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Pattern formation for two specific examples

A) crystal growth under deposition
— roughness of crystal surface

B) demixing of polymers
— labyrinth-like pattern
of concentration field

Few elementary mechanisms (diffusion, viscosity, ...)
— complex Pattern



Crystal growth and Kuramoto-Sivashinsky

equation

L. Giacomelli, D. Goldman



Relevant mechanisms

Crystal lattice favors certain
slopes of the surface

Exposed positions
are disfavored

Vertical growth rate
depends on slope
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Qualitatively different behavior
for small/large deposition rate f

Initial data hA(t = 0) = white noise of small amplitude
Deposition rate f < 1 Deposition rate f > 1
e slow growth e fast growth
e facets with o Slope K1

preferred slope *1 e number of maxima/minima
e number of facets ~ constant

decreases



“Convective” Cahn-Hilliard equation

Express equation for height h

Oh 1,0h .~ O Oh . Oh, O%h
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in terms of slope u = —%
Ou 0 1 o , 07 5 0*u
| = ——((1 — — =0
ot / 8x(2u )+ 8:102(( uSu) + ox?
For large deposition rate f>> 1 rescale u = %a:
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Regime of strong deposition:
Kuramoto-Sivashinsky equation

- __ __Oh.
For f>1, expressed in u = —3




T hree terms — three simple mechanisms

02
Ox2
Growth

Periodic configurations u(t,z + L) = u(t,z); large system L > 1



Dynamic equilibrium
Initial data:  u(t = 0) = white noise of small amplitude

Observations:

Initial phase Dynamic equilibrium

e 1. Smoothing (%) e average amplitude ~ 1

e 2. Growth (%) e average wave length ~ 1
e 3. Shear (%(%uQ) ) e chaotic behavior

in space & time

Shear contains exponential growth



Energy spectrum
L L

Decomposition of spatial signal into waves of length L, 5,3, -- !

(Fu(t,-))(k) = L_lfoLeik‘”u(t,x) dx (Fourier series)

Contribution of wave number (k, k4 dk) to total energy:

L|(Fu(t,-))(k)|? dk

Time average: to
lim t(;l/ LI(Fu(t, ) (k)|2dt
totoo 0



Equipartition of energy
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Observations:

e Equipartition of energy over wave numbers |k| < 1

e Energy spectrum independent of L > 1

“Universal” behavior



Challenge for mathematics

Observation:

After initial phase, there is a dynamic equilibrium,
with statistics independent of the initial data u(¢t =0)
and of the system size L

Challenge for theory of partial differential equations:
Why?

In mathematics: “Why 7" = “"How can it be proved?’

A good proof gives insight into “why”



Modest state of mathematical insight

Only statements of the following form have been proved:

|@ &| < 1
! 8$ an g '
for all initial data u(t =0), system sizes L

These statements have been proved step by-step:
space-time averages of |ul, |8“\ \ \ LP,

for all initial data u(¢t =0)
Nicolaenko & Scheurer & Temam '85, Goodman '94: < |

Collet & Eckmann & Epstein & Stubbe '93: < [11/10

Bronski & Gambill '06: < L, Giacomelli & O. '05: <« L

O. '09 < In%/3L

~ bounds on dim(Attractor), dim(Inertial Manifold), Fojas et. al.



Near-extensive bound

Theorem [O.,JFA '09]
For any o > 5/3 there exists C' < oo such that for all

L > 2, all initial data »(0) and «a € [3,2] we have

T (L 1/2
(TIiTrQOT_lL_lfo A )|5’;U|O‘u)2d:1;dt> < ClIn? L.



Insight from proof

Three methods have been developed. Insight of last

method:

Shear term ax(%UQ) behaves like a coercive term, i. e.

L L 3
o0l 2 o11/3
/O 5% (—2u )udxr as /O “_83;) u' dx

despite actually being conservative, 1. e.

L
/O %(%u%udw = 0.



Conservative acts as coercive

iNn forced inviscid Burgers

Consider f(t,z), g(t,z) with U4 9 (142) = 99

sSmooth, periodic in x, compactly supported in t. T hen

[/l

more precisely expressed in interpolation spaces
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(Goldman & O.)
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Connection with Onsager’s conjecture
on level of forced viscous Burgers

0%u __ dg
52 = Br have

On the one hand, for ¢ 4 2 (142) — v
uniform estimate in v | O

. . . 3
Jui %, Laly 1P + vl B3P < llg: (3, Ll |12,

On the other hand, at v = 0 if u € [HgO,LQ]lp with
3
p < oo, would have conservation of energy

d o
Liil2de = u—gda}.

ox



B. Demixing and Cahn-Hilliard equation

R. V. Kohn, Brenier & Seis, Seis & Slepcev



Cahn—Hilliard equation

conserved order parameter:
oom—+V-7 =20

diffusion flux: j = —-Vz=

free energy: E(m)

= [1vm|2 4+ 1(1 - m?)?dz

periodic b.c. in (0,L)"™ with L > 1

\



Cahn—Hilliard equation with flow

Fluid flow next to diffusion

oom—+V-74+V-(mu) = 0

where 53 = —/\vg’—ﬁ and velocity u Is determined by
Stokes
oOF
—A\u+Vp = —mV—  and V-u = 0
om

