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Cahn-Hilliard system :

∂u
∂t = κ∆w, κ > 0
w = −α∆u + f (u), α > 0

Equivalently :

∂u
∂t

+ ακ∆2u− κ∆f (u) = 0

Describes the phase separation process in a binary alloy : spinodal
decomposition, coarsening

u : order parameter
w : chemical potential
κ : mobility
α : related to the surface tension at the interface



f : derivative of a double-well potential F

Typical choice :

F(s) = 1
4(s2 − 1)2

f (s) = s3 − s

Thermodynamically relevant potential :

F(s) = −θ0s2 + θ1((1 + s) ln(1 + s)
+(1− s) ln(1− s))
f (s) = −2θ0s + θ1 ln 1+s

1−s
s ∈ (−1, 1), 0 < θ1 < θ0



Remark : κ should more generally depend on u and degenerate :

∂u
∂t

= div(κ(u)∇u)

κ(s) = 1− s2

Restricts the diffusion process to the interfacial region
Is observed when the movements of atoms are confined to this region



Usual boundary conditions :

∂w
∂ν = 0 on Γ
∂u
∂ν = 0 on Γ

Ω ⊂ RN , N ≤ 3 : domain occupied by the material
Γ = ∂Ω
ν : unit outer normal vector

Equivalently :

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ



Regular potentials :

•Well-posedness, regularity : C.M. Elliott-S. Zheng, B. Nicolaenko-B.
Scheurer, D. Li-C. Zhong, ...

• Existence of finite-dimensional attractors : B. Nicolaenko-B. Scheurer-R.
Temam, D. Li-C. Zhong, ...

• Convergence of solutions to steady states : S. Zheng, P. Rybka-K.-H.
Hoffmann



Logarithmic (singular) potentials :

Main difficulty : prove that u remains in (−1, 1)

Remark : Not true for regular potentials

•Well-posedness, regularity : C.M. Elliott-S. Luckhaus, C.M. Elliott-H.
Garcke, A. Debussche-L. Dettori, A. Miranville-S. Zelik

• Existence of finite-dimensional attractors : A. Debussche-L. Dettori, A.
Miranville-S. Zelik

• Convergence of solutions to steady states : H. Abels-M. Wilke



Dynamic boundary conditions :

Influence of the walls for confined systems

Mainly studied for polymer mixtures

Technological applications

Problem : define the boundary conditions (we need 2 boundary conditions)

First boundary condition : no mass flux at the boundary :

∂w
∂ν

= 0 on Γ

Different approach : G.R. Goldstein-A. Miranville-G. Schimperna



Second boundary condition : we consider, in addition to the Ginzburg-Landau
free energy

ΨGL(u,∇u) =
∫

Ω
(
α

2
|∇u|2 + F(u))dx

the surface free energy

ΨΓ(u,∇u) =
∫

Γ
(
αΓ

2
|∇Γu|2 + G(u))dx

αΓ > 0
∇Γ : surface gradient

Original surface potential : G(s) = 1
2 aΓs2 − bΓs

aΓ > 0 : accounts for a modification of the effective interaction between the
components
bΓ : characterizes the preferential attraction of one of the components by the
walls



Total energy : Ψ = ΨGL + ΨΓ

The system tends to minimize the excess surface energy :

1
d
∂u
∂t
− αΓ∆Γu + g(u) + α

∂u
∂ν

= 0 on Γ

d > 0 : relaxation parameter
∆Γ : Laplace-Beltrami operator
g = G′

→ Dynamic boundary condition



Regular potentials : the system is well understood

Contributors : R. Chill, C.G. Gal, E. Fašangová, A. Miranville, J. Pruess, R.
Racke, H. Wu, S. Zelik, S. Zheng, ...

Singular potentials : more complicated and less understood

First existence and uniqueness result : G. Gilardi-A. Miranville-G.
Schimperna

For f singular and g regular : sign assumptions on g near the singular points of
f :

g(1) > 0, g(−1) < 0

Forces the order parameter to stay away from ±1 on Γ

Question :

•What happens when the sign conditions are not satisfied ?



