INdAM Workshop "Nonconvex evolution

 problems"
Pattern formation \& Partial Differential Equations

Felix Otto
Max Planck Institute for Mathematics in the Sciences
Leipzig, Germany

Pattern formation for two specific examples

A) crystal growth under deposition

- roughness of crystal surface
B) demixing of polymers
- labyrinth-like pattern of concentration field

Few elementary mechanisms (diffusion, viscosity, ...)

- complex Pattern

Crystal growth and Kuramoto-Sivashinsky equation

L. Giacomelli, D. Goldman

Relevant mechanisms

Crystal lattice favors certain slopes of the surface

Exposed positions are disfavored

Vertical growth rate depends on slope

$$
\frac{\partial h}{\partial t}=\underbrace{-\frac{\partial}{\partial x}\left(\left(1-\left(\frac{\partial h}{\partial x}\right)^{2}\right) \frac{\partial h}{\partial x}\right)} \underbrace{-\frac{\partial^{4} h}{\partial x^{4}}} \underbrace{+f\left(1+\frac{1}{2}\left(\frac{\partial h}{\partial x}\right)^{2}\right)}
$$

Qualitatively different behavior

for small/large deposition rate f

Initial data $h(t=0)=$ white noise of small amplitude
Deposition rate $f \ll 1$ Deposition rate $f \gg 1$

- slow growth
- facets with preferred slope ± 1
- number of facets decreases
- fast growth
- slope $\ll 1$
- number of maxima/minima \approx constant

"Convective" Cahn-Hilliard equation

Express equation for height h

$$
\frac{\partial h}{\partial t}-f\left(1+\frac{1}{2}\left(\frac{\partial h}{\partial x}\right)^{2}\right)+\frac{\partial}{\partial x}\left(\left(1-\left(\frac{\partial h}{\partial x}\right)^{2}\right) \frac{\partial h}{\partial x}\right)+\frac{\partial^{4} h}{\partial x^{4}}=0
$$

in terms of slope $u=-\frac{\partial h}{\partial x}$

$$
\frac{\partial u}{\partial t}+f \frac{\partial}{\partial x}\left(\frac{1}{2} u^{2}\right)+\frac{\partial^{2}}{\partial x^{2}}\left(\left(1-u^{2}\right) u\right)+\frac{\partial^{4} u}{\partial x^{4}}=0
$$

For large deposition rate $f \gg 1$ rescale $u=\frac{1}{f} \hat{u}$:

$$
\frac{\partial \widehat{u}}{\partial t}+\frac{\partial}{\partial x}\left(\frac{1}{2} \widehat{u}^{2}\right)+\frac{\partial^{2}}{\partial x^{2}}\left(\left(1-\frac{1}{f^{2}} \widehat{u}^{2}\right) \widehat{u}\right)+\frac{\partial^{4} \widehat{u}}{\partial x^{4}}=0
$$

Regime of strong deposition:
Kuramoto-Sivashinsky equation

For $f \gg 1$, expressed in $u=-\frac{\partial h}{\partial x}$:

$$
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{1}{2} u^{2}\right)+\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{4} u}{\partial x^{4}}=0
$$

Three terms - three simple mechanisms

$$
\frac{\partial^{2} u}{\partial x^{2}}
$$

$$
\frac{\partial^{4} u}{\partial x^{4}}
$$

Decay

$\frac{\partial}{\partial x}\left(\frac{1}{2} u^{2}\right)$
Shear

Periodic configurations $u(t, x+L)=u(t, x)$; large system $L \gg 1$

Dynamic equilibrium

Initial data: $\quad u(t=0)=$ white noise of small amplitude

Observations:

Initial phase

- 1. Smoothing $\left(\frac{\partial^{4} u}{\partial x^{4}}\right)$
- 2. Growth $\left(\frac{\partial^{2} u}{\partial x^{2}}\right)$
- 3. Shear $\left(\frac{\partial}{\partial x}\left(\frac{1}{2} u^{2}\right)\right)$

