THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC POTENTIAL AND DYNAMIC BOUNDARY CONDITIONS

Alain Miranville

Université de Poitiers, France

Collaborators : L. Cherfils, G. Gilardi, G.R. Goldstein, G. Schimperna, S. Zelik

Cahn-Hilliard system :

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\kappa \Delta w, \kappa>0 \\
& w=-\alpha \Delta u+f(u), \alpha>0
\end{aligned}
$$

Equivalently :

$$
\frac{\partial u}{\partial t}+\alpha \kappa \Delta^{2} u-\kappa \Delta f(u)=0
$$

Describes the phase separation process in a binary alloy: spinodal decomposition, coarsening
u : order parameter
w : chemical potential
κ : mobility
α : related to the surface tension at the interface
f : derivative of a double-well potential F
Typical choice :

$$
\begin{aligned}
& F(s)=\frac{1}{4}\left(s^{2}-1\right)^{2} \\
& f(s)=s^{3}-s
\end{aligned}
$$

Thermodynamically relevant potential :

$$
\begin{aligned}
& F(s)=-\theta_{0} s^{2}+\theta_{1}((1+s) \ln (1+s) \\
& +(1-s) \ln (1-s)) \\
& f(s)=-2 \theta_{0} s+\theta_{1} \ln \frac{1+s}{1-s} \\
& s \in(-1,1), 0<\theta_{1}<\theta_{0}
\end{aligned}
$$

Remark : κ should more generally depend on u and degenerate :

$$
\frac{\partial u}{\partial t}=\operatorname{div}(\kappa(u) \nabla u)
$$

$\kappa(s)=1-s^{2}$
Restricts the diffusion process to the interfacial region
Is observed when the movements of atoms are confined to this region

Usual boundary conditions :

$$
\begin{aligned}
& \frac{\partial w}{\partial \nu}=0 \text { on } \Gamma \\
& \frac{\partial u}{\partial \nu}=0 \text { on } \Gamma
\end{aligned}
$$

$\Omega \subset R^{N}, N \leq 3$: domain occupied by the material $\Gamma=\partial \Omega$
ν : unit outer normal vector
Equivalently :

$$
\frac{\partial u}{\partial \nu}=\frac{\partial \Delta u}{\partial \nu}=0 \text { on } \Gamma
$$

Regular potentials :

- Well-posedness, regularity : C.M. Elliott-S. Zheng, B. Nicolaenko-B. Scheurer, D. Li-C. Zhong, ...
- Existence of finite-dimensional attractors : B. Nicolaenko-B. Scheurer-R. Temam, D. Li-C. Zhong, ...
- Convergence of solutions to steady states : S. Zheng, P. Rybka-K.-H. Hoffmann

Logarithmic (singular) potentials :

Main difficulty : prove that u remains in $(-1,1)$
Remark : Not true for regular potentials

- Well-posedness, regularity : C.M. Elliott-S. Luckhaus, C.M. Elliott-H. Garcke, A. Debussche-L. Dettori, A. Miranville-S. Zelik
- Existence of finite-dimensional attractors : A. Debussche-L. Dettori, A. Miranville-S. Zelik
- Convergence of solutions to steady states : H. Abels-M. Wilke

Dynamic boundary conditions :

Influence of the walls for confined systems
Mainly studied for polymer mixtures
Technological applications
Problem : define the boundary conditions (we need 2 boundary conditions)
First boundary condition : no mass flux at the boundary :

$$
\frac{\partial w}{\partial \nu}=0 \text { on } \Gamma
$$

Different approach : G.R. Goldstein-A. Miranville-G. Schimperna

Second boundary condition : we consider, in addition to the Ginzburg-Landau free energy

$$
\Psi_{\mathrm{GL}}(u, \nabla u)=\int_{\Omega}\left(\frac{\alpha}{2}|\nabla u|^{2}+F(u)\right) d x
$$

the surface free energy

$$
\Psi_{\Gamma}(u, \nabla u)=\int_{\Gamma}\left(\frac{\alpha_{\Gamma}}{2}\left|\nabla_{\Gamma} u\right|^{2}+G(u)\right) d x
$$

$\alpha_{\Gamma}>0$
∇_{Γ} : surface gradient
Original surface potential : $G(s)=\frac{1}{2} a_{\Gamma} s^{2}-b_{\Gamma} s$
$a_{\Gamma}>0$: accounts for a modification of the effective interaction between the components
b_{Γ} : characterizes the preferential attraction of one of the components by the walls

