega \times(0, T] \tag{4}\\ u=u_{0} & \text { in } \Omega \times\{0\},\end{cases}
$$

as that obtained as limit of the solutions of problem (2) when $\epsilon \rightarrow 0^{+}$.

Entropy formulation

In analogy with conservation laws we characterize an entropy solution of problem

$$
\begin{cases}u_{t}=\Delta \phi(u) & \text { in } \Omega \times(0, T]=Q_{T} \\ \frac{\partial \phi(u)}{\partial \nu}=0 & \text { in } \partial \Omega \times(0, T] \tag{4}\\ u=u_{0} & \text { in } \Omega \times\{0\},\end{cases}
$$

as that obtained as limit of the solutions of problem (2) when $\epsilon \rightarrow 0^{+}$.
For every $\epsilon>0$ and $g \in C^{1}(\mathbb{R}), g^{\prime} \geq 0$ we have

$$
\begin{equation*}
\iint_{Q_{T}}\left\{G\left(u^{\epsilon}\right) \psi_{t}-g\left(v^{\epsilon}\right) \nabla v^{\epsilon} \cdot \nabla \psi-g^{\prime}\left(v^{\epsilon}\right)\left|\nabla v^{\epsilon}\right|^{2} \psi\right\} \geq 0 \tag{5}
\end{equation*}
$$

for every $\psi \in C_{0}^{\infty}\left(Q_{T}\right), \psi \geq 0$.

Entropy formulation

In analogy with conservation laws we characterize an entropy solution of problem

$$
\begin{cases}u_{t}=\Delta \phi(u) & \text { in } \Omega \times(0, T]=Q_{T} \tag{4}\\ \frac{\partial \phi(u)}{\partial \nu}=0 & \text { in } \partial \Omega \times(0, T] \\ u=u_{0} & \text { in } \Omega \times\{0\},\end{cases}
$$

as that obtained as limit of the solutions of problem (2) when $\epsilon \rightarrow 0^{+}$.
For every $\epsilon>0$ and $g \in C^{1}(\mathbb{R}), g^{\prime} \geq 0$ we have

$$
\begin{equation*}
\iint_{Q_{T}}\left\{G\left(u^{\epsilon}\right) \psi_{t}-g\left(v^{\epsilon}\right) \nabla v^{\epsilon} \cdot \nabla \psi-g^{\prime}\left(v^{\epsilon}\right)\left|\nabla v^{\epsilon}\right|^{2} \psi\right\} \geq 0 \tag{5}
\end{equation*}
$$

for every $\psi \in C_{0}^{\infty}\left(Q_{T}\right), \psi \geq 0$.
The idea is to pass in the limit in (5) to characterize an entropy solution of (4).

Plotnikov's results

Study of the singular limit, Plotnikov (J. Math. Sci. 1993).

Plotnikov's results

Study of the singular limit, Plotnikov (J. Math. Sci. 1993). Using previous a priori estimate we deduce that there exist two subsequence $\left\{u^{\epsilon_{n}}\right\},\left\{v^{\epsilon_{n}}\right\}$ and a couple $(u, v) u \in L^{\infty}\left(Q_{T}\right)$, $v \in L^{\infty}\left(Q_{T}\right) \cap L^{2}\left((0, T) ; H^{1}(\Omega)\right)$ such that for every $T>0$:

$$
\begin{gathered}
u^{\epsilon_{n}} \stackrel{*}{\rightharpoonup} u \quad \text { in } L^{\infty}\left(Q_{T}\right), \\
v^{\epsilon_{n}} \stackrel{*}{\rightharpoonup} v \quad \text { in } L^{\infty}\left(Q_{T}\right), \\
v^{\epsilon_{n}} \rightharpoonup v \quad \text { in } L^{2}\left((0, T), H^{1}(\Omega)\right) .
\end{gathered}
$$

Plotnikov's results

Study of the singular limit, Plotnikov (J. Math. Sci. 1993). Using previous a priori estimate we deduce that there exist two subsequence $\left\{u^{\epsilon_{n}}\right\},\left\{v^{\epsilon_{n}}\right\}$ and a couple $(u, v) u \in L^{\infty}\left(Q_{T}\right)$, $v \in L^{\infty}\left(Q_{T}\right) \cap L^{2}\left((0, T) ; H^{1}(\Omega)\right)$ such that for every $T>0$:

$$
\begin{gathered}
u^{\epsilon_{n}} \stackrel{*}{v} u \quad \text { in } L^{\infty}\left(Q_{T}\right), \\
v^{\epsilon_{n}} \stackrel{*}{\rightharpoonup} v \quad \text { in } L^{\infty}\left(Q_{T}\right), \\
v^{\epsilon_{n}} \rightharpoonup v \quad \text { in } L^{2}\left((0, T), H^{1}(\Omega)\right) .
\end{gathered}
$$

Unfortunately this is not enough to pass to the limit in (5).