Dynamic equilibrium

- average amplitude ~ 1
- average wave length ~ 1
- chaotic behavior in space \& time

Shear contains exponential growth

Energy spectrum

Decomposition of spatial signal into waves of length $L, \frac{L}{2}, \frac{L}{3}, \cdots$:

$$
(\mathcal{F} u(t, \cdot))(k):=L^{-1} \int_{0}^{L} e^{i k x} u(t, x) d x \quad \text { (Fourier series) }
$$

Contribution of wave number $(k, k+d k)$ to total energy:

$$
L|(\mathcal{F} u(t, \cdot))(k)|^{2} d k
$$

Time average:

$$
\lim _{t_{0} \uparrow \infty} t_{0}^{-1} \int_{0}^{t_{0}} L|(\mathcal{F} u(t, \cdot))(k)|^{2} d t
$$

Equipartition of energy

Observations:

- Equipartition of energy over wave numbers $|k| \ll 1$
- Energy spectrum independent of $L \gg 1$
"Universal" behavior

Challenge for mathematics

Observation:
After initial phase, there is a dynamic equilibrium, with statistics independent of the initial data $u(t=0)$ and of the system size L

Challenge for theory of partial differential equations: Why?

In mathematics: "Why ?" = "How can it be proved?"
A good proof gives insight into "why"

Modest state of mathematical insight

Only statements of the following form have been proved: space-time averages of $|u|,\left|\frac{\partial u}{\partial x}\right|,\left|\frac{\partial^{2} u}{\partial x^{2}}\right| \lesssim 1$, for all initial data $u(t=0)$, system sizes L

These statements have been proved step-by-step: space-time averages of $|u|,\left|\frac{\partial u}{\partial x}\right|,\left|\frac{\partial^{2} u}{\partial x^{2}}\right| \lesssim \mathrm{L}^{\mathrm{p}}$, for all initial data $u(t=0)$
Nicolaenko \& Scheurer \& Temam '85, Goodman '94: $\lesssim L^{2}$
Collet \& Eckmann \& Epstein \& Stubbe '93: $\lesssim L^{11 / 10}$
Bronski \& Gambill '06: $\lesssim \mathrm{L}$, Giacomelli \& O. '05: $\ll \mathrm{L}$
O. ${ }^{\prime} 09 \lesssim \ln { }^{5 / 3} \mathrm{~L}$
\rightsquigarrow bounds on dim(Attractor), dim(Inertial Manifold), Fojas et. al.

Near-extensive bound

Theorem [O.,JFA '09]
For any $\sigma>5 / 3$ there exists $C<\infty$ such that for all $L \geq 2$, all initial data $u(0)$ and $\alpha \in\left[\frac{1}{3}, 2\right]$ we have

$$
\left(\left.\left.\lim _{T \uparrow \infty} T^{-1} L^{-1} \int_{0}^{T} \int_{0}^{L}| | \partial_{x}\right|^{\alpha} u\right|^{2} d x d t\right)^{1 / 2} \leq C \ln ^{\sigma} L
$$

Insight from proof

Three methods have been developed. Insight of last method:

Shear term $\frac{\partial}{\partial x}\left(\frac{1}{2} u^{2}\right)$ behaves like a coercive term, i. e.

$$
\int_{0}^{L} \frac{\partial}{\partial x}\left(\frac{1}{2} u^{2}\right) u d x \quad \text { as }\left.\left.\quad \int_{0}^{L}| | \frac{\partial}{\partial x}\right|^{1 / 3} u\right|^{3} d x
$$

despite actually being conservative, i. e.

$$
\int_{0}^{L} \frac{\partial}{\partial x}\left(\frac{1}{2} u^{2}\right) u d x=0
$$