Total energy : $\Psi=\Psi_{\mathrm{GL}}+\Psi_{\Gamma}$
The system tends to minimize the excess surface energy :

$$
\frac{1}{d} \frac{\partial u}{\partial t}-\alpha_{\Gamma} \Delta_{\Gamma} u+g(u)+\alpha \frac{\partial u}{\partial \nu}=0 \text { on } \Gamma
$$

$d>0$: relaxation parameter
Δ_{Γ} : Laplace-Beltrami operator
$g=G^{\prime}$
\rightarrow Dynamic boundary condition

Regular potentials : the system is well understood
Contributors : R. Chill, C.G. Gal, E. Fašangová, A. Miranville, J. Pruess, R. Racke, H. Wu, S. Zelik, S. Zheng, ...

Singular potentials : more complicated and less understood
First existence and uniqueness result : G. Gilardi-A. Miranville-G. Schimperna

For f singular and g regular : sign assumptions on g near the singular points of f :

$$
g(1)>0, g(-1)<0
$$

Forces the order parameter to stay away from ± 1 on Γ
Question :

- What happens when the sign conditions are not satisfied ?

Nonexistence of classical solutions :

When the sign conditions are not satisfied, we can have nonexistence of classical solutions

We consider the scalar ODE

$$
\begin{aligned}
& y^{\prime \prime}-f(y)=0, x \in(-1,1) \\
& y^{\prime}(\pm 1)=K>0
\end{aligned}
$$

Assumptions :

- f is singular at ± 1
- $F(\pm 1)<+\infty\left(F^{\prime}=f\right)$
- f is odd

Satisfied by the usual logarithmic potentials

When K is small : existence and uniqueness of a solution which is separated from the singular values $\left(\|y\|_{L^{\infty}(-1,1)}<1\right)$ and is odd

Standard interior regularity estimates yield

$$
\left|y^{\prime}(x)\right| \leq c_{0},|y(x)| \leq 1-\delta
$$

$x \in\left(-\frac{1}{2}, \frac{1}{2}\right), \delta>0, c_{0}$ independent of K
Multiply the equation by y^{\prime} and integrate over $(0,1)$:

$$
\left|\frac{1}{2} K^{2}-F(y(1))\right| \leq c_{1}
$$

c_{1} (and $F(\pm 1)$) independent of K
This inequality cannot hold when K is large
\rightarrow We do not have a classical solution

Since y is odd, the ODE can be rewritten as

$$
y^{\prime \prime}-f(y)=<y^{\prime \prime}-f(y)>
$$

$<.>=\frac{1}{\operatorname{Vol}(\cdot)} \int_{\Omega} \cdot d x$
\rightarrow 1-D stationary Cahn-Hilliard system with dynamic BCs

Numerical results :

$\Omega=(0,10) \times(0,4)$
Periodicity in the x-direction, dynamic boundary conditions in the y-direction u_{0} : uniformly distributed random fluctuations of amplitude ± 0.5
$f(s)=-3 s+\ln \left(\frac{1+s}{1-s}\right), g$ affine

Figure: Isovalues of u, at time $t=20, g(s)=s-0.8$.

Figure: Isovalues of u, at time $t=20, g(s)=s-1.5$.

Figure: Isovalues of u, at time $t=0.72, g(s)=s-3$.

Figure: Isovalues of u_{0}.

Figure: Isovalues of u, at time $t=0.46, g(s)=s-3$.

Convergence of a sequence of solutions to regularized problems :

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\Delta w \\
& w=-\Delta u+f_{0}(u)+\lambda u, \lambda \in R \\
& \frac{\partial w}{\partial \nu}=0 \text { on } \Gamma \\
& \frac{\partial \psi}{\partial t}-\Delta_{\Gamma} \psi+g_{0}(\psi)+\psi+\frac{\partial u}{\partial \nu}=0 \text { on } \Gamma \\
& \psi=\left.u\right|_{\Gamma}
\end{aligned}
$$

$f(s)=f_{0}(s)+\lambda s, g(s)=g_{0}(s)+s$
Assumptions :

- $f_{0} \in \mathcal{C}^{2}(-1,1), f_{0}(0)=0$
- $\lim _{s \rightarrow \pm 1} f_{0}(s)= \pm \infty, \lim _{s \rightarrow \pm 1} f_{0}^{\prime}(s)=+\infty$
- $f_{0}^{\prime} \geq 0, \operatorname{sgn}(s) f_{0}^{\prime \prime}(s) \geq 0$
- $g_{0} \in \mathcal{C}^{2}(R),\left\|g_{0}\right\|_{\mathcal{C}^{2}(R)} \leq c$