Plotnikov's results

Study of the singular limit, Plotnikov (J. Math. Sci. 1993). Using previous a priori estimate we deduce that there exist two subsequence $\left\{u^{\epsilon_{n}}\right\},\left\{v^{\epsilon_{n}}\right\}$ and a couple $(u, v) u \in L^{\infty}\left(Q_{T}\right)$, $v \in L^{\infty}\left(Q_{T}\right) \cap L^{2}\left((0, T) ; H^{1}(\Omega)\right)$ such that for every $T>0$:

$$
\begin{gathered}
u^{\epsilon_{n}} \stackrel{*}{v} u \quad \text { in } L^{\infty}\left(Q_{T}\right), \\
v^{\epsilon_{n}} \stackrel{*}{v} v \quad \text { in } L^{\infty}\left(Q_{T}\right), \\
v^{\epsilon_{n}} \rightharpoonup v \quad \text { in } L^{2}\left((0, T), H^{1}(\Omega)\right) .
\end{gathered}
$$

Unfortunately this is not enough to pass to the limit in (5). Let $\nu_{(x, t)}$ a family of Young measures associate to $\left\{u^{\epsilon_{n}}\right\}$, then $f \in C(\mathbb{R})$:

$$
f\left(u^{\epsilon_{n}}\right) \stackrel{*}{\rightharpoonup} \bar{f} \quad \text { in } L^{\infty}\left(Q_{T}\right) ;
$$

where

$$
\bar{f}(x, t):=\int_{\mathbb{R}} f(\tau) d \nu_{(x, t)}(\tau) \quad \text { for a.e. }(x, t) \in Q_{T}
$$

Plotnikov proves that $\nu(x, t)$ is superposition of Dirac measures, more precisely

$$
\nu_{(x, t)}(\tau)=\sum_{i=0}^{2} \lambda_{i}(x, t) \delta\left(\tau-\beta_{i}(v(x, t))\right)
$$

a.e in Q_{T}, where $\beta_{i}(v), i=0,1,2$ are the three branches of the graph $v=\phi(u)$

Plotnikov proves that $\nu(x, t)$ is superposition of Dirac measures, more precisely

$$
\nu_{(x, t)}(\tau)=\sum_{i=0}^{2} \lambda_{i}(x, t) \delta\left(\tau-\beta_{i}(v(x, t))\right)
$$

a.e in Q_{T}, where $\beta_{i}(v), i=0,1,2$ are the three branches of the graph $v=\phi(u)$

Moreover, $0 \leq \lambda_{i} \leq 1$ e $\sum_{i=0}^{2} \lambda_{i}(x, t)=1$.

$$
f(\lambda)=\lambda, \quad u(x, t)=\int_{R} \tau d \nu_{x, t}(\tau)=\sum_{i=0}^{2} \lambda_{i}(x, t) \beta_{i}(v(x, t)),
$$

$$
f(\lambda)=\lambda, \quad u(x, t)=\int_{R} \tau d \nu_{x, t}(\tau)=\sum_{i=0}^{2} \lambda_{i}(x, t) \beta_{i}(v(x, t))
$$

$$
f(\lambda)=\phi(\lambda), f(\lambda)=\phi^{2}(\lambda) \Longrightarrow v^{\epsilon_{n}} \rightarrow v \operatorname{in} L^{2}\left(Q_{T}\right)
$$

$$
f(\lambda)=\lambda, \quad u(x, t)=\int_{R} \tau d \nu_{x, t}(\tau)=\sum_{i=0}^{2} \lambda_{i}(x, t) \beta_{i}(v(x, t)),
$$

$$
f(\lambda)=\phi(\lambda), f(\lambda)=\phi^{2}(\lambda) \Longrightarrow v^{\epsilon_{n}} \rightarrow v \operatorname{in} L^{2}\left(Q_{T}\right),
$$

and

$$
\begin{equation*}
\int_{Q_{T}} u \psi_{t}-\nabla v \nabla \psi d x d t+\int_{\Omega} u_{0}(x) \psi(x, 0) d x=0 \tag{6}
\end{equation*}
$$

but in general $v \neq \phi(u)$.

$$
f(\lambda)=\lambda, \quad u(x, t)=\int_{R} \tau d \nu_{x, t}(\tau)=\sum_{i=0}^{2} \lambda_{i}(x, t) \beta_{i}(v(x, t)),
$$

$$
f(\lambda)=\phi(\lambda), f(\lambda)=\phi^{2}(\lambda) \Longrightarrow v^{\epsilon_{n}} \rightarrow v \operatorname{in} L^{2}\left(Q_{T}\right),
$$

and

$$
\begin{equation*}
\int_{Q_{T}} u \psi_{t}-\nabla v \nabla \psi d x d t+\int_{\Omega} u_{0}(x) \psi(x, 0) d x=0 \tag{6}
\end{equation*}
$$

but in general $v \neq \phi(u)$.
Superposition of phases, λ_{i} fraction of phase i.

$$
f(\lambda)=\lambda, \quad u(x, t)=\int_{R} \tau d \nu_{x, t}(\tau)=\sum_{i=0}^{2} \lambda_{i}(x, t) \beta_{i}(v(x, t)),
$$

$$
f(\lambda)=\phi(\lambda), f(\lambda)=\phi^{2}(\lambda) \Longrightarrow v^{\epsilon_{n}} \rightarrow v \operatorname{in} L^{2}\left(Q_{T}\right),
$$

and

$$
\begin{equation*}
\int_{Q_{T}} u \psi_{t}-\nabla v \nabla \psi d x d t+\int_{\Omega} u_{0}(x) \psi(x, 0) d x=0 \tag{6}
\end{equation*}
$$

but in general $v \neq \phi(u)$.
Superposition of phases, λ_{i} fraction of phase i. Solution in the sense of measured valued solution.

