INdAM Workshop "Nonconvex evolution problems"

Pattern formation & Partial Differential Equations

Felix Otto

Max Planck Institute for Mathematics in the Sciences

Leipzig, Germany

Pattern formation for two specific examples

- A) crystal growth under deposition
 roughness of crystal surface
- **B)** demixing of polymers
- labyrinth-like pattern of concentration field

- Few elementary mechanisms (diffusion, viscosity, ...)
- complex Pattern

Crystal growth and Kuramoto-Sivashinsky equation

L. Giacomelli, D. Goldman

Relevant mechanisms

Crystal lattice favors certain slopes of the surface

Exposed positions are disfavored

Vertical growth rate depends on slope

Qualitatively different behavior for small/large deposition rate f

Initial data h(t=0) = white noise of small amplitude

Deposition rate $f \ll 1$

- slow growth
- \bullet facets with preferred slope ± 1
- number of facets decreases

Deposition rate $f \gg 1$

- fast growth
- slope $\ll 1$
- number of maxima/minima \approx constant

"Convective" Cahn-Hilliard equation

Express equation for height \boldsymbol{h}

i

$$\frac{\partial h}{\partial t} - f\left(1 + \frac{1}{2}\left(\frac{\partial h}{\partial x}\right)^2\right) + \frac{\partial}{\partial x}\left(\left(1 - \left(\frac{\partial h}{\partial x}\right)^2\right)\frac{\partial h}{\partial x}\right) + \frac{\partial^4 h}{\partial x^4} = 0$$

n terms of slope $u = -\frac{\partial h}{\partial x}$
 $\frac{\partial u}{\partial x} = \frac{\partial^2 u}{\partial x^2} = 0$

$$\frac{\partial u}{\partial t} + f \frac{\partial}{\partial x} (\frac{1}{2}u^2) + \frac{\partial^2}{\partial x^2} ((1 - u^2)u) + \frac{\partial^2 u}{\partial x^4} = 0$$

For large deposition rate $f \gg 1$ rescale $u = \frac{1}{f}\hat{u}$:

$$\frac{\partial \hat{u}}{\partial t} + \frac{\partial}{\partial x} (\frac{1}{2}\hat{u}^2) + \frac{\partial^2}{\partial x^2} ((1 - \frac{1}{f^2}\hat{u}^2)\hat{u}) + \frac{\partial^4 \hat{u}}{\partial x^4} = 0$$

Regime of strong deposition: Kuramoto-Sivashinsky equation

For
$$f \gg 1$$
, expressed in $u = -\frac{\partial h}{\partial x}$:

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{1}{2}u^2\right) + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^4 u}{\partial x^4} = 0$$

Three terms — three simple mechanisms

Periodic configurations u(t, x + L) = u(t, x); large system $L \gg 1$

Dynamic equilibrium

Initial data: u(t = 0) = white noise of small amplitude

Observations:

Initial phase

- 1. Smoothing $\left(\frac{\partial^4 u}{\partial x^4}\right)$
- 2. Growth $\left(\frac{\partial^2 u}{\partial x^2}\right)$
- 3. Shear ($\frac{\partial}{\partial x}(\frac{1}{2}u^2)$)

Dynamic equilibrium

- ullet average amplitude \sim 1
- \bullet average wave length \sim 1
- chaotic behavior in space & time

Shear contains exponential growth

Energy spectrum

Decomposition of spatial signal into waves of length $L, \frac{L}{2}, \frac{L}{3}, \cdots$:

$$(\mathcal{F}u(t,\cdot))(k) := L^{-1} \int_0^L e^{ikx} u(t,x) \, dx \quad \text{(Fourier series)}$$

Contribution of wave number (k, k + dk) to total energy:

 $L|(\mathcal{F}u(t,\cdot))(k)|^2 dk$

Time average:

$$\lim_{t_0\uparrow\infty}t_0^{-1}\int_0^{t_0}L|(\mathcal{F}u(t,\cdot))(k)|^2dt$$

Equipartition of energy

Observations:

- Equipartition of energy over wave numbers $|k| \ll 1$
- Energy spectrum independent of $L\gg 1$

"Universal" behavior

Challenge for mathematics

Observation:

After initial phase, there is a dynamic equilibrium, with statistics independent of the initial data u(t = 0) and of the system size L

Challenge for theory of partial differential equations: Why?