Regularized potential :

$$
\begin{aligned}
& f_{0, n}(s)=f_{0}(s),|s| \leq 1-\frac{1}{n} \\
& f_{0, n}(s)=f_{0}\left(1-\frac{1}{n}\right)+f_{0}^{\prime}\left(1-\frac{1}{n}\right)\left(s-1+\frac{1}{n}\right) \\
& s>1-\frac{1}{n} \\
& f_{0, n}(s)=f_{0}\left(-1+\frac{1}{n}\right)+f_{0}^{\prime}\left(-1+\frac{1}{n}\right)\left(s+1-\frac{1}{n}\right) \\
& s<-1+\frac{1}{n}
\end{aligned}
$$

Regularized problem : f_{0} replaced by $f_{0, n}$
Existence and uniqueness of the solution u_{n} to the regularized problem

Satisfies, for n large enough

$$
\begin{aligned}
& \left\|u_{n}(t)\right\|_{\mathcal{C}^{\alpha}(\Omega)}^{2}+\left\|u_{n}(t)\right\|_{H^{2}(\Gamma)}^{2}+\left\|u_{n}(t)\right\|_{H^{2}\left(\Omega_{\epsilon}\right)}^{2}+\left\|u_{n}(t)\right\|_{H^{1}(\Omega)}^{2}+ \\
& \left\|\frac{\partial u_{n}}{\partial t}(t)\right\|_{H^{-1}(\Omega)}^{2}+\left\|\frac{\partial u_{n}}{\partial t}(t)\right\|_{L^{2}(\Gamma)}^{2}+ \\
& \left\|\nabla D_{\tau} u_{n}(t)\right\|_{L^{2}(\Omega)^{2 N}}^{2}+\left\|f_{0, n}\left(u_{n}(t)\right)\right\|_{L^{1}(\Omega)}+ \\
& \int_{t}^{t+1}\left(\left\|\frac{\partial u_{n}}{\partial t}(s)\right\|_{H^{-1}(\Omega)}^{2}+\left\|\frac{\partial u_{n}}{\partial t}(s)\right\|_{L^{2}(\Gamma)}^{2}\right) d s \leq \\
& c e^{-\beta t}\left(1+\left\|u_{n}(0)\right\|_{H^{1}(\Omega)}^{2}+\left\|u_{n}(0)\right\|_{H^{1}(\Gamma)}^{2}+\right. \\
& \left.\left\|\frac{\partial u_{n}}{\partial t}(0)\right\|_{H^{-1}(\Omega)}^{2}+\left\|\frac{\partial u_{n}}{\partial t}(0)\right\|_{L^{2}(\Gamma)}^{2}\right)^{2}+c^{\prime}
\end{aligned}
$$

$\Omega_{\epsilon}=\{x \in \Omega, d(x, \Gamma)>\epsilon\}, \epsilon>0$
$D_{\tau} u_{n}=\nabla u_{n}-\frac{\partial u_{n}}{\partial \nu} \nu$
$\alpha>0, \beta>0, c, c^{\prime}$ independent of n
Remark : Actually, $u_{n}(t) \in H^{2}(\Omega)$, but this regularity does not pass to the limit

Smoothing property :

$$
\begin{aligned}
& \left\|\frac{\partial u_{n}}{\partial t}(t)\right\|_{H^{-1}(\Omega)}^{2}+\left\|\frac{\partial u_{n}}{\partial t}(t)\right\|_{L^{2}(\Gamma)}^{2} \leq \\
& \frac{c}{t}\left(1+\left\|u_{n}(0)-<u_{n}(0)>\right\|_{H^{-1}(\Omega)}^{2}+\left\|u_{n}(0)\right\|_{L^{2}(\Gamma)}^{2}\right)
\end{aligned}
$$

$t \in(0,1], c$ independent of n
Lipschitz estimate :

$$
\begin{aligned}
& \left\|u_{1}(t)-u_{2}(t)\right\|_{H^{-1}(\Omega)}+ \\
& \left\|u_{1}(t)-u_{2}(t)\right\|_{L^{2}(\Gamma)} \leq \\
& c e^{c^{\prime} t}\left(\left\|u_{1}(0)-u_{2}(0)\right\|_{H^{-1}(\Omega)}+\right. \\
& \left.\left\|u_{1}(0)-u_{2}(0)\right\|_{L^{2}(\Gamma)}\right) \\
& <u_{1}(0)>=<u_{2}(0)>=m, t \geq 0
\end{aligned}
$$

c, c^{\prime} independent of t, n, u_{1}, u_{2}
u_{n} converges to some function u