Letting $\epsilon_{n} \rightarrow 0^{+}$in the viscous entropy inequality

$$
\begin{gathered}
\iint_{Q_{T}}\left\{G\left(u^{\epsilon}\right) \psi_{t}-g\left(v^{\epsilon}\right) \nabla v^{\epsilon} \cdot \nabla \psi-g^{\prime}\left(v^{\epsilon}\right)\left|\nabla v^{\epsilon}\right|^{2} \psi\right\} d x d t+ \\
\int_{\Omega} G\left(u_{0}(x)\right) \psi(x, 0) d x \geq 0
\end{gathered}
$$

Letting $\epsilon_{n} \rightarrow 0^{+}$in the viscous entropy inequality

$$
\begin{gathered}
\iint_{Q_{T}}\left\{G\left(u^{\epsilon}\right) \psi_{t}-g\left(v^{\epsilon}\right) \nabla v^{\epsilon} \cdot \nabla \psi-g^{\prime}\left(v^{\epsilon}\right)\left|\nabla v^{\epsilon}\right|^{2} \psi\right\} d x d t+ \\
\int_{\Omega} G\left(u_{0}(x)\right) \psi(x, 0) d x \geq 0
\end{gathered}
$$

we have

$$
\begin{align*}
& \qquad \iint_{Q_{T}}\left\{\bar{G}(u) \psi_{t}-g(v) \nabla v \cdot \nabla \psi-g^{\prime}(v)\left|\nabla v^{2}\right| \psi\right\} d x d t+ \\
& \qquad \int_{\Omega} G\left(u_{0}(x)\right) \psi(x, 0) d x \geq 0 \tag{7}\\
& \text { where } \bar{G}(u)=\sum_{i=0}^{2} \lambda_{i} G\left(\beta_{i}(v)\right) .
\end{align*}
$$

Entropy solution

Entropy solution

Definition
Given $u_{0} \in L^{\infty}(\Omega)$ an entropy solution of problem forward-backward (4) is given by the functions $\lambda_{i} \in L^{\infty}\left(Q_{T}\right), i=0,1,2, u \in L^{\infty}\left(Q_{T}\right)$, $v \in L^{\infty}\left(Q_{T}\right) \cap L^{2}\left((0, T), H^{1}(\Omega)\right)$. Such that
(i) $\sum_{i=0}^{2} \lambda_{i}=1, \lambda_{i} \geq 0, u=\sum_{i=0}^{2} \lambda_{i} \beta_{i}(v)$
(ii) u and v satisfy (6) (weak solution)
(iii) u and v satisfy (7) for every $g \in C^{1}(\mathbb{R}), g^{\prime} \geq 0$ (entropy condition).

Entropy solution

Definition
Given $u_{0} \in L^{\infty}(\Omega)$ an entropy solution of problem forward-backward (4) is given by the functions $\lambda_{i} \in L^{\infty}\left(Q_{T}\right), i=0,1,2, u \in L^{\infty}\left(Q_{T}\right)$,
$v \in L^{\infty}\left(Q_{T}\right) \cap L^{2}\left((0, T), H^{1}(\Omega)\right)$. Such that
(i) $\sum_{i=0}^{2} \lambda_{i}=1, \lambda_{i} \geq 0, u=\sum_{i=0}^{2} \lambda_{i} \beta_{i}(v)$
(ii) u and v satisfy (6) (weak solution)
(iii) u and v satisfy (7) for every $g \in C^{1}(\mathbb{R}), g^{\prime} \geq 0$ (entropy condition).
Perona-Malik, Smarrazzo (Discrete Contin. Dyn. Syst 2008)

Entropy solution

Definition

Given $u_{0} \in L^{\infty}(\Omega)$ an entropy solution of problem forward-backward (4) is given by the functions $\lambda_{i} \in L^{\infty}\left(Q_{T}\right), i=0,1,2, u \in L^{\infty}\left(Q_{T}\right)$, $v \in L^{\infty}\left(Q_{T}\right) \cap L^{2}\left((0, T), H^{1}(\Omega)\right)$. Such that
(i) $\sum_{i=0}^{2} \lambda_{i}=1, \lambda_{i} \geq 0, u=\sum_{i=0}^{2} \lambda_{i} \beta_{i}(v)$
(ii) u and v satisfy (6) (weak solution)
(iii) u and v satisfy (7) for every $g \in C^{1}(\mathbb{R}), g^{\prime} \geq 0$ (entropy condition).
Perona-Malik, Smarrazzo (Discrete Contin. Dyn. Syst 2008)
Problems: Existence in a stronger sense? Uniqueness? Study of the evolution of the different phases.

Two phase entropy solution

Case $n=1$. Let $\Omega=(-L, L), u_{0} \leq b$ in $(-L, 0), u_{0} \geq a$ in $(0, L)$, initial data in the two stable phases.