Non-dimensional mobility parameter A > 1

Thermodyn. consistent: ‘g—? = —%f j|2 dx — | Vu|? dz



Dissipation mechanism influences dynamics

Energy functional E =~ 3jarea of transition layer

mediated by diffusion, mediated by flow,
limited by outer friction limited by viscosity

“Evapordtion-

Recondensation”



Geometric evolution equation, diffusion only

mean curvature: H

normal velocity: V

tH
[v-Vu]

7
v

—Ap = 0 in bulk, { } on interface

“Mullins-Sekerka' ; Pego, Alikakos&Bates& Chen, Roger & Schitzle

T hird-order free boundary problem



Geometric evolution equation, flow only

V.ou = O (7-[S]lv = O \
- in bulk, <{ v-[Slyv = —%2H ; on interface,
—V-5§5 =20 3
\ V. =v-u |
where S = %(Vu—l—vtu)—pid is stress tensor

First-order free boundary problem



Statistical self-similarity

earlier later

A\\ .{‘u

later,
rescaled,
periodically
extended
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Diffusion dominated: coarsening exponent 1/3

After initial phase: Energy E(m) =~ %area of transition layer

—1
Hence (ﬁE(m)) iS an average length scale

105 T N

Energy E vs. time¢, | N 1
_ _ ‘ ‘ N Slope: ——
dOUbIe Iogarlthmlc plot: 104'\\‘3'

[ —(n=2) E(m) ~ t—1/3

103 .........................................................................

10 1072 10° 10° 10"



Flow dominated: coarsening exponent 1

10°

energy density E(t)

107

L-(0=2) f(y) ~ t1

10° 10'

Ll
10°

time t

10°
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Cross-over from ¢t~ 1/3 to ¢ 1

Heuristics(Siggia '79): Faster mechanism dominates

initially: Diffusion faster

later: Flow faster

M E
F o~ Gty

. confirmed by experiments



Rigorous treatment
has to cope with ungeneric behavior

Upper bounds on E not independent of initial data:
— toOo many stationary points of E

m

O
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Lower bounds on E independenty of initial data




Basic idea for rigorous lower bounds on £
Dynamics is steepest descent

in energy landscape e
energy < heights, k

dissipation | —* U
mechanism

< distances

landscape not steep =t

” T
energy decreases not fast et -




An abstract framework

(M, g)

(M,g) Riemannian manifold
FE  functional on M

Gradient flow r = —grad, L (z)

metric tensor ¢g;(dx,dx) ~~ induced distance d(xqg,x1)
local global



Relating geometry to dynamics

Lemma. (Kohn & O. '02)

Assume for some o > 0 and z* &€ M
E(x) =z d(z*,z)”" provided F(x) <1

Then for all o € (1,212)

for T > d(z*, z(0))* "7

T o r —12)0
fo P@®)7dt 2 [rmE A B(z(0)) < 1.



Type of dissipation determines metric tensor g

Transport mechanism type of dissipation:
diffusion ~~ outer friction,

flow ~- inner friction (viscosity).

gm(dm, om)

— inf{§/|j|2d:1; [ 1Vul? de

om+V-54+V-(mu) = 0, V-u = O}.

. but Induced distance d not explicitly known



Lower bound D

on induced distance d to reference configuration m?*
Reference configuration: well-mixed state m* =20

Lower bound D(m) to induced distance d(m,m™)

given by transportation distance
A M

(777>

between = max{m, O A, %
m4 {m, 0} 0 - éZ\ - el
and m_ = max{—m, 0} b /A




Definition of transportation distance D

Given m = m_ —m_, measure 7(dx_ dxy) on [0, L]" x [0, L]"
IS called admissible transfer plan provided

[¢@ ) m(deyds) = [¢(@)my () da,
/C(ﬂc—)ﬂ(d$+ dr_) = /C(m) m_(x) dx.
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Choice of cost c

cross-over between linear and logarithmic at z = \1/2
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Dissipation mechanism determines geometry

Distance on configuration space Mo Smy

diffusion flow
transportation transportation
distance with cost distance with cost
c(x_ —x4) c(rx_ —x4)

= |z —x4| =In(1l+ |z —x4])



Main result

Theorem. (O. & Seis & Slepcev '10+4, Brenier, O. & Seis '10)
For any solution uw with A > 1, L > 1,

1/3
/Tmax{)\%(ﬁ)z,g}dt 2 min <T1> ,1—|—In(1-|—£1)
0 Lne o Ln \2 A2

provided

3
£(0) < 1 and 11 > (D(?)) (
Ln \




Dissipation: D(m) is lower bound to d(m,m*)

Dissipation Lemma (BOS, OSS).
SUPPOSe  gym +V-j+ V- (mu) = O,
V - u

|
o

Then provided » LE(m) <

1 d 11 (2 2
(Lndt (m)> AR [ i1Pdz 4+ 2 [ 1 Vul?da.

Uses idea of Crippa-Delellis ('08)
for quantification of DiPerna-Lions theory

on uniqueness for transport equations Oym +u-Vm =20



Future directions

LLocal estimates

Example with cross-over due to dissipation mechanisms
“In series’ | like diffusion4+attachment-limited
— instead of “in parallel”, like diffusion4flow-mediated (Dai&Pego

on LSW-level)



Future directions

Grain growth
— aging in polycrystals
— multi-component

mean curvature flow

1 —1/2
B 2t /

Y



Future directions

Defect-mediated

coarsening [

(e.g. in

= [

for crystal growth) r\

Upper bounds on E for generic initial data