We wish to call u the "generalized" solution to the singular problem

Variational solutions :

We set

$$
\begin{aligned}
& B(u, v)=(\nabla u, \nabla v)_{\Omega}+\lambda(u, v)_{\Omega}+ \\
& +L\left((-\Delta)^{-1} \bar{u}, \bar{v}\right)_{\Omega}+\left(\nabla_{\Gamma} u, \nabla_{\Gamma} v\right)_{\Gamma}
\end{aligned}
$$

$u, v \in H^{1}(\Omega) \otimes H^{1}(\Gamma)=\left\{w, w \in H^{1}(\Omega),\left.w\right|_{\Gamma} \in H^{1}(\Gamma)\right\}$
$L>0$ chosen s.t.

$$
\begin{array}{r}
\|\nabla u\|_{L^{2}(\Omega)^{3}}^{2}+\lambda\|u\|_{L^{2}(\Omega)}^{2}+L\|u\|_{H^{-1}(\Omega)}^{2} \geq \\
\frac{1}{2}\|u\|_{H^{1}(\Omega)}^{2}, u \in H^{1}(\Omega),<u>=0
\end{array}
$$

$\bar{u}=u-<u\rangle$
$(., .)_{\Omega},(., .)_{\Gamma}:$ scalar products in $L^{2}(\Omega)$ and $L^{2}(\Gamma)$

We rewrite the problem as

$$
\begin{aligned}
& (-\Delta)^{-1} \frac{\partial u}{\partial t}-\Delta u+ \\
& f_{0}(u)+\lambda u-<w>=0 \\
& w=-\Delta u+f_{0}(u)+\lambda u \\
& \frac{\partial \psi}{\partial t}-\Delta_{\Gamma} \psi+g(\psi)+\frac{\partial u}{\partial \nu}=0 \text { on } \Gamma \\
& \psi=\left.u\right|_{\Gamma} \\
& \left.u\right|_{t=0}=u_{0},\left.\psi\right|_{t=0}=\psi_{0}
\end{aligned}
$$

We multiply the first equation by $u-v, v=v(x)$ s.t.

$$
\begin{gathered}
<u(t)-v>=0, t \geq 0: \\
\left((-\Delta)^{-1} \frac{\partial u}{\partial t}, u-v\right)_{\Omega}+\left(\frac{\partial u}{\partial t}, u-v\right)_{\Gamma}+ \\
B(u, u-v)+\left(f_{0}(u), u-v\right)_{\Omega}= \\
L\left(u,(-\Delta)^{-1}(u-v)\right)_{\Omega}-(g(u), u-v)_{\Gamma}
\end{gathered}
$$

Positivity of B and monotonicity of f_{0} :

$$
\begin{aligned}
& \left((-\Delta)^{-1} \frac{\partial u}{\partial t}, u-v\right)_{\Omega}+\left(\frac{\partial u}{\partial t}, u-v\right)_{\Gamma}+ \\
& B(v, u-v)+\left(f_{0}(v), u-v\right)_{\Omega} \leq \\
& L\left(u,(-\Delta)^{-1}(u-v)\right)_{\Omega}-(g(u), u-v)_{\Gamma}
\end{aligned}
$$

Variational inequality (VI)
We set

$$
\begin{aligned}
& \Phi=\left\{(u, \psi) \in L^{\infty}(\Omega) \times L^{\infty}(\Gamma)\right. \\
& \left.\|u\|_{L^{\infty}(\Omega)} \leq 1,\|\psi\|_{L^{\infty}(\Gamma)} \leq 1\right\}
\end{aligned}
$$

Definition : Let $\left(u_{0}, \psi_{0}\right) \in \Phi$. Then, (u, ψ) is a variational solution if
(i) $\left.u(t)\right|_{\Gamma}=\psi(t)$ a.e. $t>0, u(0)=u_{0}, \psi(0)=\psi_{0}$;
(ii) $-1<u(t, x)<1$ a.e. $(t, x) \in R^{+} \times \Omega$;
(iii) $(u, \psi) \in \mathcal{C}\left([0,+\infty) ; H^{-1}(\Omega) \times L^{2}(\Gamma)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega) \times H^{1}(\Gamma)\right)$, $T>0$;
(iv) $f(u) \in L^{1}((0, T) \times \Omega), T>0$;
(v) $\left(\frac{\partial u}{\partial t}, \frac{\partial \psi}{\partial t}\right) \in L^{2}\left(\tau, T ; H^{-1}(\Omega) \times L^{2}(\Gamma)\right), T>\tau>0$;
(vi) $<u(t)>=<u_{0}>, t \geq 0$;
(vii) the variational inequality (VI) is satisfied for a.e. $t>0$ and every test function $v=v(x)$ s.t. $v \in H^{1}(\Omega) \otimes H^{1}(\Gamma), f(v) \in L^{1}(\Omega),\langle v\rangle=\left\langle u_{0}\right\rangle$.