Two phase entropy solution

Case $n=1$. Let $\Omega=(-L, L), u_{0} \leq b$ in $(-L, 0), u_{0} \geq a$ in $(0, L)$, initial data in the two stable phases.
$\phi\left(u_{0}\right) \in B C([-L, L]), \phi\left(u_{0}\right) \in C^{1}([-L, 0]), \phi\left(u_{0}\right) \in C^{1}([0, L])$

Two phase entropy solution

Case $n=1$. Let $\Omega=(-L, L), u_{0} \leq b$ in $(-L, 0), u_{0} \geq a$ in $(0, L)$, initial data in the two stable phases.
$\phi\left(u_{0}\right) \in B C([-L, L]), \phi\left(u_{0}\right) \in C^{1}([-L, 0]), \phi\left(u_{0}\right) \in C^{1}([0, L])$
We search a solution in which the two stable phases are separated by an interface $\xi, \xi(0)=0$,

Two phase entropy solution

Case $n=1$. Let $\Omega=(-L, L), u_{0} \leq b$ in $(-L, 0), u_{0} \geq a$ in $(0, L)$, initial data in the two stable phases.
$\phi\left(u_{0}\right) \in B C([-L, L]), \phi\left(u_{0}\right) \in C^{1}([-L, 0]), \phi\left(u_{0}\right) \in C^{1}([0, L])$
We search a solution in which the two stable phases are separated by an interface $\xi, \xi(0)=0$,
$V_{1}:=\left\{(x, t) \in Q_{T} \mid-L \leq x<\xi(t), t \in(0, T)\right\}, V_{2}:=Q_{T} \backslash \bar{V}_{1}$

An entropy solution is a triple of functions (ξ, u, v) such that: (a) $\left.\xi \in C^{\frac{3}{2}}([0, T]), \xi(0)=0, \gamma(t)=\{(\xi(t), t): t \in(0, T))\right\}$;
(b) u, v satisfy

$$
u=\beta_{i}(v) \text { in } V_{i} \quad(i=1,2) \quad(v=\phi(u)) ;
$$

(c) $v(\cdot, t)$ continuous in $[-L, L], v((\xi(\cdot), \cdot))$ continuous in $[0, T]$;
(d) for every $t \in[0, T]$ there exists

$$
\lim _{s \rightarrow 0^{ \pm}} v_{x}(\xi(t) \pm s, t) ;
$$

An entropy solution is a triple of functions (ξ, u, v) such that: (a) $\left.\xi \in C^{\frac{3}{2}}([0, T]), \xi(0)=0, \gamma(t)=\{(\xi(t), t): t \in(0, T))\right\}$;
(b) u, v satisfy

$$
u=\beta_{i}(v) \text { in } V_{i} \quad(i=1,2) \quad(v=\phi(u)) ;
$$

(c) $v(\cdot, t)$ continuous in $[-L, L], v((\xi(\cdot), \cdot))$ continuous in $[0, T]$;
(d) for every $t \in[0, T]$ there exists

$$
\lim _{s \rightarrow 0^{ \pm}} v_{x}(\xi(t) \pm s, t) ;
$$

(e) $u_{t}=v_{x x}$ in the weak sense, entropy condition, boundary and initial condition.

An entropy solution is a triple of functions (ξ, u, v) such that: (a) $\left.\xi \in C^{\frac{3}{2}}([0, T]), \xi(0)=0, \gamma(t)=\{(\xi(t), t): t \in(0, T))\right\}$;
(b) u, v satisfy

$$
u=\beta_{i}(v) \text { in } V_{i} \quad(i=1,2) \quad(v=\phi(u)) ;
$$

(c) $v(\cdot, t)$ continuous in $[-L, L], v((\xi(\cdot), \cdot))$ continuous in $[0, T]$;
(d) for every $t \in[0, T]$ there exists

$$
\lim _{s \rightarrow 0^{ \pm}} v_{x}(\xi(t) \pm s, t) ;
$$

(e) $u_{t}=v_{x x}$ in the weak sense, entropy condition, boundary and initial condition.
$u_{t}=\phi(u)_{x x}$ in V_{i},

An entropy solution is a triple of functions (ξ, u, v) such that: (a) $\left.\xi \in C^{\frac{3}{2}}([0, T]), \xi(0)=0, \gamma(t)=\{(\xi(t), t): t \in(0, T))\right\}$;
(b) u, v satisfy

$$
u=\beta_{i}(v) \text { in } V_{i} \quad(i=1,2) \quad(v=\phi(u)) ;
$$

(c) $v(\cdot, t)$ continuous in $[-L, L], v((\xi(\cdot), \cdot))$ continuous in $[0, T]$;
(d) for every $t \in[0, T]$ there exists

$$
\lim _{s \rightarrow 0^{ \pm}} v_{x}(\xi(t) \pm s, t) ;
$$

(e) $u_{t}=v_{x x}$ in the weak sense, entropy condition, boundary and initial condition.

$$
\begin{aligned}
& u_{t}=\phi(u)_{x x} \text { in } V_{i}, \\
& u, v: Q_{T} \rightarrow \boldsymbol{R} \text { regular in } Q_{T} \backslash \gamma .
\end{aligned}
$$

Determinate conditions for the interface.