Conservative acts as coercive

in forced inviscid Burgers

Consider $f(t, x), g(t, x)$ with $\quad \frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{1}{2} u^{2}\right)=\frac{\partial g}{\partial x}$, smooth, periodic in x, compactly supported in t. Then

$$
\left.\left.\iint\left|\left|\frac{\partial}{\partial x}\right|^{\frac{1}{3}} u\right|^{3} d x d t \underset{\operatorname{mog}}{\vdots} \iint| | \frac{\partial}{\partial x}\right|^{\frac{2}{3}} g\right|^{\frac{3}{2}} d x d t
$$

more precisely expressed in interpolation spaces
(Goldman \& O.)

$$
\left\|u ;\left[\dot{H}_{\infty}^{1}, L_{2}\right]_{\frac{1}{3}, \infty}\right\|^{3} \lesssim\left\|g ;\left[\dot{H}_{2}^{1}, L_{1}\right]_{\frac{2}{3}, 1}\right\|^{\frac{3}{2}}
$$

Connection with Onsager's conjecture on level of forced viscous Burgers

On the one hand, for $\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{1}{2} u^{2}\right)-\nu \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial g}{\partial x}$ have uniform estimate in $\nu \downarrow 0$

$$
\left\|u ;\left[\dot{H}_{\infty}^{1}, L_{2}\right]_{\frac{1}{3}, \infty}\right\|^{3}+\nu\left\|u ; \dot{H}_{2}^{1}\right\|^{2} \lesssim\left\|g ;\left[\dot{H}_{2}^{1}, L_{1}\right]_{\frac{2}{3}, 1}\right\|^{\frac{3}{2}}
$$

On the other hand, at $\nu=0$ if $u \in\left[\dot{H}_{\infty}^{1}, L_{2}\right]_{\frac{1}{3}, p}$ with $p<\infty$, would have conservation of energy

$$
\frac{d}{d t} \int \frac{1}{2} u^{2} d x=\int u \frac{\partial g}{\partial x} d x
$$

B. Demixing and Cahn-Hilliard equation

R. V. Kohn, Brenier \& Seis, Seis \& Slepcev

Cahn-Hilliard equation

conserved order parameter:
$\partial_{t} m+\nabla \cdot j=0$
diffusion flux: $j=-\nabla \frac{\partial E}{\partial m}$
free energy: $E(m)$

$=\int \frac{1}{2}|\nabla m|^{2}+\frac{1}{2}\left(1-m^{2}\right)^{2} d x$
periodic b.c. in $(0, L)^{n}$ with $L \gg 1$

Cahn-Hilliard equation with flow

Fluid flow next to diffusion

$$
\partial_{t} m+\nabla \cdot j+\nabla \cdot(m u)=0
$$

where $j=-\lambda \nabla \frac{\partial E}{\partial m}$ and velocity u is determined by Stokes

$$
-\Delta u+\nabla p=-m \nabla \frac{\partial E}{\partial m} \quad \text { and } \quad \nabla \cdot u=0
$$

Non-dimensional mobility parameter $\lambda \gg 1$
Thermodyn. consistent: $\quad \frac{d E}{d t}=-\frac{1}{\lambda} \int|j|^{2} d x-\int|\nabla u|^{2} d x$

Dissipation mechanism influences dynamics
Energy functional $\quad E \approx \frac{4}{3}$ area of transition layer
mediated by diffusion, limited by outer friction

mediated by flow, limited by viscosity

Recondensation"

Geometric evolution equation, diffusion only

$$
\text { mean curvature: } H
$$

normal velocity: V
$-\triangle \mu=0$ in bulk, $\left\{\begin{aligned} \mu & =\frac{2}{3} H \\ V & =[\nu \cdot \nabla \mu]\end{aligned}\right\}$ on interface
"Mullins-Sekerka" ; Pego, Alikakos\&Bates\&Chen, Röger \& Schätzle