Remark : $\left.u(t)\right|_{\Gamma}=\psi(t)$ only for $t>0$

- A variational solution, if it exists is unique
- $\forall\left(u_{0}, \psi_{0}\right) \in \Phi, \exists$ a variational solution and $\left(u_{n}, \psi_{n}=\left.u_{n}\right|_{\Gamma}\right)$ converges (for a subsequence) to a variational solution
- The variational solutions satisfy the a priori estimates mentioned earlier
- The variational solutions satisfy the smoothing and Lipschitz properties

A variational solution does not necessarily solve the equations in the usual sense

True if $u(t) \in H^{2}(\Omega)$
A variational solution solves the first equation

$$
\begin{aligned}
& (-\Delta)^{-1} \frac{\partial u}{\partial t}-\Delta u+ \\
& f_{0}(u)+\lambda u-<w>=0 \text { in } \mathcal{D}^{\prime}
\end{aligned}
$$

Does not necessarily satisfy the dynamic boundary condition
More precisely, the trace

$$
\frac{\partial u}{\partial \nu}=\left[\frac{\partial u}{\partial \nu}\right]_{\mathrm{int}}
$$

exists in $L^{\infty}\left(\tau, T ; L^{1}(\Gamma)\right), 0<\tau<T$
$\left(u_{n}, \psi_{n}\right)$ satisfies

$$
\frac{\partial \psi_{n}}{\partial t}-\Delta_{\Gamma} \psi_{n}+g\left(\psi_{n}\right)+\frac{\partial u_{n}}{\partial \nu}=0 \text { on } \Gamma
$$

in $L^{\infty}\left(\tau, T ; L^{2}(\Gamma)\right), T>\tau>0$, and the limit

$$
\left[\frac{\partial u}{\partial \nu}\right]_{\mathrm{ext}}=\lim _{n \rightarrow+\infty} \frac{\partial u_{n}}{\partial \nu}
$$

exists in $L^{\infty}\left(\tau, T ; L^{2}(\Gamma)\right)$ weak star

$$
\rightarrow \frac{\partial \psi}{\partial t}-\Delta_{\Gamma} \psi+g(\psi)+\left[\frac{\partial u}{\partial \nu}\right]_{\mathrm{ext}}=0 \text { on } \Gamma
$$

\rightarrow A variational solution is a classical one if

$$
\left[\frac{\partial u}{\partial \nu}\right]_{\mathrm{int}}=\left[\frac{\partial u}{\partial \nu}\right]_{\mathrm{ext}} \text { a.e. }(t, x) \in R^{+} \times \Gamma
$$

Remark : Scalar ODE

$$
\begin{aligned}
& y^{\prime \prime}-f(y)=0, x \in(-1,1) \\
& y^{\prime}(\pm 1)=K>0
\end{aligned}
$$

There exists a critical value K_{0} s.t., if $K>K_{0}$, there is no classical solution However, there exists a variational solution which is solution to

$$
\begin{aligned}
& y^{\prime \prime}-f(y)=0, x \in(-1,1) \\
& y(\pm 1)= \pm 1
\end{aligned}
$$

$$
\left.y^{\prime}\right|_{x= \pm 1} \neq K
$$

Existence of classical solutions :

Related to the H^{2}-regularity and the separation from the singularities of f_{0}
Theorem : Let (u, ψ) be a variational solution and set, for $\delta>0$ and $T>0$,

$$
\Omega_{\delta}(T)=\{x \in \Omega,|u(T, x)|<1-\delta\} .
$$

Then, $u(T) \in H^{2}\left(\Omega_{\delta}(T)\right)$ and

$$
\|u(T)\|_{H^{2}\left(\Omega_{\delta}(T)\right)} \leq Q_{\delta, T},
$$

where $Q_{\delta, T}$ is independent of u.