Determinate conditions for the interface.
Theorem
(Evans-Portilheiro Math. Models Methods Appl. Sci. (2004))
Let u, v, ξ a two phase entropy solution for the problem (2) then
(i) Rankine-Hugoniot condition:

$$
\xi^{\prime}=-\frac{\left[v_{x}\right]}{[u]} \quad \text { a.e on } \gamma \text {. }
$$

Determinate conditions for the interface.
Theorem
(Evans-Portilheiro Math. Models Methods Appl. Sci. (2004)) Let u, v, ξ a two phase entropy solution for the problem (2) then
(i) Rankine-Hugoniot condition:

$$
\xi^{\prime}=-\frac{\left[v_{x}\right]}{[u]} \quad \text { a.e on } \gamma \text {. }
$$

(ii) entropy condition:

$$
\begin{aligned}
& \qquad \xi^{\prime}[G(u)] \geq-g(v)\left[v_{x}\right] \quad \text { a.e. su } \gamma . \\
& \text { where }[h]:=h(\xi(t)+, t)-h^{-}(\xi(t)-, t) .
\end{aligned}
$$

Determinate conditions for the interface.
Theorem
(Evans-Portilheiro Math. Models Methods Appl. Sci. (2004))
Let u, v, ξ a two phase entropy solution for the problem (2) then
(i) Rankine-Hugoniot condition:

$$
\xi^{\prime}=-\frac{\left[v_{x}\right]}{[u]} \quad \text { a.e on } \gamma \text {. }
$$

(ii) entropy condition:

$$
\xi^{\prime}[G(u)] \geq-g(v)\left[v_{x}\right] \quad \text { a.e. su } \gamma .
$$

where $[h]:=h(\xi(t)+, t)-h^{-}(\xi(t)-, t)$.
Analogy with the conditions for piecewise regular solution of scalar conservation laws.

Admissibility condition for the interface

Choosing properly the function g we can select admissibility conditions for the interface $\gamma=(\xi(t), t)$

Admissibility condition for the interface

Choosing properly the function g we can select admissibility conditions for the interface $\gamma=(\xi(t), t)$
Theorem

$$
\left\{\begin{aligned}
(a) \xi^{\prime}(t)>0 & \Longrightarrow \phi(u(\xi(t), t))=A ; \\
(b) \xi^{\prime}(t)<0 & \Longrightarrow \phi(u(\xi(t), t))=B .
\end{aligned}\right.
$$

Admissibility condition for the interface

Choosing properly the function g we can select admissibility conditions for the interface $\gamma=(\xi(t), t)$
Theorem

$$
\left\{\begin{aligned}
(a) \xi^{\prime}(t)>0 & \Longrightarrow \phi(u(\xi(t), t))=A ; \\
(b) \xi^{\prime}(t)<0 & \Longrightarrow \phi(u(\xi(t), t))=B .
\end{aligned}\right.
$$

Condition for the phase change.

Admissibility condition for the interface

Choosing properly the function g we can select admissibility conditions for the interface $\gamma=(\xi(t), t)$

Theorem

$$
\left\{\begin{aligned}
(a) \xi^{\prime}(t)>0 & \Longrightarrow \phi(u(\xi(t), t))=A ; \\
(b) \xi^{\prime}(t)<0 & \Longrightarrow \phi(u(\xi(t), t))=B .
\end{aligned}\right.
$$

Condition for the phase change. We can pass from phase 1 to phase 2 only if $v=B$

If $v \in(A, B)$ phase does not change

Existence and uniqueness

$$
\phi(u)= \begin{cases}\phi_{-}(u) & \text { if } u \leq b \\ \phi_{0}(u) & \text { if } \quad b<u<a \\ \phi_{+}(u) & \text { if } u \geq a,\end{cases}
$$

where

$$
\phi_{ \pm}(u):=\alpha_{ \pm} u+\beta_{ \pm}, \quad \phi_{0}(u):=\frac{A(u-b)-B(u-a)}{a-b}
$$

Uniqueness

Theorem
(Mascia, T., Tesei, Arch. Rat. Mech 2009) There exists at most a unique two phase entropy solution

Uniqueness

Theorem
(Mascia, T., Tesei, Arch. Rat. Mech 2009) There exists at most a unique two phase entropy solution
Idea of the proof (stability) Let $\left(\xi_{1}, u_{1}, v_{1}\right),\left(\xi_{2}, u_{2}, v_{2}\right)$ two different solution. Let $F: Q_{T} \backslash\left\{\gamma_{1} \cup \gamma_{2}\right\} \rightarrow \boldsymbol{R}^{2}$:

$$
F:=\left(\left|u_{1}-u_{2}\right|, \operatorname{sgn}\left(u_{1}-u_{2}\right)\left(-v_{1 \times}+v_{2_{x}}\right)\right)
$$

Uniqueness

Theorem

(Mascia, T., Tesei, Arch. Rat. Mech 2009) There exists at most a unique two phase entropy solution
Idea of the proof (stability) Let $\left(\xi_{1}, u_{1}, v_{1}\right),\left(\xi_{2}, u_{2}, v_{2}\right)$ two different solution. Let $F: Q_{T} \backslash\left\{\gamma_{1} \cup \gamma_{2}\right\} \rightarrow \boldsymbol{R}^{2}$:

$$
F:=\left(\left|u_{1}-u_{2}\right|, \operatorname{sgn}\left(u_{1}-u_{2}\right)\left(-v_{1_{x}}+v_{2_{x}}\right)\right)
$$

Formally we obtain:

$$
\begin{aligned}
\operatorname{div} F: & =\left|u_{1}-u_{2}\right|_{t}+\left[\operatorname{sgn}\left(u_{1}-u_{2}\right)\left(-v_{1_{x}}+v_{2 x}\right)\right]_{x} \\
& =\delta_{\left\{u_{1}=u_{2}\right\}}\left(u_{1}-u_{2}\right)_{x}\left(-v_{1 x}+v_{2 x}\right) .
\end{aligned}
$$