Nonexistence of classical solutions :

When the sign conditions are not satisfied, we can have nonexistence of
classical solutions

We consider the scalar ODE

y′′ − f (y) = 0, x ∈ (−1, 1)
y′(±1) = K > 0

Assumptions :

• f is singular at ±1
• F(±1) < +∞ (F′ = f )
• f is odd

Satisfied by the usual logarithmic potentials



When K is small : existence and uniqueness of a solution which is separated
from the singular values (‖y‖L∞(−1,1) < 1) and is odd

Standard interior regularity estimates yield

|y′(x)| ≤ c0, |y(x)| ≤ 1− δ

x ∈ (−1
2 ,

1
2), δ > 0, c0 independent of K

Multiply the equation by y′ and integrate over (0, 1) :

|1
2

K2 − F(y(1))| ≤ c1

c1 (and F(±1)) independent of K

This inequality cannot hold when K is large

→We do not have a classical solution



Since y is odd, the ODE can be rewritten as

y′′ − f (y) =< y′′ − f (y) >

< . >= 1
Vol(˙)

∫
Ω .dx

→ 1-D stationary Cahn-Hilliard system with dynamic BCs



Numerical results :

Ω = (0, 10)× (0, 4)

Periodicity in the x-direction, dynamic boundary conditions in the y-direction

u0 : uniformly distributed random fluctuations of amplitude ±0.5

f (s) = −3s + ln(1+s
1−s), g affine



IsoValue
-0.317422
-0.263227
-0.227097
-0.190967
-0.154837
-0.118707
-0.0825766
-0.0464465
-0.0103164
0.0258136
0.0619437
0.0980738
0.134204
0.170334
0.206464
0.242594
0.278724
0.314854
0.350984
0.44131

FIGURE: Isovalues of u, at time t = 20, g(s) = s− 0.8.



IsoValue
-0.491918
-0.402011
-0.342073
-0.282135
-0.222197
-0.162258
-0.10232
-0.0423821
0.0175561
0.0774942
0.137432
0.197371
0.257309
0.317247
0.377185
0.437123
0.497061
0.557
0.616938
0.766783

FIGURE: Isovalues of u, at time t = 20, g(s) = s− 1.5.



IsoValue
-0.617946
-0.496867
-0.416147
-0.335428
-0.254708
-0.173989
-0.0932695
-0.01255
0.0681695
0.148889
0.229609
0.310328
0.391048
0.471767
0.552487
0.633206
0.713926
0.794645
0.875365
1.07716

FIGURE: Isovalues of u, at time t = 0.72, g(s) = s− 3.



IsoValue
-0.05
0.025
0.075
0.125
0.175
0.225
0.275
0.325
0.375
0.425
0.475
0.525
0.575
0.625
0.675
0.725
0.775
0.825
0.875
1

FIGURE: Isovalues of u0.



IsoValue
-0.486868
-0.37525
-0.300838
-0.226426
-0.152014
-0.0776021
-0.00319001
0.071222
0.145634
0.220046
0.294458
0.36887
0.443282
0.517694
0.592106
0.666518
0.74093
0.815342
0.889755
1.07578

FIGURE: Isovalues of u, at time t = 0.46, g(s) = s− 3.



Convergence of a sequence of solutions to regularized problems :

∂u
∂t = ∆w
w = −∆u + f0(u) + λu, λ ∈ R
∂w
∂ν = 0 on Γ
∂ψ
∂t −∆Γψ + g0(ψ) + ψ + ∂u

∂ν = 0 on Γ
ψ = u|Γ

f (s) = f0(s) + λs, g(s) = g0(s) + s

Assumptions :

• f0 ∈ C2(−1, 1), f0(0) = 0
• lims→±1 f0(s) = ±∞, lims→±1 f ′0(s) = +∞
• f ′0 ≥ 0, sgn(s)f ′′0 (s) ≥ 0
• g0 ∈ C2(R), ‖g0‖C2(R) ≤ c



Regularized potential :

f0,n(s) = f0(s), |s| ≤ 1− 1
n

f0,n(s) = f0(1− 1
n) + f ′0(1− 1

n)(s− 1 + 1
n)

s > 1− 1
n

f0,n(s) = f0(−1 + 1
n) + f ′0(−1 + 1

n)(s + 1− 1
n)

s < −1 + 1
n

Regularized problem : f0 replaced by f0,n

Existence and uniqueness of the solution un to the regularized problem



Satisfies, for n large enough

‖un(t)‖2
Cα(Ω) + ‖un(t)‖2

H2(Γ)
+ ‖un(t)‖2

H2(Ωε)
+ ‖un(t)‖2

H1(Ω)
+

‖∂un
∂t (t)‖2

H−1(Ω)
+ ‖∂un

∂t (t)‖2
L2(Γ)

+
‖∇Dτun(t)‖2

L2(Ω)2N + ‖f0,n(un(t))‖L1(Ω)+∫ t+1
t (‖∂un

∂t (s)‖2
H−1(Ω)

+ ‖∂un
∂t (s)‖2

L2(Γ)
)ds ≤

ce−βt(1 + ‖un(0)‖2
H1(Ω)

+ ‖un(0)‖2
H1(Γ)

+
‖∂un
∂t (0)‖2

H−1(Ω)
+ ‖∂un

∂t (0)‖2
L2(Γ)