In mathematics: "Why ?" = "**How can it be proved?**"

A good proof gives insight into "why"

Modest state of mathematical insight

- Only statements of the following form have been proved: space-time averages of |u|, $|\frac{\partial u}{\partial x}|$, $|\frac{\partial^2 u}{\partial x^2}| \leq 1$, for all initial data u(t=0), system sizes L
- These statements have been proved step-by-step: space-time averages of |u|, $|\frac{\partial u}{\partial x}|$, $|\frac{\partial^2 u}{\partial x^2}| \lesssim \mathbf{L}^{\mathbf{p}}$, for all initial data u(t = 0)Nicolaenko & Scheurer & Temam '85, Goodman '94: $\lesssim \mathbf{L}^2$
- Collet & Eckmann & Epstein & Stubbe '93: $\leq L^{11/10}$
- Bronski & Gambill '06: $\lesssim \, L$, Giacomelli & O. '05: $\ll \, L$ O. '09 $\lesssim \, ln^{5/3} \, L$
- → bounds on **dim**(Attractor), **dim**(Inertial Manifold), Fojas et. al.

Near-extensive bound

Theorem [O., JFA '09] For any $\sigma > 5/3$ there exists $C < \infty$ such that for all $L \ge 2$, all initial data u(0) and $\alpha \in [\frac{1}{3}, 2]$ we have

$$\left(\lim_{T\uparrow\infty}T^{-1}L^{-1}\int_0^T\int_0^L\left||\partial_x|^\alpha u|^2\,dx\,dt\right)^{1/2}\leq C\ln^\sigma L.$$

Insight from proof

Three methods have been developed. Insight of last method:

Shear term $\frac{\partial}{\partial x}(\frac{1}{2}u^2)$ behaves like a *coercive* term, i. e. $\int_0^L \frac{\partial}{\partial x}(\frac{1}{2}u^2) u \, dx$ as $\int_0^L \left| \left| \frac{\partial}{\partial x} \right|^{1/3} u \right|^3 dx$

despite actually being conservative, i. e.

$$\int_0^L \frac{\partial}{\partial x} (\frac{1}{2}u^2) \ u \ dx = 0.$$

Conservative acts as coercive in forced inviscid Burgers

Consider f(t,x), g(t,x) with $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x}(\frac{1}{2}u^2) = \frac{\partial g}{\partial x}$, smooth, periodic in x, compactly supported in t. Then

$$\int \int \left| \left| \frac{\partial}{\partial x} \right|^{\frac{1}{3}} u \right|^{3} dx \, dt \quad \mod_{\log} \quad \int \int \left| \left| \frac{\partial}{\partial x} \right|^{\frac{2}{3}} g \right|^{\frac{3}{2}} dx \, dt,$$

more precisely expressed in interpolation spaces (Goldman & O.)

$$\|u; [\dot{H}^{1}_{\infty}, L_{2}]_{\frac{1}{3}, \infty}\|^{3} \lesssim \|g; [\dot{H}^{1}_{2}, L_{1}]_{\frac{2}{3}, 1}\|^{\frac{3}{2}}.$$

Connection with Onsager's conjecture on level of forced viscous Burgers

On the one hand, for $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x}(\frac{1}{2}u^2) - \nu \frac{\partial^2 u}{\partial x^2} = \frac{\partial g}{\partial x}$ have *uniform estimate* in $\nu \downarrow 0$

$$\|u; [\dot{H}_{\infty}^{1}, L_{2}]_{\frac{1}{3}, \infty}\|^{3} + \nu \|u; \dot{H}_{2}^{1}\|^{2} \lesssim \|g; [\dot{H}_{2}^{1}, L_{1}]_{\frac{2}{3}, 1}\|^{\frac{3}{2}}.$$

On the other hand, at $\nu = 0$ if $u \in [\dot{H}_{\infty}^1, L_2]_{\frac{1}{3}, p}$ with $p < \infty$, would have conservation of energy

$$\frac{d}{dt}\int \frac{1}{2}u^2 \, dx = \int u \frac{\partial g}{\partial x} \, dx$$