Uniqueness

Theorem

(Mascia, T., Tesei, Arch. Rat. Mech 2009) There exists at most a unique two phase entropy solution
Idea of the proof (stability) Let $\left(\xi_{1}, u_{1}, v_{1}\right),\left(\xi_{2}, u_{2}, v_{2}\right)$ two different solution. Let $F: Q_{T} \backslash\left\{\gamma_{1} \cup \gamma_{2}\right\} \rightarrow \boldsymbol{R}^{2}$:

$$
F:=\left(\left|u_{1}-u_{2}\right|, \operatorname{sgn}\left(u_{1}-u_{2}\right)\left(-v_{1 x}+v_{2 x}\right)\right)
$$

Formally we obtain:

$$
\begin{aligned}
\operatorname{div} F: & =\left|u_{1}-u_{2}\right|_{t}+\left[\operatorname{sgn}\left(u_{1}-u_{2}\right)\left(-v_{1 x}+v_{2 x}\right)\right]_{x} \\
& =\delta_{\left\{u_{1}=u_{2}\right\}}\left(u_{1}-u_{2}\right)_{x}\left(-v_{1 x}+v_{2 x}\right) .
\end{aligned}
$$

Integrating in Q_{T} we have :

$$
\begin{equation*}
\iint_{Q_{T}}\left\{\left|u_{1}-u_{2}\right|_{t}+\left[\operatorname{sgn}\left(u_{1}-u_{2}\right)\left(-v_{1_{x}}+v_{2_{X}}\right)\right]_{x}\right\} d x d t \leq 0 \tag{8}
\end{equation*}
$$

we have

$$
\begin{gather*}
\int_{-L}^{L}\left|u_{1}(x, \tau)-u_{2}(x, \tau)\right| d x \tag{9}\\
\leq \int_{0}^{\tau}\left\{-\left[\left|u_{1}-u_{2}\right|\right]_{1} \xi_{1}^{\prime}+\left[\operatorname{sgn}\left(u_{1}-u_{2}\right)\left(-v_{1 x}+v_{2 x}\right)\right]_{1}\right\} d t \\
+\int_{0}^{\tau}\left\{-\left[\left|u_{1}-u_{2}\right|\right]_{2} \xi_{2}^{\prime}+\left[\operatorname{sgn}\left(u_{1}-u_{2}\right)\left(-v_{1 x}+v_{2 x}\right)\right]_{2}\right\} d t
\end{gather*}
$$

where $[h]_{i} \equiv[h]_{i}(t):=h^{i,+}(t)-h^{i,-}(t)$ is the jump along the interface γ_{i} of a function h
$\left(h^{i, \pm}(t):=\lim _{\eta \rightarrow 0} h\left(\xi_{i}(t) \pm \eta, t\right)(i=1,2 ; t \in[0, T])\right)$.

Existence

Auxiliary problems:
Moving boundary problem for every $C \in[A, B]$ let $\kappa_{-} \in(-\infty, b], \kappa_{+} \in[a, \infty)$ defined by

$$
\begin{equation*}
\alpha_{-} \kappa_{-}+\beta_{-}=\alpha_{+} \kappa_{+}+\beta_{+}=C \tag{10}
\end{equation*}
$$

Definition

Let $C \in[A, B]$. A couple of functions $\xi=\xi(t), u=u(x, t)$ is solution of the moving boundary problem if it satisfies the following conditions
(i) $\xi \in C^{\frac{3}{2}}([0, \tau]), \xi(0)=0$;
(ii) $u_{t}=\alpha_{ \pm} u_{x x}$ in $A_{\tau}^{ \pm}:=\{(x, t) \in \mathbb{R} \times(0, \tau) \mid \pm(x-\xi(t))>0\}$ (iii) for every $t \in(0, \tau]$ we have:

$$
\begin{gather*}
u\left(\xi(t)^{ \pm}, t\right)=\kappa_{ \pm}(\phi(u(\xi(t), t)=C) \tag{11}\\
\xi^{\prime}(t)=-\frac{\alpha_{+} u_{x}\left(\xi(t)^{+}, t\right)-\alpha_{-} u_{x}\left(\xi(t)^{-}, t\right)}{\kappa_{+}-\kappa_{-}} \tag{12}
\end{gather*}
$$

Steady boundary problem $\left(\xi^{\prime} \equiv 0\right)$

Definition

u is a solution of the steady boundary problem if it satisfies
i) $u_{t}=\alpha_{ \pm} u_{x x}$ in $\mathbb{R}^{ \pm} \times(0, \tau)$;
ii) $\alpha_{-} u(0-, t)+\beta_{-}=\alpha_{+} u(0+, t)+\beta_{+}$;
iii) $\alpha_{-} u_{x}(0-, t)=\alpha_{+} u_{x}(0+, t)$.

Theorem

(Mascia, T., Tesei) Suppose that one of the following conditions is satisfies
i) $\alpha_{-} u_{0}(0-)+\beta_{-}=\alpha_{+} u_{0}(0+)+\beta_{+} \in(A, B)$;
ii) $\alpha_{-} u_{0}^{\prime}(0-) \neq \alpha_{+} u_{0}^{\prime}(0+)$.

Then there exists $\tau>0$ such that the two phase problem has solution in $\mathbb{R} \times(0, \tau)$.