Third-order free boundary problem

Geometric evolution equation, flow only

$\left\{\begin{aligned} \nabla \cdot u= & 0 \\ -\nabla \cdot S & =0\end{aligned}\right\}$ in bulk, $\left\{\begin{aligned} \tau \cdot[S] \nu & =0 \\ \nu \cdot[S] \nu & =-\frac{4}{3} H \\ V & =\nu \cdot u\end{aligned}\right\}$ on interface,
where $S:=\frac{1}{2}\left(\nabla u+\nabla^{t} u\right)-p$ id is stress tensor
First-order free boundary problem

Statistical self-similarity

Diffusion dominated: coarsening exponent 1/3
After initial phase: Energy $E(m) \approx \frac{4}{3}$ area of transition layer Hence $\left(\frac{1}{L^{n}} E(m)\right)^{-1}$ is an average length scale

Energy E vs. time t, double logarithmic plot:
$\mathrm{L}^{-(\mathrm{n}=2)} \mathrm{E}(\mathrm{m}) \sim \mathrm{t}^{-1 / 3}$

Flow dominated: coarsening exponent 1

$$
\mathrm{L}^{-(\mathrm{n}=2)} \mathrm{E}(\mathrm{u}) \sim \mathrm{t}^{-1}
$$

Cross-over from $t^{-1 / 3}$ to t^{-1}

Heuristics(Siggia '79): Faster mechanism dominates
initially: Diffusion faster
later: Flow faster

... confirmed by experiments

Rigorous treatment
has to cope with ungeneric behavior

Upper bounds on E not independent of initial data:

- too many stationary points of E

Lower bounds on E independenty of initial data

Basic idea for rigorous lower bounds on E

Dynamics is steepest descent in energy landscape
energy \leftrightarrow heights, dissipation mechanism
\leftrightarrow distances

landscape not steep
\Longrightarrow
energy decreases not fast

An abstract framework
(\mathcal{M}, g) Riemannian manifold E functional on \mathcal{M}

Gradient flow

$$
\dot{x}=-\operatorname{grad}_{g} E(x)
$$

metric tensor $g_{x}(\delta x, \delta x) \rightsquigarrow$ induced distance $d\left(x_{0}, x_{1}\right)$ local
global

Relating geometry to dynamics

Lemma. (Kohn \& O. '02)
Assume for some $\alpha>0$ and $x^{*} \in \mathcal{M}$

$$
E(x) \gtrsim d\left(x^{*}, x\right)^{-\alpha} \text { provided } E(x) \leq 1
$$

Then for all $\sigma \in\left(1, \frac{\alpha+2}{\alpha}\right)$

$$
\begin{gathered}
\int_{0}^{T} E(x(t))^{\sigma} d t \gtrsim \int_{0}^{T}\left(t^{-\frac{\alpha}{\alpha+2}}\right)^{\sigma} d t \quad \text { for } T \gg d\left(x^{*}, x(0)\right)^{\alpha+2} \\
\quad \text { and } E(x(0)) \leq 1
\end{gathered}
$$

Type of dissipation determines metric tensor g

Transport mechanism type of dissipation:
diffusion \rightsquigarrow outer friction,
flow \rightsquigarrow inner friction (viscosity).

$$
\begin{aligned}
& g_{m}(\delta m, \delta m) \\
& =\inf \left\{\left.\frac{1}{\lambda} \int|j|^{2} d x+\int|\nabla u|^{2} d x \right\rvert\,\right. \\
& \quad \delta m+\nabla \cdot j+\nabla \cdot(m u)=0, \nabla \cdot u=0\} .
\end{aligned}
$$

... but induced distance d not explicitly known

Lower bound D
on induced distance d to reference configuration m^{*}

Reference configuration: well-mixed state $m^{*}=0$

Lower bound $D(m)$ to induced distance $d\left(m, m^{*}\right)$ given by transportation distance
between
$m_{+}:=\max \{m, 0\}$
and
$m_{-}:=\max \{-m, 0\}$