Consequence : if

$$
|u(t, x)|<1 \text { a.e. }(t, x) \in R^{+} \times \Gamma
$$

then

$$
\left[\frac{\partial u}{\partial \nu}\right]_{\mathrm{int}}=\left[\frac{\partial u}{\partial \nu}\right]_{\mathrm{ext}} \text { a.e. }(t, x) \in R^{+} \times \Gamma
$$

and u is a classical solution
\rightarrow The existence of classical solutions is related to the separation property on the boundary

True if f_{0} has sufficiently strong singularities

Theorem : We assume that

$$
\lim _{s \rightarrow \pm 1} F_{0}(s)=+\infty, F_{0}^{\prime}=f_{0}
$$

Then, the separation property on the boundary holds and a variational solution is a classical one.

True if f_{0} behaves like $\frac{s}{\left(1-s^{2}\right)^{p}}, p>1$
Not true for logarithmic potentials
In that case, we can have $|u(t, x)|=1$ on a set with nonzero measure on the boundary (possibly, on the whole boundary)

Theorem : We assume that

$$
\pm g(\pm 1)>0
$$

Then, a variational solution is a classical one.

Existence of finite-dimensional attractors :

Conservation of the total mass $(\langle u\rangle)$: we restrict ourselves to

$$
\Phi_{m}=\{(u, \psi) \in \Phi,<u>=m\}, m \in(-1,1)
$$

Theorem : For every $m \in(-1,1)$, the semigroup $S(t)$ acting on Φ_{m} possesses the finite-dimensional global attractor \mathcal{A}_{m} (in $H^{-1}(\Omega) \times L^{2}(\Gamma)$) which is bounded in $\mathcal{C}^{\alpha}(\Omega) \times \mathcal{C}^{\alpha}(\Gamma), 0<\alpha<\frac{1}{4}$.

Global attractor : unique compact set of Φ_{m} which is invariant $\left(S(t) \mathcal{A}_{m}=\mathcal{A}_{m}, t \geq 0\right)$ and attracts all bounded sets of initial data Existence of the global attractor : follows from classical results

Finite-dimensionality : construction of an exponential attractor
Exponential attractor : compact and positively invariant
$\left(S(t) \mathcal{M}_{m} \subset \mathcal{M}_{m}, t \geq 0\right)$ set which contains the global attractor and has finite fractal dimension

We need some (asymptotically) compact smoothing property on the difference of 2 solutions

We have

$$
\begin{aligned}
& \left\|u_{1}(t)-u_{2}(t)\right\|_{\Phi^{\mathrm{w}}}^{2} \leq c e^{-\beta t}\left\|u_{1}(0)-u_{2}(0)\right\|_{\Phi^{\mathrm{w}}}^{2}+ \\
& c^{\prime} \int_{0}^{t}\left\|\theta\left(u_{1}(s)-u_{2}(s)\right)\right\|_{L^{2}(\Omega)}^{2} d s
\end{aligned}
$$

$\beta>0, \theta$: smooth cut-off function
$\Phi^{\mathrm{w}}=H^{-1}(\Omega) \times L^{2}(\Gamma)$
\rightarrow The semigroup is a contraction, up to $\left\|\theta\left(u_{1}-u_{2}\right)\right\|_{L^{2}\left(0, t ; L^{2}(\Omega)\right)}$
Compactness : We work on spaces of trajectories and use the compactness of

$$
\begin{aligned}
& L^{2}\left(0, t ; H^{1}(\Omega)\right) \cap H^{1}\left(0, t ; H^{-3}(\Omega)\right) \subset \\
& L^{2}\left(0, t ; L^{2}(\Omega)\right)
\end{aligned}
$$

We have

$$
\begin{aligned}
& \left\|\frac{\partial}{\partial t}\left[\theta\left(u_{1}-u_{2}\right)\right]\right\|_{L^{2}\left(0, t ; H^{-3}(\Omega)\right)}^{2}+ \\
& \left\|\theta\left(u_{1}-u_{2}\right)\right\|_{L^{2}\left(0, t ; H^{1}(\Omega)\right)}^{2} \leq \\
& c e^{c^{\prime} t}\left\|u_{1}(0)-u_{2}(0)\right\|_{H^{-1}(\Omega) \cap L^{2}(\Gamma)}^{2}
\end{aligned}
$$

$u_{1}(0), u_{2}(0) \in B_{H^{-1}(\Omega) \cap L^{2}(\Gamma)}\left(u_{0}, \epsilon\right), \epsilon>0$ small