Theorem

(Mascia, T., Tesei) Suppose that one of the following conditions is satisfies
i) $\alpha_{-} u_{0}(0-)+\beta_{-}=\alpha_{+} u_{0}(0+)+\beta_{+} \in(A, B)$;
ii) $\alpha_{-} u_{0}^{\prime}(0-) \neq \alpha_{+} u_{0}^{\prime}(0+)$.

Then there exists $\tau>0$ such that the two phase problem has solution in $\mathbb{R} \times(0, \tau)$.
PROOF (idea)
Local existence for moving and steady boundary problems.

Theorem

(Mascia, T., Tesei) Suppose that one of the following conditions is satisfies
i) $\alpha_{-} u_{0}(0-)+\beta_{-}=\alpha_{+} u_{0}(0+)+\beta_{+} \in(A, B)$;
ii) $\alpha_{-} u_{0}^{\prime}(0-) \neq \alpha_{+} u_{0}^{\prime}(0+)$.

Then there exists $\tau>0$ such that the two phase problem has solution in $\mathbb{R} \times(0, \tau)$.
PROOF (idea)
Local existence for moving and steady boundary problems. Use the auxiliary problems

Theorem

(Mascia, T., Tesei) Suppose that one of the following conditions is satisfies
i) $\alpha_{-} u_{0}(0-)+\beta_{-}=\alpha_{+} u_{0}(0+)+\beta_{+} \in(A, B)$;
ii) $\alpha_{-} u_{0}^{\prime}(0-) \neq \alpha_{+} u_{0}^{\prime}(0+)$.

Then there exists $\tau>0$ such that the two phase problem has solution in $\mathbb{R} \times(0, \tau)$.
PROOF (idea)
Local existence for moving and steady boundary problems.
Use the auxiliary problems
The solution of the steady problems is also entropy solution of the two phase problem if and only if $u \geq a$ in $\mathbb{R}^{+} \times(0, \tau)$ and $u \leq b$ in $\mathbb{R}^{-} \times(0, \tau)$ this is true if and only if $\alpha_{ \pm} u(0 \pm, t)+\beta_{ \pm} \in[A, B]$.

Theorem

(Mascia, T., Tesei) Suppose that one of the following conditions is satisfies
i) $\alpha_{-} u_{0}(0-)+\beta_{-}=\alpha_{+} u_{0}(0+)+\beta_{+} \in(A, B)$;
ii) $\alpha_{-} u_{0}^{\prime}(0-) \neq \alpha_{+} u_{0}^{\prime}(0+)$.

Then there exists $\tau>0$ such that the two phase problem has solution in $\mathbb{R} \times(0, \tau)$.
PROOF (idea)
Local existence for moving and steady boundary problems.
Use the auxiliary problems
The solution of the steady problems is also entropy solution of the two phase problem if and only if $u \geq a$ in $\mathbb{R}^{+} \times(0, \tau)$ and $u \leq b$ in $\mathbb{R}^{-} \times(0, \tau)$ this is true if and only if $\alpha_{ \pm} u(0 \pm, t)+\beta_{ \pm} \in[A, B]$.
The moving boundary problem gives an entropy solution if $\phi\left(u(\xi(t), t)=B\left(\kappa_{-}=b, \kappa_{+}=d\right)\right.$ and $\xi^{\prime} \leq 0$ or $\phi(u(\xi(t), t)=A$ ($\kappa_{-}=c, \kappa_{+}=a$) and $\xi^{\prime} \geq 0$.

Extension in time of the solution

We can extend in time the solution until a first time τ such that $\xi^{\prime}(\tau)=0$ and $\phi(u(\xi(\tau), \tau))=A$ or B.

Extension in time of the solution

We can extend in time the solution until a first time τ such that $\xi^{\prime}(\tau)=0$ and $\phi(u(\xi(\tau), \tau))=A$ or B.
Is it possible to obtain the solution with a sequence of solutions of moving boundary problems that alternate in time with solutions of steady boundary problems?

Extension in time of the solution

We can extend in time the solution until a first time τ such that $\xi^{\prime}(\tau)=0$ and $\phi(u(\xi(\tau), \tau))=A$ or B.
Is it possible to obtain the solution with a sequence of solutions of moving boundary problems that alternate in time with solutions of steady boundary problems?
Consider the case in which $\phi(u(\xi(\tau), \tau))=A$ or B and $\xi^{\prime}(\tau)=0$.

Extension in time of the solution

We can extend in time the solution until a first time τ such that $\xi^{\prime}(\tau)=0$ and $\phi(u(\xi(\tau), \tau))=A$ or B.
Is it possible to obtain the solution with a sequence of solutions of moving boundary problems that alternate in time with solutions of steady boundary problems?
Consider the case in which $\phi(u(\xi(\tau), \tau))=A$ or B and $\xi^{\prime}(\tau)=0$.

Proposition

(T. Siam J. Mat. Anal.) Let u_{0} such that $\phi\left(u_{0}(0)\right)=A$ or B and $\alpha_{-} u_{0}^{\prime}(0-)-\alpha_{+} u_{0}^{\prime}(0+)=0$. If the function
$h_{0}(z)=\alpha_{+} u_{0}^{\prime}\left(2 \sqrt{\alpha_{+}} z\right)-\alpha_{-} u_{0}^{\prime}\left(-2 \sqrt{\alpha_{-}} z\right)$ has a given sign in a right interval of 0 then there exists $\tau>0$ such that the two phase problem has solution in $\mathbb{R} \times(0, \tau)$.