Definition of transportation distance D

Given $m=m_{+}-m_{-}$, measure $\pi\left(d x_{-} d x_{+}\right)$on $[0, L]^{n} \times[0, L]^{n}$ is called admissible transfer plan provided

$$
\begin{aligned}
\int \zeta\left(x_{+}\right) \pi\left(d x+d x_{-}\right) & =\int \zeta(x) m_{+}(x) d x \\
\int \zeta\left(x_{-}\right) \pi\left(d x+d x_{-}\right) & =\int \zeta(x) m_{-}(x) d x .
\end{aligned}
$$

$\mathbf{D}(\mathbf{m}):=\inf \left\{\int \mathbf{c}\left(\left|x_{-}-x_{+}\right|\right) \pi\left(d x_{+} d x_{-}\right) \mid \pi\right.$ admissible $\}$

Choice of cost c

cross-over between linear and logarithmic at $z=\lambda^{1 / 2}$

$$
\mathbf{c}(\mathbf{z}):=\left\{\begin{array}{ll}
\frac{z}{\lambda^{1 / 2}} & \text { for } z \leq \lambda^{1 / 2} \\
1+\ln \frac{z}{\lambda^{1 / 2}} & \text { for } z \geq \lambda^{1 / 2}
\end{array}\right\}
$$

Dissipation mechanism determines geometry

Distance on configuration space

diffusion

transportation distance with cost
$c\left(x_{-}-x_{+}\right)$
$=\left|x_{-} x_{+}\right|$
flow

transportation distance with cost
$c\left(x_{-}-x_{+}\right)$
$=\ln \left(1+\left|x_{-}-x_{+}\right|\right)$

Main result

Theorem. (O. \& Seis \& Slepcev '10+, Brenier, O. \& Seis '10) For any solution u with $\lambda \gg 1, L \gg 1$,

$$
\int_{0}^{T} \max \left\{\lambda^{\frac{1}{2}}\left(\frac{E}{L^{n}}\right)^{2}, \frac{E}{L^{n}}\right\} d t \gtrsim \min \left\{\left(\frac{T}{\lambda^{\frac{1}{2}}}\right)^{1 / 3}, 1+\ln \left(1+\frac{T}{\lambda^{\frac{1}{2}}}\right)\right\}
$$

provided

$$
\frac{E(0)}{L^{n}} \lesssim 1 \quad \text { and } \quad \frac{T}{\lambda^{\frac{1}{2}}} \gg\left(\frac{D(0)}{\lambda^{\frac{1}{2}}}\right)^{3}(\gtrsim 1)
$$

Dissipation: $D(m)$ is lower bound to $d\left(m, m^{*}\right)$
Dissipation Lemma (BOS, OSS).
Suppose

$$
\begin{array}{r}
\partial_{t} m+\nabla \cdot j+\nabla \cdot(m u)=0 \\
\nabla \cdot u=0
\end{array}
$$

Then provided $\frac{1}{L^{n}} E(m) \lesssim 1$

$$
\left(\frac{1}{L^{n}} \frac{d}{d t} D(m)\right)^{2} \lesssim \lambda^{-1} \frac{1}{L^{n}} \int|j|^{2} d x+\frac{1}{L^{n}} \int|\nabla u|^{2} d x
$$

Uses idea of Crippa-DeLellis ('08)
for quantification of DiPerna-Lions theory
on uniqueness for transport equations $\partial_{t} m+u \cdot \nabla m=0$

Future directions

Local estimates

Example with cross-over due to dissipation mechanisms
"in series", like diffusion+attachment-limited
— instead of "in parallel", like diffusion+flow-mediated (Dai\&Pego on LSW-level)

Future directions

Grain growth
$=$ aging in polycrystals
$=$ multi-component mean curvature flow
$\frac{1}{L^{n}} E \gtrsim t^{-1 / 2}$

Future directions

Defect-mediated
coarsening
(e.g. in

Siegert's model
for crystal growth)

Upper bounds on E for generic initial data