B. Demixing and Cahn-Hilliard equation

R. V. Kohn, Brenier & Seis, Seis & Slepcev

Cahn–Hilliard equation

conserved order parameter: $\partial_t m + \nabla \cdot j = 0$ diffusion flux: $j = -\nabla \frac{\partial E}{\partial m}$ free energy: E(m) $= \int \frac{1}{2} |\nabla m|^2 + \frac{1}{2} (1 - m^2)^2 dx$

periodic b.c. in $(0, L)^n$ with $L \gg 1$

Cahn–Hilliard equation with flow

Fluid flow next to diffusion

$$\partial_t m + \nabla \cdot \mathbf{j} + \nabla \cdot (\mathbf{m} \mathbf{u}) = 0$$

where $j = -\lambda \nabla \frac{\partial E}{\partial m}$ and velocity u is determined by Stokes

$$-\Delta u + \nabla p = -m \nabla \frac{\partial E}{\partial m}$$
 and $\nabla \cdot u = 0$

Non-dimensional mobility parameter $\lambda \gg 1$

Thermodyn. consistent:
$$\frac{dE}{dt}=-rac{1}{\lambda}\int|j|^2\,dx-\int|
abla u|^2\,dx$$

Dissipation mechanism influences dynamics

Energy functional $E \approx \frac{4}{3}$ area of transition layer

mediated by diffusion, limited by outer friction

Recondensation"

mediated by flow, limited by viscosity

Geometric evolution equation, diffusion only

mean curvature: H normal velocity: V

$$-\bigtriangleup\mu$$
 = 0 in bulk, $\left\{ \begin{array}{l} \mu = rac{2}{3}H \\ V = [\nu\cdot
abla \mu] \end{array} \right\}$ on interface

"Mullins-Sekerka"; Pego, Alikakos&Bates&Chen, Röger & Schätzle

Third-order free boundary problem

Geometric evolution equation, flow only

$$\left\{\begin{array}{ll} \nabla \cdot u &= 0\\ -\nabla \cdot S &= 0\end{array}\right\} \text{ in bulk, } \left\{\begin{array}{ll} \tau \cdot [S]\nu &= 0\\ \nu \cdot [S]\nu &= -\frac{4}{3}H\\ V &= \nu \cdot u\end{array}\right\} \text{ on interface,}$$

where $S := \frac{1}{2}(\nabla u + \nabla^t u) - p \operatorname{id}$ is stress tensor

First-order free boundary problem

Statistical self-similarity

earlier

later

later, rescaled, periodically extended

Diffusion dominated: coarsening exponent 1/3

After initial phase: Energy $E(m) \approx \frac{4}{3}$ area of transition layer Hence $\left(\frac{1}{L^n}E(m)\right)^{-1}$ is an average length scale

Energy E vs. time t, double logarithmic plot:

 ${
m L}^{-(n=2)}\,{
m E}({
m m})~\sim~t^{-1/3}$

Flow dominated: coarsening exponent 1

$${
m L}^{-(n=2)}\,{
m E}({
m u})~\sim~{
m t}^{-1}$$

Cross-over from $t^{-1/3}$ to t^{-1}

Heuristics (Siggia '79): Faster mechanism dominates

... confirmed by experiments

Rigorous treatment

has to cope with ungeneric behavior

Upper bounds on E not independent of initial data: — too many stationary points of E

Lower bounds on E independenty of initial data

Basic idea for rigorous lower bounds on ${\cal E}$

Dynamics is steepest descent in energy landscape

 $\begin{array}{lll} \mbox{energy} & \leftrightarrow & \mbox{heights}, \\ \mbox{dissipation} \\ \mbox{mechanism} & \leftrightarrow & \mbox{distances} \end{array}$

landscape not steep

energy decreases not fast

An abstract framework

$$(\mathcal{M}, g)$$
 Riemannian manifold
 E functional on \mathcal{M}

Gradient flow
$$\dot{x} = -\text{grad}_g E(x)$$

metric tensor $g_x(\delta x, \delta x) \rightsquigarrow$ induced distance $d(x_0, x_1)$ local global

Relating geometry to dynamics

Lemma. (Kohn & O. '02) Assume for some $\alpha > 0$ and $x^* \in \mathcal{M}$

 $E(x) \gtrsim d(x^*, x)^{-\alpha}$ provided $E(x) \leq 1$

Then for all $\sigma \in (1, \frac{\alpha+2}{\alpha})$

$$\int_0^T \boldsymbol{E}(x(t))^{\sigma} dt \gtrsim \int_0^T (t^{-\frac{\alpha}{\alpha+2}})^{\sigma} dt$$

for $T \gg d(x^*, x(0))^{\alpha+2}$ and $E(x(0)) \leq 1$.