)2 + c′

Ωε = {x ∈ Ω, d(x,Γ) > ε}, ε > 0
Dτun = ∇un − ∂un

∂ν ν
α > 0, β > 0, c, c′ independent of n

Remark : Actually, un(t) ∈ H2(Ω), but this regularity does not pass to the
limit



Smoothing property :

‖∂un
∂t (t)‖2

H−1(Ω)
+ ‖∂un

∂t (t)‖2
L2(Γ)

≤
c
t (1 + ‖un(0)− < un(0) > ‖2

H−1(Ω)
+ ‖un(0)‖2

L2(Γ)
)

t ∈ (0, 1], c independent of n

Lipschitz estimate :

‖u1(t)− u2(t)‖H−1(Ω)+
‖u1(t)− u2(t)‖L2(Γ) ≤
cec′t(‖u1(0)− u2(0)‖H−1(Ω)+
‖u1(0)− u2(0)‖L2(Γ))
< u1(0) >=< u2(0) >= m, t ≥ 0

c, c′ independent of t, n, u1, u2

un converges to some function u



We wish to call u the "generalized" solution to the singular problem

Variational solutions :

We set

B(u, v) = (∇u,∇v)Ω + λ(u, v)Ω+
+L((−∆)−1u, v)Ω + (∇Γu,∇Γv)Γ

u, v ∈ H1(Ω)⊗ H1(Γ) = {w, w ∈ H1(Ω), w|Γ ∈ H1(Γ)}

L > 0 chosen s.t.

‖∇u‖2
L2(Ω)3 + λ‖u‖2

L2(Ω)
+ L‖u‖2

H−1(Ω)
≥

1
2‖u‖

2
H1(Ω)

, u ∈ H1(Ω), < u >= 0

u = u− < u >
(., .)Ω, (., .)Γ : scalar products in L2(Ω) and L2(Γ)



We rewrite the problem as

(−∆)−1 ∂u
∂t −∆u+

f0(u) + λu− < w >= 0
w = −∆u + f0(u) + λu
∂ψ
∂t −∆Γψ + g(ψ) + ∂u

∂ν = 0 on Γ
ψ = u|Γ
u|t=0 = u0, ψ|t=0 = ψ0

We multiply the first equation by u− v, v = v(x) s.t.

< u(t)− v >= 0, t ≥ 0 :

((−∆)−1 ∂u
∂t , u− v)Ω + (∂u

∂t , u− v)Γ+
B(u, u− v) + (f0(u), u− v)Ω =
L(u, (−∆)−1(u− v))Ω − (g(u), u− v)Γ



Positivity of B and monotonicity of f0 :

((−∆)−1 ∂u
∂t , u− v)Ω + (∂u

∂t , u− v)Γ+
B(v, u− v) + (f0(v), u− v)Ω ≤
L(u, (−∆)−1(u− v))Ω − (g(u), u− v)Γ

Variational inequality (VI)

We set

Φ = {(u, ψ) ∈ L∞(Ω)× L∞(Γ),
‖u‖L∞(Ω) ≤ 1, ‖ψ‖L∞(Γ) ≤ 1}



Definition : Let (u0, ψ0) ∈ Φ. Then, (u, ψ) is a variational solution if

(i) u(t)|Γ = ψ(t) a.e. t > 0, u(0) = u0, ψ(0) = ψ0 ;

(ii) −1 < u(t, x) < 1 a.e. (t, x) ∈ R+ × Ω ;

(iii) (u, ψ) ∈ C([0,+∞); H−1(Ω)× L2(Γ)) ∩ L2(0,T; H1(Ω)× H1(Γ)),
T > 0 ;

(iv) f (u) ∈ L1((0,T)× Ω), T > 0 ;

(v) (∂u
∂t ,

∂ψ
∂t ) ∈ L2(τ,T; H−1(Ω)× L2(Γ)), T > τ > 0 ;

(vi) < u(t) >=< u0 >, t ≥ 0 ;

(vii) the variational inequality (VI) is satisfied for a.e. t > 0 and every test
function v = v(x) s.t. v ∈ H1(Ω)⊗ H1(Γ), f (v) ∈ L1(Ω), < v >=< u0 >.