Theorem

(T.) Let (ξ, u) be a solution of the two phase problem in Q_{T}. Let $t_{1}<\tau$ such that in $\left(t_{1}, \tau\right)$ the solution is given by the solution either of the moving boundary problem or of the steady boundary problem. Then there exists $t_{2}>\tau$ such that the solution of the two phase problem can be extended in $\left(0, t_{2}\right)$.

Theorem

(T.) Let (ξ, u) be a solution of the two phase problem in Q_{T}. Let $t_{1}<\tau$ such that in $\left(t_{1}, \tau\right)$ the solution is given by the solution either of the moving boundary problem or of the steady boundary problem. Then there exists $t_{2}>\tau$ such that the solution of the two phase problem can be extended in ($0, t_{2}$).
Proof We have to analyze the function $h(z, \tau)=\alpha_{+} u_{x}\left(2 \sqrt{\alpha_{+}} z+\xi(\tau), \tau\right)-\alpha_{-} u_{x}\left(-2 \sqrt{\alpha_{-}} z+\xi(\tau), \tau\right)$ in a right interval of 0 .

Theorem

(T.) Let (ξ, u) be a solution of the two phase problem in Q_{τ}. Let $t_{1}<\tau$ such that in $\left(t_{1}, \tau\right)$ the solution is given by the solution either of the moving boundary problem or of the steady boundary problem.
Then there exists $t_{2}>\tau$ such that the solution of the two phase problem can be extended in ($0, t_{2}$).
Proof We have to analyze the function
$h(z, \tau)=\alpha_{+} u_{x}\left(2 \sqrt{\alpha_{+}} z+\xi(\tau), \tau\right)-\alpha_{-} u_{x}\left(-2 \sqrt{\alpha_{-}} z+\xi(\tau), \tau\right)$ in a right interval of 0 .
We prove that the solution is analytical in the space variable until the interface then function h has a sign.

The structure of the solution could be complex

The structure of the solution could be complex It is possible to control the number convexity regions

The structure of the solution could be complex It is possible to control the number convexity regions

Theorem
Let $N(t)$ the number of disjoint intervals in which $u(\cdot, t)$ is convex. Then $N(t) \leq N(s)+1$ for every $s \leq t$.

Open Problems

- nonlinear ϕ

Open Problems

- nonlinear ϕ
- Solutions of the approximation problems $u_{t}=\left(\phi(u)+\epsilon u_{t}\right)_{x x}$ converge to the solution of the two phase problem ?

Open Problems

- nonlinear ϕ
- Solutions of the approximation problems $u_{t}=\left(\phi(u)+\epsilon u_{t}\right)_{x x}$ converge to the solution of the two phase problem ? $\phi\left(u_{0}\right) \in[A, B]$, Smarrazzo (Interfaces Free Bound.)

Open Problems

- nonlinear ϕ
- Solutions of the approximation problems $u_{t}=\left(\phi(u)+\epsilon u_{t}\right)_{x x}$ converge to the solution of the two phase problem ? $\phi\left(u_{0}\right) \in[A, B]$, Smarrazzo (Interfaces Free Bound.)
- Uniqueness for the entropy formulation of Plotnikov

Open Problems

- nonlinear ϕ
- Solutions of the approximation problems $u_{t}=\left(\phi(u)+\epsilon u_{t}\right)_{x x}$ converge to the solution of the two phase problem ? $\phi\left(u_{0}\right) \in[A, B]$, Smarrazzo (Interfaces Free Bound.)
- Uniqueness for the entropy formulation of Plotnikov
- Solution with unstable phases

Open Problems

- nonlinear ϕ
- Solutions of the approximation problems $u_{t}=\left(\phi(u)+\epsilon u_{t}\right)_{x x}$ converge to the solution of the two phase problem ? $\phi\left(u_{0}\right) \in[A, B]$, Smarrazzo (Interfaces Free Bound.)
- Uniqueness for the entropy formulation of Plotnikov
- Solution with unstable phases Riemann Problem, Gilding, Tesei (Phys. D 2010)

Open Problems

- nonlinear ϕ
- Solutions of the approximation problems $u_{t}=\left(\phi(u)+\epsilon u_{t}\right)_{x x}$ converge to the solution of the two phase problem ? $\phi\left(u_{0}\right) \in[A, B]$, Smarrazzo (Interfaces Free Bound.)
- Uniqueness for the entropy formulation of Plotnikov
- Solution with unstable phases Riemann Problem, Gilding, Tesei (Phys. D 2010)
- Link with other singular limit

Open Problems

- nonlinear ϕ
- Solutions of the approximation problems $u_{t}=\left(\phi(u)+\epsilon u_{t}\right)_{x x}$ converge to the solution of the two phase problem ? $\phi\left(u_{0}\right) \in[A, B]$, Smarrazzo (Interfaces Free Bound.)
- Uniqueness for the entropy formulation of Plotnikov
- Solution with unstable phases Riemann Problem, Gilding, Tesei (Phys. D 2010)
- Link with other singular limit Cahn-Hilliard, Bellettini, Fusco, Guglielmi (Discrete Contin. Dyn. Syst 2006)