Type of dissipation determines metric tensor g

Transport mechanism type of dissipation: $diffusion \rightsquigarrow outer friction,$ $flow \rightsquigarrow inner friction (viscosity).$

$$g_m(\delta m, \delta m)$$

= $\inf \left\{ \frac{1}{\lambda} \int |j|^2 dx + \int |\nabla u|^2 dx \right|$
 $\delta m + \nabla \cdot j + \nabla \cdot (m u) = 0, \ \nabla \cdot u = 0 \right\}.$

 \dots but induced distance d not explicitly known

Lower bound D

on induced distance d to reference configuration m^*

Reference configuration: well-mixed state $m^* = 0$

Lower bound D(m) to induced distance $d(m, m^*)$ given by transportation distance

between $m_+ := \max\{m, 0\}$

and $m_{-} := \max\{-m, 0\}$

Definition of transportation distance D

Given $m = m_+ - m_-$, measure $\pi(dx_- dx_+)$ on $[0, L]^n \times [0, L]^n$ is called **admissible transfer plan** provided

 $\mathbf{D}(\mathbf{m}) := \inf \left\{ \int \mathbf{c}(|x_- - x_+|) \pi(dx_+ dx_-) \mid \pi \text{ admissible} \right\}$

Choice of cost c

cross-over between linear and logarithmic at $z = \lambda^{1/2}$

Dissipation mechanism determines geometry

Distance on configuration space

diffusion

transportation distance with cost

$$c(x_- - x_+) = |x_- - x_+|$$

transportation distance with cost

$$c(x_{-} - x_{+})$$

= In(1 + |x_{-} - x_{+}|)

Main result

Theorem. (O. & Seis & Slepcev '10+, Brenier, O. & Seis '10) For any solution u with $\lambda \gg 1$, $L \gg 1$,

$$\int_0^T \max\{\lambda^{\frac{1}{2}}(\frac{E}{L^n})^2, \frac{E}{L^n}\} dt \gtrsim \min\left\{\left(\frac{T}{\lambda^{\frac{1}{2}}}\right)^{1/3}, 1+\ln(1+\frac{T}{\lambda^{\frac{1}{2}}})\right\}$$

provided

$$rac{E(0)}{L^n} \lesssim 1 \quad ext{and} \quad rac{T}{\lambda^{rac{1}{2}}} \gg \left(rac{D(0)}{\lambda^{rac{1}{2}}}
ight)^3 \ (\gtrsim 1).$$

Dissipation: D(m) is lower bound to $d(m, m^*)$ **Dissipation Lemma** (BOS, OSS). Suppose $\partial_t m + \nabla \cdot j + \nabla \cdot (mu) = 0$, $\nabla \cdot u = 0$.

Then provided
$$rac{1}{L^n}E(m) \lesssim 1$$

 $\left(rac{1}{L^n}rac{d}{dt}D(m)
ight)^2 \lesssim \lambda^{-1}rac{1}{L^n}\int |j|^2dx + rac{1}{L^n}\int |
abla u|^2dx.$

Uses idea of Crippa-DeLellis ('08)

for quantification of DiPerna-Lions theory

on uniqueness for transport equations $\partial_t m + u \cdot \nabla m = 0$

Future directions

Local estimates

Example with cross-over due to dissipation mechanisms

"in series", like diffusion+attachment-limited

— instead of "in parallel", like diffusion+flow-mediated (Dai&Pego on LSW-level)

Future directions

Grain growth

- = aging in polycrystals
- = multi-component
- mean curvature flow

 $rac{1}{L^n}E~\gtrsim~t^{-1/2}$

Future directions

Defect-mediated coarsening (e.g. in Siegert's model

for crystal growth)

Upper bounds on E for generic initial data