Remark : u(t)|Γ = ψ(t) only for t > 0



• A variational solution, if it exists is unique

• ∀(u0, ψ0) ∈ Φ, ∃ a variational solution and (un, ψn = un|Γ) converges (for a
subsequence) to a variational solution

• The variational solutions satisfy the a priori estimates mentioned earlier

• The variational solutions satisfy the smoothing and Lipschitz properties



A variational solution does not necessarily solve the equations in the usual
sense

True if u(t) ∈ H2(Ω)

A variational solution solves the first equation

(−∆)−1 ∂u
∂t −∆u+

f0(u) + λu− < w >= 0 in D′

Does not necessarily satisfy the dynamic boundary condition

More precisely, the trace

∂u
∂ν

= [
∂u
∂ν

]int

exists in L∞(τ,T; L1(Γ)), 0 < τ < T



(un, ψn) satisfies

∂ψn

∂t
−∆Γψn + g(ψn) +

∂un

∂ν
= 0 on Γ

in L∞(τ,T; L2(Γ)), T > τ > 0, and the limit

[
∂u
∂ν

]ext = lim
n→+∞

∂un

∂ν

exists in L∞(τ,T; L2(Γ)) weak star

→ ∂ψ

∂t
−∆Γψ + g(ψ) + [

∂u
∂ν

]ext = 0 on Γ

→ A variational solution is a classical one if

[
∂u
∂ν

]int = [
∂u
∂ν

]ext a.e. (t, x) ∈ R+ × Γ



Remark : Scalar ODE

y′′ − f (y) = 0, x ∈ (−1, 1)
y′(±1) = K > 0

There exists a critical value K0 s.t., if K > K0, there is no classical solution

However, there exists a variational solution which is solution to

y′′ − f (y) = 0, x ∈ (−1, 1)
y(±1) = ±1

y′|x=±1 6= K



Existence of classical solutions :

Related to the H2-regularity and the separation from the singularities of f0

Theorem : Let (u, ψ) be a variational solution and set, for δ > 0 and T > 0,

Ωδ(T) = {x ∈ Ω, |u(T, x)| < 1− δ}.

Then, u(T) ∈ H2(Ωδ(T)) and

‖u(T)‖H2(Ωδ(T)) ≤ Qδ,T ,

where Qδ,T is independent of u.



Consequence : if

|u(t, x)| < 1 a.e. (t, x) ∈ R+ × Γ

then

[
∂u
∂ν

]int = [
∂u
∂ν

]ext a.e. (t, x) ∈ R+ × Γ

and u is a classical solution

→ The existence of classical solutions is related to the separation property on
the boundary

True if f0 has sufficiently strong singularities



Theorem : We assume that

lim
s→±1

F0(s) = +∞, F′0 = f0.

Then, the separation property on the boundary holds and a variational solution
is a classical one.

True if f0 behaves like s
(1−s2)p , p > 1

Not true for logarithmic potentials

In that case, we can have |u(t, x)| = 1 on a set with nonzero measure on the
boundary (possibly, on the whole boundary)

Theorem : We assume that

±g(±1) > 0.

Then, a variational solution is a classical one.



Existence of finite-dimensional attractors :

Conservation of the total mass (< u >) : we restrict ourselves to

Φm = {(u, ψ) ∈ Φ, < u >= m}, m ∈ (−1, 1)

Theorem : For every m ∈ (−1, 1), the semigroup S(t) acting on Φm possesses
the finite-dimensional global attractor Am (in H−1(Ω)× L2(Γ)) which is
bounded in Cα(Ω)× Cα(Γ), 0 < α < 1

4 .

Global attractor : unique compact set of Φm which is invariant
(S(t)Am = Am, t ≥ 0) and attracts all bounded sets of initial data

Existence of the global attractor : follows from classical results



Finite-dimensionality : construction of an exponential attractor

Exponential attractor : compact and positively invariant
(S(t)Mm ⊂Mm, t ≥ 0) set which contains the global attractor and has finite
fractal dimension

We need some (asymptotically) compact smoothing property on the
difference of 2 solutions

We have

‖u1(t)− u2(t)‖2
Φw ≤ ce−βt‖u1(0)− u2(0)‖2

Φw+
c′

∫ t
0 ‖θ(u1(s)− u2(s))‖2

L2(Ω)
ds

β > 0, θ : smooth cut-off function

Φw = H−1(Ω)× L2(Γ)



→ The semigroup is a contraction, up to ‖θ(u1 − u2)‖L2(0,t;L2(Ω))

Compactness : We work on spaces of trajectories and use the compactness of

L2(0, t; H1(Ω)) ∩ H1(0, t; H−3(Ω)) ⊂
L2(0, t; L2(Ω))

We have

‖ ∂∂t [θ(u1 − u2)]‖2
L2(0,t;H−3(Ω))

+
‖θ(u1 − u2)‖2

L2(0,t;H1(Ω))
≤

cec′t‖u1(0)− u2(0)‖2
H−1(Ω)∩L2(Γ)

u1(0), u2(0) ∈ BH−1(Ω)∩L2(Γ)(u0, ε), ε > 0 small


